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Abstract: We propose close-to-optimal network resource allocation algorithms for modular
data centers using optical spatial division multiplexing. A trade-off between the number of
established connections and throughput is identified and quantified.
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1. Introduction

Motivated by the growing popularity of cloud services, large data centers (DCs) are expected to host hundreds of
thousands of servers in the near future [1]. Modular DCs [2] based on prefabricated stand-alone modules, referred
to as PODs, which are composed of a predefined set of compute, storage, and network resources, are considered as
an efficient approach to build large DC facilities. PODs can generate a large amount of traffic and thus require an
ultra-high-capacity interconnection network.

Spatial division multiplexing (SDM) enabled by multi-core, multi-mode, or multi-element fibers has recently
emerged as a cost-effective and energy-efficient solution for DC networks [3], offering high scalability. Different
options to incorporate SDM in optical networks have been proposed [4] and investigated for designing modular DC
architectures [5]. These architectures combine SDM with flexible WDM to provide the required capacity for mod-
ular DCs. To fully exploit the ultra-high capacity offered by SDM, effective resource allocation algorithms are nec-
essary [5]. In traditional optical networks, a resource allocation strategy that achieves a low connection blocking
probability usually leads to a high network throughput as well. This is the reason why most of the recently proposed
algorithms for SDM networks mainly focus on optimizing one of the two objectives [6, 7], and do not explicitly im-
prove the other one. However, considering the diverse traffic patterns in DCs, where low-bandwidth mice flows and
high-bandwidth elephant flows coexist, the maximization of the number of established connections may inflict high
blocking probability on bandwidth-intensive connections and, thus, reducing the network throughput. On the other
hand, optimizing the throughput without paying attention to the number of connections might lead to blocking a large
number of mice flows. Therefore, a balance between the number of connections and throughput should be achieved to
guarantee fairness and efficiency in DC networks.

In this paper, we propose effective heuristics to calculate close-to-optimal resource allocations for three SDM-based
modular DC architectures. Both the number of connections and throughput are optimized simultaneously up to a
predefined priority. Simulation results indicate that the balance between these two metrics must be chosen carefully to
optimize the overall performance and fairness of the network.

2. SDM Schemes and Network Topology

Three SDM-based modular DC network architectures [5] are considered in this paper. The first architecture (Al) is
the uncoupled SDM with flexgrid WDM as shown in Fig. (1a), where each spatial element operates as an independent
flexgrid WDM fiber and multiple independent spectral superchannels can be established. The second architecture (A2)
is the coupled SDM with spectral flexibility, which is illustrated in Fig. (1b). In this SDM architecture, spectral su-
perchannels are expanded to all the spatial elements to create spectral-spatial superchannels with increased capacity.
The third architecture (A3) is the coupled SDM with spectral and spatial flexibility as displayed in Fig. (1c), where
the unrestricted flexibility in both spectral and spatial domains are exploited to form flexible spectral-spatial super-
channels. A simple modular DC network topology [5] is studied in this paper, where the PODs are interconnected
through a single optical large port count (LPC) SDM switch. Each POD is connected to the LPC switch with a single
bidirectional fiber that supports N spatial elements and M spectral slots per spatial element. Furthermore, thanks to the
inherent flexibility of SDM switches, optical superchannels can use different spatial elements at the input and output
fiber links to the switch [3, 5].
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(a) Al: Uncoupled SDM and flexgrid WDM. (b) A2: Coupled SDM with spectral flexibility. (c) A3: Coupled SDM with spectral—spatial flexibility.

Figure 1: Different architectures for combining SDM and flexgrid WDM.

3. Resource Allocation Algorithms

3.1. Optimization Objective

The objective is to achieve the optimal trade-off between blocking probability and throughput, by assigning appropriate
spatial and spectral resources to each feasible traffic demand. In the optimization objective, we linearly combine the
number of established connections C and throughput T as C+ BT /f,., where f3 is a weighting factor controlling the
priority of T relative to C, and f,y. is a normalizing factor and is equal to the average data rate per connection.

3.2.  Proposed Algorithms

Mixed integer linear programs (MILPs) are formulated for all the SDM architectures, which are the modified versions
of the routing, spectrum, and core allocation (RSCA) problem [8]. In the following, we briefly describe the MILPs
for A1, A2 and A3 without providing the mathematical details due to space limitations. In A1, each feasible traffic
demand is assigned a set of spectral slots satisfying its data rate requirement and one spatial element on the input and
output links to the SDM switch, respectively. The spectral continuity and contiguity constraints [8] are imposed. A2
can be viewed as a special case of Al where the fiber has a single spatial element with N times more capacity per
spectral slot than Al. In A3, due to the extra flexibility provided by spectral-spatial superchannels, in addition to the
constraints in A1, we also have constraints assuring contiguity and nonoverlapping in the spatial domain.

