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Typing and Characterization of Bacteria Using
Bottom-up Tandem Mass Spectrometry
Proteomics*□S

Fredrik Boulund‡§, Roger Karlsson§¶�, Lucia Gonzales-Siles§**, Anna Johnning‡§,
Nahid Karami§**, Omar AL-Bayati�, Christina Åhrén§**, Edward R. B. Moore§�**‡‡,
and Erik Kristiansson‡§ §§

Methods for rapid and reliable microbial identification are
essential in modern healthcare. The ability to detect and
correctly identify pathogenic species and their resistance
phenotype is necessary for accurate diagnosis and effi-
cient treatment of infectious diseases. Bottom-up tandem
mass spectrometry (MS) proteomics enables rapid char-
acterization of large parts of the expressed genes of mi-
croorganisms. However, the generated data are highly
fragmented, making downstream analyses complex. Here
we present TCUP, a new computational method for typing
and characterizing bacteria using proteomics data from
bottom-up tandem MS. TCUP compares the generated
protein sequence data to reference databases and auto-
matically finds peptides suitable for characterization of
taxonomic composition and identification of expressed
antimicrobial resistance genes. TCUP was evaluated us-
ing several clinically relevant bacterial species (Esche-
richia coli, Pseudomonas aeruginosa, Staphylococcus au-
reus, Streptococcus pneumoniae, Moraxella catarrhalis,
and Haemophilus influenzae), using both simulated data
generated by in silico peptide digestion and experimental
proteomics data generated by liquid chromatography-
tandem mass spectrometry (MS/MS). The results showed
that TCUP performs correct peptide classifications at
rates between 90.3 and 98.5% at the species level. The
method was also able to estimate the relative abundances

of individual species in mixed cultures. Furthermore,
TCUP could identify expressed �-lactamases in an ex-
tended spectrum �-lactamase-producing (ESBL) E. coli
strain, even when the strain was cultivated in the absence
of antibiotics. Finally, TCUP is computationally efficient,
easy to integrate in existing bioinformatics workflows,
and freely available under an open source license for both
Windows and Linux environments. Molecular & Cellular
Proteomics 16: 10.1074/mcp.M116.061721, 1052–1063,
2017.

Accurate and rapid typing and characterization of infectious
bacteria are of great importance in modern healthcare and
essential for correct diagnoses and effective treatments of
patients. Particularly, with the rapid circulation of virulent
strains of bacteria expressing multiresistance to antibiotics,
timely and effective detection and identification are increas-
ingly paramount for responding to infectious diseases. An
extensive variety of methods to identify the bacterial content
in clinical samples has been developed (1, 2). These methods
range from traditional cultivation-based methods, profiling of
resulting isolates into phenotypes, to more recently devel-
oped molecularly based techniques, including polymerase
chain reaction (PCR) assays and DNA sequencing for detec-
tion of biomarker genes and for classification of genotypes
and genetic lineages. Despite being well established, many of
the existing methods for microbial characterization have sig-
nificant drawbacks: cultivation-based methods are labor-in-
tensive and inherently slow (2), and DNA-based methods, i.e.
PCR-profiling and gene sequencing, are typically limited to
applications targeting known features of bacteria. The last
decade has seen rapid developments in next-generation se-
quencing (NGS)1 technologies, which have enabled routine
screening of bacteria by whole-genome sequence (WGS) de-
terminations at decreasing costs (3). Microbial genome se-
quencing offers comprehensive analyses of pathogens with
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high throughput and is becoming an important tool for real-
time diagnostics of bacterial infections (4). However, WGS
does not provide any information about gene expression and
is thus limited to the information present in the genotype. In
contrast, the recent developments and improvements in the
performance of tandem MS instrumentation enables charac-
terization of significant parts of the expressed proteomes of
bacteria. In relation to MALDI-TOF, which has recently been
established as a versatile molecular diagnostics tool for infec-
tious diseases (5, 6), MS/MS-based techniques provide infor-
mation of the gene expression at the amino acid level of
resolution. This enables fast and sensitive detection of both
taxonomic delineators and expressed genotypic features,
such as proteins associated with antibiotic resistance and
virulence (7–9); thus, tandem MS has the potential to further
improve the diagnostic analysis of bacterial infections.

Bottom-up (i.e. proteolytically generated peptide se-
quence-based) tandem MS identifies the sequences of pep-
tides from digested proteins by measuring the mass-to-
charge ratios of the molecular ions, followed by fragmentation
of the peptides and matching of the fragment spectra to a
database (10). However, the generated data are highly frag-
mented and noisy, which makes the downstream data anal-
ysis challenging, requiring dedicated methods for proper in-
terpretation. Dworzanski et al. (11) developed a method,
based on the matching of peptides against a reference data-
base, that detects and identifies bacterial species (11–13).
This method was later further developed into BACid (14, 15),
which was shown to have correct peptide classification rates
up to 89% (14, 15). Another approach, developed by Tracz et
al. (16), instead uses the total number of matching spectra to
identify the species present in a sample. This approach can
be used also to estimate the relative abundance of species in
mixed cultures. Furthermore, Pipasic (17) was developed spe-
cifically for analyzing proteomes from microbial communities.
Pipasic uses peptide similarity estimation and expression
level weighting to estimate the relative abundances of species
in a sample. However, these existing methods are either 1)
limited to pure cultures and not directly applicable to mixed
populations that commonly occur in clinical applications, 2)
require manual analysis steps, which are difficult to automate
in computational workflows, or 3) are computationally ineffi-
cient and not applicable to the rapidly growing number of
reference proteomes. Furthermore, none of these methods
have the ability to combine the determination of taxonomic
composition with the characterization of expressed antibiotic
resistance markers or other genes of interest.

