
Modelling of Autosar libraries for large scale testing

Downloaded from: https://research.chalmers.se, 2024-03-13 08:58 UTC

Citation for the original published paper (version of record):
Mostowski, W., Arts, T., Hughes, J. (2017). Modelling of Autosar libraries for large scale testing.
Electronic Proceedings in Theoretical Computer Science, EPTCS, 244: 184-199.
http://dx.doi.org/10.4204/EPTCS.244.7

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

H. Hermanns, P. Höfner (Eds.): Models for
Formal Analysis of Real Systems (MARS 2017)
EPTCS 244, 2017, pp. 184–199, doi:10.4204/EPTCS.244.7

c© W. Mostowski, T. Arts, J. Hughes
This work is licensed under the Creative Commons
Attribution-Noncommercial License.

Modelling of Autosar Libraries for Large Scale Testing∗

Wojciech Mostowski
Centre for Research on Embedded Systems

Halmstad University, Sweden
wojciech.mostowski@hh.se

Thomas Arts
Quviq AB, Sweden

thomas.arts@quviq.com

John Hughes
Department of Computer Science and Engineering

Chalmers University of Technology, Sweden
Quviq AB, Sweden

rjmh@chalmers.se, john.hughes@quviq.com

We demonstrate a specific method and technology for model-based testing of large software projects
with the QuickCheck tool using property-based specifications. Our specifications are very precise,
state-full models of the software under test (SUT). In our approach we define (a) formal descrip-
tions of valid function call sequences (public API), (b) postconditions that check the validity of each
call, and (c) call-out specifications that define and validate external system interactions (SUT calling
external API). The QuickCheck tool automatically generates and executes tests from these specifi-
cations. Commercially, this method and tool have been used to test large parts of the industrially
developed automotive libraries based on the Autosar standard. In this paper, we exemplify our ap-
proach with a circular buffer specified by Autosar, to demonstrate the capabilities of the model-based
testing method of QuickCheck. Our example is small compared to the commercial QuickCheck
models, but faithfully addresses many of the same challenges.

1 Introduction

The multi-vendor and multi-platform character of automotive system development is a major challenge
in testing the underlying software due to the multiplicity of possible software and hardware interactions
and differences between various versions of the referenced libraries. Testing such software off-line brings
the additional challenge of substituting low-level hardware interfaces and APIs with software mock-ups.

The Autosar standard [5] is an automotive industry effort to support multi-vendor software develop-
ment. In particular, the standard specifies the basic software library interfaces and behaviour that Autosar
compliant implementations should adhere to. Ideally, compliant Autosar components from different ven-
dors should be interchangeable with little additional effort necessary to validate a complete system based
on Autosar. However, in practice small differences in implementation choices due to performance con-
siderations, particular platform limitations, or interpretation freedom for (purposely or inadvertently)
underspecified behaviour may lead to compliance issues.

To manage the complexity of testing and validation in this context, we employ Model-Based Testing
(MBT) techniques [11] rather than the classical unit testing approach. Because of the number of test
cases necessary to cover the interactions and behavioural differences, unit testing suffers from scalability
issues. In comparison, the base for MBT testing are models of the system and its components, based
on which tests in an arbitrary quantity are generated on the fly. A carefully chosen test data generation
method ensures a sufficient coverage (quality) of the resulting tests. New configurations and library

∗This work is supported by the Swedish Knowledge Foundation grant for the AUTO-CAAS project.

http://dx.doi.org/10.4204/EPTCS.244.7
http://creativecommons.org
http://creativecommons.org/licenses/by-nc/3.0/

W. Mostowski, T. Arts, J. Hughes 185

versions of the system under test are simply covered by adapting the models and regenerating the tests
for various configurations. Another important feature of MBT, as opposed to e.g. model checking, is
that an actual running library or complete product compiled from a low-level language can be tested and
validated, rather than its model (although in our particular case the model itself is also analysable, see
Sect. 5). The infinite test space of this validation scenario obviously cannot be completely covered by
MBT, however, the random test data generation ensures arguably good coverage of the code under test.
The specification and the testing can be done with or without the source code availability for inspection,
the latter being often the situation in our industrial projects.

Our MBT method of choice is property based testing using the QuickCheck tool developed by
Quviq [2, 8]. In QuickCheck, a model is an Erlang [7] functional program that follows a predefined
structure and API to form a behavioural description of a given software component. The properties that
can be checked with generated tests are postconditions (test oracles) of single operations and call-out
specifications. Call-out specifications are given in a process algebra-like language [10] and describe
the calls to other components that the operation is allowed or required to make. The rest of the model
defines the symbolic execution state of the component under test and operation preconditions, both of
which define the valid execution traces for the tests to be generated. For the software under test written
in C, which is the case for the Autosar components, QuickCheck provides a flexible interface that allows
to abstract the C function calls in the model and run the underlying C implementation during the actual
testing. The general philosophy of QuickCheck is to run several short tests quickly to detect problems
early, rather than creating large and complex testing scenarios for which failures are extremely difficult to
analyse. Should a larger test case need to be generated to exhibit a bug, QuickCheck offers a mechanism
to shrink the test data to a smaller, possibly minimal, set that leads to the same failure. Consequently, the
effort of debugging is also reduced.

QuickCheck has been used in large scale to specify and test Autosar basic software implementa-
tions [3]. In this paper we exemplify the QuickCheck method by presenting a small model for one of
the Autosar components, a circular buffer for queuing arbitrary data. The client component is a mes-
sage box system, that uses the circular buffer to specifically store message pointers (Sect. 2). Using
this simple example we show how the multi-level component specifications are used to test Autosar im-
plementations, and we show how C function mocking is employed in QuickCheck to test the call-out
specifications (Sect. 3). Furthermore, we show how clustering specifications can be used to validate in-
teractions between components within one functional set, i.e., that components respect each other APIs
within a cluster (Sect. 3.4). The concrete implementation that we test comes from the open-source Au-
tosar implementation by ArcCore1, the third partner in the AUTO-CAAS project.

