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Abstract

In the paper a generalized guaranteed cost output-feedback robust gain-scheduled PID con-
troller synthesis is presented for affine linear parameter-varying systems under polytopic
model uncertainty. The controller synthesis is generalized in a sense that it covers ro-
bust, robust gain-scheduled, and robust switched (with arbitrary switching algorithm) PID
controller design. The proposed centralized/decentralized controller method is based on
Bellman-Lyapunov equation, guaranteed cost, and parameter-dependent quadratic stability.
The proposed sufficient robust stability and performance conditions are derived in the form
of bilinear matrix inequalities (BMI) which can efficiently be solved or further linearized. As
the main result, the suggested performance and stability conditions without any restriction
on the controller structure are convex functions of the scheduling and uncertainty parame-
ters. Hence, there is no need for applying multi-convexity or other relaxation techniques and
consequently the proposed solution delivers a less conservative design method. The viability
of the novel design technique is demonstrated and evaluated through numerical examples.

Keywords: Robust controller, Gain-scheduled controller, Switched controller,
Parameter-dependent Lyapunov function, Bellman-Lyapunov equation.

1. Introduction

Nowadays, gain scheduling techniques for nonlinear systems have been actively researched
for about a half a century. These theoretical and application-oriented studies have been
accelerated in a great extent by the introduction of the notion of linear parameter-varying
(LPV) systems [1]. Basically, there are two main (not independent) research directions for
testing and synthetizing performance and stability of LPV systems: Lyapunov theory and
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small-gain theorem. Altough, lot of the LPV design methods are derived by using integral
quadratic constraints (IQCs). IQCs allow a dissipation inequality-based interpretation, in
which the small-gain condition, the IQCs and the quadratic stability can be integrated in
a uniform way (See e.g. [2, 3]). However, the approaches based on IQCs highly depend on
the structure of the applied multipliers, therefore may be numerically expensive respectively
conservative [4, 5, 6]. According to [6], the standard IQC, in light of conservativeness, is
equivalent with the quadratic stability. In addition, authors in [7] stated that their frequency-
domain gain-scheduled controller design approach based on the small-gain theorem is likewise
on the level of quadratic stability. Nonetheless, these approaches have their own benefits
highlighted by a significant amount of publications [8, 9, 10, 11]. For a more comprehensive
survey of the field, readers are also referred to survey papers [12, 13, 14] and references
therein.

This paper contributes to controller design techniques using the Lyapunov theory in the
affine LPV framework. Within the mentioned framework, convexification in the schedul-
ing and uncertain parameter dependency of the closed-loop conditions ensures obtaining
the controller design as an optimization problem subject to some finite number of linear
and/or bilinear matrix inequality (LMI/BMI) constraints. Convexity in the scheduling and
uncertain parameters can be reached by enforcing the Lyapunov matrix to be constant (i.e.
by forcing quadratic stability), e.g. [15, 16]. In general, the quadratic stability for affine
LPV systems makes the controller design quite conservative [12]. However, the conservatism
can be relaxed using different types of parameter-varying Lyapunov functions [17, 18]. As
pointed out in [17], a multi-convexification technique can balance the conservatism within
the affine quadratic stability (AQS) framework. As a result, researchers have started to em-
bed the mentioned multi-convexity requirement in affine LPV framework for gain-scheduled
controller, filter, and observer design [17, 19, 20, 21, 22]. Subsequently, in order to further
reduce the conservativeness, different techniques to relax the multi-convexity requirement
have been deployed [23, 24, 25, 26, 27, 28]. Nevertheless, these relaxations can have sig-
nificant influence on the performance and can drift the guaranteed cost far away from its
optima [29].

Along this line, convexity in the scheduling and uncertain parameters can be ensured
also by restricting the closed-loop LPV structure, system or controller to avoid cross term
effects of the scheduling parameters. Authors in [30], within the framework of static output-
feedback controller design, ensured convexity under AQS conditions for affine LPV systems
by making the static output-feedback controller parameters independent on the scheduled
parameters. In [31], the author has restricted the system interconnection with the control
input u(t) to be parameter-independent, and hence he annihilated multiplication of the
scheduling parameters. The same idea has been applied in [32] and [33] for static output-
feedback controller design with inexact scheduling parameters requiring to solve a set of
BMI and LMI conditions, respectively. Similar idea was presented in papers [34] and [35]
where some of the dynamic output-feedback LPV controller’s matrices were restricted to be
parameter-independent in order to obtain convex stability conditions regarding the schedul-
ing parameter.

