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SUMMARY

When computing the homogenized response of a representative volume element (RVE), a popular choice is
to impose periodic boundary conditions on the RVE. Despite their popularity, it is well known that standard
periodic boundary conditions lead to inaccurate results if cracks or localization bands in the RVE are not
aligned with the periodicity directions. A previously proposed remedy is to use modified strong periodic
boundary conditions that are aligned with the dominating localization direction in the RVE. In the present
work, we show that alignment of periodic boundary conditions can also conveniently be performed on weak
form. Starting from a previously proposed format for weak micro-periodicity that does not require a periodic
mesh, we show that aligned weakly periodic boundary conditions may be constructed by only modifying the
mapping (mirror function) between the associated parts of the RVE boundary. In particular, we propose a
modified mirror function that allows alignment with an identified localization direction. This modified mirror
function corresponds to a shifted stacking of RVEs, and thereby ensures compatibility of the dominating
discontinuity over the RVE boundaries. The proposed method leads to more accurate results compared to
using unaligned periodic boundary conditions, as demonstrated by the numerical examples. Copyright ©
2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley
& Sons Ltd.
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1. INTRODUCTION

In numerical simulations, the effective behavior of a heterogeneous microstructure is often predicted
using computational homogenization [1, 2], whereby the homogenized response is computed from a
representative volume element (RVE) with suitable boundary conditions (BCs). A popular choice of
BCs, which often works well, is to apply strong periodic BCs on the RVE [3, 4]. However, such BCs
may be inaccurate whenever the topology and/or the response of the microstructure is not aligned
with the periodicity directions. One important special case is when cracks or localization bands are
present. The response of the RVE, now representative typically for the response along the effec-
tive discontinuity, will be strongly constrained by the choice of periodicity directions. As a remedy,
Coenen et al. [5, 6] proposed to use percolation path aligned BCs, where strong periodic BCs are
aligned to the dominating localization direction in the microstructure.

Because strong periodic BCs require a periodic mesh, Larsson et al. [7] proposed to instead
impose micro-periodicity in a weak sense, leading to a mixed formulation with displacements and

*Correspondence to: Erik Svenning, Division of Material and Computational Mechanics, Department of Applied
Mechanics, Chalmers University of Technology, Gothenburg, Sweden.

†Email: erik.svenning@chalmers.se
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial
and no modifications or adaptations are made.

Copyright © 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.

 10970207, 2017, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.5483 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://creativecommons.org/licenses/by-nc-nd/4.0/


494 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Figure 1. Representative volume element with boundary divided into an image part Γ+
□ and a mirror part

Γ−
□, with standard mirror function (a) and shifted mirror function (b), where the shifting distance is given by

s = l□∕ tan 𝛼. The symbols denote related points on Γ+
□ and Γ−

□.

boundary tractions as unknowns. This approach also has the advantage that the traction approxi-
mation can be adapted to the problem at hand, for example, by accounting for cracks intersecting
the RVE boundary [8], in order to gain improved convergence with increasing RVE size. However,
artificial constraining may still occur when cracks or localization bands are not aligned with the
periodicity directions.

In the present work, we show that the weakly periodic BCs proposed in [7] can conveniently
be aligned with the dominating localization direction. Interestingly, it turns out that only the mir-
ror function, which relates points on the image and mirror parts of the RVE boundary (as shown
in Figure 1(a)), needs to be modified. To be specific, the modified mirror function corresponds to
a shifted stacking of RVEs that ensures compatibility of the effective discontinuity over the RVE
boundaries. Hence, the weak format of periodicity allows alignment to a localization direction with-
out modifying the weak form or the discretization. Even though alignment of periodic boundary
conditions can be achieved also on strong form, we believe the weak format to be a very conve-
nient and versatile setting for constructing boundary conditions that are adapted to the problem
at hand.

The remainder of the paper is organized as follows: Weakly periodic boundary conditions are
briefly reviewed in Section 2.1, followed by a discussion on the construction of the modified mirror
function in Section 2.2. Two numerical examples showing the improved performance of the modified
mirror function compared with the unmodified mirror function are given in Section 3, and the remarks
in Section 4 conclude the paper.