The mocking mechanism of QuickCheck for testing the call-out specifications is also used for check-
ing the failure consequences in the complete system. This is done by mocking parts of the system with
a behaviour specified by a model, into which we can incorporate known non-compliant behaviours or
simply inject faults. This is described in Sect. 4. Then, Sect. 5 concludes the paper. The complete
QuickCheck model for this case study can be found in App. A and on-line at http://ceres.hh.se/
mediawiki/CirqBuff_and_MBox_QuickCheck_Models.

2 The Case Study

The case study we focus on is a circular buffer implementation CirqBuff [5]. The buffer has three core
API functions, defined by the following C prototypes:

1https://www.arccore.com.

http://ceres.hh.se/mediawiki/CirqBuff_and_MBox_QuickCheck_Models
http://ceres.hh.se/mediawiki/CirqBuff_and_MBox_QuickCheck_Models
https://www.arccore.com

186 Modelling of Autosar Libraries for Large Scale Testing

typedef struct {
int maxCnt; /* The max number of elements in the list */
int currCnt; /* The current number of elements */
size_t dataSize; /* Size of the elements in the list */
void *head; void *tail; /* List head and tail */
void *bufStart; void *bufEnd; /* Buffer start/stop */

} CirqBufferType;

Figure 1: The CirqBuffType C data type definition.

• CirqBufferType *CirqBuffDynCreate(size_t size, size_t dataSize); that creates a
circular buffer of the given size which stores arbitrary data (byte sequences) of a given size;

• int CirqBuffPush(CirqBufferType *cPtr, void *dataPtr); that enqueues an element
into the buffer, the element is passed through a pointer to the array containing the data to be
enqueued. The result is 0 on success, otherwise 1; and

• int CirqBuffPop(CirqBufferType *cPtr, void *dataPtr); that dequeues an element
from the buffer by placing it in an array, and indicating the operation status with the return value.

The CirqBufferType is a C structure that keeps track of the current queue contents through the cur-
rent element count currCnt and head/tail pointers to the allocated queue storage buffer bufStart
. . .bufEnd, as well as the the static limits of the buffer – maximum size maxCnt, and the dataSize
field, see Fig. 1 for the complete C structure definition. The data is copied to and from the buffer using
one of the memcpy routines available on the target platform, this is one of the configuration options of
this component that Autosar has multiplicity of, and that in general complicate the testing effort.

This circular buffer is used in a few places in the open source Autosar implementation, e.g., for
communication transmission buffers. For presentation, we picked the simplest code available, a message
box component that uses the circular buffer to store message pointers. The Mbox API is the following:

Arc_MBoxType* Arc_MBoxCreate(size_t size);
sint32 Arc_MBoxPost(const Arc_MBoxType *mPtr, void *msg);
sint32 Arc_MBoxFetch(const Arc_MBoxType *mPtr, void *msg);

The only field of the Arc_MBoxType structure is cirqPtr that keeps the circular buffer reference. The
post and fetch functions are each a simple delegation of calls to CirqBufferPush and CirqBufferPop,
respectively, with the same meaning of result values. Arc_MBoxCreate creates a circular buffer with the
data size fixed to the pointer size sizeof(void *). Thus, MBox specialises CirqBuff to store pointers.

3 Specifying and Testing the Implementations with QuickCheck

Tens of software components for vehicle software are specified in Autosar in a modular way. The task
at hand is to modularly test both CirqBuff (Sect. 3.1) and Mbox (Sect. 3.3) implementations. However,
we also want to test the software together, i.e., the component integration. We do so by automatically
deriving its specification (Sect. 3.4).

Using MBT, one first builds a model, the specified behaviour of the software under test (SUT). Based
on the model, an arbitrary number of test cases can be generated. Test cases are sequences of calls to
the API functions with generated data parameters. In addition, the test contains information of what

W. Mostowski, T. Arts, J. Hughes 187

-module(qc_cb).

-record(cb_state, {ptr, size, data_size, elements}).
initial_state() -> #cb_state{ elements=[] }.

invariant(S) -> length(S#cb_state.elements) =< S#cb_state.size.
postcondition_common(_S, {call, _, create, _, _ }, _Res) -> true;
postcondition_common(S, Call, Res) -> eq(Res, return_value(S, Call)).

create(Size, DSize) -> cb:’CirqBuffDynCreate’(Size, DSize).
create_args(_S) -> [nat(), nat()].
create_pre(S, [Size, _DSize]) -> S#cb_state.ptr == undefined andalso Size > 0.
create_next(S, R, [Size, DSize]) ->

S#cb_state{ptr=R, size=Size, data_size=DSize }.

push(Ptr, Val) -> DataPtr = eqc_c:create_array(unsigned_char, Val),
CallRes = cb:’CirqBuffPush’(Ptr, DataPtr), eqc_c:free(DataPtr), CallRes.

push_args(S) -> [S#cb_state.ptr, vector(S#cb_state.data_size, char())].
push_pre(S) -> S#cb_state.ptr /= undefined andalso

length(S#cb_state.elements) < S#cb_state.size.
push_return(_S, _Args) -> 0.
push_next(S, _R, [_Ptr, Val]) ->

S#cb_state{elements = S#cb_state.elements ++ [Val]}.

Figure 2: Excerpt of the CirqBuff model.

external API calls the SUT makes. These API calls are automatically mocked. The generated tests are
then executed on the SUT and the tool validates postconditions and call-out behaviour for each call.

As MBT tool we use Quviq’s QuickCheck with two distinguishing features: expressive, state-full,
executable models, and failed test minimisation, called shrinking. Shrinking is a mechanism for reducing
the size of the test case that failed, so that it still leads to the failure, but with a possibly (much) shorter
execution trace. The controllable (see Sect. 4) data generators make this possible.