From this short literature survey follows that there is no general approach in the affine
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LPV framework complemented by the Lyapunov theory, which gives convex dependency
on scheduling and uncertain parameters without using the multi-convexity requirement, or
major restrictions on the closed-loop system or controller matrices. In addition, only few
papers are devoted to LPV-based linear quadratic regulator (LQR) formulation [2, 19, 28,
34, 29]. Triggered by real time applicability, we hereby focus to static, guaranteed cost, fixed-
order output-feedback controller design that has not been covered. In this paper, we hence
present a new, generalized solution to this specific problem, without any large restrictions
in controller or system matrices. The solution is generalized in a sense that it covers robust,
robust gain-scheduled, and robust switched (with arbitrary switching sequence) controller
design. The control structure is defined as centralized/decentralized fixed-order output-
feedback (similarly to a standard PID) controller. Although, the proposed approach can
be used for full/reduced order dynamic output-feedback controller design as well, since it
can be reformulated to static output-feedback design [36]. Furthermore, the performance
metric is defined in a standard LQR fashion, so the presented approach can be viewed as an
extension of the classical infinite-horizon LQR problems [37]. The proposed sufficient robust
stability and performance conditions are translated to an optimization problem subject to
some LMI and BMI constraints, which can be solved by commercial as well as open source
solver tools like PENBMI [38] and PENLAB [39] or can be further linearized. The obtained
controller can adapt to changes in the plant dynamics due to the inappropriate scheduling
parameters and is robust against any uncertainties in the scheduling measurement of plant
modelled in polytopic fashion. Thanks to the polytopic uncertainty representation on the
affine LPV system matrices, it is possible to shape the uncertainty polytopes for different
working/operation points based on the scheduled parameters. This opens new possibilities
in LPV modelling, too.

The paper is organized as follows. Section 2 brings preliminaries and problem formula-
tion. The main generalized robust design procedure is presented in Section 3. Numerical
examples illustrate the effectiveness of the proposed approach in Section 4, and concluding
remarks close the paper in Section 5.

Our notations are standard. D ∈ Rm×n denotes the set of real m× n matrices, Im is an
m ×m identity matrix, P > 0 (P ≥ 0) is a real symmetric, positive definite (semidefinite)
matrix. Matrices, if not explicitly stated, are assumed to have compatible dimensions.

2. Preliminaries and problem formulation

Consider the continuous-time affine linear parameter-varying system with polytopic un-
certainty governed by:

ẋ = A(θ, ξ)x+B(θ, ξ)u,

y = Cx,
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rl denote the state, control input and controlled output,
respectively. For ease of notation throughout the paper we drop dependency on time. The
linear parameter-varying system matrices are assumed to depend on the scheduling vector
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parameter θ as follows:

A(θ, ξ) = A0(ξ) +

p∑
j=1

Aj(ξ)θj ∈ Rn×n, B(θ, ξ) = B0(ξ) +

p∑
j=1

Bj(ξ)θj ∈ Rn×m. (2)

Matrices Aj(ξ), Bj(ξ), j = 0, 1, 2, . . . , p belong to the convex set, a polytope with N vertices
that can be formally defined as:

Ψ :=
{
Aj(ξ) ∈ Rn×n, Bj(ξ) ∈ Rn×m : Aj(ξ), Bj(ξ)

=
N∑
i=1

(Aji, Bji)ξi,
N∑
i=1

ξi = 1, ξi ≥ 0, j = 0, 1, 2, . . . , p
}
,

(3)

where p is the number of scheduled parameters, ξi, i = 1, 2, . . . , N are constant or time-
varying but unknown parameters, respective uncertainties in system matrices Ai(ξ), Bi(ξ).
Furthermore, Aji, Bji, C are constant matrices of corresponding dimensions. θ ∈ Rp is a
vector of known constant or time-varying real gain-scheduled parameters. We assume that
both lower and upper bounds are available for these parameters and their variation rates
that is:

• each parameter θj, j = 1, 2, . . . , p ranges between known extremal values:

θj ∈ Ωθ :=
{
θj ∈ 〈θj, θj〉, j = 1, 2, . . . , p

}
, (4)

• the rate of variation θ̇j is well defined at all times and satisfies:

θ̇j ∈ Ωt :=
{
θ̇j ∈ 〈θj, θj〉, j = 1, 2, . . . , p

}
. (5)

Note 1. The uncertain system (1) consists of two types of vertices. The first one is due to
the gain-scheduled parameter θ with T = 2p vertices, and the second set of vertices are due
to the system uncertainties, N-vertices.