To address the lack of a suitable bioinformatics methodol-
ogy, we developed TCUP, a new computational method for
determining bacterial taxonomic compositions and detecting
expressed antibiotic resistance proteins using bottom-up tan-
dem MS data. TCUP operates by comparing the generated
peptides to comprehensive reference databases, automati-
cally identifying peptides that can be used for accurate dis-

crimination between organisms and their expressed antimi-
crobial resistance genes. Evaluation of the method on
simulated and experimental data from multiple clinically rele-
vant bacteria shows highly correct classification rates for all
tested microorganisms. The method is also computationally
efficient making it well suited for integration into existing
bioinformatics proteomics workflows. TCUP is freely available
and open-source and runs on both Windows and Linux
systems.

MATERIALS AND METHODS

Implementation—The input to TCUP is a set of peptides predicted
from spectra generated by bottom-up tandem MS specified as a file
in FASTA format. TCUP is general and can be used with peptide data
from any spectral matching software, including de novo methods (e.g.
SEQUEST (18), X!Tandem (19, 20), TIDE (21), Mascot (22), PEAKS
(23), PepNovo (24), and Lutefisk (25)). The output from TCUP is in
Excel format and includes the following: 1) the relative abundances of
all organisms identified in a sample at and below a user-specified
taxonomic level; 2) specific genes in the reference genomes that are
matched by peptides in the analysis; and 3) the relative abundances
of identified antimicrobial resistance genes. TCUP is implemented
in Python 3.5, and the code and usage documentation are freely
available under the ISC license from the project’s repository (https://
bitbucket.org/chalmersmathbioinformatics/tcup).

The taxonomic composition of a sample is estimated as follows.
The tandem MS-determined peptides are first aligned to a compre-
hensive high-quality reference database containing bacterial genome
sequences. The comparison is done by aligning the peptides to the
complete genomes translated into all six reading frames. Alignment of
peptides to reference genome sequences is done using BLAT (26) in
protein-to-DNA mode (command line arguments: “-out � blast8 -t �
dnax -q � prot -tileSize � 5 -stepSize � 5 -minScore � 10 -minIden-
tity � 90”). Because BLAT is not available for the Windows platform,
BLAST is used when running on Windows (running tblastn with com-
mand line arguments: “outfmt 6”). The reference database was as-
sembled from NCBI RefSeq (27, 28) bacterial genomes (2785 ge-
nomes; downloaded Nov. 17, 2015). To remove sequences that move
horizontally between organisms (i.e. mobile genetic elements), poten-
tially appearing in multiple distantly related genomes, sequences
shorter than 400,000 nucleotides or sequences annotated with any of
the keywords “plasmid,” “phage,” “extrachromosomal,” “incision el-
ement,” or “transposon” were excluded. Sequences belonging to
Shigella species were also excluded due to their similarity and sys-
tematic uncertainty to Escherichia coli (29). See supplemental file 1,
reference genome database, for a complete listing of the sequences
included in the database.

After alignment to the translated reference genome sequences,
each peptide is matched to zero, one, or multiple reference genomes.
To remove matches that are too dissimilar and unlikely to contain any
relevant information about the taxonomic affiliation, two filtering steps
were applied. The first step requires matches to have an identity of at
least 90% and a coverage of 100% (only complete peptide matches
are considered). Also, peptides shorter than six amino acids are
removed. In the second filtering step, all matches with sequence
identity of at least 5% below the best match for that peptide are
discarded.

After filtering, the remaining peptides are assigned to nodes in a
taxonomic tree, using the lowest common ancestor algorithm (30).
The taxonomic affiliation of a sample is then assigned based on the
set of discriminative peptides, i.e. the peptides with an lowest com-
mon ancestor at a node that is at or below the user-specified taxo-
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nomic level. The taxonomic tree used in TCUP is based on the full
NCBI Taxonomy (31) (taxdump downloaded Nov. 17, 2015), in which
each reference genome is associated with a unique node. Our imple-
mentation extends the SQLite3 database used in the ETE3 package
(32) with a table of taxonomic affiliations for all reference genome
sequences included in the reference database. TCUP also has sup-
port for “blacklisting” reference sequences, disregarding them in the
analysis without having to remove them from the database.

The number of discriminative peptides varies between organisms
depending on the evolutionary distance to their closest relative. To
provide more accurate estimates for samples containing multiple
species, TCUP can adjust and normalize the results by dividing the
estimated relative abundances with factors reflecting the expected
proportion of discriminative fragments for the specific organisms and
taxonomic level. These correction factors can be estimated in silico or
from single species culture, and are provided to TCUP through a
user-specified tab-separated text file. For the analyses in this paper,
the normalization factors were computed at the species level in
samples from pure cultures.

The antibiotic resistance gene content in a sample is estimated
similarly to how the taxonomic composition is determined. In the first
step, peptides are aligned to a database of reference antibiotic re-
sistance gene sequences using BLAT or BLAST, depending on the
operating system. BLAT is run with the following command line pa-
rameters: “-q � prot -t � prot -minIdentity � 90 -out � blast8.”
BLAST is run with the following command line parameters: “-outfmt
6.” TCUP uses the freely available ResFinder database (33) as a
source of antibiotic resistance gene sequences, which contains 2129
proteins in total (downloaded Jan. 3, 2016). The database was man-
ually extended by adding antibiotic family assignments to all the
included genes and then assembled into an SQLite3 database.
Matches for each peptide are subject to the same two-step filtering
method as described previously for taxonomic composition esti-
mation. The first step required matches to have an identity thresh-
old of at least 90% and a coverage of 100% (only complete peptide
matches are considered). Also, peptides shorter than six amino
acids are removed. The second filtering step discards all matches
with lower percentage identities than the best match. For antibiotic
resistance genes, discriminative peptides are defined as those
peptides that match only a single antibiotic resistance gene family.