3.1 The CirqBuff Model

A snapshot of the QuickCheck model for CirqBuff for discussing is shown in Fig. 2, the complete
model is quoted in App. A. The model is a collection of Erlang [7] functions describing the different
aspects of the behaviour of the component under test. First, the declared record type cb_state holds
the symbolic execution state of the model, i.e., a model view of the CirqBuff’s current state. It contains
the pointer ptr reference of the freshly created buffer by the CirqBuffDynCreate, the size and the
data_size requested during the creation, and the model contents of the buffer elements, an Erlang list
of arbitrary values. The state is initialised by initial_state which defines elements to be an empty
list representing an empty buffer. The remaining fields of cb_state are set to undefined.

The invariant function declares a condition to be checked throughout the execution of the actual
tests. Here it is defined somewhat artificially, because its validity is guaranteed by the construction of
the rest of the model (it only refers to the model state, not the implementation state), but in general it can

188 Modelling of Autosar Libraries for Large Scale Testing

be used to check specific validity conditions of the implementation, e.g., the head pointer to be within
the bounds of the CirqBuff storage buffer. Similarly, the common postcondition is checked after every
CirqBuff operation call during the actual test. Using Erlang parameter matching, we state that no extra
checks are necessary for the create call, the postcondition is true, while all the other calls should
have their actual return values equal to the ones specified by the model. These model return values are
specified separately for each operation, as we describe next.

For every API operation we declare a group of callback functions that define:

1. How to call the C function to execute the actual test (the base callback);

2. How to generate its arguments (the _arg callback);

3. What is the precondition, defined over the model state and operation arguments, for the operation
to be eligible for execution (the _pre callback);

4. What is its expected return value (the _return callback), and finally;

5. How to update the model state after the operation is executed (the _next callback).

Each operation can have its own specific postcondition defined with a _post callback and a call-out
callback to specify internal and external API interactions, we describe this in the next section. The
obligatory callbacks are the base one and the arguments one, through which QuickCheck recognises that
an operation should be part of test generation. The others have default values if unspecified.

The create arguments are two positive integers indicating the queue size and data size. The queue
size is restricted to be strictly positive by the precondition of create. Thus, all data sets generated that
have the size equal to 0 are rejected during test generation process. The precondition also requires that
create is called only once per test when the queue is not yet initialised, i.e., when no queue pointer
reference has been recorded in the model state. The new model state after create is one with the newly
created pointer and the creation arguments recorded in the corresponding fields of the state record.

The first argument of the push operation is the pointer stored earlier in the model state. The second
argument is an element to be enqueued, here a random data_size length sequence of characters. The
precondition limits the push calls to initialised and not yet full queues. Due to this precondition, the
expected return value is 0. In the next state the newly enqueued element is recorded in the elements
list. The pop operation is a mirror of push with no new specification concepts, hence we skip it in Fig. 2.

The precondition, arguments, and the next-state callbacks are primarily used during test case gener-
ation, i.e., when the model is symbolically executed to generate valid execution traces with sample input
data. The base and the return value callbacks, together with the postcondition and the invariant described
above, are used during the test execution to (a) trigger the actual C implementation call, and (b) check the
correctness of the result. The model state is updated both during the test generation, and test execution
for bookkeeping. In the former case we refer to it as symbolic state, in the latter as dynamic state.

The execution of create involves a direct call to its C implementation CirqBufDynCreate with
the generated arguments. This wrapped C call is automatically generated by the QuickCheck C interface
generation library eqc_c. A particular instance is set up by calling:

eqc_c:start(cb, [{cppflags, "-std=c99"}, {c_src, "cirq_buffer.c"}]).

However, the CirqBuffPush C implementation expects the data to be passed through a pointer, and
this pointer has to be created first from the pure data generated by QuickCheck. This is done with the
QuickCheck library function eqc_c:create_array that delegates pointer creation to the C executable,
which is then passed on to CirqBuffPush, after which it can be immediately freed, see again the speci-
fication of push in Fig. 2.

W. Mostowski, T. Arts, J. Hughes 189

prop_cb() -> ?FORALL(Cmds, commands(qc_cb),
begin {_, _, Res} = run_commands(Cmds), Res == ok end).

> eqc:quickcheck(qc_cb:prop_cb()).
...[Repeated 100 times]...
OK, passed 100 tests

Figure 3: Testing CirqBuff.

3.2 Testing CirqBuff with QuickCheck

The model-based test execution of a specified component in QuickCheck is done through defining a test
property and passing it on to QuickCheck, see Fig. 3. A test sequence is generated with commands for the
model specified in module qc_cb. The generated test sequence is executed with run_commands(Cmds).
The repetitive generation of test cases is controlled with the ?FORALL construct, by default 100 random
tests are generated. Additional parameters can be used in the property and the model, e.g., to induce the
creation of more or longer test cases or to collect specific test statistic (e.g., requirement coverage [1]).
In the simplest form we just state Res == ok to check for the result of running each test. Passing this
property to QuickCheck results in passing all 100 tests.

In fact, we can run thousands of tests that exercise the creation of circular buffers with different sizes
and data sizes. We push and pop from these buffers without finding any error in the implementation.
Notably, with the specific model construction we do respect the interface and never try to overflow or
underflow the buffer.

3.3 The MBox Model

By essentially copying and pasting the specification, we could test MBox in exactly the same way. How-
ever, being a client implementation that uses CirqBuff as a library we want to take a different approach
that details this dependency. We test MBox in isolation and use mocking for the CirqBuff calls.

The general idea of mocking is to execute a test of an upper level operation (here from Mbox) in an
environment, where the lower level operations (here from CirqBuff) are replaced by emulated (mocked)
ones. This enables tracing of the particular low-level calls actually made (or omitted, in case something
should be forbidden), and to check the call arguments. It also facilitates testing of software that uses
hardware interfaces that cannot be run outside of the target platform (e.g., ECU ports or A/D converters).