Note 2. For the gain-scheduled I part of controller design, the plant states of system (1) need
to be extended in such a way that the static output feedback control algorithm can provide
proportional (P) and integral (I) parts of the designed PID robust controller. Therefore,
throughout the paper is assumed that the plant outputs of system (1) allow us to design the
PI controller with static output feedback. For more detail see [40].

The following problem is studied in this paper:

Problem 1. Design a robust static output feedback gain-scheduled PID controller with con-
trol algorithm:

u = K(θ)y +Kd(θ)ẏ = K(θ)Cx+Kd(θ)Cdẋ, (6)

where K(θ) = K0 +
∑p

j=1Kjθj, Kd(θ) = Kd0 +
∑p

j=1Kdjθj such that the controller (6)
ensures closed-loop system robust parameter-dependent quadratic stability and guaranteed
cost with respect to performance (7). The robust stability conditions of gain-scheduled PID
controller need to be in convex form regarding scheduled and uncertain parameters θ and ξ.
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To assess performance quality, a quadratic cost function is used:

Jc =

∫ ∞
0

J(x, u, ẋ, θ)dt, (7)

where
J(x, u, ẋ, θ) = xTQ(θ)x+ ẋTS(θ)ẋ+ uTRu,

furthermore,

Q(θ) = Q0 +

p∑
j=1

Qjθj ∈ Rn×n, S(θ) = S0 +

p∑
j=1

Sjθj ∈ Rn×n, (8)

are positive definite (semidefinite) matrices and R ∈ Rm×m is a positive definite matrix.

Remark 1. Using the guaranteed cost approach, the controller parameter’s tuning is re-
placed by the tuning of the weighting parameters. This can relevantly reduce the time and
complexity of the tuning process, mainly for large-scale multi-input multi-output applications.
For more information and tuning approaches the readers are referred to books [37, 41] and
references therein. Regarding the parameter-varying weighting matrices and their benefits,
more information can be found in papers [29, 42].

3. Main results

This section formulates the theoretical approach to the robust, robust gain-scheduled,
and robust switched PID controller design for the uncertain affine LPV system (1), which
ensures parameter-dependent quadratic stability and guaranteed cost of the closed-loop sys-
tem, for all uncertain plant parameters

∏
∈ Ω, gain-scheduled parameters θ ∈ Ωθ and

θ̇ ∈ Ωt. The main results are built on the following Lemma:

Lemma 1. (Bellman-Lyapunov equation)[43] Consider the system (1) with control algorithm
(6). Control algorithm (6) is the guaranteed cost control law for the closed-loop system if
and only if a Lyapunov function V (x, θ, ξ) exists such that the following condition holds:

Be =
dV (x, θ, ξ)

dt
+ J(x, u, ẋ, θ) = −εxTx,

ε 7→ 0, ε ≥ 0.
(9)

Proof. Suppose that P (θ, ξ) > 0, and the Lyapunov function candidate V (x, θ, ξ) = xTP (θ, ξ)x
is positive definite. From Eq. (9) for ε→ 0 we can obtain

V̇ (x, u, θ, ξ) + J(x, u, θ, ξ) ≤ 0 → V̇ (x, u, θ, ξ) ≤ −J(x, u, θ, ξ) ≤ 0.

Integrating both sides from 0 to ∞ we can obtain the upper bound on the cost function:

Jc =

∫ ∞
0

J(x, u, θ, ξ)dt =

∫ ∞
0

(xTQ(θ)x+ uTRu+ ẋTS(θ)ẋ)dt ≤ V (0)− V (∞)

≤ V (0) = xT0 P (θ(0), ξ(0))x0.

