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Abstract The setting of this work is the n-dimensional hyperbolic space R
+ × R

n−1,
where the Laplacian is given a drift in the R+ direction. We consider the operators defined
by the horizontal Littlewood-Paley-Stein functions for the heat semigroup and the Poisson
semigroup, and also the Riesz transforms of order 1 and 2. These operators are known to
be bounded on Lp, 1 < p < ∞, for the relevant measure. We show that most of the
Littlewood-Paley-Stein operators and all the Riesz transforms are also of weak type (1, 1).
But in some exceptional cases, we disprove the weak type (1, 1).
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1 Introduction

Let (M, μ) be a σ -finite measure space, and let {Tt }t>0 denote a symmetric diffusion semi-
group on (M,μ) in the sense of [20]. The horizontal Littlewood-Paley-Stein function of
order k ∈ N

+ associated to {Tt }t>0 is defined by

(∫ +∞

0

∣∣∣∣sk ∂k

∂sk
Tsf (x)

∣∣∣∣
2

ds

s

) 1
2

, x ∈ M,

for f ∈ Lp(μ), 1 ≤ p < +∞, and the related maximal function of order k ∈ N is

sup
s>0

∣∣∣∣sk ∂k

∂sk
Tsf (x)

∣∣∣∣ , x ∈ M.

By the general Littlewood-Paley theory of Stein [20], these operators are bounded on
Lp(μ) for all 1 < p < + ∞. Some important examples of symmetric diffusion semigroups
are the heat semigroup et� (t > 0) and the Poisson semigroup e−t

√−� (t > 0) associated
to the Laplace-Beltrami operator � on a complete and stochastically complete (weighted)
Riemannian manifold. For f ∈ C∞

o , set in the following

gk(f )(x)=
(∫ +∞

0

∣∣∣∣sk ∂k

∂sk
e−s

√−�f (x)

∣∣∣∣
2

ds

s

) 1
2

, Gk(f )(x) = sup
s>0

∣∣∣∣sk ∂k

∂sk
e−s

√−�f (x)

∣∣∣∣ ,

hk(f )(x) =
(∫ +∞

0

∣∣∣∣sk ∂k

∂sk
es�f (x)

∣∣∣∣
2

ds

s

) 1
2

, Hk(f )(x) = sup
s>0

∣∣∣∣sk ∂k

∂sk
es�f (x)

∣∣∣∣ .
Here k ≥ 1 for gk and hk , but k ≥ 0 for Gk and Hk .
In R

n, it is obvious that gk and hk are not bounded on L1. But they are of weak type
(1, 1), as follows from the classical vector-valued singular integral operator theory; see
for instance Stein [21, Ch. IV]. These results can be generalized to complete Riemannian
manifolds satisfying the doubling volume property and an on-diagonal heat kernel upper
estimate; see [3], where the weak type (1, 1) of g1, g2 and h1 is proved. Moreover, it is not
hard to see that the arguments of [3, pp. 50–52] are valid for gk and hk of higher order. In
this setting, one can also show that the Hk are of weak type (1, 1) by using basic properties
of the centered Hardy-Littlewood maximal function.

If the manifolds considered have exponential volume growth, no doubling condition is
satisfied. This situation is worse, since there is no adequate theory of singular integrals.
There are some weak type (1, 1) results for H0 in that case; see for example [1, 2, 4,
14, 16] and references therein. To our knowledge, there exists only one result about gk:
in Anker’s paper [1], the weak type (1, 1) inequality of g1 is obtained for noncompact
symmetric spaces, and it is clear that the argument (see [1, pp. 290–291]) also works for gk

of higher order and in the setting of harmonic AN groups in the sense of [5]. The cases of
hk and Hk (k ≥ 1) seem to be more difficult: there is no known result even for h1 or H1.

The main purpose of this paper is to exhibit some manifolds of exponential volume
growth in which h1 and H1 are of weak type (1, 1). As a consequence, we give for symmet-
ric spaces of noncompact type and rank one an affirmative answer to a problem left open in
[1, Remark (1), pp. 278–279]. In the manifolds considered, we also treat Riesz transforms
∇(−�)−1/2 and (−�)−1/2∇, and analogous second-order operators. For these, a few weak
type (1, 1) results have been obtained in the settings of noncompact symmetric spaces (see
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for example [1]), harmonic AN groups (see [2]), affine groups (see for example [18] and
[10]) and the Laplacian with drift on euclidean spaces (see [16]).

The setting of this paper will be a weighted manifold based on the real hyperbolic space
H

n of dimension n ≥ 2. Here Hn is considered as R+ × R
n−1 endowed with the measure

dμ(y, x) = y−ndydx and the distance

d((y, x), (y′, x′)) = arcosh
y2 + (y′)2 + |x − x′|2

2y
, (y, x), (y ′, x′) ∈ H

n. (1.1)

On H
n we consider the vector fields

X0 = y
∂

∂y
, Xj = y

∂

∂xj

, 1 ≤ j ≤ n − 1.

The gradient and its norm are given by

∇f = (X0f, . . . ,Xn−1f ) and |∇f |2 =
n−1∑
0

|Xj f |2.

The Laplacian on H
n is

�Hn = y2 ∂2

∂y2
− (n − 2)y

∂

∂y
+ y2�

Rn−1 ,

see [6, p. 176].
Given α ∈ R, we replace dμ by dμα = yαdμ and get H(n,α) = (Hn, dμα), which is a

weighted manifold as defined in [9, Definition 3.17, p. 67]. The corresponding Laplacian is
obtained by adding to �Hn a drift term in the y coordinate,

�
H(n,α) = y2 ∂2

∂y2
− (n − 2 − α)y

∂

∂y
+ y2�

Rn−1 ,

cf. [9, pp. 252–253]. The bottom of the spectrum of−�
H(n,α) inL2(H(n,α)) is (n−1−α)2/4,

as follows from [9, Theorem 10.24, p. 292] combined with (2.4) and (2.7) below.
Notice that H(n,α) has exponential volume growth, which affects the behavior of the

Hardy-Littlewood maximal function; see [11, 12] and [13]. Moreover, it is stochastically
complete, see [9, Theorem 11.8, p. 303]. It follows that the operators gk, Gk, hk and Hk

are bounded on Lp(μα), 1 < p < ∞.

For the Riesz transforms of any order on H
(n,α), α 	= n − 1, the boundedness on

Lp(μα), 1 < p < ∞, is proved by Lohoué and Mustapha [17], or can be deduced from
this paper. We shall focus on the weak type (1, 1) boundedness. The case α = n − 1 is spe-
cial, since H(n,n−1) is the affine group with the right-invariant Haar measure. In that case,
explicit formulas for the operator kernels are available, and the weak type (1, 1) bounded-
ness properties of the Riesz transforms are known; see [19] and references there. Notice that
this is the only case where −�

H(n,α) has no spectral gap.
From now on, we exclude the affine group and assume that α 	= n−1, except in Remark

3 below.
The following are our main results. The measure we use on H

(n,α) is always dμα .

Theorem 1 Let n − 1 	= α ∈ R. On H
(n,α), the operators gk , Gk (k ≥ 1), h1, H0 and H1

are of weak type (1, 1). For k ≥ 2, hk and Hk are not of weak type (1, 1).
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Remark 1 It is easier to obtain the weak type (1, 1) continuity for the first-order vertical
Littlewood-Paley-Stein functions, i.e., those defined in terms of derivatives with respect to
the xi instead of t .