Code mocking is generally a tedious task involving writing replacement code of the mocked func-
tions. QuickCheck has an interface that makes the process considerably easier and provides a flexible
language with clearly defined semantics to specify the interactions with the mocked component [10].
Mocking of a component is enabled by providing its API description in the model, such definition for
CirqBufPush is given in Fig. 4. With just the API, QuickCheck replaces the CirqBuff implementation
with an emulated alternative. The stored_type and buffer clauses indicate that the dataPtr parame-
ter should not be simplified from a pointer to just a value during mocking (which is the default behaviour),
and because void has no values, the type is changed to unsigned char to enable dereferencing values
from pointers.

The specification of MBox follows the same pattern as in CirqBuff, here we only underline the
core differentiating elements. The message enqueueing operation post is specialised to store pointers,
i.e., byte sequences of ?PTR_SIZE length exactly, thus data size is not stored in the model state. The

190 Modelling of Autosar Libraries for Large Scale Testing

-module(qc_mbox).

api_spec() -> #api_spec { language = c, mocking = eqc_mocking_c,
modules = [#api_module{ name = mbox, functions = [
#api_fun_c{ name = ’CirqBuffPush’, ret = int,

args = [#api_arg_c{type = ’CirqBufferType␣*’, name = cPtr, dir = in},
#api_arg_c{ type = ’void␣*’, name = dataPtr, dir = in,
stored_type = ’unsigned␣char␣*’,
buffer = {true, "cPtr->dataSize"}}] . . . }.

post_args(S) -> [S#mbox_state.ptr, vector(?PTR_SIZE, char())].
post_callouts(_, [_, Value]) ->

?CALLOUT(mbox, ’CirqBuffPush’, [?WILDCARD, Value], 0).

Figure 4: Excerpt of the MBox model.

_callouts callback specifies the external calls of post. Here, a single call to CirqBufPush is required
with two arguments. The first is the pointer to the CirqBuffType structure that is created by MBox
earlier with a call to CirqBuff’s create function. We choose to ignore it with ?WILDCARD, meaning that
we do not check if MBox uses this pointer consistently with all CirqBuff calls. The second argument is
the value pushed onto the circular buffer and it is simply passed on from the call to post. The result of
the call should always be 0 indicating a success.

Specified this way, MBox can be tested with the CirqBuff fully mocked and with all the calls to
CirqBuff traced and checked. The MBox test property is identical to the one for CirqBuff, the differ-
ence in test generation and execution lies in the mocked API specified in the model. Should the calls to
CirqBuff made by MBox be different from the specified ones, or missing, the test fails and the details of
the mismatch between the expected and actual calls is reported.

3.4 Analysing Models and API Interactions through Clustering

We have specified only two components, one depending on the other, and we have shown how the interac-
tions down this simple hierarchy can be modelled and tested through mocking and call-out specifications.
This scenario, however, is very simple. Moreover, we only tested for the occurrence of the lower-level
call in relation to the state of the higher-level model and the particular operation parameters. More gen-
erally, we would like to test multi-level dependencies of several components and check that they all fully
respect each other APIs according to the corresponding model specifications. For example, so far we did
not checked that the MBox is not trying to overflow the circular buffer by placing too many elements in
it.2 A typical example of a scenario requiring such elaborate check is a protocol stack, in Autosar there
are several such protocols specific to automotive applications, including CAN-Bus and Flex-Ray.

To enable such a check, the set of interacting components is placed in a so-called cluster model.
The models of components placed in a cluster only need slight extensions to facilitate the process. First,
the operations that can be called by other components have to name the possible callers by their module

2Actually, incidentally it was checked implicitly, but only because of the specific model construction and the fact that the
sizes of the two components are always the same. It was not done explicitly by checking the preconditions of the circular buffer.

W. Mostowski, T. Arts, J. Hughes 191

-module(qc_cluster).

components() -> [qc_cb, qc_mbox].

api_spec() -> eqc_cluster:api_spec(?MODULE).

property_cluster() -> ?FORALL(Cmds, commands(?MODULE),
begin {_, _, Res} = run_commands(Cmds), Res == ok end).

Figure 5: The cluster model.

name. Second, the API specifications of the mocked calls to the lower-level routines need to have a direct
indication specified as to which modelled component and operation in the cluster they refer to.

In our case study, each operation in the model of the CirqBuff has to name the MBox model as the
caller of the operation. For the push operation this is done with push_callers() -> [qc_mbox].
Then, the mocked API for CirqBuffPush is extended with a classify = {qc_cb, push} clause to
indicate the binding to the appropriate operation in the CirqBuff model. These two simple extensions
repeated for every operation allow us to now give a short and straightforward cluster specification for the
two components shown in Fig 5. It simply lists the components in the cluster and defines their underlying
collective API by collecting the APIs of all included components. Testing the specified cluster property
by QuickCheck establishes that MBox respects the API of CirqBuff. Namely, if any of the MBox calls is
eligible to be included in the generated test case for MBox, then the corresponding call-out to CirqBuff
is checked to be eligible in the CirqBuff model. This includes checking that the caller is an authorised
one. This is done by pure symbolic execution of both models, no actual implementations are tested in
this process, it is only the models and their interactions that are checked. The actual implementations are
tested one by one using their corresponding models like described above.

4 Faults, Deviations, and Consequence Testing

The mocking mechanism discussed in Sect. 3.3 also allows us to test implementation against mutations
of sub-components to test for fault tolerance. This is part of on-going research [4, 9], here we exemplify
the idea and show the capabilities of QuickCheck to guide test generation to trigger a hidden fault.

Assume a scenario where the CirqBuff has either faults, or deliberate modifications dictated by,
e.g., performance optimisations or target platform limitations. These changes may or may not be com-
pliant to the specification given by the standard. When they are not we call them deviations, rather than
just faults. Done in good faith, they do not necessarily have to lead to problems or faults in the top-level
behaviour. We want to model and test for this, without going through the burden of modifying the imple-
mentation of the low-level component, or constructing several implementations for this purpose. Instead,
we test using the mocked version of the possibly deviating component and introduce the deviation in the
mocking.