Since, the initial conditions of the scheduled and uncertain parameters are usually not avail-
able, the upper bound on the cost function can be rewritten as Jc ≤ max(xT0 P (θ, ξ)x0).
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Note 3. Equation (9) is known as the Bellman-Lyapunov equation, and function V (x, θ, ξ)
which satisfies (9) is the Lyapunov function. For a particular structure of the Lyapunov
function V (x, θ, ξ), the obtained gain-scheduled controller design procedure may reduce from
"if and only if" to "if".

The uncertain system (1) with control algorithm (6) conforming Lemma 1 is called ro-
bust parameter-dependent quadratically stable with guaranteed cost. The main results of
the robust gain-scheduled PID controller design, which ensure robust parameter-dependent
quadratic stability and guaranteed cost, are given in the next theorem.

Theorem 1. The uncertain system (1) is robust parameter-dependent quadratically stable
with guaranteed cost, if for the given weighting matrices Q(θ), S(θ), R and for the given
bounds on max |θ̇j| ≤ ρj there exist auxiliary matrices Ni, i = 1, . . . , 6, controller gain
matrices Ki, Kdi, i = 0, 1, . . . , p, symmetric matrices Pi,j, i = 0, 1, . . . , p, j = 1, . . . , N such
that P (θ, ξ) ∈ Rn×n is positive definite, and the inequality (10) holds at the vertices of the
scheduled parameters θ.

H0i +

p∑
j=1

Hijθj ≤ 0,

i = 1, 2, . . . , N ; θ ∈ Ωθ; θ̇ ∈ Ωt,

(10)

where H0i = {h0ikl}3×3, Hij = {hklij}3×3, and

h0i11 =NT
1 +N1 −NT

4 K
T
d0Cd − CT

d K
T
d0N4 + S0,

h0i12 =−NT
1 A0i +N2 + P0i −NT

4 K0C − CT
d K

T
d0N5,

h0i13 =−NT
1 B0i +N3 +NT

4 − CdKT
d0N6,

h0i22 =−NT
2 A0i − AT0iN2 +

∑p
j=1 Pjiρj −NT

5 K0C − CTKT
0 N5 +Q0,

h0i23 =−NT
2 B0i − AT0iN3 +NT

5 − CTKT
0 N6,

h0i33 =−NT
3 B0i −BT

0iN3 +NT
6 +N6 +R,

h11ij =−NT
4 KdjCd − CT

d K
T
djN4 + Sj,

h12ij =−NT
1 Aij + Pij −NT

4 KjC − CT
d K

T
djN5,

h13ij =−NT
1 Bij − CT

d k
T
djN6,

h22ij =−NT
2 Aij − ATijN2 −NT

5 KjC − CTKT
j N5 +Qj,

h23ij =−NT
2 Bij − ATijN3 − CTKT

j N6,
h33ij =−NT

3 Bij −BT
ijN3.

Proof. Assume that the Lyapunov function is in the form:

V (x, θ, ξ) = xTP (θ, ξ)x, (11)

where

P (θ, ξ) = P0(ξ) +

p∑
j=1

Pj(ξ)θj,

Pj(ξ) =
N∑
i=1

Pji ξi, j = 0, 1, 2, . . . , p.

6



The time derivative of the Lyapunov function (11) is given as follows:

dV (.)

dt
= ẋTP (θ, ξ)x+ xTP (θ̇, ξ)x+ xTP (θ, ξ)ẋ

= [ẋT , xT , uT ]

[
0, P (θ, ξ),0

P (θ, ξ),P (θ̇, ξ),0
0, 0, 0

][
ẋ
x
u

]
,

(12)

where

P (θ̇, ξ) =

p∑
j=1

Pj(ξ)θ̇j ≤
p∑
j=1

Pj(ξ)ρj,

assuming that Pj(ξ) ≥ 0 and 0 < max |θ̇j| ≤ ρj.
To separate matrix P (.) from the system’s matrices A(.) and B(.), new auxiliary matrices

Ni ∈ Rn×n, i = 1, 2; N3 ∈ Rn×m; Ni ∈ Rm×n, i = 4, 5; N6 ∈ Rm×m of corresponding
dimensions are introduced in the following form:

2(N1ẋ+N2x+N3u)T (ẋ− A(θ, ξ)x−B(θ, ξ)u) = 0, (13a)

2(N4ẋ+N5x+N6u)T (u−K(θ)Cx−Kd(θ)Cdẋ) = 0. (13b)

Summarizing equations (13) with the time derivative of the Lyapunov function (12) one
obtains:

V̇ (x, θ, ξ) = zTW (θ, ξ)z (14)

where zT = [ẋT , xT , uT ], W (θ, ξ) = {wij(θ, ξ)}3×3 and

w11(θ, ξ)=NT
1 +N1 −NT

4 Kd(θ)Cd − CT
d Kd(θ)

TN4,
w12(θ, ξ)=−NT

1 A(θ, ξ) +N2 + P (θ, ξ)−NT
4 K(θ)C − CT

d Kd(θ)
TN5,

w13(θ, ξ)=−NT
1 B(θ, ξ) +N3 +NT

4 − CT
d Kd(θ)

TN6,
w22(θ, ξ)=−NT

2 A(θ, ξ)− A(θ, ξ)TN2 + P (θ̇, ξ)−NT
5 K(θ)C − CTK(θ)TN5,

w23(θ, ξ)=−NT
2 B(θ, ξ)− AT (θ, ξ)N3 +NT

5 − CTK(θ)TN6,
w33(θ, ξ)=−NT

3 B(θ, ξ)−B(θ, ξ)TN3 +NT
6 +N6.

System (1) with control algorithm (6) is parameter-dependent quadratically stable for all
θ ∈ Ωθ, θ̇ ∈ Ωt and uncertainty ξ, if matrix W (θ, ξ) is negative definite (semidefinite).
To obtain the guaranteed cost control algorithm, let’s substitute the time derivative of the
Lyapunov function (14) and performance index (7) to the Bellman-Lyapunov equation (9):

Be = V̇ (x, θ, ξ) + J(x, u, ẋ, θ) = zTH(θ, ξ)z ≤ 0, (15)

where H(θ, ξ) = {hij(θ, ξ)}3×3 and

h11(θ, ξ) = w11(θ, ξ) + S(θ), h12(θ, ξ) = w12(θ, ξ),
h13(θ, ξ) = w13(θ, ξ), h22(θ, ξ) = w22(θ, ξ) +Q(θ),
h23(θ, ξ) = w23(θ, ξ), h33(θ, ξ) = w33(θ, ξ) +R.
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Matrix H(θ, ξ) is linear with respect to gain-scheduled parameter θ and uncertainty ξ, there-
fore H(θ, ξ) can be split into:

H(θ, ξ) = H0(ξ) +

p∑
j=1

Hj(ξ)θj =
N∑
i=1

(H0i +

p∑
j=1

Hijθj)ξi ≤ 0. (16)

In general, this inequality is an infinite set BMI problem according to scheduled parameter
θ and uncertain parameter ξ. However, this inequality (16) is convex with respect to gain-
scheduled parameter θ and uncertain parameter ξ, therefore (16) holds if and only if it
is negative definite (semidefinite) for all i = 1, 2, . . . , N (ξ- vertices) and j = 1, 2, . . . , p
(θ-vertices).

Remark 2. For the case of θj = 0, ρj = 0, j = 1, 2, . . . , p from (10) one obtains the
new procedure to robust PID controller design for the linear time-invariant system with
polytopic uncertainty, guaranteed cost, and parameter-dependent quadratic stability. The
robust stability condition is in the form:

H0i ≤ 0, i = 1, 2, . . . , N. (17)

Remark 3. Assume that instead of (4) holds

p∑
j=1

θj = 1,

p∑
j=1

θ̇j = 0, θj ∈ 〈0, 1〉. (18)

The gain-scheduled parameter θ changes to switching variable with arbitrarily switching al-
gorithm. For ideal switching, the rate of θ change is infinite (positive-negative). In this case
one substitute to (10) and h0i22, Pji = 0, j = 1, 2, . . . , p, i = 1, 2, . . . , N . In the case of
non-ideal switching, the rate of θ changes is finite that is, in (10) the coefficients ρj ≥ 0,
j = 1, 2, . . . , p. The number of θ-vertices decreases to p. For this case, inequality (10)
serves for the design of robust PID switching controller with ”p” mode and continuous time-
invariant system. For both cases the designed switched controller ensure guaranteed cost and
multi-parameter-dependent quadratic stability to the closed-loop switching system.