Remark 2 The results of Theorem 1 remain valid for harmonic AN groups in the sense of
[5]. This is because for such a group the heat kernel has an explicit expression, given in
[2, Theorem 5.9, p. 664], and an observation in [15, Section 6] makes it possible to control
it in terms of the heat kernels ofH(n,0), with several values of n. One can then use [2, (5.26)
Proposition, p. 667] and follow the method of our paper. The details are left to the reader.
Notice that harmonic AN groups, as Riemannian manifolds, have constant negative Ricci
curvature, see for example [2, p. 647]. They include all symmetric spaces of noncompact
type and rank one, but most of them are not symmetric spaces.

Remark 3 It is worth observing that in the excluded case α = n − 1, our methods, together
with the Hopf-Dunford-Schwartz maximal ergodic theorem, can be used to show that Hk is
of weak type (1, 1). Moreover, our proof for the weak type (1, 1) of Gk in Section 4 applies
also in this case. But we do not know whether gk and hk are also of weak type (1, 1) when
α = n − 1.

Theorem 2 Let n − 1 	= α ∈ R.

(a) On H(n,α), the first-order Riesz transforms

Xj (−�
H(n,α) )

− 1
2 and (−�

H(n,α) )
− 1

2 Xj , 0 ≤ j ≤ n − 1,

are of weak type (1, 1).
(b) The same holds for the second-order Riesz transforms

XiXj (−�
H(n,α) )

−1, Xi (−�
H(n,α) )

−1Xj , (−�
H(n,α) )

−1XiXj , 0 ≤ i, j ≤ n−1.

The structure of this paper is as follows. After some preliminaries in Section 2, we prove
Theorem 2 in Section 3. The proof of Theorem 1 fills the remaining sections. First the case
of Gk is treated in Section 4, in a more general setting. Then Section 5 contains the kernel
estimates needed for the estimates of h1, H0, gk and H1 in Sections 7 and 8. Some rela-
tions between different Littlewood-Paley-Stein functions are obtained in Section 6. Finally,
Section 9 proves the negative results in Theorem 1.

2 Notation and Preliminaries

Symbols like ∼ and � will have their usual meaning, with implicit constants depending
only on n and α.

It will be convenient to write

ρ(n, α) = |n − 1 − α|
2

and ρ(n) = n − 1

2
. (2.2)

The subordination formula connects the Poisson and heat semigroups by

e−t
√−� = 1√

π

∫ +∞

0

e−u

√
u

e
t2
4u � du. (2.3)
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We denote by p
(n)
t the heat kernel ofHn and by p

(n,α)
t that ofH(n,α). The two are related

by

p
(n,α)
t ((y, x), (y′, x′)) = e

α
2 (n− α

2 −1)t (yy′)−
α
2 p

(n)
t ((y, x), (y′, x′)), (2.4)

see [9, Theorem 9.15, p. 252].
To simplify notations in the sequel, we let

Y = (y, x), Y ′ = (y′, x′) and r = d(Y,Y ′).

If a C1 function f in H
(n,α) is radial, or more generally if f (Y) = f̃ (r) for some fixed

Y ′ ∈ H
n, then

|∇Yf (Y)| = |f̃ ′(r)|, (2.5)

as easily verified. Observe that

Xj = (
Xj cosh r

) 1

sinh r

∂

∂r
, 0 ≤ j ≤ n − 1, (2.6)

when these derivatives are applied to a function of r .
It is well known that the heat kernel of Hn and the kernels of other operators which are

given as functions of �Hn depend only on r . We shall write

p
(n)
t (r) = p

(n)
t (Y,Y ′).

Theorem 5.7.2, p. 179, of [6] says that for all r ≥ 0 and t > 0

p
(n)
t (r) ∼ t−

n
2 (1 + r + t)

n−3
2 (1 + r)e− (n−1)2

4 t− r2
4t − n−1

2 r , (2.7)

a result obtained by Davies and Mandouvalos [7].
Letting

p
(1)
t (r) = 1√

4πt
e− r2

4t , (2.8)

we have from [6, p. 178]

∂

∂r
p

(n)
t (r) = −2π sinh r ent p

(n+2)
t (r), n = 1, 2, . . . . (2.9)

The space H
(n,α) has the local doubling property. Indeed, the distance formula (1.1)

implies that a ball B(Y, s) with Y = (y, x) ∈ H
n and a small radius s > 0 is, up to a small

error, given by the inequality

(y′ − y)2 + |x′ − x|2 < y2s2.

It follows that

μα (B(Y, s)) ∼ yαsn, (2.10)

uniformly in Y and s ∈ (0, 1], and this implies the local doubling.

3 Weak Type (1, 1) Continuity of Riesz Transforms

We shall prove Theorem 2, and start with the operator ∇(−�
H(n,α) )−

1
2 .
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The kernel of the operator (−�
H(n,α) )−

1
2 will be written simply as (−�

H(n,α) )−
1
2 (Y,Y ′),

and similarly for those of the Riesz transforms. We have because of (2.4)

(−�
H(n,α) )

− 1
2 (Y,Y ′) = 1√

π

∫ +∞

0
t−

1
2 p

(n,α)
t (Y,Y ′) dt

= 1√
π

(yy′)−
α
2

∫ +∞

0
t−

1
2 e

α
2 (n− α

2 −1)tp
(n)
t (r) dt, (3.1)

Combining (3.1), (2.6) and (2.9), we get for 0 ≤ j ≤ n − 1

Xj (−�
H(n,α) )

− 1
2 (Y,Y ′) = 1√

π
Xj

(
(yy′)−

α
2

) ∫ +∞

0
t−

1
2 e

α
2 (n− α

2 −1)tp
(n)
t (r) dt

− 2π(yy′)−
α
2
(
Xj cosh r

) 1√
π

×
∫ +∞

0
t−

1
2 e[n+ α

2 (n− α
2 −1)]t p

(n+2)
t (r) dt. (3.2)

We apply (2.5) and (2.7), getting

∣∣∣∇Y (−�
H(n,α) )

− 1
2 (Y,Y ′)

∣∣∣ � (yy′)−
α
2

∫ +∞

0
t−

n+1
2 (1 + r + t)

n−3
2 (1 + r)

× e−ρ(n,α)2t− r2
4t − n−1

2 r dt (3.3)

+ (yy′)−
α
2 sinh r

∫ +∞

0
t−

n+3
2 (1 + r + t)

n−1
2 (1 + r)

× e−ρ(n,α)2t− r2
4t − n+1

2 r dt. (3.4)

3.1 The Local Part

Considering the two integrals in (3.4) and (3.3), we observe that the exponents appearing in
the integrands can be written

− ρ(n, α)2

t

(
t − r

2ρ(n, α)

)2

− ρ(n, α)r − n ± 1

2
r, (3.5)

respectively, since ρ(n, α) > 0. When r ≤ 1, it follows that both integrands will be very
small for t >> 1 and for t << r2. From this and (2.10), we conclude

∣∣∣∇Y (−�
H(n,α) )

− 1
2 (Y,Y ′)