Suppose the CirqBuff silently accepts all buffer sizes when creation is requested, however, due to
platform limitations only buffers of size 128 are created, under the assumption that the client code can
check the available space each time a new elements is enqueued (which in fact our particular client MBox
does not do). To include this behaviour in our model it is sufficient to make one line change in the call-out
specification of CirqBuffPush to return 1 on reaching the “silent” limit of 128 elements:

192 Modelling of Autosar Libraries for Large Scale Testing

weight(#mbox_state{ptr=undefined}, Op) ->
case Op of create -> 1; _ -> 0 end;

weight(_S, create) -> 0;
weight(_S, post) -> 5;
weight(_S, fetch) -> 1.

prop_mbox() -> ?FORALL(Cmds, more_commands(50, commands(?MODULE)), . . .

> eqc:quickcheck(qc_mbox:prop_mbox()).
...[snip].Failed! After 23 tests.
[Long trace of 218 commands]
Shrinking xx[snip].x(1056 times)
[Shrunk failure trace of 130 commands]
Reason:

Post-condition failed:
Failed postcondition: common: 1 /= 0

false

Figure 6: Extending the test scenario.

?CALLOUT(mbox, ’CirqBuffPush’, [?WILDCARD, Value],
if length(S#mbox_state.elements) < 128 -> 0; true -> 1 end)

Regenerating the tests with this updated model does not reveal any problems in the implementation
of MBox, while it should. The reason is the nat() size generator that does not attempt to create MBox-es
of sizes large enough, and even if it would, the generated traces do not contain enough post operations
to fill up the buffer and trigger the fault. To stimulate QuickCheck towards reaching the faulty state we
first change the size data generator from nat() to choose(1, 256) that uniformly generates integers
in the prescribed range rather than conservatively small ones. Then, we alter the test property with
more_commands to increase the expected length of generated test traces by the factor of 50, and we
provide relative weights to ensure that the post operation dominates in the generated tests to quickly fill
up the buffer, see Fig. 6. This is sufficient to discover the fault after a handful of test runs by QuickCheck.
Expectedly, the shrinking algorithm is not able to generate test cases shorter than 130 commands to
trigger this fault, however, 130 is the minimal fault triggering trace – one create, 128 post-s to fill up
the buffer, and one last to overflow it.

Similarly to more_commands, with the more_bugs directive QuickCheck attempts to discover more
than one fault in one testing sessions, instead of halting after the first test failure. This way, different
kinds of faults (different postconditions failing) can be identified sooner.

An often quoted criticism towards MBT is the high specification to implementation ratio, here
roughly 1:1 which is equivalent to a reimplementation effort. However, this is all the effort required
– with one or two line changes to the model we have just shown how to test the implementation against a
different sub-component and how to substantially change the shape of the generated test cases to trigger
a hidden fault. In the classical testing approach, a large number of new test cases would have to be
developed as well as complete component implementations to achieve the same effect.

Finally, some remarks about the test execution and bug finding time performance should be made.
The complete process of generating the basic 100 test cases for the MBox implementation in its initial

W. Mostowski, T. Arts, J. Hughes 193

configuration from Sect. 3.3 (i.e., with CirqBuff mocking, but without custom operation weights and
without more_commands) and executing them takes a mere 3 seconds on a standard laptop. Expanding
the test scenario to hit the bug increases this time to 36 seconds, which is also acceptable. Moreover,
this is the time for generating and executing all 100 tests, but the bug is found after just ∼20 tests in 7
seconds. Specific test scenarios that attempt to find an infrequently occurring bug may require increasing
the standard 100 random tests towards a much larger number (tens or hundreds of thousands). However,
the running time will grow only linearly to the number of tests, which is perfectly acceptable considering
the goal of finding the bug and the full process automation.

What does take considerable time is the shrinking process for large counterexamples. In the example
we have shown in Fig. 6 it already took just under 6 minutes for the counterexample trace of 218 opera-
tions. This is because each single shrinking attempt requires at least one complete rerun of one test case
to check if the bug still occurs with the smaller trace. This procedure, however, is again fully automatic
and replaces laborious, time consuming, manual process of analysing and rearranging test cases by the
test engineer to find a shorter counterexample.

5 Conclusions

Using a small example from the automotive Autosar standard we have presented the QuickCheck meth-
odology for model-based testing. By generating tests from models, instead of manually writing them, we
can cover an arbitrary set of test scenarios. By controlling test data generators, we can drive the process
towards a specific testing goal. The randomness of test generation brings the additional advantage of
creating a-typical test sequences that would not be considered by a testing engineer.

The added value of model-based testing is that we can arbitrarily raise the number of tests to cover
new behaviours of the system under test with very little additional effort. In our small case study, chang-
ing a couple of lines in the model exhibited a hidden bug, while the shrinking mechanism of QuickCheck
provided a minimal counter example for the bug without extra development cost, in favour of additional
running time to crunch the test data.

An indispensable feature of QuickCheck is the flexible API mocking mechanism. Apart from en-
abling software abstractions of hardware interfaces, which is crucial for off-line testing of embedded
software, we have demonstrated how it can be used to test for fault tolerance of the complete system. We
achieved this by injecting faults in the component mock-ups, against which the system is tested. This
allows to test against many different (faulty or correct) component implementations, that in fact do not
have to and may not even exist, provided a configurable model of the component is available.

Similar to writing test cases, building the models requires domain knowledge and the ability to inter-
pret the specifications written in English. But by domain experts, it is conceived harder to write a model
than to write a single test case. This is not QuickCheck specific, but a general observation that reasoning
about all cases at once is harder than reasoning about one specific case. When the hurdle of writing mod-
els is overcome, a second challenge, a technical one, is to learn the modelling language. It takes a course
and some weeks of experience before engineers feel comfortable with modelling C code in Erlang.