Remark 4. For the case of PI controller design matrix Cd = 0 and controller matrices
Kdi = 0, i = 0, 1, . . . , p. For P or PD controller design the system is simply not extended
with the integral part. Furthermore, if the derivative part of the controller includes some
filter, the model of this filter can be included in the system model.

Remark 5. The Theorem 1 can be used also for full/reduced order dynamic output-feedback
gain-scheduled controller design, since it can be reformulated to static output-feedback design
[36].

Because the Theorem 1 is formulated as a feasibility problem, the next corollary com-
pletes it with minimization of the LQ cost introduced in (7).
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Corollary 1. For the uncertain affine LPV system (1), an optimal (subotpimal) controller
exists in the form (6), if for the given weighting matrices (Q(θ), S(θ) and R) and for the
given bounds on max |θ̇j| ≤ ρj, j = 1, . . . , p, the following conditions hold:

min
F,N,P

(trace(P (θ, ξ))) (19)

subject to:
P (θ, ξ) > 0, (20)

H(θ, ξ) ≤ 0. (21)

Remark 6. Because the initial conditions of the scheduling variables are usually not avail-
able, it is recommended to minimize the sum of trace(P (θ, ξ)) at the corners of the scheduled
and uncertain parameters.

4. Examples

In order to show the viability of the previous proposed method, the following three
examples have been chosen. Numerical solutions have been carried out by PENBMI 2.1 [38]
solver under MATLAB 2014b using YALMIP R20150918 [44]. The simulations were done
via MATLAB/SIMULINK.

4.1. Example 1
Consider the following uncertain (academic) SISO linear parameter-varying continuous-

time system in the form of (1) as follows:

A(θ, ξ) = A0(ξ) +

p∑
j=1

Aj(ξ)θj, B(θ, ξ) = B0(ξ) +

p∑
j=1

Bj(ξ)θj,

where

A01 =

−0.5,0.320, 0.1, 0
0.2, −0.1, 0.220,0
0.6, 0.1, −0.7, 0
1, 1, 0, 0

 , A02 =

−0.35, 0.3, 0.15, 0
0.15, −0.1,0.150,0
0.35, 0.05, −0.8, 0

1, 1, 0, 0

 ,
A11 =

−0.15,0.015,0.05,0
0.01, −0.2, 0.1, 0
0.1, 0.1, 0.2, 0
0, 0, 0, 0

 , A12 =

−0.18, 0.07, 0.071,0
0.05, −0.1, 0.15, 0
0.15, 0.15, 0.08, 0

0, 0, 0, 0

 ,
A21 =

−0.05, 0.280, 0.07, 0
0.33, −0.02, 0.1, 0
0.01, 0.05, −0.012,0

0, 0, 0, 0

 , A22 =

−0.06, 0.3, 0.05, 0
0.3, −0.017, 0.05, 0
0.02, 0.02, −0.007,0

0, 0, 0, 0

 ,
B01 =

0.1
1
0
0

 , B02 =

0.15
1.1
0
0

 , B11 =

 0
0.2
0
0

 , B12 =

0.05
0.22

0
0

 , B21 =

0.05
0.25

0
0

 , B22 =

0.01
0.1
0
0

 .
9



Output matrices for PI and derivative (D) part of the controller are as follows:

C =
[
1,1,0,0
0,0,0,1

]
, Cd = [1,1,0,0] .

The problem is to design the robust PID controller which ensures closed-loop robustness
properties, guaranteed cost, and parameter/multi-parameter-dependent quadratic stability
for the following cases:

1. Robust switched controller design for the above continuous-time system with two mode
and non-ideal arbitrarily switching algorithm. For this case hold θ1+θ2 = 1, θ̇1+θ̇2 = 0.
The maximal value of the gain-scheduled parameters rate (switching variable rate) is
max θ̇i = 3001

s
, i = 1, 2. Performance parameters of (8) are Q0 = 10−5I, Qi = 0,

S0 = 0, Si = 0, i = 1, 2, R = I and 0 < P (θ, ξ) < 1000I. The obtained switched
PID controller (gain-scheduled controller) for the first (θ1 = 1, θ2 = 0) and second
(θ2 = 1,θ1 = 0) mode is given as follows:

Rswitch = Pswitch +
Iswitch
s

+Dswitchs, (22)

where
Pswitch =−2.3257− 0.0475 θ1 − 0.2613 θ2,
Iswitch =−2.2771− 0.0209 θ1 − 0.1299 θ2,
Dswitch=+0.0959− 0.0420 θ1 − 0.0634 θ2.