∣∣∣ � (yy′)−
α
2 sinh r

∫
r2�t�1

t−
n+3
2 dt + (yy′)−

α
2

∫
r2�t�1

t−
n+1
2 dt

� y−αr−n ∼ 1

μα (B(Y, r))
, 0 < r ≤ 1.
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Now (3.2) implies that for 0 ≤ i, j ≤ n − 1

XY ′
i Xj (−�

H(n,α) )
− 1

2 (Y,Y ′)

= 1√
π
XY ′

i Xj

(
(yy′)−

α
2

) ∫ +∞

0
t−

1
2 e

α
2 (n− α

2 −1)tp
(n)
t (r) dt

+ 1√
π
Xj

(
(yy′)−

α
2

) ∫ +∞

0
t−

1
2 e

α
2 (n− α

2 −1)t XY ′
i p

(n)
t (r) dt

− 2π
{
XY ′

i

[
(yy′)−

α
2
(
Xj cosh r

)]} 1√
π

∫ +∞

0
t−

1
2 e[n+ α

2 (n− α
2 −1)]tp(n+2)

t (r) dt

− 2π(yy′)−
α
2
(
Xj cosh r

) 1√
π

∫ +∞

0
t−

1
2 e[n+ α

2 (n− α
2 −1)]t XY ′

i p
(n+2)
t (r) dt.

Using (2.9) with n replaced by n + 2 and (2.5), one obtains by similar computations∣∣∣∇Y ′Xj (−�
H(n,α) )

− 1
2 (Y,Y ′)

∣∣∣ � 1

r μα (B(Y, r))
, 0 < r ≤ 1, 0 ≤ j ≤ n − 1.

Thus the local parts of the Riesz kernels are standard Calderón-Zygmund kernels in
H

(n,α), which implies the weak type (1, 1).

3.2 The Global Part

In this subsection, r > 1.
Invoking again the expression in (3.5), it easily follows that the order of magnitude of

the integrals in (3.3) and (3.4) is determined by that part of the integral taken only over the
interval ∣∣∣∣t − r

2ρ(n, α)

∣∣∣∣ � r
1
2 .

In that interval 1 + r + t ∼ r , and one finds∣∣∣∇Y (−�
H(n,α) )

− 1
2 (Y,Y ′)

∣∣∣ � (yy′)−
α
2 r− 1

2 e−ρ(n,α)r− n−1
2 r .

Here we suppress the power of r . What we need is then the following lemma.

Lemma 3 For n − 1 	= α ∈ R, the operator defined by integration against the kernel

T (Y,Y ′) = (yy′)−
α
2 e−ρ(n,α)r− n−1

2 r

is of weak type (1, 1) with respect to μα .

Proof We can estimate T by applying (1.1) to the exponential factor, since er ∼ cosh r .
The result will be

T (Y,Y ′) ∼ (yy′)−
α
2

(
yy′

y2 + y′2 + |x − x′|2
) |n−1−α|

2 + n−1
2

∼ (yy′)
|n−1−α|

2 + n−1−α
2

(
y + y′ + |x − x′|)−|n−1−α|−n+1

. (3.6)
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Consider first the case α < n − 1. Then if f ∈ L1(μα)

|Tf (Y)| � yn−1−α

∫
(y′)n−1−α

(
y + y′ + |x − x′|)α−2(n−1) |f (Y ′)| dμα(Y ′)

� yn−1−α

∫
(y′)n−1−α

(
y′ + |x − x′|)α−2(n−1) |f (Y ′)| dμα(Y ′).

Since the last expression here is monotone in the variable y, we can argue as in
Strömberg’s paper [22]. This means observing for λ > 0 that |Tf (Y)| > λ implies
y > y0(x), where y0(x) satisfies

y0(x)α−n+1 ∼ 1

λ

∫
(y′)n−1−α

(
y′ + |x − x′|)α−2(n−1) |f (Y ′)| dμα(Y ′).

Thus μα({Y; |Tf (Y)| > λ}) is bounded by∫
dx

∫ ∞

y0(x)

yα−n dy ∼
∫

y0(x)α−n+1 dx

= 1

λ

∫
dx

∫
(y′)n−1−α

(
y′ + |x − x′|)α−2(n−1) |f (y′, x′)| dμα(y′, x′)

= 1

λ

∫
(y′)n−1−α |f (y′, x′)| dμα(y′, x′)

∫
Rn−1

(
y′ + |x − x′|)α−2(n−1)

dx

� ‖f ‖1
λ

,

which ends this case.
In the case α > n − 1, we get from (3.6)

T (Y,Y ′) ∼ (y + y′ + |x − x′|)−α

and thus

T (Y,Y ′) ∼ (y + y′ + |x − x′|)−α χ{y′≥y} + (y + y′ + |x − x′|)−α χ{y′<y}
= T1(Y,Y ′) + T2(Y,Y ′),

say.
The T1 part here gives rise to a strong type (1, 1) operator, since∫

T1(Y,Y ′) dμα(Y) ≤
∫ y′

0
yα−n dy

∫
Rn−1

(y′ + |x − x′|)−α dx ∼ 1.

The T2 part requires a longer argument. We first observe that T2 ∼ y−α for |x − x′| < y.
If 2j−1y ≤ |x − x′| < 2j y for some j ∈ {1, 2, . . . }, one similarly has T2 ∼ 2−αj y−α . As a
result, we see that in all of Hn

T2 �
∞∑
0

Qj,

where
Qj(Y,Y ′) = 2−αj y−αχ{y′<y, |x−x′|<2j y}.

The following lemma will end the proof of Lemma 3, since it will allow summation
in j .

Lemma 4 Assume that α > n− 1. For j = 0, 1, 2, . . . , the operator defined by integration
against the kernel Qj is of weak type (1, 1) with a constant which is O(2−εj ) as j → ∞,
for some ε > 0.



Laplacian with Drift on Hyperbolic Space 471

Proof We fix j ∈ {0, 1, 2, . . . }, let 0 ≤ f ∈ L1(μα) and take λ > 0. If (y, x) is a point in
the level set defined by∫

Qj((y, x), (y′, x′))f (y′, x′) dμα(y′, x′) > λ, (3.7)

then

2−αj y−α

∫
Zy,x

f dμα > λ, (3.8)

where Zy,x is the cylinder

Zy,x = {(y′, x′) : y′ < y, |x − x′| < 2j y}.
Consider the family Z of all cylinders Zy,x with (y, x) ∈ H

n which verify (3.8). We
will mimic the ordinary proof of the weak type (1, 1) inequality for the standard maximal
function in Rn. Notice that μα(Zy,x) ∼ 2(n−1)j yα , and that for any Zy,x ∈ Z the inequality
(3.8) implies

2(n−1)j yα < 2−(α−n+1)j 1

λ

∫
Zy,x

f dμα ≤ 2−(α−n+1)j 1

λ

∫
f dμα < ∞. (3.9)

We shall define recursively a sequence (Zk)∞1 of pairwise disjoint cylinders in Z . At
each step, we shall choose aZy,x with y essentially as large as possible, among the cylinders
disjoint with those already chosen. Let first Z1 = Zy1,x1 be any cylinder in Z verifying

y1 >
1

2
sup {y : ∃x ∈ R

n−1 such that Zy,x ∈ Z}.
From Eq. 3.9 we see that this supremum is finite. Assuming Z1, ..., Zk−1 already

defined, we let Zk = Zyk,xk
be any cylinder in Z disjoint with Z1, ..., Zk−1 and verifying

yk >
1

2
sup {y : ∃x ∈ R

n−1 such that Zy,x ∈ Z and Zy,x is disjoint with Z1, ..., Zk−1}.
(3.10)