Generation of in Silico Digested Peptides—The performance of
the computational method for prototyping was first evaluated on
peptides generated by in silico digestion. The reference proteomes
of four species of bacteria were downloaded from UniProt (34) as fol-
lows: E. coli (O138:H28/CCUG 49263); Pseudomonas aeruginosa
(ATCC15692/CCUG 29297); Staphylococcus aureus (6850/CCUG
41582); and Streptococcus pneumoniae (R6). The proteomes were
digested in silico using the EMBOSS tool digest (35), simulating
trypsin cleavage, using command line arguments “-menu 1 -mono N
-rformat2 srs.” From each digested proteome, six samples consisting
of 10,000 randomly selected peptides were created. To mimic the
sizes of peptide sequences observed in experimental MS data, only
peptides from 6 to 45 amino acids long were considered. These

peptide length thresholds were based on empirical observations of
the typical lengths of peptides in a large number of datasets derived
from bottom-up tandem MS. To estimate the robustness of the com-
putational method under random sequencing errors, amino acid po-
sitions in peptides were substituted at six different rates (1–3, 5, and
10%) according to the probabilities specified by the PAM30 matrix
supplied with NCBI BLAST (36). The true positive rate (TPR) was
calculated as the ratio of correctly assigned discriminative peptides to
the total number of discriminative peptides.

The effects of missing or incorrect genomes (i.e. either inaccuracies
in genome sequence or incorrectly placed in the taxonomy) in the
reference database on the computational method were evaluated by
a leave-one-out simulation study, using the 62 E. coli genomes pres-
ent in the NCBI RefSeq bacterial database (downloaded Oct. 2, 2015)
(28, 37). One genome at a time was selected, and the corresponding
proteome was digested in silico and randomly sampled as described
above. The reduction in TPR was estimated based on the difference
between 1) the TPR with the selected genome included in the refer-
ence database, and 2) the TPR with the selected genome excluded in
the reference database.

Cultivation of Bacteria—The performance of the computational
method was further evaluated using experimental shotgun LC-
MS/MS proteomics data in different experiments. These included four
single-species experiments with two Gram-negative and two Gram-
positive bacteria: E. coli (K12/CCUG 49263); P. aeruginosa (PA01/
CCUG 29297); S. aureus (NCTC_8325/CCUG 41582); and S. pneu-
moniae (CCUG 28588T). First, a mixture of the same four species
were combined at ratios of 1:1:1:1, 4:2:2:1, and 1:2:2:4, respectively.
Another experiment, simulating a respiratory tract sample with multi-
ple species in a co-infection situation, consisted of mixtures of
S. pneumoniae (CCUG 25588T), Haemophilus influenzae (CCUG
23945T), Moraxella catarrhalis (CCUG 353T), and S. aureus (NCTC_
8325/CCUG 41582) at ratios of 1:1:1:1, 4:2:2:1, and 1:2:2:4, respec-
tively. Finally, an experiment with an ESBL-positive E. coli (CCUG
62462) strain with and without antibiotic pressure was also evaluated.
All experiments were replicated three times.

Bacterial strains were grown on Blood Agar medium. S. pneu-
moniae and M. catarrhalis were grown at 36 °C with 5% CO2 over-
night, S. aureus at 37 °C overnight, and P. aeruginosa and E. coli at
30 °C overnight. H. influenzae was grown on chocolate agar medium
at the same conditions as S. pneumoniae and M. catarrhalis. Bacterial
biomass was collected and resuspended in phosphate-buffered sa-
line (PBS). Bacterial densities were measured at A600 (A600 0.8' 1 �
109 bacteria). For each experiment, the same amounts of bacterial
biomass were established, by adjusting the A to 1.0 in 1.0 ml of PBS.
The bacterial biomass was washed with PBS three times by centri-
fuging the sample for 5 min at 12,000 � g, discarding the supernatant,
and resuspending the pellet in 1.0 ml of PBS. The bacteria were finally
resuspended in 150 �l of PBS. The bacterial cell suspensions were
transferred to 200-�l vials containing glass beads (Sigma-Aldrich,
G1145). The bacterial cells were lysed by bead-beating, using a
TissueLyser (Qiagen, 85220), with the following settings: frequency

TABLE I
TCUP classification accuracy averages on cultures of four bacterial species (numbers are averages from three technical replicates)

E. coli P. aeruginosa S. aureus S. pneumoniae

No. of peptides 4132 3964 3707 5043
Proportion of discriminative peptides (%) 11.13 44.51 22.48 11.05
Proportion of peptides discriminative to the

correct species (%)
10.00 43.85 21.98 9.99

True positive rate (%) 90.3 98.5 97.5 90.3
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1/25 s and 5 min. The bacterial lysates were frozen at �20 °C until
analysis.

The ESBL-positive E. coli strain (CCUG 62462) encodes the �-lac-
tamase CTX-M-15 and was isolated from a urine sample of an in-
fected 2-year-old boy during an outbreak (previously described by
Karami et al. (38) and Johnning et al. (56)). This strain together with the
E. coli K12/CCUG 49263 strain (control) were cultured on Blood Agar
medium, repeated twice from �70 °C freezer strain stocks, to obtain
fresh bacterial cultures. A 0.5 McFarland bacterial suspension (cor-
responding to 1 � 108 CFU/ml) was prepared with PBS for both
isolates and diluted with PBS 1:20 again to yield 5 � 106 CFU/ml. The
final test concentration of bacteria was obtained by diluting 1:10 with
Mueller-Hinton broth to yield 5 � 105 CFU/ml in a total volume of 5 ml,
in a glass tube, and thereafter incubated at 37 °C for 16–20 h with
shaking at 200 rpm. One milliliter of bacterial growth was centrifuged
for 5 min at 12,000 � g, discarding the supernatant and washing the
pellet three times with 1 ml of PBS. The bacteria were finally resus-
pended in 150 �l of PBS and transferred to 200-�l vials containing
Sigma-Aldrich G1145 glass beads for LC MS/MS analysis. Two sep-
arate cultures of E. coli strain CCUG 62462 were prepared: one with
cefotaxime (concentration 1000 �g/ml) and one without. The control
sample of strain K12/CCUG 49263 was cultured without antibiotic.

