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Abstract: In this paper we theoretically derive for the first time a matrix formalism for a
coupled dual-core fiber optical parametric amplifier (FOPA). One of the most advantageous
properties of this degenerate pump FOPA is the spectrally flat gain obtained when certain design
parameters are met. This flat gain is obtained either in phase-sensitive (PS) or phase-insensitive
(PI) operation of the dual-core FOPA. Properties such as maximum and minimum PS gain, along
with maximum bandwidth and difference between maximum PS and PI gain are also investigated.
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1. Introduction

Optical amplifiers are key signal processing devices used in an optical network in order to
achieve a number of important tasks, such as amplifying the transmitter laser signal, increase
receiver sensitivity and the most important: compensate for fiber loss [1, 2]. Erbium doped fiber
amplifiers have been the preferred devices at least in what gives respect to compensation of fiber
loss, however its limited capability to work in a broad range of frequencies [2] is certainly its
most noticeable shortcoming. Parametric amplification offers a wide gain bandwidth and the
possibility to work at any wavelength [2,3]. Highly nonlinear fibers around a few hundred meters
in length can be used as the amplifying medium using its χ(3) nonlinear property, designating
these amplifiers as fiber optical parametric amplifiers (FOPA).

Most of the literature devoted to FOPA just use a single mode single-core fiber in order to
achieve amplification [1, 2]. However some literature has considered modulation instability
(MI) in a dual-core system [4–12]. The term "parametric amplification" is used in some of
these articles [5, 11, 12] although they are tightly connected to MI. Most of this literature deals
with nonlinear directional couplers [4, 5, 7, 8, 11, 12] and some with fiber propagation [6–10].
Most of them studied the asymmetric case where the power in the dual-cores is different from
each other [4–9]. An interesting study in the scope of MI, was done in [5], where flat gain was
obtained (Fig. 2 and 3 of [5]). However the case studied was the asymmetric one, with cross
phase modulation between the dual-cores included in the model of [5], which means that strongly
coupled cores were considered, which is not the cases studied in this paper.

Nonlinear propagation in multi-core fibers has been studied extensively recently [13, 14],
leading to investigation of the positive impact of linear crosstalk on the nonlinear penalties [14].

In this paper we present a new theoretical matrix formalism to study nonlinear propagation in
a dual-core FOPA in the symmetric case, which is more closely related with the recent theoretical
formalism of single-core FOPA [15]. An important property of dual-core FOPA, is the flat gain
obtained if some system design parameters are met, promising performance similar to their dual
pump single-core FOPA counterparts [16,17]. In the case of a dual-core FOPA 4 waves are under
consideration besides the pump waves, i.e., two signal waves (one per each core) and two idlers
(one per each core), although only two of the four waves are necessary to achieve PS gain as we
will demonstrate later on this paper. Any combination of waves are possible in order to achieve
PS gain.

2. Theorectical description

We start this theoretical description with the two coupled nonlinear Schrodinger equations
(NLSE) [12, 14]:

i
dE1

dz
+ γ |E1 |

2E1 + CE2 = 0 (1)

i
dE2

dz
+ γ |E2 |

2E2 + CE1 = 0 (2)

where E1 and E2 are the fields in core 1 and core 2 (see Fig. 1), C is the core coupling coefficient
and γ is the nonlinear parameter. We assume 3 waves in each core, i.e.,

E1 = up1 exp
(
i
(
ωp1 t − βp1 z

))
+ us1 exp

(
i
(
ωs1 t − βs1 z

))
+ ui1 exp

(
i
(
ωi1 t − βi1 z

))
(3)

E2 = up2 exp
(
i
(
ωp2 t − βp2 z

))
+ us2 exp

(
i
(
ωs2 t − βs2 z

))
+ ui2 exp

(
i
(
ωi2 t − βi2 z

))
(4)

and ωp1,s1,i1,p2,s2,i2 are the frequencies of the pump, signal and idler in core 1 and core 2,
respectively, where 2ωp1 = 2ωp2 = ωi1 + ωs1 , ωi1 = ωi2 and ωs1 = ωs2 . βp1,s1,i1,p2,s2,i2 are
the propagation constants of the pump, signal and idler in core 1 and core 2, respectively. The
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symbols up1,s1,i1,p2,s2,i2 are the signals of the pump, signal and idler in core 1 and core 2,
respectively and are functions of z only. This results in the propagation of 6 fields oscillating at 3
different frequencies described by the following coupled equations

dup1

dz
= iup1

(
βp1 +γ

(
2P1−|up1 |

2
))