Should the set here be empty, the procedure stops. Since the Zk are pairwise disjoint,
Eq. 3.9 implies∑

k

μα(Zk) < 2−(α−n+1)j 1

λ

∑
k

∫
Zk

f dμα ≤ 2−(α−n+1)j 1

λ

∫
f dμα < ∞. (3.11)

In particular, both μα(Zk) and yk will tend to 0 as k → ∞, and so the supremum in
Eq. 3.10 also tends to 0. Now assume Zy,x is a cylinder in Z which is not among the Zk .
Then Zy,x must intersect some Zk , since otherwise y would be less than the supremum in
Eq. 3.10 for each k. Let Zk be the first cylinder in the sequence which intersects Zy,x . It
follows from the choice of Zk that yk > y/2.

But then the enlarged cylinder 3Zk = Z3yk,xk
will contain the point (y, x). That means

that the union set ∪k 3Zk contains all points (y, x) in the level set defined by Eq. 3.7. The
μα measure of this level set is then at most

μα(∪k 3Z
k) ≤

∑
k

μα(3Zk) ∼
∑

k

μα(Zk) ≤ 2−(α−n+1)j λ−1
∫

f dμα, (3.12)

where the last step comes from Eq. 3.11.
Lemma 4 is proved with ε = α − n + 1, and Lemma 3 follows. With this, Theorem 2(a)

is proved for the the Riesz transforms Xj (−�
H(n,α) )−

1
2 .
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To deal with the operators (−�
H(n,α) )−

1
2 Xj , we first verify theirLp boundedness. Taking

adjoints in L2(dμα), we have

X∗
0 = −X0 − (α − n + 1) and X∗

j = −Xj , 1 ≤ j ≤ n − 1. (3.13)

Since the spectral gap of −�
H(n,α) is ρ2(n, α) 	= 0, it follows that (−�

H(n,α) )−
1
2 is

bounded on Lp, 1 < p < +∞. Using the Lp boundedness of Xj (−�
H(n,α) )−

1
2 and its

adjoint, we conclude that (−�
H(n,α) )−

1
2 Xj is also bounded on Lp, 1 < p < +∞. We must

prove the weak type (1, 1).
For 1 ≤ j ≤ n − 1, one finds that

(−�
H(n,α) )

− 1
2 Xj (Y,Y ′) = −y′ ∂

∂x′
j

(−�
H(n,α) )

− 1
2 (Y,Y ′). (3.14)

We will thus get an expression for this kernel analogous to Eq. 3.2, with only the last
summand, and with Xj cosh r = y ∂ cosh r/∂xj replaced by −y′ ∂ cosh r/∂x′

j .
The case j = 0 is only slightly more complicated, and one finds

(−�
H(n,α) )

− 1
2 X0(Y,Y ′) = −y′ ∂

∂y′ (−�
H(n,α) )

− 1
2 (Y,Y ′)

− (α + 1 − n)(−�
H(n,α) )

− 1
2 (Y,Y ′). (3.15)

Here we get two terms like those in Eq. 3.2, but with X0 cosh r = y ∂ cosh r/∂y replaced
by −y′ ∂ cosh r/∂y′ and with X0(yy′)− α

2 = −α
2 (yy′)− α

2 replaced by (n−1−α/2)(yy′)− α
2 .

It is now easy to verify that the arguments given above for the local and global parts

remain valid for the operators (−�
H(n,α) )−

1
2 Xj and lead to the weak type (1, 1) estimate.

Part (a) of Theorem 2 is proved.
For Part (b), one can follow the pattern of the proof of Part (a), and we leave the details

to the reader.
This ends the proof of Theorem 2.

4 Weak Type (1, 1) of Gk for a General Symmetric Diffusion Semigroup

Let {et�}t>0 be a symmetric diffusion semigroup and {e−t
√−�}t>0 the corresponding

Poisson semigroup. Stein’s argument (see [20, pp. 48–49]) leads to the weak type (1, 1)
inequality for Gk . Indeed, the subordination formula (2.3) can be written as

e−t
√−� = 1√

π

∫ +∞

0

1

u

(
t

2
√

u
e− t2

4u

)
eu� du =

∫ +∞

0

1

u
φ

(
t

2
√

u

)
eu� du, (4.1)

where
φ(s) = s√

π
e−s2 . (4.2)

Using integration by parts, we obtain

e−t
√−� =

∫ +∞

0

(
1

u

∫ u

0
es� ds

)
1

u

[
φ

(
t

2
√

u

)
+ φ′

(
t

2
√

u

)
t

4
√

u

]
du.

Letting

ψ(s) = φ(s) + 1

2
φ′(s)s =

(
3

2
− s2

)
s√
π

e−s2 ,
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we have

e−t
√−� =

∫ +∞

0

(
1

u

∫ u

0
es� ds

)
1

u
ψ

(
t

2
√

u

)
du.

Then for k ∈ N, t > 0 and f ∈ L1

∣∣∣∣tk ∂k

∂tk
e−t

√−�f

∣∣∣∣ =
∣∣∣∣∣
∫ +∞

0

(
1

u

∫ u

0
es�f ds

)
1

u
ψ(k)

(
t

2
√

u

)(
t

2
√

u

)k

du

∣∣∣∣∣
≤ sup

v>0

∣∣∣∣1v
∫ v

0
es�f ds

∣∣∣∣
∫ +∞

0

∣∣∣∣∣ 1uψ(k)

(
t

2
√

u

)(
t

2
√

u

)k
∣∣∣∣∣ du.

The change of variable λ = t
2
√

u
shows that the last integral equals

Ak = 2
∫ +∞

0

∣∣∣λ2ψ(k)(λ)λk
∣∣∣ λ−3 dλ < +∞.

Thus

Gk(f ) ≤ Ak sup
v>0

∣∣∣∣1v
∫ v

0
es�f ds

∣∣∣∣ ,
and the Hopf-Dunford-Schwartz ergodic theorem implies the L1 −→ L1,∞ boundedness of
Gk . �

5 Sharp Estimates for ∂k

∂tk
p

(n,α)
t

Set
K(n, α; t, r) = (yy′)

α
2 p

(n,α)
t (r) = e

α
2 (n− α

2 −1)t p
(n)
t (r), (5.1)

where the second equality comes from Eq. 2.4.
It is well known (see e.g. [6, formula (5.7.4), p. 178]) that

p
(n)
t (r) = √

2 e
2n−1
4 t

∫ +∞

r

p
(n+1)
t (s)

sinh s√
cosh s − cosh r

ds, n = 1, 2, . . . , (5.2)

for all t > 0 and r ≥ 0. From Eqs. 5.1 and 2.7, we conclude

K(n, α; t, r) ∼ t−
1
2
1 + r

t

(
1+ 1 + r

t

) n−3
2

exp

(
−ρ(n)r − r2

4t
− ρ2(n, α)t

)
(5.3)

= t−
1
2
1 + r

t

(
1 + 1 + r

t

) n−3
2

× exp

(
−(ρ(n) + ρ(n, α))r − t

( r

2t
− ρ(n, α)

)2)
. (5.4)

After some computations, we get from Eqs. 5.1, 2.9 and 2.8

K(2n + 1, α; t, r) =
(

− 1

2π

1

sinh r

∂

∂r

)n [ 1√
4πt

e− r2
4t −ρ2(2n+1,α)t

]
.

