Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab
Preprint, 2017

Magnetic reconnection is a fundamental plasma process associated with conversion of the embedded magnetic field energy into kinetic and thermal plasma energy, via bulk acceleration and Ohmic dissipation. In many high-energy astrophysical events, magnetic reconnection is invoked to explain the non-thermal signatures. However, the processes by which field energy is transferred to the plasma to power the observed emission are still not properly understood. Here, via 3D particle-in-cell simulations of a readily available (TW-mJ-class) laser interacting with a micro-scale plasma slab, we show that when the electron beams excited on both sides of the slab approach the end of the plasma structure, ultrafast relativistic magnetic reconnection occurs in a magnetically-dominated (low-β) plasma. The resulting efficient particle acceleration leads to the emission of relativistic electron jets with cut-off energy ∼ 12 MeV. The proposed scenario can significantly improve understanding of fundamental questions such as reconnection rate, field dissipation and particle acceleration in relativistic magnetic reconnection.


Longqing Yi

Chalmers, Fysik, Subatomär fysik och plasmafysik

B Shen

A Pukhov

Tünde Fülöp

Chalmers, Fysik, Subatomär fysik och plasmafysik


Grundläggande vetenskaper


Fusion, plasma och rymdfysik