+iγ2u∗
p1

us1ui1 +iCup2 (5)

dus1

dz
= ius1

(
βs1 +γ

(
2P1−|us1 |

2
))

+iγu2
p1

u∗
i1

+iCus2 (6)

dui1

dz
= iui1

(
βi1 +γ

(
2P1−|ui1 |

2
))

+iγu2
p1

u∗
s1

+iCui2 (7)

dup2

dz
= iup2

(
βp2 +γ

(
2P2−|up2 |

2
))

+iγ2u∗
p2

us2ui2 +iCup1 (8)

dus2

dz
= ius2

(
βs2 +γ

(
2P2−|us2 |

2
))

+iγu2
p2

u∗
i2

+iCus1 (9)

dui2

dz
= iui2

(
βi2 +γ

(
2P2−|ui2 |

2
))

+iγu2
p2

u∗
s2

+iCui1 (10)

The total power in each core is given by P1 and P2

P1 = |up1 |
2 + |us1 |

2 + |ui1 |
2 (11)

P2 = |up2 |
2 + |us2 |

2 + |ui2 |
2 (12)

in addition the invariant

R = |us |
2 − |ui |

2 = |us1 |
2 + |us2 |

2 − |ui1 |
2 − |ui2 |

2 (13)

is the Manley-Rowe invariant [15]. Moreover in order to be in conformity with the cases studied
in this paper we assume that:

βp1 = βp2 (14)
βs1 = βs2 (15)
βi1 = βi2 (16)

To get a more intuitive description we assume a solution in the small signal gain region
where |up1 |

2 = Pp1 =
Pp

2 � |us1,i1 |
2 and |up2 |

2 = Pp2 =
Pp

2 � |us2,i2 |
2, Pp = Pp1 + Pp2

, where Pp , Pp1 and Pp2 are the total power of the pump, power of the pump in core 1 and
power of the pump in core 2, respectively. Therefore the pump evolution through the length of

the fiber can be approximated by up1 (z) = up2 (z) =

√
Pp

2 exp
(
iφ0 + i

(
βp1,p2 +

γPp

2 + C
)

z
)

where φ0 is the common initial phase of the pumps in core 1 and 2. Therefore we stress
that the pumps should be phase locked and have equal power in order to be in conformity
with the theory described in this paper. After inserting this into Eq. (5) and Eq. (8) we skip
the phase dependence following the procedure described in [15]. By making the substitution
us1,i1,s2,i2(z) = es1,i1,s2,i2(z) exp (iφ0 + i( Ppγ−∆β

2 + βs1,i1,s2,i2 + C)z) we obtain a first order
system that can be written in matrix form as:

d
dz
−→
E (z) = iM

−→
E (z) (17)

M =


K0

Pp γ

2 C 0
−

Pp γ

2 −K0 0 −C
C 0 K0

Pp γ

2
0 −C −

Pp γ

2 −K0

 (18)
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Core 1

Core 2

Dual-core optical SMF 

𝑢𝑢𝑝𝑝1(0)
𝑢𝑢𝑠𝑠1(0) 𝑢𝑢𝑖𝑖1(0)

𝑢𝑢𝑝𝑝2(0)
𝑢𝑢𝑠𝑠2(0) 𝑢𝑢𝑖𝑖2(0)

𝑢𝑢𝑝𝑝1(𝐿𝐿)
𝑢𝑢𝑠𝑠1(𝐿𝐿) 𝑢𝑢𝑖𝑖1(𝐿𝐿)

𝑢𝑢𝑝𝑝2(𝐿𝐿)
𝑢𝑢𝑠𝑠2(𝐿𝐿) 𝑢𝑢𝑖𝑖2(𝐿𝐿)

𝜆𝜆

𝜆𝜆 𝜆𝜆

𝜆𝜆
𝜆𝜆𝑠𝑠

𝜆𝜆𝑠𝑠

𝜆𝜆𝑝𝑝

𝜆𝜆𝑝𝑝

𝜆𝜆𝑖𝑖

𝜆𝜆𝑖𝑖

Fig. 1. Schematic of the model used in numerical computations.λs -wavelength of the signal,
λp -wavelength of the pump, λi -wavelength of the idler.

where
K0 = k − C (19)

is the phase mismatch parameter of the dual-core fiber, k =
Ppγ

2 +
∆β
2 and ∆β = β3(ωp −

ω0)(ωs −ωp )2, where β3 is the third order dispersion parameter, ωp , ω0 , ωs are the pump, zero
dispersion and signal angular frequency, respectively, and:

−→
E (z) =


es1 (z)
e∗
i1

(z)
es2 (z)
e∗
i2

(z)

 . (20)

By solving Eq. (17) with initial conditions

−→
E (0) =


es10

e∗
i10

es20

e∗
i20

 (21)

we obtain a solution of the type
−→
E (z) = K (z)

−→
E (0) (22)

where K (z) is given by 
A B D E
−B F −E G
D E A B
−E G −B F

 , (23)

with gain coefficients

g1 =

√
Pp

2 γ2 − 4 (K0 + C)2 =

√
Pp

2 γ2 − 4 k2 (24)

g2 =

√
Pp

2 γ2 − 4 (K0 − C)2 =

√
Pp

2 γ2 − 4 (k − 2C)2 (25)
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and matrix elements

A =
cosh

(
g1 z

2

)
2

+
cosh

(
g2 z

2

)
2

+

+
(K0 − C) sinh

(
g2 z

2

)
i

g2
+

(K0 + C) sinh
(
g1 z

2

)
i

g1
(26)

B =
Pp γ sinh

(
g1 z

2

)
i

2 g1
+

Pp γ sinh
(
g2 z

2

)
i

2 g2
(27)

D = cosh2
(g1 z

4

)
− cosh2

(g2 z
4

)
+

+
(K0 + C) sinh

(
g1 z

2

)
i

g1
−

(K0 − C) sinh
(
g2 z

2

)
i

g2
(28)

E =
Pp γ sinh

(
g1 z

2

)
i

2 g1
−

Pp γ sinh
(
g2 z

2

)
i

2 g2
(29)

F =
cosh

(
g1 z

2

)
2

+
cosh

(
g2 z

2

)
2

−

−
(K0 + C) sinh

(
g1 z

2

)
i

g1
−

(K0 − C) sinh
(
g2 z

2

)
i

g2
(30)

G = cosh2
(g1 z

4

)
− cosh2

(g2 z
4

)
−

−
(K0 + C) sinh

(
g1 z

2

)
i

g1
+

(K0 − C) sinh
(
g2 z

2

)
i

g2
. (31)

An alternative way to represent Eq. (17) is through its odd and even modes. If we write,

d
dz


es1 (z)
e∗
i1

(z)
es2 (z)
e∗
i2

(z)

 =


K0

Pp γ

2 C 0
−

Pp γ

2 −K0 0 −C
C 0 K0

Pp γ

2
0 −C −

Pp γ

2 −K0




es1 (z)
e∗
i1

(z)
es2 (z)
e∗
i2

(z)

 (32)

in the following form,

d
dz


es1 (z)
es2 (z)
e∗
i1

(z)
e∗
i2

(z)

 =


K0 C Pp γ

2 0
C K0 0 Pp γ

2
−

Pp γ

2 0 −K0 −C
0 −

Pp γ

2 −C −K0




es1 (z)
es2 (z)
e∗
i1

(z)
e∗
i2

(z)

 (33)

we can solve them by simultaneous diagonalization, by finding the eigenvalues of the diagonal
blocks and the off diagonal blocks. Therefore the eigenvalues of the diagonal blocks are (τ −
K0)2 ∓C2 = 0⇔ τ = K0 ±C and the double eigenvalue of the off diagonal blocks are δ =

Pp γ

2 .
Thus we can write Eq. (33) in the following form

d
dz

(
eo (z)
e∗e (z)

)
=

(
τ δ
−δ −τ

) (
eo (z)
e∗e (z)

)
(34)

Interesting to note that
√

(δ2 − τ2) =

√
Pp

2 γ2

4 − (K0 ± C)2, which are proportional to the
corresponding gain coefficients g1 and g2.
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∆β, m-1
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m
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g = g1
g = g2 and C = γPp/4

∆β = γPp = 4C

Fig. 2. Parametric gain coefficient g as a function of ∆β.

It is noteworthy that vector
−→
E (z) obeys the Manley-Rowe invariant and K (z)H σ1 K (z) =

σ1 = const [15] which is equivalent to R =
−→
E H (z)σ1

−→
E (z) = const, where

σ1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (35)

and the superscript H denotes the hermitian conjugate.

3. Results and discussion

In this section we will discuss the above results, using the derived theoretical formalism of
section 2. In order to achieve this objective we use the schematic of Fig. 1.