This yields

∂

∂t
K(2n + 1, α; t, r) =

{(
r2

4t2
− ρ2(2n + 1, α)

)
− 1

2t

}
K(2n + 1, α; t, r), (5.5)
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and

∂2

∂t2
K(2n + 1, α; t, r) =

⎧⎨
⎩−1

2

r2

t2
· 1

t
+ 1

2

(
1

t

)2

+
[(

r2

4t2
− ρ2(2n + 1, α)

)
− 1

2t

]2⎫⎬
⎭

×K(2n + 1, α; t, r). (5.6)

In general, let Pj (h1, h2, h3) be the real homogeneous polynomials of degree j on R
3

defined recursively for j = 0, 1, . . . by

P0 = 1, Pj+1 =
(

h1 − 1

2
h2

)
Pj − 1

2
h2h3

∂Pj

∂h1
− h22

∂Pj

∂h2
− 2h2h3

∂Pj

∂h3
.

With j = 0, 1, . . . , we then have

∂j

∂tj
K(2n + 1, α; t, r) = Pj

(
r2

4t2
− ρ2(2n + 1, α),

1

t
,
r2

t2

)
K(2n + 1, α; t, r) . (5.7)

For even dimensions, Eqs. 5.5 and 5.7 hold only with an error term, which we shall
estimate. From Eq. 5.2, we get for j = 0, 1, . . .

∂j

∂tj
K(2n, α; t, r) = √

2
∫ +∞

r

Pj

(
s2

4t2
− ρ2(2n, α),

1

t
,
s2

t2

)

×e
4n−1−2α

4 t K(2n + 1, α; t, s) sinh s√
cosh s − cosh r

ds. (5.8)

Proposition 5 For r ≥ 0 and any t > 0, we have

∣∣∣∣∣ ∂

∂t
K(2n, α; t, r) −

[(
r2

4t2
− ρ2(2n, α)

)
− 1

2t

]
K(2n, α; t, r)

∣∣∣∣∣ � 1

t
K(2n, α; t, r)

(5.9)
and

∣∣∣∣∣ ∂2

∂t2
K(2n, α; t, r) − P2

(
r2

4t2
− ρ2(2n, α),

1

t
,
r2

t2

)
K(2n, α; t, r)

∣∣∣∣∣
�
{
1

t

∣∣∣∣∣ r2

4t2
− ρ2(2n, α)

∣∣∣∣∣+ 1

t2

}
K(2n, α; t, r), (5.10)

and with j = 1, 2, . . . also

∣∣∣∣ ∂j

∂tj
K(2n, α; t, r)

∣∣∣∣ �
⎡
⎣
∣∣∣∣∣ r2

4t2
− ρ2(2n, α)

∣∣∣∣∣
j

+ 1

tj
+
( r

t

)2j⎤⎦K(2n, α; t, r), (5.11)



Laplacian with Drift on Hyperbolic Space 475

Proof We first give the proof of Eq. 5.9. According to Eq. 5.8, we can write

∂

∂t
K(2n, α; t, r) −

[(
r2

4t2
− ρ2(2n, α)

)
− 1

2t

]
K(2n, α; t, r)

= √
2
∫ +∞

r

[
P1

(
s2

4t2
− ρ2(2n, α),

1

t
,
s2

t2

)
− P1

(
r2

4t2
− ρ2(2n, α),

1

t
,
r2

t2

)]

×e
4n−1−2α

4 t K(2n + 1, α; t, s) sinh s√
cosh s − cosh r

ds

=
√
2

4

∫ +∞

r

s2 − r2

t2
e
4n−1−2α

4 t K(2n + 1, α; t, s) sinh s√
cosh s − cosh r

ds, (5.12)

and Eq. 5.9 will be a consequence of the case j = 1 of the following lemma.

Lemma 6 For all r > 0, t > 0 and j = 1, 2, . . .

∫ +∞

r

(
s2 − r2

t2

)j

e
4n−1−2α

4 t K(2n + 1, α; t, s) sinh s√
cosh s − cosh r

ds � t−jK(2n, α; t, r), (5.13)

where the implicit constant depends only on j, α and n.

Before the proof of this lemma, we finish that of Proposition 5. The arguments for
Eq. 5.10 are similar to those for Eq. 5.9 just given. Instead of the factor (s2 − r2)/t2 in
Eq. 5.12, we will now have∣∣∣∣∣P2

(
s2

4t2
− ρ2(2n, α),

1

t
,
s2

t2

)
− P2

(
r2

4t2
− ρ2(2n, α),

1

t
,
r2

t2

)∣∣∣∣∣
=
∣∣∣∣∣∣−

1

2

1

t

s2 − r2

t2
+ s2 − r2

4t2
· 2
{(

r2

4t2
− ρ2(2n, α)

)
− 1

2t

}
+
(

s2 − r2

4t2

)2
∣∣∣∣∣∣

�
(∣∣∣∣∣ r2

4t2
− ρ2(2n, α)

∣∣∣∣∣+ 1

t

)
s2 − r2

t2
+
(

s2 − r2

t2

)2

,

and Lemma 6 can be applied again.
To prove Eq. 5.11, one uses the estimate∣∣∣∣∣Pj

(
s2

4t2
− ρ2(2n, α),

1

t
,
s2

t2

)∣∣∣∣∣ =
∣∣∣∣∣Pj

(
s2 − r2

4t2
+ r2

4t2
− ρ2(2n, α),

1

t
,
s2 − r2

t2
+ r2

t2

)∣∣∣∣∣
�
∣∣∣∣∣ r2

4t2
− ρ2(2n, α)

∣∣∣∣∣
j

+ 1

tj
+
( r

t

)2j +
(

s2 − r2

t2

)j

,

valid for s ≥ r ≥ 0, since Pj is a homogeneous polynomial of degree j . We omit the details.
This ends the proof of Proposition 5. �

Proof of Lemma 6 We start with the case r ≥ 1. Since for s ≥ r ≥ 1,

cosh s − cosh r ≥ cosh s − cosh
r + s

2
≥ s − r

2
sinh

r + s

2
� (s − r)e

r+s
2 ,
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we have
sinh s√

cosh s − cosh r
� 1√

s − r
e
3s−r
4 .

In the left-hand side of Eq. 5.13 we now apply this estimate, and replace the values of
the function K by the expressions obtained from Eq. 5.3. The result is that Eq. 5.13 will be
a consequence of the inequality∫ +∞

r

(
s2 − r2

t2

)j

s
(
1 + s

t

)n−1 1√
s − r

eQ(s,r;t) ds � 1

tj
r
(
1 + r

t

)n− 3
2
, (5.14)

where

Q(s, r; t) = 4n − 1 − 2α

4
t − ρ(2n + 1)s − s2

4t
− ρ2(2n + 1, α)t

+3s − r

4
+ ρ(2n)r + r2

4t
+ ρ2(2n, α)t.