2. THEORY

2.1. Weakly periodic boundary conditions

To establish the weak format, consider computational homogenization of an RVE using weakly peri-
odic BCs [7, 8]. To apply such BCs, the RVE boundary is first divided into an image part Γ+

□ and a
mirror part Γ−

□ as indicated in Figure 1(a). Furthermore, a mirror function 𝝋per ∶ Γ+
□ → Γ−

□ is intro-
duced, such that points on Γ+

□ and Γ−
□ are associated to each other according to x− = 𝝋per(x+). Using

this mirror function, the jump between a point x + on Γ+
□ and the associated point x− = 𝝋per(x+) on

Γ−
□ is defined as

[[u]]□ =
def

u+ − u− = u(x+) − u(𝝋per(x+)) on Γ+
□.

Copyright © 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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LOCALIZATION ALIGNED WEAKLY PERIODIC BOUNDARY CONDITIONS 495

Assuming small strains, quasistatic loading, and zero body force, the microscale problem then reads
as follows: For a given macroscopic strain 𝝐 and position x, find u ∈ U□ and t𝜆 ∈ T□ such that

a□ (u, 𝛿u) − d□ (t𝜆, 𝛿u) = 0∀𝛿u ∈ U□,

−d□ (𝛿t𝜆,u) = −d□
(
𝛿t𝜆, 𝝐 ·

[
x − x

])
∀𝛿t𝜆 ∈ T□,

(1)

U□ =

{
v ∈

[
H

1
(
Ω□

)]d
,∫Γ□

v dΓ = 0

}
, (2)

T□ =
{

t ∈
[
L2

(
Γ+
□

)]d
}

, (3)

where we introduced the expressions

a□ (u, 𝛿u)
def
= 1||Ω□||

[
∫Ω□

𝛔 ∶ 𝛆 [𝛿u] dΩ − ∫Γ+
□,int

t · [[𝛿u]] dΓ

]
, (4)

d□ (t𝜆, 𝛿u)
def
= 1||Ω□||∫Γ+

□

t𝜆 · [[𝛿u]]□ dΓ, (5)

and where L2

(
Γ+
□

)
denotes the space of square integrable functions on Γ+

□. In the aforementioned

equations, we also introduced [[u]]
def
= u+ − u−, representing the discontinuity over the faces of a

crack inside the domain Ω□, and Γ+
□,int = Γ+

int ∩ Ω□, representing the part of the internal boundary

located inside Ω□. Furthermore, 𝝐 = [u ⊗ 𝛁]sym is the engineering strain, 𝝈 = 𝝈 (𝝐) is the Cauchy
stress, t = t ([[u]]) is the traction on crack faces in the material, and t𝜆 is the traction on the RVE
boundary. See the work of Svenning et al. [8] for further details.

When solving Equation (1), different choices for 𝝋per are possible. In particular, 𝝋per

can be constructed to avoid artificial crack closure on the boundary as discussed in the
following sections.

2.2. Constructing the mirror function 𝝋per

The standard choice for the mirror function, which is used by [7, 8] among many others, is to map
points along horizontal or vertical lines as shown in Figure 1(a). However, as pointed out by several
researchers [5, 9, 10], this choice leads to inaccurate results in some situations. In particular, it works
well if cracks or localization bands are aligned with the periodicity directions, whereas artificial
crack closure occurs on the RVE boundary for cracks that are not aligned with these directions. This
standard mirror function, which is shown in Figure 1(a) and corresponds to stacking RVEs as shown
in Figure 2(b), can be explicitly expressed as

𝝋per

(
l□, y

)
= (0, y),

𝝋per

(
x, l□

)
= (x, 0),

(6)

where l□ denotes the side length of the RVE. As can be seen from Equation (6), this mirror function
maps point along horizontal or vertical lines.

To develop an alternative to the standard mirror function given by Equation (6), now assume
that a dominating crack or localization band direction exists as indicated in Figures 1(a) and 2(b).
Then, we may consider a shifted stacking as shown in Figure 2(c). Even though the crack shown
in Figure 2(a) passes through the RVE center, we remark that this shifted stacking can be applied

Copyright © 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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496 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Figure 2. A representative volume element (RVE) with a crack (a), subjected to standard stacking (b), and
shifted stacking (c).

also for cracks that do not pass through the center of the RVE. Using the shifted stacking, the crack
pattern is compatible over RVE boundaries, as opposed to when using the standard stacking. This
compatibility will prevent artificial crack closure on RVE boundaries.