Proteomics Analyses and Peptide Prediction—The bacterial ly-
sates were injected into the LPI Hexalane FlowCell (Nanoxis Con-
sulting AB, www.nanoxisconsulting.com; Patent Application No.
WO2006068619), using a pipette to add 70 �l to fill the FlowCell
channel. Bacterial proteins in cell lysates were immobilized to the
FlowCell membrane, with a 1-h incubation at room temperature, to
allow attachment. The FlowCell channels with bound proteins were
washed with 400 �l of ammonium bicarbonate, using a syringe pump
at a flow rate of 100 �l/min. Enzymatic digestions of the membrane-
bound bacterial proteins were performed by injecting 80 �l of trypsin
(2 �g/ml in 20 mM ammonium bicarbonate, pH �8) into the FlowCell
channels and incubating for 1 h at room temperature. The generated
peptides were eluted by injecting 200 �l of ammonium bicarbonate
buffer (20 mM, pH �8) into the FlowCell channels. The eluted peptides
were collected at the outlet ports, using a pipette, and transferred into
Axygen tubes (2.0 ml). The peptide solutions were incubated at room
temperature overnight and subsequently frozen at �20 °C until pend-
ing MS analyses. The peptides samples were not reduced or alkylated
prior to analysis.

For analysis of mixtures, an in-solution digestion protocol was used
to reduce the risk of binding efficiencies/kinetics biases to the LPI
FlowCell surfaces of the bead-beaten membrane fractions from
Gram-positive bacteria (Streptococcus and Staphylococcus) or
Gram-negative bacteria (e.g. Moraxella and Haemophilus). The in-
solution digestion was performed by adding trypsin to the suspension
(2 �g/ml in 20 mM ammonium bicarbonate, pH 8, 80 �l) and the
proteins were allowed to be digested for 1 h at 37 °C. The supernatant
was removed from the glass beads and centrifuged at 13,000 rpm
(18,000 � g) for 15 min to pellet biomass/debris. The pellet was
discarded, and supernatants containing peptides were kept frozen
until analysis.

For the detection of antibiotic resistance markers, an in-solution
digestion protocol was employed. The suspension was transferred to
200-�l vials containing Sigma-Aldrich G1145 glass beads, and the
bead beater used was a TissueLyser from Qiagen. Settings were as
follows: frequency 1/25 s and continuous shaking for a total time of 5
min. The bead-beaten samples were frozen until analysis. The sam-
ples were thawed, and the bead-beating procedure was repeated.
For the in-solution digestion, trypsin was added to the suspension (2
�g/ml in 20 mM ammonium bicarbonate, pH 8, 80 �l), and the proteins
were allowed to be digested for 7 h at 37 °C. The supernatant was
removed from the glass beads and centrifuged at 13,000 rpm

(18,000 � g) for 15 min to pellet biomass/debris. The pellet was
discarded, and supernatant containing peptides was kept frozen until
analysis.

The tryptic peptides were desalted on Pep Clean C18 spin columns
(Thermo Fisher Scientific, Inc., Waltham, MA), according to the ma-
nufacturer’s guidelines, dried, and reconstituted with 15 �l of 0.1%
formic acid (Sigma-Aldrich) in 3% gradient-grade acetonitrile (Merck
KGaA, Darmstadt, Germany). A 2.0-�l sample was injected, with an
Easy-nLC autosampler (Thermo Fisher Scientific), and analyzed, us-
ing an interfaced Q Exactive hybrid mass spectrometer (Thermo
Fisher Scientific). The peptides were trapped on a pre-column (45 �
0.075-mm inner diameter) and separated on a reversed-phase col-
umn, 200 � 0.075 mm, packed in-house with 3-�m Reprosil-Pur
C18-AQ particles (Dr. Maisch, Ammerbuch, Germany). The nanoLC
(liquid chromatography) gradient was running at 200 nl/min, starting
at 7% acetonitrile (ACN) in 0.2% formic acid, increased to 27% ACN
for 25 min, then increased to 40% ACN for 5 min, and finally to 80%
ACN for 5 min and held at 80% ACN for 10 min.

Electrospray ionization was applied under a voltage of 1.8 kV and
a capillary temperature of 320 °C in data-dependent positive ion
mode. Full scan (MS1) spectra were acquired in the Orbitrap over the
m/z range 400–1600, with a charge range of 2–6, at a resolution of
70,000, until reaching an AGC target value of 1e6 at a maximum of
250 ms. MS/MS spectra were acquired, using higher energy collision
dissociation, at 30% from m/z 110 for the 10 most abundant parent
ions, at a resolution of 35,000, using a precursor isolation window of
2 Da until reaching an AGC target value of 1e5 during an injection time
of 110 ms. Dynamic exclusion for 30 s after selection for MS/MS was
enabled to allow for detection of as many precursors as possible.