Given the high complexity of the MILPs, we also developed low-complexity heuristics for Al, A2, and A3. The
heuristics decompose the MILPs in two subproblems and tackle them separately. First, the spatial element assignment
is carried out by relaxing the spectral continuity constraint in the MILP for each architecture. The resulted solution
is a set of traffic demands that can be potentially served, each of which is assigned spatial elements on the input
and output fiber links to the SDM switch. The optimal spatial element assignment provides an upper bound for the
resource allocation problem, which will be used in the numerical analysis to evaluate the optimality of the proposed
heuristics. Secondly, the spectral slots are assigned to the potentially feasible traffic demands, by using an ensemble
of first-fit (FF) algorithms [4, 6-9], where a variety of FFs (e.g., SpeF/SpaF, ascending/descending FF, DPH, and
SPSA) are computed and the best one is chosen. The reason for trying several FFs is because the weighting factor
B in the objective is adjustable and, thus, a single FF is not sufficient to generate good results in all circumstances.
Consequently, by adding many computationally efficient FFs into the ensemble, the robustness of the spectral element
assignment increases at the cost of little complexity.

4. Numerical Analysis

We assume that the traffic pattern in the modular DC varies slowly with time [5] and that the resources are allo-
cated periodically at predefined intervals. The number of traffic demands generated per POD is a random integer
uniformly distributed in the range [0, |L(N, —1)]], where N,, is the number of PODs in the DC, L = 0.2 is the net-
work load, and |x] is the floor function. The data rates of traffic demands are random numbers in the discrete set
[1, 10, 100,200,400, 1000] Gbps with the probabilities [0.16,0.01,0.14,0.19,0.34,0.16], respectively [5]. The physical
layer impairments are not considered. Dual-polarization quadrature phase shift keying is used for all traffic demands.
The bandwidth of a spectral slot is 12.5 GHz. Each SDM fiber has N = 3 spatial elements and M = 80 spectral slots
per spatial element.

We first investigate the trade-off between the two objectives by using the proposed heuristics. The number of PODs
is set to N, = 100. The value of B is varied from 0 to 2000 gradually and the resulted Pareto curves are plotted
on the connection—throughput plan for all the considered architectures in Fig. (2a)—(2c). The Pareto curves reveal
an interesting trade-off between the number of established connections and throughput. When 8 = 0, the number of
connections is maximized with a comparatively low throughput. As 8 begins to increase, the throughput increases
significantly at the expense of slightly growing connection blockage. If B continues to increase after the “elbow
points”, which are shown as green circles in Fig. (2a)—(2c), the number of connections degenerates dramatically
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Figure 2: (a)—(c): The dotted lines are upper bounds calculated by the spatial element assignment, the solid lines are given by the
spectral element assignment, and the dash-dotted lines are the maximum fractions of the upper bounds that can lower-bound the
heuristic curves. (d): The percentages of allocated number of connectionss for different traffic classes as functions of f3. (e): Pareto
curves for all the architectures, their colors correspond to those in (a)—(c), respectively. The upper bound of A1 is not visible because
it is identical to the upper bound of A3 and completely covered. (e): The results of throughput optimizations.

with relatively little throughput improvement. Consequently, at the “elbow points”, the best balance between the two
objectives is achieved. Note that different architectures achieve the “elbow points” with different § values. The larger
value of 3, the better the architecture can improve the throughput without affecting the number of connections severely.
A3 is the most flexible architecture and for this reason reaches the “elbow point” with the highest value of § (8 = 0.8),
while A2 is the least flexible one and reaches the “elbow point” with the lowest value of B (f = 0.2). As illustrated
in Fig. (2d), by increasing f3, the low-bandwidth connections (less than 200 Gbps) gradually make room for high-
bandwidth demands, which lead to the increase in throughput. In Fig. (2e), the Pareto curves for different architectures
are shown together. The upper bounds of A1 and A3 overlap and their heuristic curves are close (the gap between them
is approximately 4% of their upper bound), indicating that the extra flexibility in A3 only brings marginal benefit with
respect to A2 [5,7]. The Pareto curves have large horizontal gaps and relatively small vertical distances between each
other, implying homogeneous throughput performances among the architectures. The trend is also verified in Fig. (2f),
where pure throughput optimizations are carried out for different DC sizes by both the MILPs and the heuristics. As
illustrated, all the architectures have similar performances, with A1 and A3 outperforming A2 by approximately 10%,
and the gap decreases as the DC sizes grow.

5. Conclusion

This paper addresses the optimal resource allocations in three SDM network architectures for modular DCs. A trade-
off between the number of established connections and throughput is revealed and studied by proposing both optimal
MILP approaches and low-complexity heuristics. Results show that, if the priority is chosen carefully, the proposed
heuristics can achieve close-to-optimal trade-off between the two important network performance metrics. We also
show that, even if A2 has lower flexibility than A1 and A3, it provides similar performance when the objective is only
to maximize the throughput.
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