The simulation results for nominal system with switched robust controller and with
randomly generated switching signal are shown on Figs. 1a and 1b, where the dashed
blue line is the setpoint w(t), the red line is the system output y(t), and the blue and
green lines are the switching/scheduling parameters θ1 and θ2.

(a) Simulation results – y(t), w(t) (b) Simulation results – θ(t)

Figure 1: Simulation results for the 1. case

2. Robust gain-scheduled PID Controller design (10) with gain-scheduled parameter rates
changes θ̇1 = 5/s and θ2 = 0. For the same performance parameters as given above,
the obtained gain-scheduled controller is as follows:

RGSC = PGSC +
IGSC
s

+DGSCs, (23)
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where
PGSC =−1.5050 + 0.0495 θ1,
IGSC =−0.9728 + 0.0136 θ1,
DGSC =−0.1239− 0.0412 θ1.

The simulation results for nominal system with robust gain-scheduled controller and
with sinuously generated scheduling parameter are shown on Figs. 2a and 2b.

(a) Simulation results – y(t), w(t) (b) Simulation results – θ(t)

Figure 2: Simulation results for the 2. case

3. Robust PID controller design when θ1 = θ2 = 0. For the same performance as given in
the first example, the obtained robust PID controller which ensures robustness prop-
erties of the closed-loop system, guaranteed cost, and parameter-dependent quadratic
stability (17) is as follows:

Rrob = −0.9754− 0.5852

s
− 0.0701s (24)

The simulation result for the nominal system with robust controller and with θ1 =
θ2 = 0 is shown on Fig. 3.

Figure 3: Simulation results – y(t), w(t)

4.2. Example 2
The second example (levitation problem) is an unstable uncertain dynamic system with

one input and one output in the form of (1) as follows:

11



A0,1 =

[
−4.7500× 10−5,1,0

1, 0,0
1, 0,0

]
, A1,1 =

[
1.4250× 10−4,0,0

0, 0,0
0, 0,0

]
, A2,1 =

[
−1.0450× 10−3,0,0

0, 0,0
0, 0,0

]
,

A0,2 =

[
−5.2500× 10−5,1,0

1, 0,0
1, 0,0

]
, A1,2 =

[
1.5750× 10−4,0,0

0, 0,0
0, 0,0

]
, A2,2 =

[
−1.1550× 10−3,0,0

0, 0,0
0, 0,0

]
,

B0,1 =

[
0

1.9769
0

]
, B1,1 =

[
0

0.2052
0

]
, B2,1 =

[
0

−0.15105
0

]
,

B0,2 =

[
0

2.1850
0

]
, B1,2 =

[
0

0.2268
0

]
, B2,2 =

[
0

−0.16695
0

]
,

C =
[
1,0,0
0,0,1

]
, Cd =

[
1,0,0
0,0,0

]
.

We assume that a known vector θ(k) ∈ Ω exists which captures the parametric depen-
dence of the uncertain LPV model as follows:

1. System output: 0.25 MU −→ θ1 = −1, θ2 = −1
2. System output: 0.50 MU −→ θ1 = +1, θ2 = −1
3. System output: 0.75 MU −→ θ1 = +1, θ2 = +1

The problem is to design a robust PID and a robust gain-scheduled PID controller
which ensures the closed-loop robustness properties, guaranteed cost, and parameter/multi-
parameter-dependent quadratic stability.