Since ρ(2n) = ρ(2n + 1) − 1
2 and, as easily verified,

ρ2(2n + 1, α) − 4n − 1 − 2α

4
= ρ2(2n, α),

one finds that

Q(s, r; t) = −
(

n − 3

4
+ s + r

4t

)
(s − r) ≤ −1

4

(
1 + r

t

)
(s − r)

for s > r ≥ 1 and all t > 0. Hence, Eq. 5.14 will follow from the estimate∫ +∞

r

sj+1
(
1 + s

t

)n−1
(s − r)j− 1

2 e− 1
4 (1+ r

t )(s−r) ds � tj r
(
1 + r

t

)n− 3
2
.

Using the simple inequality se−ε(s−r) � r for s > r ≥ 1 and ε > 0, we can reduce this
to ∫ +∞

r

rj+1
(
1 + r

t

)n−1
(s − r)j− 1

2 e− 1
5 (1+ r

t )(s−r) ds � tj r
(
1 + r

t

)n− 3
2
,

which is easily justified by means of the change of variables u = (1 + r
t
)(s − r).

Consider now the case 0 ≤ r < 1. Then

sinh s√
cosh s − cosh r

∼ s√
s2 − r2

e
s
2 , s > r,

as one sees by considering small and large values of s. Instead of Eq. 5.14, we now need to
prove that∫ +∞

r

(
s2 − r2

t2

)j

(1+ s)

(
1+ 1 + s

t

)n−1
s√

s2 −r2 eQ̃(s,r;t)ds � 1

tj

(
1+ 1

t

)n− 3
2

, (5.15)

for 0 < r ≤ 1, t > 0, where

Q̃(s, r; t) =Q(s, r; t)− 3s − r

4
+ s

2
= −

(
n − 1

2

)
(s−r)− s2 − r2

4t
≤ −s− s2 − r2

4t
+O(1).

Thus Eq. 5.15 will follow from∫ +∞

r

(s2 − r2)j− 1
2 s(1 + s)

(
1 + 1 + s

t

)n−1

e−s− s2−r2
4t ds � tj

(
1 + 1

t

)n− 3
2

.
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The case t ≥ 1 of this inequality is trivial, since the integral is uniformly bounded for

these t . For 0 < t < 1 we have (1 + s)
(
1 + 1+s

t

)n−1
e−s � t1−n. After the change of

variables u = (s2 − r2)/4t , the integral can then be estimated by constant times∫ +∞

0
(4tu)j− 1

2 t1−ne−u 2t du � tj−n+ 3
2 ∼ tj

(
1 + 1

t

)n− 3
2

,

as desired. The lemma is proved.

To summarize, it follows from Eqs. 5.9 and 5.5 that for all n ≥ 2∣∣∣∣ ∂

∂t
K(n, α; t, r)

∣∣∣∣ �
[ ∣∣∣∣∣ r2

4t2
− ρ2(n, α)

∣∣∣∣∣+ 1

t

]
K(n, α; t, r), r ≥ 0, t > 0. (5.16)

Further, Eqs. 5.10 and 5.6 easily imply that

∂2

∂t2
K(n, α; t, r) ∼ −1

r
K(n, α; t, r), ∀r � 1 with

√
r | r2

4t2
− ρ2(n, α)| � 1.

(5.17)
From Eqs. 5.11 and 5.7, we obtain∣∣∣∣ ∂j

∂tj
K(n, α; t, r)

∣∣∣∣ �
[
1 + 1

tj
+
( r

t

)2j]
K(n, α; t, r), r ≥ 0, t > 0. (5.18)

6 Comparison Between gk , Gk , Hk and hk on H
(n,α)

Proposition 7 For all k ∈ N
+ and f ∈ L1, we have

hk(f )(Y) ≤
√

1

2k − 1
hk+1(f )(Y), gk(f )(Y) ≤

√
1

2k − 1
gk+1(f )(Y), (6.1)

Hk(f )(Y) ≤
√

1

2k
hk+1(f )(Y), Gk(f )(Y) ≤

√
1

2k
gk+1(f )(Y), (6.2)

and

g2k(f )(Y) ≤
√
1

2

(4k)!
(2k)! hk(f )(Y). (6.3)

Remark Recall that for a general symmetric semigroup with the contraction property, Stein
showed in [20, p. 75] that

sup
t>0

|Ttf | ≤ sup
t>0

∣∣∣∣1t
∫ t

0
Tsf ds

∣∣∣∣+
(∫ +∞

0

∣∣∣∣t ∂

∂t
Ttf

∣∣∣∣
2

dt

t

) 1
2

. (6.4)

Proof of Proposition 7 We first verify that∣∣∣∣ ∂k

∂tk
p

(n,α)
t (Y,Y ′)

∣∣∣∣ � y−αt−
1
2

(
1 + t−

n−1
2 −k

)
, ∀t > 0, k ∈ N, Y, Y ′ ∈ H

n.

(6.5)
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From Eqs. 5.1, 5.18 and 5.4, we get∣∣∣∣ ∂k

∂tk
p

(n,α)
t (Y,Y ′)

∣∣∣∣ � (yy′)−α/2
[
1 + 1

tk
+
( r

t

)2k]

× t−
1
2
1 + r

t

(
1 + 1 + r

t

) n−3
2

× exp

(
−(ρ(n) + ρ(n, α))r − t

( r

2t
− ρ(n, α)

)2)
. (6.6)

Since y/2y′ ≤ cosh r and ρ(n) + ρ(n, α) ≥ α/2, we have

(yy′)−α/2 exp (−(ρ(n) + ρ(n, α))r) � y−α(cosh r)α/2 exp
(
−αr

2

)
� y−α.

If r/t � 1, then Eq. 6.5 is immediate from this and Eq. 6.6. If r/t is large, we will get in
Eq. 6.6 a factor exp(−cr2/t) with some c > 0. It allows us to replace r in the polynomial
factors in Eq. 6.6 by

√
t , and Eq. 6.5 follows again.

For f ∈ L1 and Y ∈ H
n, the estimate (6.5) implies that

lim
t→+∞

∂k

∂tk
et�

H(n,α) f (Y) = 0.

We claim that also

lim
t→+∞

∂k

∂tk
e
−t

√−�
H(n,α) f (Y) = 0.

Indeed, with P
(n,α)
t (Y,Y ′) denoting the Poisson kernel, the subordination formula (4.1)

implies that for t > 1∣∣∣∣ ∂k

∂tk
P

(n,α)
t (Y,Y ′)

∣∣∣∣ ≤
∫ +∞

0

1

u

(
1

2
√

u

)k ∣∣∣∣φ(k)

(
t

2
√

u

)∣∣∣∣p(n,α)
u (Y,Y ′) du

� y−α

∫ +∞

0

1

u

(
1

2
√

u

)k ∣∣∣∣φ(k)

(
t

2
√

u

)∣∣∣∣ u− 1
2 (1 + u− n−1

2 ) du

� y−α t−k−1.