The LC-MS/MS output was converted from the proprietary Thermo
Xcalibur RAW format to the open source mzXML format (39), using
ReAdW (40) (version 201411.xcalibur), with command line arguments:
“–nocompress –gzip.” The X! Tandem spectrum search engine (ver-
sion VENGEANCE Dec. 15, 2015) (20, 41) was used to identify pep-
tides from the mass spectra with the following settings: fragment
monoisotopic mass error � 20; parent monoisotopic mass error
plus � 5; parent monoisotopic mass error minus � 5; fragment mass
type monoisotopic, dynamic range � 100.0; total peaks � 50; max-
imum parent charge � 4; minimum parent m�h � 800.0; minimum
fragment m/z � 100.0, minimum peaks � 15, potential modification
mass � 16.0@M, maximum valid expectation value � 1.0. In addition,
X! Tandem peptides were also filtered to only allow peptides with a
hyperscore of �30 in downstream analyses. The hyperscore filtering
resulted in a corresponding median E-value of 9.7 � 10�6 and a
median false-positive rate (FPR) of 0.00407 (43) across all samples.
E-values and FPRs for each individual sample are available in sup-
plemental file 2, E-value and FPR per sample. Values for all X!Tandem
settings are available in supplemental file 3, X! Tandem settings. The
reference database used in this step was a customized database
consisting of 56,967,781 non-redundant proteins from the NCBI
GenBankTM NR (44) and 6,320,906 peptide sequences from the ref-
erence genomes archived within the Human Microbiome Project
(45). All sequences containing unidentified peptides (“X”), as well as
duplicates of sequences shared between the two databases, were
removed. The resulting database used with X! Tandem contained a
total of 59,349,300 distinct protein sequences. A listing of all the
279,986 identified peptides across all samples, along with their ex-
pectation values, hyperscores, charge, mass values, and observed
modifications are provided in supplemental file 2, All identified pep-
tides, E-values, and FPR per sample (raw files, X!Tandem XML files,
and identified peptides in FASTA format also available via PRIDE,
accession no. PXD004321).

Genome Sequencing of ESBL-positive E. coli—Total DNA from
E. coli strain CCUG 62462 was extracted using a PureLink Genomic
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DNA mini kit (Invitrogen), and the DNA purity and concentration were
estimated by NanoDrop ND-1000 (Thermo Fisher Scientific), Qubit
2.0 fluorometer (Invitrogen), and agarose gel. The DNA was
sequenced on the Illumina MiSeq system, generating 250-bp
paired-end reads. Residual adapter sequences and low quality se-
quences were trimmed using Trim Galore! version 0.3.7 (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/), with command
line arguments: “–stringency 3 -retain_unpaired”). Remaining high
quality reads were assembled de novo with SPAdes version 3.7.0
(46), with command line arguments: “–careful -cov_cutoff 5.” The
resulting 5273-kb assembly consisted of 199 contigs with an N50
value of 328,690 bp and an L50 value of 7. The assembly was
annotated for mobile antibiotic resistance genes, using ResFinder (33)
with default parameters.

RESULTS

Overview of the Method—In this paper we present TCUP, a
computational method for typing and characterization of mi-
croorganisms using proteomics data generated by bottom-up
tandem MS. An overview of the TCUP workflow is presented
in Fig. 1, which starts with peptides derived from sets of MS
spectra and returns the taxonomic composition and the ex-
pressed antibiotic resistance genes present in the sample.
The taxonomic composition is provided in relative abun-
dances at each taxonomic level (down to strain level), and the
method handles single species samples as well as species
mixtures. Determination of taxonomic composition is based
on alignment of the peptides against a translated reference
genome sequence database, and the method identifies the

taxonomic level at which each peptide is discriminative (i.e. at
what taxonomic level each peptide can be used to provide
information on the taxonomic content of the sample). The
relative abundances of microorganisms are then estimated
based on the proportions of discriminative peptides from the
taxonomic entities in the sample. The detection of expressed
antibiotic resistance proteins is based on comparisons of
the peptides against a reference database of antibiotic resis-
tance genes. The abundances of the particular antibiotic re-
sistance genes expressed in the sample are then estimated
from those discriminatively matched peptides. TCUP is open
source and is freely available for both Windows and Linux
platforms (https://bitbucket.org/chalmersmathbioinformatics/
tcup). See under “Materials and Methods” for full details
about the implementation of TCUP.

Evaluation of Taxonomic Composition Estimation—The per-
formance of TCUP was first evaluated using simulated data
from the four bacterial species E. coli, P. aeruginosa, S. au-
reus, and S. pneumoniae. For each species, 10,000 peptides
were sampled from their in silico digested proteomes and
analyzed by TCUP. The number of peptides that were classi-
fied as discriminative at the species level and thus exhibited
unique taxonomic affiliations was highest for P. aeruginosa
(55.8%) followed by S. aureus (30.5%), E. coli (27.1%), and
S. pneumoniae (17.9%). The proportion of correctly assigned
discriminative peptides was high for all four species with
estimated true positive rates of 99.9, 99.8, 99.6, and 99.8%
for P. aeruginosa, S. aureus, E. coli, and S. pneumoniae, re-
spectively (Fig. 2). When substitutions were randomly intro-
duced into the peptides, the number of discriminative pep-
tides decreased (supplemental file 4, in silico results). The true
positive rates were also reduced, although the effect was
much smaller (Fig. 2). At the highest substitution rate of 10%,
the true positive rate decreased with 4.59 percentage points
(pp), 7.02, 9.08, and 9.43 pp for P. aeruginosa, S. aureus,
E. coli, and S. pneumoniae, respectively. These results show
that the assignment of discriminative fragments performed
by TCUP is robust and has high performance, even in noisy
data.

Furthermore, the robustness of the taxonomic assignments
to an incomplete reference database was evaluated by a
leave-one-out experiment using the 62 E. coli genomes avail-
able in NCBI RefSeq. When the E. coli strain from which the
simulated peptides were generated was excluded, the num-
ber of discriminative peptides decreased an average of 2.3 pp
(S.E. � 0.41 pp), and the true positive rates decreased an
average of 0.52 pp (S.E. � 0.10 pp). Only three of the 62
E. coli strains showed a decrease in true positive rates greater
than 2.0 pp (O127:H6 E2348/69, SMS-3–5, UMNK88, with
decreases of 4.5, 2.3, and 2.2 pp, respectively) (supplemental
file 5, results from leave-one-out evaluation).