In the presented case study that mimics the real testing effort of the Autosar software, the specifica-
tion to implementation ratio is 1:1. However, as the code grows towards the complete Autosar library,
the size of the model does not grow as fast. For the complete set of Autosar libraries that has been tested
commercially [3] the models are only about 20-25% the size of the feature rich C source code under test.
Obviously, specifying real Autosar libraries on a larger scale brings additional challenges and benefits
compared to what we have described in the paper.

194 Modelling of Autosar Libraries for Large Scale Testing

On the benefits side, we can create test suites for really complex library configurations using the same
models. This is not so obvious in our example, but an Autosar configuration file consists of thousands
of parameters. Inspecting and updating manually written test cases for such a parameter space is really
hard. When using models, we can do this automatically.

Another benefit that is hard to see in the paper, but showed valuable in production is the clustering.
A typical test case for the CAN bus would cover five different specifications, from driver up to CAN
State Manager (CanSM) and CAN Interface (CanIf) [6]. Each such specification is a separate document.
There is no detailed specification on how the complete stack should behave. Therefore, engineers man-
ually constructing those tests must have all possible interactions in their head. And indeed, this is error
prone. We encoded the six test cases provided in [6] in our format, and executed them against the model.
We found that three of the six tests agreed with our model (i.e., these tests would possibly be generated
by our model); the other three were not accepted by it. So we could never have generated these tests –
but this turned out to be a good thing: the three standardised test cases failed to consider a specific trans-
mission recovery scenario. This has been acknowledged as an error, and is filed in Autosar’s Bugzilla for
correction in the next release. In other words, being able to compute the complex interactions instead of
trying to imagine them, is an advantage.

On the challenges side when dealing with larger models is to get those models generate valid test
cases. There we used implementations from different vendors to validate against and to discuss cases in
which our models and C implementation did not agree. In this process, ambiguities or underspecifica-
tions were found in the standard that lead to differently behaving stacks, whereas they were all arguably
correct. This is a strength and weakness of low-level modelling; on the one hand one wants to make all
differences on the API level visible, on the other hand, some design decisions that make an implementa-
tion faster or less memory intensive, may be tolerated. The QuickCheck methodology had problems in
tolerating “that is also fine” approach.

Another effort not visible in small, simple examples is finding good values for test distribution. In the
larger models we needed to add certain distributions to get into some interesting states more often. For
example, if a large message is sent in chunks over the CAN bus, one wants at least one test that finishes
the complete transfer. If the API calls are chosen just at random, this is unlikely to happen. Therefore,
such behaviour needs to be guided by test distribution values.

References
[1] T. Arts & J. Hughes (2016): How Well are Your Requirements Tested? In: 2016 IEEE International Confer-

ence on Software Testing, Verification and Validation, pp. 244–254, doi:10.1109/ICST.2016.23.

[2] T. Arts, J. Hughes, J. Johansson & U. Wiger (2006): Testing telecoms software with QuviQ QuickCheck. In:
Proceedings of ERLANG’06, ACM, pp. 2–10, doi:10.1145/1159789.1159792.

[3] T. Arts, J. Hughes, U. Norell & H. Svensson (2015): Testing AUTOSAR software with QuickCheck. In:
Eighth IEEE International Conference on Software Testing, Verification and Validation Workshops, pp. 1–4,
doi:10.1109/ICSTW.2015.7107466.

[4] T. Arts & M.R. Mousavi (2015): Automatic Consequence Analysis of Automotive Standards (AUTO-CAAS).
In: First International Workshop on Automotive Software Architectures (WASA 2015), ACM Press, pp.
35–38, doi:10.1145/2752489.2752495.

[5] AUTOSAR Consortium (2013): AUTomotive Open System ARchitecture, standard documents. https://
autosar.org/.

[6] AUTOSAR Consortium (2014): Acceptance Test Specification of Communication on CAN bus – Release
1.0.0.

http://dx.doi.org/10.1109/ICST.2016.23
http://dx.doi.org/10.1145/1159789.1159792
http://dx.doi.org/10.1109/ICSTW.2015.7107466
http://dx.doi.org/10.1145/2752489.2752495
https://autosar.org/
https://autosar.org/

W. Mostowski, T. Arts, J. Hughes 195

[7] F. Cesarini & S. Thompson (2009): Erlang Programming. O’Reilly.

[8] J. Hughes (2007): QuickCheck testing for fun and profit. In: Proceedings of PADL’07, Springer, pp. 1–32,
doi:10.1007/978-3-540-69611-7 1.

[9] S. Kunze, W. Mostowski, M.R. Mousavi & M. Varshosaz (2016): Generation of Failure Models through
Automata Learning. In: Second International Workshop on Automotive Software Architectures (WASA
2016), IEEE Society, pp. 22–25, doi:10.1109/WASA.2016.7.

[10] J. Svenningsson, H. Svensson, N. Smallbone, T. Arts, U. Norell & J. Hughes (2014): An Expressive Semantics
of Mocking. In: Fundamental Approaches to Software Engineering, LNCS 8411, Springer, pp. 385–399,
doi:10.1007/978-3-642-54804-8 27.

[11] J. Tretmans (2011): Model-Based Testing and Some Steps towards Test-Based Modelling. In: Formal Meth-
ods for Eternal Networked Software Systems, LNCS 6659, Springer, pp. 297–326, doi:10.1007/978-3-642-
21455-4 9.

A The Complete CirqBuff and MBox QuickCheck Model in Erlang

Below we present the complete model discussed in this paper. The snippets used for presentation are
slightly abbreviated and simplified for clarity, here the specifications are given in their full form, also to
be found at http://ceres.hh.se/mediawiki/CirqBuff_and_MBox_QuickCheck_Models.

A.1 File source_path.hrl

-define(AUTOSAR_SRC, ".").

A.2 File qc_cb.hrl

-record(cb_state, {ptr, size, elements, data_size}).

A.3 File qc_cb_setup.erl

-module(qc_cb_setup).
-export([setup/0]).

