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Summary
Spatial and temporal inhomogeneities in temperature and wind velocity affect sound propagation resulting in
amplitude and phase fluctuations called scintillations. A computationally efficient method is presented to gener-
ate sequences of scintillations. The method, already used in the field of wireless communication to predict the
performance of wireless communication links, could be used in the field of acoustics to create more perceptually
valid auralizations. A Gaussian spectrum and a spherical wavefront is considered, but the method can also be
used in combination with other spectra like the Von Karman spectrum as well as plane waves. Two examples are
given, one is a pure tone affected by the scintillations and the other is an auralization of an aircraft fly-over. The
effect of the transverse speed of the source is demonstrated as well.

© 2017 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CCBY4.0) license (https://creativecommons.org/licenses/by/4.0/).

PACS no. 43.28.Gq

1. Introduction

In an outdoor situation, spatial and temporal variations in
temperature and wind velocity cause small changes in the
refractive index. As waves pass through the atmosphere,
the index-of-refraction variations in effect cause scintil-
lations, i.e. fluctuations in the received intensity of the
wave. Scintillations affect both sound and electromagnetic
waves. They are a major limitation for astronomical ob-
servations using Earth-based telescopes and also reduce
performance of wireless communication systems. Scintil-
lations can also be noticed when hearing sound emitted by
a source at a large distance, like for example by an aircraft
or distant windturbine [1].

Within the SONORUS project [2], a tool was developed
to auralize the sound of aircraft flying over urban areas [3].
Scintillations affect the audible sound, and it is presumed
that including scintillations increases the perceived real-
ism of auralizations. Earlier work introduced a coherence
factor to include the loss of coherence due to phase fluc-
tuations [4, 5, 6]. Fluctuations due to turbulence have also
been included in auralizations by simulating the amplitude
modulations that were observed in measurements [1, 7].

In this paper a method is presented to generate time
series of sound pressure fluctuations caused by line-of-
sight propagation through a weakly turbulent atmosphere.
Novel in this field, the method includes both log-amplitude
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and phase fluctuations. The presented method is based on
[8] where it was used to predict the performance of wire-
less communication links, and [9] where it was used to de-
termine the influence of turbulence on the performance of
a barrier. The method was used by the authors to increase
the perceptual validity of auralizations [10, 11].

2. Wave propagation in random media

2.1. Rytov approximation

Variations in temperature and wind in both position r and
time t cause variations in the refractive index field n(r, t).
We are interested in how these variations affect wave prop-
agation and follow [12] and [8], but instead of electromag-
netic waves, we consider sound waves. We consider for
now spatial variations only, and as a starting point we use
the Helmholtz equation

∇2 + k2n2(r) p(r) = 0, (1)

with pressure p, wavenumber k, and refractive-index field

n(r) = n0 + n1(r), (2)

with mean value n0 = E[n(r)] = 1 and first-order pertur-
bation n1(r) 1. Merging equations (1) and (2) results
in

∇2 + k2(n0 + n1(r))2 p(r) = 0. (3)

© 2017 The Author(s). Published by S. Hirzel Verlag · EAA.
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For weak fluctuations, an approximation to equation (3)
for small n1 is used. The Rytov solution to equation (3) is

p = exp ψ0 + ψ1 + ψ2 + . . . = exp ψ , (4)

where ψ0 is the complex phase of the unperturbed wave
in free space, and ψ1 and ψ2 respectively first-order and
second-order complex phase perturbations.

We are interested in the effect of first-order perturba-
tions n1, on the sound pressure, and therefore write ψ =
ψ0 + ψ1. The refractive index n is written in terms of an
average n and fluctuation n1, with

δn = (1 + n1)2 − 1 = 2n1 + n2
1. (5)

As derived in [12], ψ1 satisfies the following integral equa-
tion

ψ1(r) =
1

p0(r) V

G(r − r ) (6)

· ∇ψ1 · ∇ψ1 + k2δn p0(r ) dV ,

where G(r−r ) is the free field Green’s function. By itera-
tion a series solution can be obtained. For the first iteration
we set ψ1 = 0 inside the integral and obtain the first Rytov
solution

ψ10(r) =
k2

p0(r) V

G(r − r ) δn(r ) p0(r ) dV , (7)

where p0(r) is the unperturbed sound pressure field. The
sound pressure after the first iteration is then

p(r) = e(ψ0+ψ10) = p0(r)e(ψ10). (8)

The first-order complex phase perturbation ψ1 can be un-
derstood as a sum of waves, generated at various points r
throughout the scattering volume V . The strength of each
of these waves is proportional to the product of the unper-
turbed field term p0, and the refractive-index perturbation
δn at a point r [8].