Next, TCUP was evaluated using data from bacterial cul-
tures generated by bottom-up tandem MS (Table 1). The
average proportions of discriminative peptides were lower

FIG. 1. TCUP overview. Left track, taxonomic composition estima-
tion. Peptides are aligned to reference genome sequences. The low-
est common ancestor algorithm is used to find discriminative pep-
tides that uniquely identify organisms in the sample. Right track,
antibiotic resistance (AR) protein detection. Peptides are aligned to a
database of reference antibiotic resistance gene sequences. The
method outputs the estimated relative abundances of all taxonomic
entities detected in the sample and a list of detected expressed
antibiotic resistance proteins.
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than for the in silico generated data, 11.13, 44.51, 22.48, and
11.04% for E. coli, P. aeruginosa, S. aureus, and S. pneu-
moniae, respectively. All of the four different species were
correctly identified with high correct peptide classification
rates 90.30, 98.52, 97.58, and 90.30%, respectively (Fig. 3).
The results were highly reproducible between technical repli-
cates, with S.E. �1.1% for all species. If only species de-
tected in the sample with at least five discriminative fragments
were considered, the correct classification rates increased to
99.43, 100.00, 100.00, and 94.77%. When mixed species
samples containing an equal ratio of S. pneumoniae, E. coli,
P. aeruginosa, and S. aureus were analyzed, TCUP estimated
the average normalized relative abundances (see “Materials
and Methods”) to 31.56, 23.62, 22.52, and 22.30%, respec-
tively (Fig. 4A). For mixed samples with an equal ratio of
H. influenzae, M. catarrhalis, S. aureus, and S. pneumoniae,
the average relative abundances were estimated to be 32.63,
25.40, 20.00, and 21.93%, respectively (Fig. 4B). Samples
containing S. pneumoniae, P. aeruginosa, E. coli, and S. au-
reus in 4:2:2:1 ratios were estimated to average relative abun-
dances of 45.75, 26.34, 17.93, and 9.96%, respectively (Fig.
4C). Samples containing S. aureus, H. influenzae, M. ca-
tarrhalis, and S. pneumoniae in 4:2:2:1 ratios were estimated
to average relative abundances of 36.11, 31.94, 23,58, and
8.35%, respectively (Fig. 4D). All results exhibited low varia-
bility, with S.E. �1.38% for all species across all mixtures
(more detailed figures available in supplemental file 6, mixed-
species samples). Expected proportions for equal ratio mixes
were 25% per species and 44, 22, 22, and 11% for 4:2:2:1
ratio mixes.

The impact in the performance of TCUP when using the
large comprehensive X!Tandem database compared with a
small database containing only the proteome of the target
species was evaluated based on three samples of E. coli
cultures (details are available in supplemental file 7, large
versus small protein database). The comparison showed that
the TPR was slightly higher for the targeted database (100%)
compared with the comprehensive database (98.21%). There
is thus a small advantage of using a targeted database, but
this requires knowledge about the sample contents. Using a
comprehensive database, however, results in a minor impact
on the true positive rate but enables identification of a wide
range of clinically relevant species without any prior informa-
tion of the sample contents.

Evaluation of Antibiotic Resistance Detection—TCUP was
evaluated on data generated from pure cultures of the CTX-
M-15-positive E. coli strain CCUG 62462, cultured with and
without cefotaxime (a third generation cephalosporin). TCUP
correctly identified the isolate as E. coli (an average 86.78% of
the discriminative peptides matched to E. coli at the species
level when grown without cefotaxime). Furthermore, the ex-
pression of CTX-M was detected and identified under both
conditions, with a mean relative abundance of 0.322% (S.E. �

1.39 � 10�3%; average 62.33 peptides detected) when
grown with cefotaxime, and 0.0521% (S.E. � 1.42 � 10�2%;
average 14.66 peptides detected) on standard media (Fig. 5).
Among the seven resistance genes identified by WGS (“Ma-
terials and Methods” and supplemental file 8, antibiotic resist-
ance profile analysis of E. coli strain CCUG 62462), TCUP
identified the expression of three antibiotic resistance factors

FIG. 2. True positive rates for E. coli, P. aeruginosa, S. aureus, and S. pneumoniae at mutation rate of 0–3, 5, and 10%. The decrease
in true positive rates is most prominent for E. coli and S. pneumoniae, whereas the performance is more robust for P. aeruginosa and S. aureus.
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in addition to CTX-M: the �-lactamase blaTEM-1, the aminogly-
coside acetyltransferase aac(3)-II (detected in five of six sam-
ples), and the macrolide phosphorylase mph(A). All of these
genes were detectable in the cultures grown from both selec-
tive and standard media. The method did not detect any
peptides from the remaining three resistance genes (dfrA17,
sul1, and aac-(3”)-la). The negative control, E. coli strain K12/
CCUG 49263, was grown under identical conditions but
did not result in any matches to antibiotic resistance genes
(Fig. 5).