Following the argument in [21, p. 86], one obtains immediately Eqs. 6.1 and 6.2. For
example,

∂k

∂tk
et�

H(n,α) f (Y) = −
∫ +∞

t

∂k+1

∂sk+1
es�

H(n,α) f (Y)sk+ 1
2

ds

sk+ 1
2

,

and the Cauchy-Schwarz inequality leads to Hk(f )(Y)2 ≤ 1
2k hk+1(f )(Y)2. For (6.1),

one can also use Hardy’s inequality, which actually gives a better constant, 1/k instead of
1/

√
2k − 1.

The inequality (6.3) is valid in a general situation. We prove it by adapting the method
in [3, p. 52]. Indeed,

g2
2k(f )(Y) =

∫ +∞

0
t4k−1

∣∣∣(−�)k e−t
√−�f (Y)

∣∣∣2 dt.

The subordination formula (2.3) implies

g2
2k(f )(Y) ≤ 1

π

∫ +∞

0
t4k−1

(∫ +∞

0

∣∣∣∣(−�)k e
t2
4u �f (Y)

∣∣∣∣ e−uu− 1
2 du

)2

dt.
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We estimate the inner integral here by using the Cauchy-Schwarz inequality, getting

g2
2k(f )(Y) ≤ 1√

π

∫ +∞

0
t4k−1

(∫ +∞

0

∣∣∣∣(−�)k e
t2
4u �f (Y)

∣∣∣∣
2

e−uu− 1
2 du

)
dt

= 1√
π

∫ +∞

0

(∫ +∞

0
t4k−1

∣∣∣∣(−�)k e
t2
4u �f (Y)

∣∣∣∣
2

dt

)
e−uu− 1

2 du.

The change of variable λ = t2/4u shows that the last inner integral equals
2−1(4u)2kh2k(f )(Y). As a result,

g2
2k(f )(Y) ≤ 1√

π
2−1 42k  (2k + 1/2) h2k(f )(Y).

This easily implies Eq. 6.3. Proposition 7 is proved.

7 Weak Type (1, 1) Boundedness of h1, H0 and gk, k ≥ 1

Since H
(n,α) has the local doubling property as pointed out in Section 2, one can use the

method of localization. Standard vector-valued singular integral operator theory then gives
the weak type (1, 1) of the local part of h1.

Consider now the part at infinity of h1, given by

h∞
1 (f )(Y) =

(∫ +∞

0
s

∣∣∣∣
∫

d(Y,Y ′)≥1

∂

∂s

[
(yy′)−

α
2 K(n, α; s, r)

]
f (Y ′) dμα(Y ′)

∣∣∣∣
2

ds

) 1
2

.

Using Minkowski’s integral inequality, we get

h∞
1 (f )(Y) ≤

∫
r≥1

(yy′)−
α
2 |f (Y ′)|

(∫ +∞

0
s

∣∣∣∣ ∂

∂s
K(n, α; s, r)

∣∣∣∣
2

ds

) 1
2

dμα(Y ′).

According to Lemma 3, it suffices to show that

(∫ +∞

0
s

∣∣∣∣ ∂

∂s
K(n, α; s, r)

∣∣∣∣
2

ds

) 1
2

� e− n−1+|n−1−α|
2 r , r ≥ 1.

Because of Eqs. 5.16 and 5.4, it remains to prove that for r ≥ 1

∫ +∞

0

[
r

s

(
1 + r

s

) n−3
2

e−s( r
2s −ρ(n,α))2

(∣∣∣∣∣ r2

4s2
− ρ(n, α)2

∣∣∣∣∣+ 1

s

)]2
ds � 1. (7.1)

By the change of variables λ = r
2s − ρ(n, α), the left-hand side here can be rewritten as

2r
∫ +∞

−ρ(n,α)

[1+ 2 (λ + ρ(n, α))]n−3 e
−r λ2

λ+ρ(n,α)

[
|λ| (λ+ 2ρ(n, α)) + 2

λ +ρ(n, α)

r

]2
dλ.

We split this integral at the point λ = ρ(n, α), to get

2r
∫ ρ(n,α)

−ρ(n,α)

� r

∫
e
− r

2ρ(n,α)
λ2
(

|λ| + 1

r

)2

dλ � rr−3/2 + r
1

r2

1√
r
� 1
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since r ≥ 1, and

2r
∫ ∞

ρ(n,α)

� r

∫
λn−3 e−rλ/2 λ4 dλ � r1−n−2 � 1.

We have verified (7.1) and thus the weak type (1, 1) of h1.
The weak type (1, 1) of H0 follows from the above together with Eq. 6.4 and the Hopf-

Dunford-Schwartz maximal ergodic theorem.
Finally we consider the weak type (1, 1) of gk, k ≥ 1, proceeding as in the case of h1

above. The local part causes no problems, and for the part at infinity, it is enough to verify
the following estimate:(∫ +∞

0
s2k−1

∣∣∣∣ ∂k

∂sk
P (n,α)

s (Y,Y ′)
∣∣∣∣
2

ds

) 1
2

� (yy′)−
α
2 e− n−1+|n−1−α|

2 r ∀r ≥ 1. (7.2)

To this end, we use the subordination formula (4.1), the function φ from Eq. 4.2 and
Minkowski’s integral inequality, to write(∫ +∞

0

∣∣∣∣sk ∂k

∂sk
P (n,α)

s (Y,Y ′)
∣∣∣∣
2

ds

s

) 1
2

≤ (yy′)−
α
2

∫ +∞

0

⎧⎪⎨
⎪⎩
⎛
⎝∫ +∞

0

∣∣∣∣∣
(

s

2
√

u

)k

φ(k)

(
s

2
√

u

)∣∣∣∣∣
2

ds

s

⎞
⎠

1
2

⎫⎪⎬
⎪⎭

1

u
K(n, α; u, r) du

� (yy′)−
α
2

∫ +∞

0

1

u
K(n, α; u, r) du.

In view of Eq. 5.4, the last expression is majorized by

(yy′)−
α
2 e− n−1+|n−1−α|

2 r

∫ +∞

0
u− 3

2
r

u

(
1 + r

u

) n−3
2

e−u( r
2u −ρ(n,α))2 du.

By the change of variable u = rs, we see that for r ≥ 1 the last integral is no larger than

r− 1
2

∫ +∞

0
s− 3

2
1

s

(
1 + 1

s

) n−3
2

e−s( 1
2s −ρ(n,α))2 ds � r− 1

2 .

and Eq. 7.2 follows.

8 Weak Type (1, 1) of H1

For f ∈ L1, we write, using Eq. 5.1,

t
∂

∂t
et�

H(n,α) f (Y) =
∫

r≤1
(yy′)−

α
2 t

∂

∂t
K(n, α; t, r))f (Y ′) dμα(Y ′)

+
∫

r≥1
(yy′)−

α
2 t

∂

∂t
K(n, α; t, r)f (Y ′) dμα(Y ′). (8.1)

For the first integral here, we claim that for any t > 0∫
r≤1

(yy′)−
α
2

∣∣∣∣t ∂

∂t
K(n, α; t, r)f (Y ′)

∣∣∣∣ dμα(Y ′) � Mlocf (Y), (8.2)
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where the local maximal function is defined by

Mlocf (Y) = sup
0<r≤1

1

μα(B(Y, r))

∫
B(Y,r)

|f (Y ′)| dμα(Y ′).