2.2. Amplitude and phase fluctuations

We nowwant to find expressions for the log-amplitude and
phase fluctuations, and will use Rytov’s first solution. We
approximate the refractive-index fluctuation as

δn = 2n1 + n2
1 2n1 (9)

and write

p(r) = A(r)e jS(r), p0(r) = A0(r)e jS0(r), (10)

where A and S are respectively the amplitude and phase
of the fluctuating field p(r), and obtain for the first order
perturbations

ψ1(r) = χ + jS = log (A/A0) + j(S − S0). (11)

In this expression χ and S represent respectively the log-
amplitude fluctuation and phase fluctuation.

By applying the central limit theorem to the first Ry-
tov solution, it follows that the complex phase follows a
normal probability distribution [8]. This is an important
result to keep in mind when generating sequences of fluc-
tuations.

2.3. Amplitude and phase covariance

The log-amplitude and phase fluctuations are considered
to be the result of a random temperature fluctuation field.
A characteristic of a random function or field is its cor-
relation function [13]. The spatial correlation function of
a random field f (r), as function of distance r = r2 − r1
between observation points r1 and r2, is defined as

C(r1, r2) = f (r1)f (r2) . (12)

In a homogeneous and isotropic random field the corre-
lation function C(r) depends only on the distance r =
r2 − r1 between the observation points and not the path

r = r2 − r1 [14]. Note that at this point, the atmosphere is
assumed frozen in time, i.e., variations are only spatially,
not temporal.

We would like to obtain expressions for the covariance
functions of the log-amplitude and phase fluctuations. A
specific part of the turbulence spectrum can be approxi-
mated with a Gaussian correlation function

Cµ = µ(r1)µ(r2) = σ2
µe

−x2/L2
, (13)

where σ2
µ is the variance of the dynamic refractive index,

x = r1 − r2 the distance between two points in space and
L the correlation distance or length [12].

We shall now consider a line-of-sight situation where d
is the distance between the source and a receiver pair along
the wave propagation direction, and ρ the spatial separa-
tion of the receivers transverse to the wave propagation
direction.

If the correlation length L is much smaller than the Fres-
nel zone size of the sound

√
λd, then the log-amplitude and

phase variance scale with σ2
χ = σ2

S ∼ k2d [12] and the
variances of the fluctuations are given by [15]

σ2
χ = σ2

S =
√

π

2
σ2

µk2dL. (14)

For spherical waves the covariances of the fluctuations,
Bχ (ρ) and BS (ρ), normalized to their variances, are given
by

Bχ (ρ)

σ2
χ

=
BS (ρ)

σ2
S

=
Φ (ρ/L)

ρ/L
= Csp(ρ), (15)

where

Φ(ρ/L) =
ρ/L

0
exp −u2 du

=
1
2
√

πerf (ρ/L) , (16)

and erf is the error function. The covariance functions of
the fluctuations Bχ (ρ) and BS (ρ) are thus

Bχ (ρ) = BS (ρ) =
√

π

2
σ2

µk2dL
Φ(ρ/L)

ρ/L
. (17)
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Still assuming Taylor’s hypothesis regarding frozen turbu-
lence, we can perform a space-to-time conversion of the
correlation and covariance functions to obtain C(τ) and
B(τ) respectively. The turbulence correlation time is given
by

τ0 =
L

v⊥
, (18)

and the transverse time lag by

τ =
ρ

v⊥
, (19)

where v⊥ is the transverse speed, corresponding to e.g. the
mean speed at which the field is carried by the wind trans-
verse to the wave propagation direction.

In this paper we will continue to use the covariance
for spherical waves and a Gaussian spectrum, because the
Gaussian spectrum is the simplest model to work with and
computationally least demanding, but the method can also
be used with covariance functions that describe other tur-
bulence spectra, like e.g. the Von Karman spectrum [16].