Using Theorem 1 with weighting matrices Q = qiI, q0 = 0.1, q1 = q2 = 0, R = rI, r = 1,
S = siI, s0 = 0.1, s1 = s2 = 0, 1 × 10−5 ≤ P (θ) ≤ 100 and max θi = 10 s−1 we obtained
robust PID controller in the form (6) where

Rrob = −3.4297 +
−1.4180

s
+−2.2529s, (25)

and robust gain-scheduled PID controller in the form (6) where

RGSC = PGSC +
IGSC
s

+DGSCs, (26)

where
PGSC =−4.3371 + 0.3262 θ1 − 0.2457 θ2,
IGSC =−2.1342 + 0.1633 θ1 − 0.1235 θ2,
DGSC =−3.0851 + 0.2318 θ1 − 0.1748 θ2.

Simulation results are shown on Figs. 4-5, where on Fig. 4a the blue line is the setpoint
w(t), the red line is the system output yrob(t) with the robust PID controller (25) and
the green line is the system output yGS(t) with the robust gain-scheduled PID controller
(26). Fig. 5a shows the controller output urob(t) (magenta) and the calculated scheduled
parameters θ1,2,rob(t) (red and blue) with the robust PID controller (25). Fig. 5b shows the
same for the robust gain-scheduled PID controller (26). Finally Fig. 4b shows the uncertain
parameter changes ξ1,2.
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(a) Simulation results – yrob(t), yGS(t) and w(t) (b) Simulation results – ξ(t)

Figure 4: Simulation results – Example 2.

(a) Simulation results – urob(t) and θrob(t) (b) Simulation results – uGS(t) and θGS(t)

Figure 5: Simulation results – Example 2.

4.3. Example 3
Consider 100 randomly generated TITO (two inputs, two outputs), linear continuous-

time affine uncertain systems with two uncertainties. If one substitutes the lower and upper
bound of uncertainties to the plant model, a polytopic system is obtained. In order to
examine the conservativeness of the proposed approach, the affine uncertain systems have
been generated to be on the border of feasibility. In the Table 1 one can find the amount
of successful solutions for the methods proposed in the paper (by parameter-dependent
quadratic stability (PDQS) and quadratic stability (QS)) compared with the classical robust
controller method (PDQS) [45]. For decentralized controller design, the following weighting
matrices were used: Q = qiI, q0 = 0.5, q1 = q2 = 0, R = rI, r = 1, S = siI, s0 = 0.5,
s1 = s2 = 0, 0.1 ≤ P (θ) ≤ 1000 and max θi = 10 s−1.

Table 1 implies that in case of third or less order TITO plant the classical method
is superior and less conservative. However, in case of higher plant orders, the method
proposed in this paper gives less conservative results than the classical one. Therefore, the
proposed approach contributes to the design tools for robust controllers which guarantees
the parameter-dependent quadratic stability, guaranteed cost, and less conservativeness for
higher order systems.
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Table 1: Robust PID controller calculation. Results.

Amount × system’s order Prop. met. PDQS Prop. met. QS Classical met. PDQS
100 × 3rd 59 59 64
100 × 4th 63 62 46
100 × 5th 63 62 49
100 × 6th 59 55 36

5. Conclusion

A novel approach to design a robust controller, robust gain-scheduled controller and
robust switched controller with arbitrarily switching algorithm is presented. The rate of
the switching variable is assumed to be θ̇ = ±∞ for ideal, and |θ̇| < ∞ for non-ideal
switching. The proposed design procedure is based on the Bellman-Lyapunov equation,
guaranteed cost, and robust stability conditions using parameter-dependent quadratic sta-
bility, or for switched systems the multi-parameter-dependent quadratic stability approach.
The obtained feasible robust stability and performance conditions for robust, robust gain-
scheduled, and robust switched controller design are in the form of BMIs. Despite that the
obtained solution is bilinear regarding the variables, the conservativeness of the introduced
design procedure is markedly reduced compared with such approaches that use the multi-
convexity lemma and/or its relaxations. In our case, the conservativeness is reduced due to
the fact that the presented solution is directly convex regarding the scheduled and uncertain
parameters. In addition, in the presented solution there is no need for major restrictions in
system and/or controller matrices unlike in many references.

Future research will focus on the extension of the established results for systems affected
by noises and disturbances, as well as to guarantee the robustness properties and perfor-
mance of the closed-loop system with hard input constraints. In addition, further emphasis
will be put on investigation of the possible LMI solution in order to reduce the remained
conservativeness caused by the limitations of currently available BMI solvers.
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