-include_lib("eqc/include/eqc_c.hrl").
-include_lib("source_path.hrl").

setup() -> eqc_c:start(cb,
[{cppflags, "-std=c99␣-I␣" ++ ?AUTOSAR_SRC ++ "/include"},

{c_src, ?AUTOSAR_SRC ++ "/src/cirq_buffer.c"}]).

A.4 File qc_cb.erl

-module(qc_cb).

-compile(export_all).
-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_component.hrl").
-include_lib("cb.hrl"). % Auto-generated
-include_lib("qc_cb.hrl").

http://dx.doi.org/10.1007/978-3-540-69611-7_1
http://dx.doi.org/10.1109/WASA.2016.7
http://dx.doi.org/10.1007/978-3-642-54804-8_27
http://dx.doi.org/10.1007/978-3-642-21455-4_9
http://dx.doi.org/10.1007/978-3-642-21455-4_9
http://ceres.hh.se/mediawiki/CirqBuff_and_MBox_QuickCheck_Models

196 Modelling of Autosar Libraries for Large Scale Testing

initial_state() -> #cb_state{ elements=[] }.

invariant(S) -> length(S#cb_state.elements) =< S#cb_state.size.

postcondition_common(_S, {call, _, create, _, _ }, _Res) -> true;
postcondition_common(S, Call, Res) -> eq(Res, return_value(S, Call)).

create(Size, DataSize) -> cb:’CirqBuffDynCreate’(Size, DataSize).
create_args(_S) -> [nat(), nat()].
create_pre(S, [Size, _DataSize]) -> S#cb_state.ptr == undefined andalso Size > 0.
create_next(S, R, [Size, DataSize]) ->

S#cb_state{ptr=R, size=Size, data_size = DataSize }.
create_callers() -> [qc_mbox].
create_return(_S, [Size, DataSize]) ->

#’CirqBufferType’ { maxCnt = Size, currCnt = 0, dataSize = DataSize,
head = ’NULL’, tail = ’NULL’, bufStart = ’NULL’, bufEnd = ’NULL’ }.

push(Ptr, Val) -> DataPtr = eqc_c:create_array(unsigned_char, Val),
CallRes = cb:’CirqBuffPush’(Ptr, DataPtr), eqc_c:free(DataPtr), CallRes.

push_args(S) -> [S#cb_state.ptr, vector(S#cb_state.data_size, char())].
push_pre(S) ->
S#cb_state.ptr /= undefined andalso length(S#cb_state.elements) < S#cb_state.size.

push_next(S, _R, [_Ptr, Value]) ->
S#cb_state{elements = S#cb_state.elements ++ [Value]}.

push_return(S, _Args) -> % 0.
if length(S#cb_state.elements) < 128 -> 0; true -> 1 end.

push_callers() -> [qc_mbox].

pop(Ptr, DataSize) ->
DataPtr = eqc_c:create_array(unsigned_char, [0 || _E <- lists:seq(1, DataSize)]),
CallRes = cb:’CirqBuffPop’(Ptr, DataPtr),
DataRes = eqc_c:read_array(DataPtr, DataSize),
eqc_c:free(DataPtr), {DataRes, CallRes}.

pop_args(S) -> [S#cb_state.ptr, S#cb_state.data_size].
pop_pre(S) ->

S#cb_state.ptr /= undefined andalso length(S#cb_state.elements) > 0.
pop_next(S, _R, _Args) -> S#cb_state{elements = tl(S#cb_state.elements)}.
pop_return(S, _Args) -> {hd(S#cb_state.elements), 0}.
pop_callers() -> [qc_mbox].

prop_cb_length() -> ?SETUP(fun() -> qc_cb_setup:setup(), fun() -> ok end end,
?FORALL(Cmds, commands(?MODULE),
begin {H, S, Res} = run_commands(Cmds),

aggregate(command_names(Cmds),
measure(num_commands,
commands_length(Cmds),
pretty_commands(?MODULE, Cmds, {H, S, Res}, Res == ok))) end)).

prop_cb() -> ?SETUP(fun() -> qc_cb_setup:setup(), fun() -> ok end end,
?FORALL(Cmds, commands(?MODULE),
begin {_, _, Res} = run_commands(Cmds), Res == ok end)).

W. Mostowski, T. Arts, J. Hughes 197

A.5 File qc_mbox.hrl

-record(mbox_state, {ptr, size, elements, cb_state}).

A.6 File qc_mbox_capi.erl

-include_lib("source_path.hrl").

api_spec() -> #api_spec {
language = c, mocking = eqc_mocking_c,
modules = [#api_module{ name = mbox, functions = [

#api_fun_c{ name = ’CirqBuffDynCreate’, ret = ’CirqBufferType␣*’,
args = [#api_arg_c{type = size_t, name = size, dir = in},

#api_arg_c{type = size_t, name = dataSize, dir = in}],
classify = {qc_cb, create} },

#api_fun_c{ name = ’CirqBuffPush’, ret = int,
args = [#api_arg_c{type = ’CirqBufferType␣*’, name = cPtr, dir = in},

#api_arg_c{ type = ’void␣*’, name = dataPtr, dir = in,
stored_type = ’unsigned␣char␣*’,
buffer = {true, "cPtr->dataSize"}}],

classify = {qc_cb, push} },
#api_fun_c{ name = ’CirqBuffPop’, ret = int,

args = [#api_arg_c{type = ’CirqBufferType␣*’, name = cPtr, dir = in},
#api_arg_c{ type = ’void␣*’, name = dataPtr, dir = out,
stored_type = ’unsigned␣char␣*’,
buffer = {true, "cPtr->dataSize"}}],

classify = {qc_cb, pop} }]}]}.

start_mocking() -> eqc_mocking_c:start_mocking(mbox, ?MODULE:api_spec(),
["Std_Types.h", "cirq_buffer.h", "mbox.h"],
[?AUTOSAR_SRC ++ "/src/mbox.c"],
[{cppflags, "-std=c99␣-I␣.␣-I␣" ++ ?AUTOSAR_SRC ++ "/include"}]).

A.7 File qc_mbox_setup.erl

-module(qc_mbox_setup).