2.4. Propagation in the turbulent atmosphere as a
multichannel

The fluctuations in the atmosphere are temporal and/or
spatial. Therefore, to model sound propagation of a signal
x(t) through such an atmosphere a time-varying channel
is necessary. The received signal y(t) consists of a line-of-
sight contribution and additional contributions from scat-
tering, together forming a multichannel [8]. Ignoring beam
spreading, we can write this as

y(t) =
n

αscn
(t)x t − τn(t) , (20)

where αscn
(t) is the time-varying scintillation sequence

representing the effect of the pressure fluctuations on the
nth-multipath component, and τn the propagation delay
of the nth component relative to the propagation delay
in an undisturbed atmosphere. Assuming the spread in
propagation delay over the channels is small compared to
the inverse of the signal bandwidth, so that x(t − τn) ≈
x(t − τ(t)), then

y(t) = x t − τ(t)
n

αscn
(t). (21)

Because the attenuation is very similar for the different
multipaths, we can write that

y(t) = x t − τ(t) αsc(t). (22)

Therefore, the received signal is obtained by shifting the
emitted signal x(t) with a time-varying propagation delay
τ(t), and multiplying the result with a time-varying gain
αsc(t).

3. Generating sequences of scintillations

3.1. Design of scintillation sequence

We will now design a sequence of scintillations and
for that we need to know the statistical distribution and
power spectral density |HB (f )|2 of the desired sequence.
As mentioned before the fluctuations are Gaussian-distri-
buted. We can therefore generate a sequence with the cor-
rect distribution and power spectral density by convolving
a random unit variance Gaussian signal z(t) with the im-
pulse response hB (t) of the designed filter.

χ(t) = S(t) = (hB ∗ z)(t). (23)

The power spectral density |HB (f )|2 of a random se-
quence forms a Fourier pair with its autocorrelation func-
tion R(τ) through the Wiener-Khinchin theorem1. Assum-
ing R(τ) ∼= Bχ (τ) = BS (τ), the power spectral density of
χ and S is

HB (f )
2
=

∞

−∞
B(τ) exp (−jωτ) dτ. (24)

This filter has zero phase and is non-causal. To create a
causal filter with constant group delay α we can shift the
peak in the impulse response by adding a linear-phase fac-
tor corresponding to 90 degrees

HB (f ) = |HB (f )| · exp (−j2πfα). (25)

The impulse response of the filter is finally obtained
through the Inverse Fourier Transform

hB (t) =
∞

−∞
HB (f ) exp (+jωτ) dτ (26)

3.2. Discrete time

We now convert from continuous to discrete time

HB[k] = HB e jω , 0 ≤ k ≤ N − 1, ω =
2πk

N
. (27)

The linear-phase factor exp(−j2πfα) is then given by

exp −j2πk
M1

2
fs

N
, (28)

where M1 is the length of the desired impulse response.
The frequency response of the filter is

HB[k] = F {B[n]} exp −j2πk
M1

2
fs

N
,

0 ≤ k ≤ N/2, (29)

1 The Wiener-Khinchin theorem states that the autocorrelation function
of a wide-sense-stationary random process has a spectral decomposition
given by the power spectrum of that process.
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Figure 1. Block diagram of signal processing steps for generat-
ing scintillations. Gaussian white noise z[n] is convolved with an
impulse response hB[n] which is based on the covariance B[n] of
the turbulence spectrum.

where F{} is the Discrete Fourier Transform (DFT). The
desired impulse response is real-valued. Therefore we
have because of Hermitian symmetry

HB[k] = HB (e jω), 0 ≤ k ≤ N/2, ω =
2πk

N
,

HB[N − k] = H∗
B[k], 1 ≤ k ≤ N/2 − 1.

(30)

In fact, because both B[n] and |HB[k]| are real and even,
one can use the type-1 Discrete Cosine Transform (DCT)
instead of the DFT in equation (29). The impulse response
of the filter is obtained by taking the Inverse Discrete
Fourier Transform (IDFT)

hB[n] = F−1 {HB[k]} (31)

= F−1 F {B[n]} exp −j2π
M1

2
k

fs

N
.