3.1. Phase-insensitive gain

We define the parametric gain in core 1 and 2 as

G1,2 =

∣∣∣us1,2 (L)
∣∣∣2

Ps0
(36)

where Ps0 = |us (0) |2 /2 =
∣∣∣us1 (0)

∣∣∣2 =
∣∣∣us2 (0)

∣∣∣2 and L is the length of the fiber. The initial
conditions in the case of phase-insensitive (PI) gain are given as

−→
E (0) = es10


1
0
0
0

 . (37)

It can be demonstrated that our proposed dual-core FOPA has either exponential gain de-
pendence on pump power when ∆β = 0 and also has exponential gain dependence on pump
power in the case of optimal mismatch, when K0 = ±C where the maximum PI gain is given
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Table 1. Setup Parameters

Symbol Value Units

λp 1550 nm
λ0 1549.8 nm
Pp 1 W
γ 11 W-1 km-1

β3 1.10−40 s3m-1

L 700 m

by G1PI ,max
=

Pp
2γ2 z2

16 + cosh
(
Ppγz

4

)4
. In Fig. 2 we show the parametric gain coefficient g

as a function of ∆β using the expression of Eqs. (24)–(25). The plots are given for C = 0 or
equivalently g = g1 and C = γPp/4 given by the curve g = g2. C = 0 is a identical situation of
the single-core FOPA and C = γPp/4 is an example value for the dual-core FOPA, proposed in
this paper. One can distinguish both cases by the parametric gain coefficient g when ∆β = 0,
which is maximum in the shown case of C = γPp/4 and minimum when C = 0. The single-core
FOPA has quadratic gain dependence on pump power when ∆β = 0 while the dual-core FOPA
has exponential gain dependence on pump power. This is a clear advantage for the dual-core
FOPA scheme over the single-core FOPA. The non-degenerate double pump single-core FOPA
is thus capable to present exponential gain dependence on pump power when ∆β = 0 over a
wide bandwidth [16, 17], however our proposed scheme can accomplish this in a degenerate con-
figuration, avoiding the problem of Raman induced power transfer, that can reduce the four-wave
mixing efficiency [18].

3.2. Phase-sensitive gain

In this subsection we will study the properties of the phase sensitive gain with 2 waves inserted
at the input of the dual-core parametric amplifier. Therefore in the setup of Fig. 1 the waves ui1

and ui2 are omitted while the waves us1 and us2 remain. Later in subsection 3.3 we will discuss
the maximum and minimum PS gain when 4 waves are taken into account. The initial conditions
in the case of phase-sensitive (PS) gain when 2 waves (signal waves) are inserted at the input of
the system are given as

−→
E (0) = es10


1
0

exp(iφ)
0

 . (38)

where the PS gain is obtained by inserting the signal us1 (0) and us2 (0) in core 1 and core 2,
respectively, as shown in Fig. 1. We define the gain extinction ratio (GER) as given by the
following expression

GER = max
−π≤φ≤π

G1 − min
−π≤φ≤π

G1 (39)

where G1 is given in dB. In Fig. 3(a) and 3(b) we show the gain G1 (which for the present initial
conditions is equal to G2) versus λs and versus φ, respectively. Table 1 shows the parameters
of the schematic of Fig. 1. The C parameter was chosen in order that CL = π

2 , where L is the
length of the fiber.

In our design when ∆β = 0 flat and maximum exponential gain dependence on pump power
can be obtained if the power of the pump is approximately equal to the critical power of a
dual-core system Pp ≈

4C
γ [5]. Our proposed scheme can also provide gain when the pump lies

in the normal dispersion regime, since if ∆β > 0 this can still be compensated by the phase
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mismatch introduced by the term −C in Eq. (19). Recalling the PS initial conditions of Eq. (38),
it is shown in Fig. 3(a) that when φ = 0 the gain spectrum G1 (and G2), is similar to the case
of a single-core FOPA. This is due to the fact that accordingly to Eqs. (24)–(31) the gain is
given by G1,2 = |A + D |2 and the terms with g2, that gives the unique properties of the dual-core
FOPA, will vanish, while the terms with g1 will remain. However when φ = π we have the
opposite case, G1,2 = |A − D |2 and the terms with g1 will vanish, while the terms with g2 will
remain, yielding in exponential and flat gain when ∆β = 0. When the frequency of the pump
( f p) is equal to the zero dispersion frequency ( f0) this results in broadband, flat, exponential
gain dependence on pump power when φ = π and broadband, flat and quadratic gain dependence
on pump power when φ = 0. Figure 3(b) shows the gain against the phase shift φ presented in
Eq. (38). The maximum difference between PS and PI gain is about 6 dB. This difference is
dependent on the coupling coefficient C, however as we will discuss further, C must be chosen
in order to have the best properties of the proposed dual core FOPA, such as flat and exponential
gain dependence on pump power when ∆β = 0. It is noteworthy that the 6 dB difference is