DISCUSSION

Here we present TCUP, a new computational method for
bacterial typing and characterization using proteomics, capa-
ble of estimating taxonomic composition and detecting anti-
biotic resistance proteins in bacterial samples. The method
has been optimized for the fragmented data produced by
shotgun proteomics techniques, in particular, bottom-up tan-
dem MS. TCUP can automatically find peptides that uniquely
identify organisms in samples, making the method capable of
analyzing data generated from single-species cultures and
mixed-species samples, without any prior information about
their contents. The performance of TCUP was investigated
using in silico digested proteomes from four microbial spe-

cies, two Gram-negative (E. coli and P. aeruginosa) and two
Gram-positive bacteria (S. aureus and S. pneumoniae). These
results showed that the proportion of peptides that provide
discrimination at the species level varied between species
from 18% for S. pneumoniae to 55% for P. aeruginosa. Thus,
the information present in the peptide sequence data differs
between species and is dependent on the variability of their
genomes and proteomes and the similarities to their closest
relatives. In particular, S. pneumoniae (pneumococcus) is
known to be difficult to distinguish based on known pheno-
typic and genotypic features due to the close phylogenetic
relationships with related species, e.g. Streptococcus mitis
and Streptococcus pseudopneumoniae (47). In contrast,
P. aeruginosa has a more variable genome and fewer
closely related species present in the reference database
(48, 49). However, the proportion of discriminative peptides
that were correctly classified was high, with true positive
rates above 99% for all species. The true positive rates
remained high both when mutations were introduced into
the peptide fragments and when the genome of the correct
strain was excluded from the reference data base. Taken
together, the in silico analysis demonstrates that the
method has high potential for correct and robust species

FIG. 3. Bar plot showing the mean true positive rates and standard errors for pure cultures of E. coli, P. aeruginosa, S. aureus, and
S. pneumoniae. E. coli and S. pneumoniae display lower true positive rates than P. aeruginosa and S. aureus, likely caused by the large
number of closely related sequences in the reference database.
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identification using peptides generated by bottom-up tan-
dem MS.

Evaluation of TCUP on peptides from experimental data
generated from bacterial cultures showed high proportions of
discriminative peptides and true positive rates between 90.3
and 98.5% for the investigated species. These values were
further improved to between 94.7 and 100.0% when spurious
species detected with less than five discriminative peptides
were removed from the analysis. However, the use of such
low abundance filters is reasonable only when the peptide
sampling depth is high, or it is known beforehand that the
sample contains a high abundance of peptides from a limited
number of separate species, and thus is not suitable for
uncultured clinical samples. TCUP was also able to identify
and estimate the relative abundance of individual species in
mixed samples. Furthermore, we noticed that the true positive
rates from the experimental data were slightly lower than in
silico generated data (average reduction in TPR between 1.41
and 9.53 pp). These discrepancies are likely caused by the

many sources of noise affecting the experimental data, intro-
duced by cell cultivation, sample preparation and digestion,
the MS analysis, and the matching of spectrum-peptide
matching process. Parts of the noise are potentially species-
specific and may affect the number of discriminative peptides
detected and the true positive rate negatively. The experimen-
tal data are also dependent on gene expression, e.g. the
sampling occasion, and highly expressed genes, which will be
represented with a larger number of peptides, are known to
exhibit lower mutation rates (50, 51). This will likely result in
lower ratios of discriminative peptides and thus lower rates of
correct classifications. Nevertheless, the evaluation using ex-
perimental data showed that TCUP has an overall high per-
formance to accurately identify organisms in single-species
cultures and mixed-species samples.

The ability to detect highly expressed antibiotic resistance
proteins was evaluated using a clinical E. coli strain known to
encode the ESBL enzyme CTX-M-15 gene. Here, TCUP was
able to correctly identify peptides from this gene even when

FIG. 4. Abundance estimations and standard errors for mixed samples containing S. pneumoniae, E. coli, P. aeruginosa, and S. aureus in
1:1:1:1 ratio (A); H. influenzae, M. catarrhalis, S. pneumoniae, and S. aureus in 1:1:1:1 ratio (B); S. pneumoniae, P. aeruginosa, E. coli, and
S. aureus in 4:2:2:1 ratio (C); and S. pneumoniae, H. influenzae, M. catarrhalis, and S. aureus in 4:2:2:1 ratio (D). The number of discriminative
peptides for each species has been adjusted by the expected proportion of discriminative peptides estimated from pure culture samples, and
then each sample has been normalized by the total number of discriminative peptides in the sample. The horizontal red lines indicate the
expected abundance of each species based on their ratios in the mixture.
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the strain was cultivated on media without any antibiotics. The
strain was known to contain six additional antibiotic resist-
ance genes, of which expression from three were found in all
experimental replicates. It is likely that several of the remain-
ing three antibiotic resistance genes, which could not be
consistently detected, were expressed only at low levels un-
der the investigated growing conditions. The phenotypic
screen showed, for example, resistance to tobramycin (sup-
plemental file 8, antibiotic resistance profile analysis of E. coli
strain CCUG 62462), and the gene providing resistance to that
aminoglycoside (aac(3)-II) was not detected in one of the
samples grown without selection pressure (supplemental file
9, detailed results from antibiotic resistance detection). In
addition, in silico digestion of the detected resistance genes
verified that all seven genes were expected to produce pep-
tide fragments of lengths suitable for detection with the ap-
plied tandem MS protocol. Thus, our results suggest that the
sequence depth provided by one run of the used tandem MS
setup may not be enough to provide a full view of all ex-
pressed antibiotic resistance genes. It should, however, be
emphasized that many resistance mechanisms are based on
highly expressed genes. Overexpression of chromosomal
genes can, for example, cause clinical resistance to important
antibiotics and is commonly encountered in Enterobacteri-
aceae and P. aeruginosa, for example (52, 53). These forms of
resistance are often caused by mutations in promoters and
transcription factors, which are notoriously hard to identify
using DNA-based diagnostics methods such as WGS (54). In

these cases, proteomics, including bottom-up tandem MS
approaches, provide a powerful alternative that can comple-
ment existing diagnostics methods. For such applications,
TCUP provides the necessary means to accurately and robustly
assign the generated peptides to the correct resistance genes.