Scintillations are finally obtained through the convolution
of the impulse response hB[n] with Gaussian white noise
z[n]

χ[n] = S[n] = (z ∗ hB)[n]. (32)

The first M1/2 samples would have to be dropped because
of the filter delay. A block diagram of the steps is shown
in Figure 1.

3.3. Apply scintillations to signal

Now that we can generate sequences of fluctuations, we
need to apply these to a carrier signal x(t) or x[n]. Ac-
cording to equation (22) the log-amplitude fluctuations
can be applied in a multiplicative manner, which is indeed
the case of a signal with a sufficiently small bandwidth,
like for example a monochromatic signal. However, the
variance of the fluctuations is frequency-dependent, and
since in practice broadband signals are commonly used, a
method is sought for applying the fluctuations to a broad-
band signal.

One possible method would be to decompose the input
signal in complex exponentials with the Inverse Discrete
Fourier Transform, and apply per complex exponential the
log-amplitude and phase fluctuations which, when com-
bined, can be written as a complex exponential as shown
in equations (10) and (11).

A computationally less demanding method is to instead
filter the carrier signal with multiple band-pass filters, and

proceed with applying fluctuations to each of the band-
pass filtered signals and combining the resulting signals.
Scintillations would be computed for the center frequen-
cies of the bands. The amplitude fluctuations could be
applied through multiplication and the phase fluctuations
could be converted to time-delay fluctuations (see equa-
tion (35)) and applied with a Variable Delay Line (VDL).

3.4. Scintillations as time-variant filter

A more efficient method to take into account the fre-
quency-dependence of the scintillations, would be to in-
stead convolve the carrier signal with a time-variant filter
that is updated fast enough to represent the fluctuations.

The fluctuations χ and S, at each time step computed
for M2 frequencies, can be merged into a complex phase
(see equation (11))

ψ[n] = exp χ[n] + jS[n] . (33)

Adding a linear-phase factor as was done with hB[n] and
taking the Inverse Discrete Fourier Transform will result in
an impulse response for every instance in time n. Convo-
lution of the carrier signal x[n] with this time-variant filter
will result in a log-amplitude and phase modulated signal.
The first M2/2 samples will have to be dropped to correct
for the filter delay.

Because the fluctuations are relatively low-frequent they
can be sampled at a much lower sample frequency than the
carrier signal. For a correlation length L of 10 meters and a
transverse speed v⊥ of 2 meters per second the correlation
time would be 5 seconds. If we would sample the sequence
of fluctuations at 5 times the maximum bandwidth of the
filter, which is proportional to the inverse of the correlation
time τ0,

fs = 5/τ0 (34)

the required sample frequency would be 1 Hertz.
In practice one might want to interpolate the impulse

response as it changes over time, but because the phase
also changes with time this can be problematic. Aside
from converting to a minimum-phase representation we
can also create a linear-phase filter for which the magni-
tude changes with time but the phase does not. If the phase
fluctuations are linear-phase, then they can be applied to
the carrier signal x[n] with a Variable Delay Line. In the
Gaussian model the phase fluctuations scale as σ2

S ∼ f2.
A scatterer affects all frequencies, and therefore the fluc-
tuations of different frequencies move together, resulting
in a linear-phase. We therefore write the phase fluctuation
dS(t) as a propagation delay fluctuation

dt(t) = dS(t)/(2πf ), (35)

or in discrete time

d[n] = dS[n]/(2πkfs). (36)

With the Gaussian turbulence spectrum it is straightfor-
ward to separate the covariance B(τ) into the correlation
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C(τ) and variance σ as defined in respectively equations
(16) and (14). That way we can compute a filter hC[n]
that depends solely on the correlation C(τ), and scale this
afterwards with the correct variances σχ and σS . The ad-
vantage is having to compute only one sequence of fluc-
tuations, which is determined entirely by the covariance
and z[n], and can then be scaled with the (frequency-
dependent) variances σχ and S.

3.5. Moving source

Thus far it was assumed neither the source nor the re-
ceiver were moving, and that the fluctuations arise due to
sampling a turbulent field that is moving by with constant
speed at a fixed receiver position.