1480 1510 1540 1570 1600
0

5

10

15

20

25

30

35

λs, nm

G
1
,d

B

φ=π and fp 6= f0 φ=0 and fp 6= f0
φ=π and fp=f0 φ=0 and fp=f0

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
×π

5

10

15

20

25

30

35

φ, rad

G
1
,d

B

PS gain es10 [1;0;exp(iφ);0]
PIS gain es10 [1;0;0;0]

≈6 dB

a)

b)

Fig. 3. Gain G1 versus a) λs and b) φ. fp -frequency of the pump and f0-zero dispersion
frequency.
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Fig. 4. GER as a function of the coupling coefficient C with ∆β = 0.

obtained when there are no idlers generated at the input of the dual core FOPA and therefore
they are not required to have the 6 dB difference between PI and PS gain, usually obtained in a
single-core phase-sensitive amplifier. Looking to Eqs. (5)–(10), we can intuitively see that this
is due to the fact that the signal us1 interacts not just linearly through the coupling coefficient
C with us2 but also nonlinearly through the generation of the idlers in both cores. This is on
the basis of the additional generated PS gain. In Fig. 4 we demonstrate that maximum GER,
which may be important for phase regeneration applications, is achieved for a specific coupling
coefficient. This value depends on the power of the pump among other parameters.

3.3. Maximum and minimum phase-sensitive gain

PS gain occurs when at least two of the four waves, are introduced in the dual-core FOPA,
being one of them the signal wave. The maximum PS gain is given by G1,2PS ,max

=

|A + B ± D ± E |2 = cosh
(
Ppγz

)
when K0 = ∓C, respectively. It must be stressed that

when G1,2PS ,max
= |A + B − D − E |2 all the terms with g1 will vanish, and therefore it is

possible to have exponential gain dependence on pump power when ∆β = 0, while when
G1,2PS ,max

= |A + B + D + E |2 all the terms with g2 will disappear and the spectrum shape will
look as a single-core FOPA. It can be demonstrated that the minimum PS gain is obtained when
K0 = Ppγ/2. Therefore

G1,2PS ,min
= |A − B + D − E |2 =

= 1 −
Pp γ sin

(
z
√

C2 + Pp γC
)2

(
C + Pp γ

) . (40)

For a fair comparison between the maximum PS gain and the maximum PI gain, we must
take into consideration that the ratio between the former and the later depends on the coupling
coefficient. Therefore one shall choose the configuration that gives the best properties of the dual
core FOPA, which is when we can obtain both flat and exponential gain dependence on pump
power with ∆β = 0. In this situation the maximum gain is obtained when we maximize g2, which

                                                                                                     Vol. 25, No. 6 | 20 Mar 2017 | OPTICS EXPRESS 6242 



is when C = Ppγ/4 and the maximum PS gain is obtained by G1,2PS ,max
= |A + B − D − E |2.

Therefore in this conditions the ratio between G1,2PS ,max
and G1PI ,max

is given by

G1,2PS ,max

G1PI ,max

=
cosh(Ppγz)

Pp
2γ2 z2

16 + cosh
(
Ppγz

4

)4 ≈
cosh(Ppγz)

cosh
(
Ppγz

4

)4 ≤8, (41)

therefore 9 dBs between the maximum PS and maximum PI gain can be obtained with the
proposed configuration. To note that the maximum difference between maximum PS gain and
maximum PI gain is obtained for Ppγz & 10.

4. Conclusions

In this paper we proposed a theoretical formalism to study the dual-core FOPA. The dual-core
FOPA presents several attractive characteristics over the known single-core FOPA, such as
exponential gain dependence on pump power when ∆β = 0, gain in the normal dispersion
regime and flat gain around the frequency of the pump. Besides the dual-core FOPA works in
a degenerate configuration which avoids certain problems of the non-degenerate double pump
single-core FOPA such as Raman induced power transfer over distinct frequencies, which reduces
the four-wave mixing (FWM) efficiency, due to unequal power of the pumps along the fiber
length. We present in this paper the expressions for maximum and minimum PS gain and include
the results for phase sensitivity due to the coupling coefficient C, showing that maximum phase
sensitivity is achieved for a single value of core coupling coefficient.
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