-compile(export_all).

-include_lib("eqc/include/eqc_c.hrl").
-include_lib("eqc/include/eqc_mocking.hrl").

-include("qc_mbox_capi.erl").

A.8 File qc_mbox.erl

-module(qc_mbox).

-compile(export_all).
-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_component.hrl").

198 Modelling of Autosar Libraries for Large Scale Testing

-include_lib("qc_mbox.hrl").
-include_lib("qc_cb.hrl").

-include("mbox.hrl"). % Auto-generated
-include("qc_mbox_capi.erl").

-define(PTR_SIZE, 8). % Change resp. for test running platform (here 64 bit arch.)

initial_state() -> #mbox_state{ elements=[] }.

invariant(S) -> length(S#mbox_state.elements) =< S#mbox_state.size.

postcondition_common(_S, {call, _, create, _, _ }, _R) -> true;
postcondition_common(S, Call, Res) -> eq(Res, return_value(S, Call)).

create(Size) -> mbox:’Arc_MBoxCreate’(Size).
create_args(_S) -> [choose(1, 256)].
create_pre(S, [Size]) -> S#mbox_state.ptr == undefined andalso Size > 0.
create_next(S, R, [Size]) -> S#mbox_state{ptr=R, size=Size }.
create_callouts(_S, [Size]) ->
?CALLOUT(mbox, ’CirqBuffDynCreate’, [Size, ?PTR_SIZE],
#’CirqBufferType’ { maxCnt = Size, currCnt = 0,
dataSize = 8, head = ’NULL’, tail = ’NULL’,
bufStart = ’NULL’, bufEnd = ’NULL’}).

post(Ptr, Val) ->
DataPtr = eqc_c:create_array(unsigned_char, Val),
CallRes = mbox:’Arc_MBoxPost’(Ptr, DataPtr),
eqc_c:free(DataPtr), CallRes.

post_args(S) -> [S#mbox_state.ptr, vector(?PTR_SIZE, char())].
post_pre(S) -> S#mbox_state.ptr /= undefined

andalso length(S#mbox_state.elements) < S#mbox_state.size.
post_next(S, _R, [_Ptr, Value]) ->
S#mbox_state{elements = S#mbox_state.elements ++ [Value]}.

post_return(_S, _Args) -> 0.
post_callouts(S, [_Ptr, Value]) ->
?CALLOUT(mbox, ’CirqBuffPush’, [?WILDCARD, Value],
if length(S#mbox_state.elements) < 128 -> 0; true -> 1 end).

fetch(Ptr) ->
DataPtr = eqc_c:create_array(unsigned_char, [0 || _E <- lists:seq(1, ?PTR_SIZE)]),
CallRes = mbox:’Arc_MBoxFetch’(Ptr, DataPtr),
DataRes = eqc_c:read_array(DataPtr, ?PTR_SIZE),
eqc_c:free(DataPtr), {DataRes, CallRes}.

fetch_args(S) -> [S#mbox_state.ptr].
fetch_pre(S) ->

S#mbox_state.ptr /= undefined andalso length(S#mbox_state.elements) > 0.
fetch_next(S, _R, [_Ptr]) -> S#mbox_state{elements = tl(S#mbox_state.elements)}.
fetch_return(S, [_Ptr]) -> {hd(S#mbox_state.elements), 0}.
fetch_callouts(S, [_Ptr]) ->

?CALLOUT(mbox, ’CirqBuffPop’, [?WILDCARD], { hd(S#mbox_state.elements), 0}).

W. Mostowski, T. Arts, J. Hughes 199

weight(#mbox_state{ptr = undefined}, Op) -> case Op of create -> 1; _ -> 0 end;
weight(_S, create) -> 0; weight(_S, post) -> 5; weight(_S, fetch) -> 1.

prop_mbox() ->
?SETUP(fun() -> qc_mbox:start_mocking(), fun() -> ok end end,
?FORALL(Cmds, more_commands(50, commands(?MODULE)),
begin {H, S, Res} = run_commands(Cmds),

aggregate(command_names(Cmds),
pretty_commands(?MODULE, Cmds, {H, S, Res}, Res == ok)) end)).

A.9 File qc_cluster.erl

-module(qc_cluster).

-compile(export_all).
-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_cluster.hrl").
-include_lib("source_path.hrl").

components() -> [qc_cb, qc_mbox].

api_spec() -> eqc_cluster:api_spec(?MODULE).

setup_mocking() ->
eqc_mocking_c:start_mocking(mbox, api_spec(),

["cirq_buffer.h", "mbox.h"],
[?AUTOSAR_SRC ++ "/src/mbox.c", ?AUTOSAR_SRC ++ "/src/cirq_buffer.c"],
[{cppflags, "-std=c99␣-I␣" ++ ?AUTOSAR_SRC ++ "/include"}],
components()).

property_mbox_cluster() ->
?SETUP(fun() -> setup_mocking(), fun() -> ok end end,
?FORALL(Cmds, commands(?MODULE),

begin {H, S, Res} = run_commands(Cmds),
aggregate(command_names(Cmds),
pretty_commands(?MODULE, Cmds, {H, S, Res}, Res == ok)) end)).

	1 Introduction
	2 The Case Study
	3 Specifying and Testing the Implementations with QuickCheck
	3.1 The CirqBuff Model
	3.2 Testing CirqBuff with QuickCheck
	3.3 The MBox Model
	3.4 Analysing Models and API Interactions through Clustering

	4 Faults, Deviations, and Consequence Testing
	5 Conclusions
	A The Complete CirqBuff and MBox QuickCheck Model in Erlang
	A.1 File source_path.hrl
	A.2 File qc_cb.hrl
	A.3 File qc_cb_setup.erl
	A.4 File qc_cb.erl
	A.5 File qc_mbox.hrl
	A.6 File qc_mbox_capi.erl
	A.7 File qc_mbox_setup.erl
	A.8 File qc_mbox.erl
	A.9 File qc_cluster.erl