If the field is transported faster, the spatial fluctuations
are sampled faster, and therefore the scintillations χ[n] =
S[n] are compressed in time corresponding to fluctuations
with relatively higher frequencies.

In case the turbulent field is transported by wind and
neither source nor receiver are moving, the source-receiver
distance remains constant. If we instead consider a moving
source of which the emitted sound samples the turbulent
field, then the source-receiver distance d generally changes
and thus also the variances σχ and σS .

We will now consider a moving source. The transverse
velocity is in this case the velocity component of the mov-
ing source, perpendicular to the wave propagation direc-
tion. This is the vector rejection of the source velocity vec-
tor vs from the unit vector ô that represents the orientation
from source to receiver. The transverse speed is the norm
of this vector

v⊥ = vs − (vs · ô) · ô . (37)

The vector projection of the source velocity on the wave
propagation direction is the component that is relevant for
the Doppler shift. Therefore, as the Doppler shift is maxi-
mum the modulations are relatively low-frequent, whereas
if the Doppler shift is zero, the modulations are relatively
high-frequent.

When computing two sequences of scintillations, but
for different transverse speeds, one does not obtain a com-
pressed version of the other using the method as described
thus far in this section, even when using the same seed for
the Pseudo-Random Number Generator. This is because,
by adjusting v⊥, we effectively applied the compression on
the filter hC[n] before convolution with z[n]. Therefore,
the two resulting sequences will not look compressed in
time, but instead just filtered differently. Even so, the gen-
erated sequence will have the desired statistical properties.

We can obtain the desired compression, i.e., scaling in
time, if we instead perform the convolution between z[n]
and a time-invariant hC[n] computed for a fixed τ0, τref ,
and then resample the values of χ[n] and S[n] at differ-
ent times to take into account the change in correlation.
Instead of having a constant sample timestep

tk =
k

fs
=

k

i=0

1
fs

, k = 0, 1, . . . , i = 0, 1, . . . (38)

H

H
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C

[ ]k
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x
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[ ]n

C n[ ]

Figure 2. Block diagram of signal processing steps.

the sample time varies with correlation time

tk =
k

i=0

τref
τ0,i

1
fs

, k = 0, 1, . . . , i = 0, 1, . . . (39)

Figure 2 shows the full block diagram of the signal pro-
cessing steps for generating scintillations and including
them in an auralization.

3.6. Saturation of the log-amplitude fluctuations

According to equation (14) the fluctuations increase
with distance and frequency indefinitely. For longer path
lengths or stronger turbulence, the amplitude fluctuations
gradually level off. Saturation of the amplitude fluctua-
tions can be observed when measuring aircraft noise at
distances of over a few kilometers. The standard deviation
of the fluctuating sound pressure levels is in such cases
limited to approximately 6 dB [15].

Saturation of the log-amplitude fluctuations can be in-
cluded based on an analysis by Wenzel [17]. In Wenzel’s
approach the soundwave is split up in a coherent and in-
coherent wave. The amplitude of the coherent wave de-
creases over distance while the incoherent wave obtains
the energy from the coherent wave. The coherent wave p
is written as

p p∗ = A2
m/4πr2 exp −2 µ2 k2rL (40)
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Figure 3. Amplitude and phase fluctuations as function of time.
The fluctuations are less strong for the amplitude fluctuations due
to saturation.

Wenzel defines the distance to saturation rs as the distance
at which the coherent wave is reduced to e−1 of its original
strength

rs =
1

2σ2
µk2L

. (41)

Saturation of the log-amplitude fluctuations can now be
included by multiplying the log-amplitude with a correc-
tion factor. The variance of log-amplitude fluctuations that
includes saturation σχ , is given by

σχ,sat = σχ
1

1 + r/rs
. (42)

4. Results

4.1. A single tone

To demonstrate the model we shall now consider a tone of
1000 Hz and apply modulations to the tone. The following
parameters are used: c = 343.2m/s, σ2

µ = 3 · 10−6, L =
1.1m, v⊥ = 2.0m/s and d = 500m. Saturation according
to equation (42) is also included. The filter hc is designed
to have 8192 taps. The correlation time is then τ = L/v⊥ =
0.55 s and the sample frequency at which the modulations
are generated 5/τ = 9.1Hz.