Indeed, one can deduce from Eqs. 5.16 and 5.3 that for r ≤ 1 and some c > 0∣∣∣∣t ∂

∂t
K(n, α; t, r)

∣∣∣∣ �
{

t− n
2 e−c r2

t , if 0 < t ≤ 1;
1, if t > 1.

Using for instance a local version of the argument in [8, (2.4) THE MAXIMAL THEO-
REM, pp. 63–64], one now obtains Eq. 8.2. The measureμα has the local doubling property,
and therefore the operator Mloc is of weak type (1, 1) with respect to μα .

It remains to deal with the second integral in Eq. 8.1, and we start with a lemma.

Lemma 8 For r ≥ 1 and any t > 0,∣∣∣∣t ∂

∂t
K(n, α; t, r)

∣∣∣∣ � e− n−1+|n−1−α|
2 r .

Proof From Eqs. 5.16 and 5.4, we see that it is enough to show that for such r, t[
1 + t

∣∣∣∣∣ r2

4t2
− ρ(n, α)2

∣∣∣∣∣
]

t−
1
2

r

t

(
1 + r

t

) n−3
2

e−t ( r
2t −ρ(n,α))2 � 1.

The left-hand side here can be rewritten as

r− 1
2

(
r

t + r

) 3
2 (

1 + r

t

) n
2
e−t ( r

2t −ρ(n,α))2

+ r

t + r

(
1 + r

t

) n−1
2
( r

2t
+ ρ(n, α)

)√
t

∣∣∣ r

2t
− ρ(n, α)

∣∣∣ e−t ( r
2t −ρ(n,α))2 .

If r ≤ 4ρ(n, α)t , this quantity is immediately seen to be bounded. In the opposite case,
one has r

2t − ρ(n, α) > r
4t , and then the same quantity is no larger than constant times

r− 1
2

( r

t

) n
2
e− 1

16
r2
t +

( r

t

) n+1
2
(

r√
t

)
e− 1

16
r2
t .

Since r ≥ 1, this expression stays bounded, and the desired inequality follows also in this
case. Lemma 8 is proved.

Because of this lemma, the absolute value of the second integral in Eq. 8.1 can be
estimated by constant times∫

r≥1
(yy′)−

α
2 e− n−1+|n−1−α|

2 r |f (Y ′)| dμα(Y ′).

As a result,

H1(f )(Y) � Mlocf (Y) +
∫

r≥1
(yy′)−

α
2 e− n−1+|n−1−α|

2 r |f (Y ′)| dμα(Y ′), Y ∈ H
n,

and Lemma 3 implies the weak type (1, 1) of H1. �
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9 The Operators hk and Hk (k ≥ 2) are not Bounded from L1 to L1,∞

Let us start by studying hk . According to Eq. 6.1, it is enough to prove that h2 is not of
weak type (1, 1). Let δe be a unit point mass at the origin e = (1, 0). If the assertion does
not hold, a standard limit argument would imply h2(δe) ∈ L1,∞.

Fix a large constant C0 > 0, and consider a point Y ∈ H
n with r = d(Y, e) large. Then

h2(δe)(Y) ≥
⎛
⎝∫

| r
2t −ρ(n,α)|≤ 1

C0
√

r

t3

∣∣∣∣∣y− α
2

∂2

∂t2
K(n, α; t, r)

∣∣∣∣∣
2

dt

⎞
⎠

1
2

.

Using Eqs. 5.17 and 5.4, we obtain

h2(δe)(Y) � y− α
2

⎛
⎝∫

| r
2t −ρ(n,α)|≤ 1

C0
√

r

t3
∣∣∣∣1r K(n, α; t, r)

∣∣∣∣
2

dt

⎞
⎠

1
2

� y− α
2 e− n−1+|n−1−α|

2 r

⎛
⎝∫

| r
2t −ρ(n,α)|≤ 1

C0
√

r

dt

⎞
⎠

1
2

� r
1
4 y− α

2 e− n−1+|n−1−α|
2 r .

For α > n − 1, we shall apply this inequality to points in the set

�γ = {Y = (y, x) : eγ /2 < y < eγ , |x| < eγ },
for large values of γ > 0. These points will satisfy cosh r ∼ eγ and r ∼ γ , so that

h2(δe)(Y) � γ
1
4 e−αγ . Observe also that μα(�γ ) ∼ eαγ . When α < n − 1, we consider

instead the set
ωγ = {Y = (y, x) : e−γ < y < 2e−γ , |x| < 1},

in which we get h2(δe)(Y) � γ
1
4 e(α−n+1)γ . Further, μα(ωγ ) ∼ e(n−1−α)γ . In both cases,

the weak type (1, 1) inequality is violated if we let γ → +∞.
To deal with Hk, k ≥ 2, we argue as above. Assuming that Y ∈ H

n with r = d(Y, e)

large, we shall show that

Hk(δe)(Y) � r
1
4 y− α

2 e− n−1+|n−1−α|
2 r .

We choose C0 > max(4ρ(n, α), ρ(n, α)−1) and write

(
y

α
2 Hk(δe)(Y)

)2 ≥ sup
r

C0
<t<C0r

∣∣∣∣tk ∂k

∂tk
K(n, α; t, r)

∣∣∣∣
2

�
∫ C0r

r
C0

∣∣∣∣tk ∂k

∂tk
K(n, α; t, r)

∣∣∣∣
2

dt

t

=
(
y

α
2 hk(δe)(Y)

)2 −
∫ r

C0

0

∣∣∣∣tk ∂k

∂tk
K(n, α; t, r)

∣∣∣∣
2

dt

t

−
∫ +∞

C0r

∣∣∣∣tk ∂k

∂tk
K(n, α; t, r)

∣∣∣∣
2

dt

t

=
(
y

α
2 hk(δe)(Y)

)2 − W1 − W2.
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Observe that Eq. 6.1 remains valid for f = δe, so that

y
α
2 hk(δe)(Y) ≥ y

α
2 h2(δe)(Y) � r

1
4 e− n−1+|n−1−α|

2 r .

The result will follow if we show that

W1 + W2 � e−(n−1+|n−1−α|)r .

To estimate the integral W2, we apply Eq. 5.18 together with Eq. 5.4 and observe that
here |r/2t − ρ(n, α)| > ρ(n, α)/2, by the choice of C0. The result is

W2 � e−(n−1+|n−1−α|)r
∫ +∞

C0r

t2k−2e−tρ(n,α)2/2 dt � e−(n−1+|n−1−α|)r .

Similarly, |r/2t − ρ(n, α)| > r/4t in W1, and

W1 � e−(n−1+|n−1−α|)r
∫ r

C0

0

(
tk
( r

t

)2k
t−1

( r

t

)1+(n−3)/2
)2

e−r2/8t dt

� e−(n−1+|n−1−α|)r .

The argument for Hk, k ≥ 2, is complete, and so is the proof of Theorem 1. �
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Funct. Anal. 229, 155–183 (2005)

13. Li, H.-Q.: Les fonctions maximales de Hardy-Littlewood pour des mesures sur les variétés cuspidales. J.
Math. Pures Appl. 88, 261–275 (2007)

14. Li, H.-Q.: Estimations optimales du noyau de la chaleur sur les variétés cuspidales. Potential Anal. 27,
225–249 (2007)

15. Li, H.-Q.: Centered Hardy-Littlewood maximal function on hyperbolic spaces, p > 1. Preprint
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