TCUP relies heavily upon comprehensive reference ge-
nome and resistance gene databases. Incomplete databases
may therefore result in reductions of overall performance.
However, the leave-one-out experiments of the 62 E. coli
strains showed that the impact was, in general, relatively
small, with an average reduction in true positive rate of only
0.52 pp. A few strains showed a more dramatic reduction in
performance with a reduced true positive rate of up to 4.5 pp.
Careful examination of the incorrectly classified peptides re-
vealed that many of the misclassified peptides originated from
genes located on horizontally transferred genetic elements
that were not present in any other E. coli strains in the refer-
ence database (phages, conjugative elements, etc.). These
results demonstrate that, although the average reduction in
true positive rate is low, strains of species with plastic ge-
nomes, carrying relatively large amounts of mobile genetic
material, can be more sensitive to an incomplete reference
database. Thus, we cannot rule out that the rates of correctly
classified peptides will be lower for newly encountered strains
of species for which sequenced genomes are lacking, espe-
cially if they carry large amounts of mobile genetic material.
This effect is also likely to be larger for other taxonomic
groups for which fewer representative genomes are available.
However, the recent developments of NGS have enabled fast
and cost-efficient characterization of bacterial genomes. The
number of bacterial strains with fully sequenced genomes
available in the public repositories is therefore rapidly grow-
ing, and this will, over time, further increase the completeness
of the reference database and thereby further improve the
performance and robustness of TCUP.

Clinical samples can contain proteins from multiple spe-
cies, including both bacteria and eukaryotes (e.g. human and
fungi). Therefore, a comprehensive protein database was
used to ensure that as many of the MS spectra as possible
had satisfactory peptide matches. Moreover, our analysis
showed that the size of the database used in the spectral
matching had little impact on the overall performance. In fact,
when the spectra from pure cultures were instead matched to
a specialized database containing only the single species
present in the sample, true positive rates were not greatly
affected. For the E. coli sample, we observed an average
decrease in TPR of 1.79 pp when the comprehensive data-
base was replaced with a database containing only the E. coli
proteome, whereas the average number of discriminative
peptides did not change (using the large database identified
an average of 0.33 more discriminative peptides). It should,
however, be pointed out that the case with a single reference
proteome gives results that are too optimistic, because in
most cases where TCUP will be applied the species and thus

FIG. 5. Bar plot showing the proportion and number of discrim-
inative peptides assigned to CTX-M gene products. The left bar
corresponds to E. coli strain CCUG 62462 grown under antibiotic
selection pressure by cefotaxime; the center bar corresponds to
E. coli strain CCUG 62462 grown without antibiotic selection pres-
sure; and the right bar corresponds to E. coli reference strain K12/
CCUG 49263 grown without antibiotic selection pressure.
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the correct proteome will be unknown. Consequently, using a
comprehensive protein database with millions of reference
proteins enables identification of a wide range of species that
potentially can be present in the sample, and it does not have
any substantial negative impact on the performance (com-
plete details are available in supplemental file 7, large versus
small protein database). One important reason for this is that
TCUP, in contrast to many other previously suggested algo-
rithms (11–16), has separated the identification of peptides
from MS spectra and the taxonomic assignment into two
independent steps. In the first step, an extensive protein
database is preferable to maximize the likelihood that each
spectrum can be matched to the correct peptide. In the
second step, however, TCUP uses a smaller curated data-
base that ensures a high accuracy of the taxonomic assign-
ments. Keeping the processes separated is essential to clas-
sify samples without a priori information on their contents, as
it is impossible to create a protein database specifically de-
signed for each combination of species that will potentially
occur in a sample. It also adds flexibility because it makes it
possible to combine TCUP with virtually any type of spec-
trum-matching algorithm or even de novo peptide prediction
from observed mass spectra.

TCUP estimates the taxonomic composition in a sample
based on normalized relative abundances of discriminative
peptides. An alternative approach, which is used by Pipasic,
for example, is to weight the relative abundance of each
peptide based on its similarity between the reference pro-
teomes (17, 55). This enables the use of a larger set of pep-
tides and can thus provide increased accuracy. Calculating
the reference proteome similarities requires sequence com-
parison of all possible peptides, which is computationally
complex. This makes Pipasic intractable in many clinical set-
tings where time, from the collected sample to the final re-
sults, is often of essence and hundreds of different pathogens
and commensals can potentially be present in a single sam-
ple. In contrast, TCUP bases its estimation on the proportion
of discriminative peptides, determined by the lowest common
ancestor algorithm. Normalization is done by the number of
discriminative fragments observed in pure culture or, alterna-
tively, based on in silico digestion (supplemental file 10,
example comparison of experimental and in silico-based
correction). This approach is computationally much more ef-
ficient and enables the use of a reference database with
thousands of species. Furthermore, it should be pointed out
that TCUP matches identified peptides directly to complete
reference genomes rather than to proteomes. This has the
added benefit of making the method completely annotation
agnostic and thus robust against errors related to the predic-
tion of open reading frames (42). Many years of research have
been put into the development of efficient and accurate se-
quence alignment algorithms, and TCUP leverages that infor-
mation by using regular sequence programs (BLAT and
BLAST) to infer the taxonomic affiliation of each peptide.

Thanks to the use of an efficient SQLite3-based back-end for
storing the taxonomic structure, sequence annotations, and
sequence to taxa connections, the main algorithm driving
TCUP is fast and requires relatively little computing resources.

In conclusion, we have presented TCUP, a new computa-
tional method for typing and characterizing bacteria, estimat-
ing bacterial compositions in samples, and detecting and
identifying expressed antibiotic resistance proteins in bot-
tom-up MS/MS data. The method has shown good perform-
ance on both pure cultures of single species and mixed-
species culture model systems samples. The method is
computationally efficient and publicly available under an open
source license for both the Windows and Linux platforms.
TCUP has already been used in high performance cluster
environments and can, thanks to its easily parallelizable im-
plementation, efficiently process hundreds of samples. Thus,
TCUP has the potential to further enable the use of bottom-up
tandem MS in clinical settings, thereby improving the detec-
tion, characterization, and typing of pathogenic bacteria for
diagnostics of infectious diseases.
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