To obtain the shifted stacking shown in Figure 2(c), for a crack orientation as indicated in
Figure 2(a) with 45◦ < 𝛼 < 90◦, the mirror function is modified as shown in Figure 1(b), where some
points on Γ+

□ are no longer mapped along vertical or horizontal lines. The explicit expression for
𝝋per as shown in Figure 1(b) is given by

𝝋per(l□, y) = (0, y),
𝝋per(x, l□) = (l□ − s + x, 0) if 0 ⩽ x < s,

𝝋per(x, l□) = (x − s, 0) if s ⩽ x ⩽ l□,

(7)

where the shifting distance is given by s = l□∕ tan 𝛼. Clearly, we may carry out the same procedure
also for cracks with 𝛼 < 45◦, whereby the RVEs would be shifted in vertical direction rather than
horizontal direction.

Using the expression given by Equation (7), we may obtain aligned periodic boundary conditions
on weak form by only modifying the mirror function 𝝋per. We emphasize, again, that the shifting
distance s depends only on 𝛼 and l□. Hence, the shifting is valid also for cracks that do not pass
through the center of the RVE.

We remark that weakly periodic boundary conditions can be shown to fulfill the Hill–Mandel
condition as well as average stress and strain relations (cf. [7]). The proof does not explicitly assume
that 𝝋per takes the form given in Equation (6) and, hence, the homogenization relations are fulfilled
also for the shifted mirror function proposed in Equation (7).

3. NUMERICAL EXAMPLES

3.1. Preliminaries

In this section, we give two numerical examples in order to demonstrate the convergence with
increasing RVE size and the effect of crack orientation. In the examples, we consider an isotropic
and linear elastic bulk material in plane strain with Young's modulus E = 210 × 103 MPa and Pois-
son's ratio 𝜈 = 0.3. For the cracks, we consider an isotropic and linear elastic cohesive zone model
that gives the traction in terms of the displacement jump as t = k[[u]], where k is the stiffness of the
cohesive zone. In the examples presented in the succeeding sections, we set k = 1 × 106 N mm − 3.
Weakly periodic boundary conditions are used, with a traction approximation that is piecewise con-
stant over two displacement elements. (See the work of Svenning et al. [8] for a discussion on the
choice of suitable traction approximation.)

Copyright © 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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LOCALIZATION ALIGNED WEAKLY PERIODIC BOUNDARY CONDITIONS 497

3.2. Convergence with increasing representative volume element size

To show that the proposed aligned BCs work well for cases when the use of standard periodic BCs
leads to inaccurate results, we consider a specimen with inclined cracks as shown in Figure 3. More
precisely, the angle between the cracks and the vertical axis is 3◦, and the horizontal distance between
the cracks is 0.01 mm. For this geometry, we study the convergence of the homogenized stress with
increasing RVE size by extracting RVEs of different sizes as shown in the figure.

The RVE is subjected to a macroscopic strain of 𝝐xx = 1 and 𝝐xy = 𝝐yy = 0. As output from
the simulations, we choose to monitor 𝜎xx. Simulations are performed for RVEs of different sizes,
ranging from l□ = 0.01 mm to l□ = 0.64 mm. Two sets of simulations are performed, one set using
the standard mirror function and one using the shifted mirror function.

Figure 3. Representative volume elements (RVEs) considered in Example 3.2, sampled from a large specimen
with linear elastic bulk material and inclined cracks. The angle between the cracks and the vertical axis is 3◦.

Figure 4. Deformed shape of the smallest representative volume element considered in Example 3.2
using standard mirror function (left) and shifted mirror function (right). The deformation is scaled by a

factor of 0.1.

Copyright © 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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498 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

The deformed shapes of the smallest RVE, computed with the two different mirror functions, are
shown in Figure 4. As can be seen, the standard mirror function enforces unphysical crack closure on
the RVE boundary, leading to stress concentrations on the boundary. On the other hand, the shifted
mirror function allows crack opening on the boundary and predicts a smooth stress field. This behav-
ior has a strong influence on the homogenized stress as shown in Figure 5. Using the standard mirror
function, the RVE needs to be as large as l□ = 0.32 mm to obtain reasonably converged results. On
the other hand, the shifted mirror function leads to converged results already for the smallest RVE
with l□ = 0.01 mm. Hence, we conclude that the shifted mirror function leads to a dramatic accuracy
improvement for smaller RVE sizes.