Figure 3 shows the time series of amplitude and phase
fluctuations that were generated. Figure 4 shows the tone
along with a modulated version of the tone. The tone was
sampled at 8000 Hz.

The log-amplitude and phase move in-phase. The value
for the log-amplitude is slightly lower than that of the
phase because of saturation. As expected the phase fluc-
tuations cause spectral broadening of the tone as can be
seen in Figure [18].

0 2
t in s
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,F
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d
B

4 6 8 10
86

88
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92
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98
Tone

Modulated

Figure 4. Sound pressure level of the tone as function of time,
with and without fluctuations.
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Figure 5. The power spectrum of the tone shows the broadening
due to the phase fluctuations.

4.2. Scintillations as function of transverse speed

By changing the transverse speed the refractive-index field
is sampled at a different speed. This effectively changes
the correlation length and shifts the frequency range that
is covered by our applied filter [19].

Figure 6 shows the correlation function for different
transverse speeds. With a high transverse speed the cor-
relation drops faster, and this will result in relatively more
high-frequency fluctuations, as is shown in Figure 7.

4.3. Application in auralization of aircraft

The method was developed in order to create more realis-
tic sounding auralizations of aircraft. An aircraft moves at
high speed through the atmosphere. A transverse speed is
computed for each propagation path separately. Because
the correlation time, distance and propagation varies be-
tween the two paths, decorrelation occurs. Figures 8 and
9 show spectrograms respectively with and without turbu-
lence. The vertical lines that can be seen are the amplitude
modulations.
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Figure 6. Correlation as function of time for different transverse
speeds given in meters per second.
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Figure 7. Sound pressure level as function of time for scintilla-
tions corresponding to different transverse speeds given in meters
per second. The same z[n] were used for each case. A compres-
sion in time of the modulations with increasing velocity can be
observed.

Earlier it was assumed that the correlation length was
much smaller than the Fresnel zone size. In this auraliza-
tion the aircraft is moving close to the receiver. When the
aircraft is closest, the distance is almost entirely given by
the height which was approximately 100 meters. The cor-
relation length was set at 20 meters. In that case the Fres-
nel zone is larger than the correlation length for the lower
frequencies, and equation (14) is not valid. Instead, the
log-amplitude and phase variances should scale with re-
spectively d3 and 2k2d instead of k2d [12].

5. Conclusion

Fluctuations in the refractive-index field due to variations
in temperature and wind affects sound propagation and
causes audible modulations. A method was presented for
generating sequences of modulations and applying these
to monochromatic as well as broadband signals.
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Figure 8. Spectrogram of an auralization of an aircraft taking off.
Scintillations were not included. Visible are the ground effect and
the Doppler shift. In the initial seconds a high amount of tonal
components are visible.
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Figure 9. Spectrogram of the same event as in Figure 8, however,
this time with scintillations included. Because of the high speed
at which the aircraft samples the refractive-index field the scin-
tillations are relatively high-frequent, resulting in vertical lines.

A Rytov approximation to first-order refractive-index
flucutuations results in a complex phase which we can
write as a log-amplitude χ and phase S fluctuation. The
propagating sound is modelled as a time-varying chan-
nel where we consider two sequences, one for the log-
amplitude fluctuations, and another for the phase fluctu-
ations.

The fluctuations are frequency-dependent and therefore
a filter was designed to take that into account. A Gaus-
sian turbulence spectrum was considered, but the general
method can be used with other turbulence spectra as well.
The Von Karman spectrum describes real turbulence spec-
tra typically better than the Gaussian spectrum, however,
the Von Karman spectrum is computationally much more
demanding.
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Examples are shown where the method is applied to
a tone and to an aircraft auralization. The aircraft aural-
ization spectrogram shows several spikes corresponding
to amplitude modulations as well as an increase in the
amount of decorrelation. Furthermore the transverse ve-
locity dependence on the frequency content of the modu-
lations is demonstrated.

According to the authors the method results in more re-
alistic sounding auralizations, but this has not been vali-
dated yet with listening tests. The implementation of the
model that was used in this paper to generate the figures
can be found at [20].
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