3.3. Effect of crack orientation

To compare the standard mirror function and the shifted mirror function for different crack orienta-
tions, consider the RVE with side length l□ = 1× 10−4 mm shown in Figure 6(a). For the loading of
the RVE, we apply a macroscopic strain in the x-direction, given by 𝝐xx= 1×10−3 and 𝝐yy = 𝝐xy = 0.

Figure 5. Convergence with increasing representative volume element size for a pattern of inclined cracks
(Example 3.2).

Figure 6. Geometry (a) and results (b) for Example 3.3. Homogenized stress in a representative volume
element with a crack under prescribed uniaxial strain versus the orientation of the contained crack.

Copyright © 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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LOCALIZATION ALIGNED WEAKLY PERIODIC BOUNDARY CONDITIONS 499

For this example, the solution can be computed analytically. For 𝛼 = 0◦, the crack is parallel to
the loading direction, and hence, the material behaves as if the crack were not present. For 𝛼 > 0◦,
the material will show softer response for increasing 𝛼, because of an increased crack opening. With
the chosen material parameters, the analytical solution is 𝜎xx = 2.31 × 102 MPa for 𝛼 = 0◦ and
𝜎xx = 9.9965×10−2 MPa for 𝛼 = 90◦. When rotating the crack from 𝛼 = 0◦ to 𝛼 = 90◦, the analytical
solution is a continuously decreasing stress response.

The computed stress response and the analytical solution are shown in Figure 6. We first
note that the stresses computed with the standard mirror function and the shifted mirror func-
tion coincide for 𝛼 = 0◦, 𝛼 = 45◦, and 𝛼 = 90◦. This is expected: no artificial crack closure
occurs for cracks aligned with the periodicity directions or aligned 45◦ to the periodicity direc-
tions when using the standard mirror function. However, the standard mirror function overpredicts
the stress for other values of 𝛼. In particular, using the standard mirror function leads to a
higher stress for 𝛼 = 60◦ than for 𝛼 = 45◦. This is unphysical. Furthermore, the standard mir-
ror function overpredicts the stress by roughly three orders of magnitude for 𝛼 = 85◦. In contrast,
the shifted mirror function shows excellent agreement with the analytical solution for all values
of 𝛼.

4. CONCLUSIONS

In this work, aligned periodic boundary conditions on weak form are discussed. Using a weak
format of periodicity, we show that the weakly periodic boundary conditions can be aligned with
a dominating crack direction in a very convenient way: only the mirror function, describing the
mapping between the image and mirror parts of the RVE boundary, needs to be modified. Even
though the weakly periodic format adopted in the present work requires implementation and solu-
tion of a mixed finite element problem, we believe that this format is particularly well suited for
alignment of the periodicity, because the method (i) does not require a periodic mesh in the RVE
and (ii) allows the traction discretization to be adapted to the problem at hand. It would be pos-
sible to apply the modified mirror function also to periodic boundary conditions on strong form.
However, this would require either ensuring that the mesh is periodic with respect to the modified
mirror function, or that other techniques for treating non-matching meshes (e.g., tie constraints [11])
are adopted.

The numerical examples demonstrate that the artificial overconstraining occurring for conven-
tional (weakly) periodic boundary conditions is alleviated by shifting the mirror function as proposed
in the present work. The key to success in alleviating the overconstraining is that the modified mirror
function corresponds to a shifted stacking of RVEs, thereby ensuring compatibility of the dominating
crack over RVE boundaries.

In the present work, we have focused on the alignment of the periodicity within the setting of
weak periodicity. To maintain this focus, we have assumed that the direction of a dominating crack
or localization band has, in some way, been identified a priori. To overcome this limitation, a natural
extension is to combine the present work with suitable techniques for identifying a dominating crack
direction (see, e.g., [5, 6] for an interesting alternative).

Future work involves extending the method proposed here to 3D, which is conceptually straight-
forward. The major difference is that the 3D case requires shifting in two directions, whereas shifting
in one direction is sufficient for the 2D case as demonstrated in the present work.

In summary, we have proposed a method for aligning weakly periodic boundary conditions to
a dominating crack direction. The proposed method is practical from a computational perspective,
because no modifications to the weak form or the discretization are necessary.
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