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Abstract We prove sharp, computable error estimates for the propagation of errors
in the numerical solution of ordinary differential equations. The new estimates extend
previous estimates of the influence of data errors and discretization errors with a
new term accounting for the propagation of numerical round-off errors, showing that
the accumulated round-off error is inversely proportional to the square root of the
step size. As a consequence, the numeric precision eventually sets the limit for the
pointwise computability of accurate solutions of any ODE. The theoretical results
are supported by numerically computed solutions and error estimates for the Lorenz
system and the van der Pol oscillator.
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1 Introduction

We consider the numerical solution of general initial value problems for systems of
ordinary differential equations (ODE),

u̇(t) = f (u(t), t), t ∈ (0, T ],
u(0) = u0,

(1)

where the right-hand side f : RN × [0, T ] → R
N is assumed to be Lipschitz con-

tinuous in u and continuous in t . Our objective is to analyze the error in a quantity of
interest (functional) computed from an approximate solution U : [0, T ] → R

N com-
puted by a single-step numerical method, such as an explicit or implicit Runge–Kutta
method. For the numerical results presented at the end of this work, we have used
a particular time-stepping method formulated as a Galerkin finite element method,
which, for any particular choice of finite element basis and quadrature, will corre-
spond to a particular implicit Runge–Kutta method. We stress that as a result of the
generality of cG/dG Galerkin time-stepping formulations, the analysis applies to a
wide range of single-step methods, in particular interpolatory implicit Runge–Kutta
methods; see [1].

The propagation of local errors and accumulation of global errors in the numerical
solution of ODE have been studied extensively in the literature, see e.g. [3, 7–9, 11].
These estimates are based on the formulation of an auxiliary dual problem: the lin-
earised adjoint problem. From the solution of the dual problem, the accumulation
rate of local errors may be computed, either as global stability factors or as local sta-
bility weights. These factors or weights, together with a measure of the local error,
typically the residual R(t) = U̇ − f (U(t), t) lead to a computable estimate of the
global error.

Standard estimates may include various sources contributing to the global error,
such as discretization errors, accounting for the use of finite time steps, quadrature
errors, accounting for the approximation of the right-hand side f by a particular
quadrature rule, and data errors, accounting for the approximation of the initial value
u0. In this work, we extend these estimates by adding a new term accounting for the
use of finite numeric precision in the computation of the numerical solution. This
error is normally neglected, since it is typically much smaller than the contribution
from the data or discretization error. However, when the system (1) is very sensitive to
perturbations, when the time interval [0, T ] is very long, or when a solution is sought
with very high accuracy, the effect of numerical round-off errors as a result of finite
numeric precision can and will be the dominating error source, which ultimately
limits the computability of a given problem.

2 Main results

We prove that the global error E, defined below as a linear functional of the error
U(T )−u(T ) at final time T , in a computed numerical solution U approximating the
exact solution u of the ODE (1) is the sum of three contributions:

E = ED + EG + EC,
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where ED is the data error, which is nonzero if U(0) �= u(0); EG is the discretisation
error, which is nonzero as a result of a finite time step; and EC is the computational
error, which is nonzero as a result of finite numerical precision. Furthermore, we
bound each of the three contributions as the product of a stability factor and a residual
which measures the size of local contributions to the error. The size of the residuals
may be estimated in terms of the size of the time step. We find that

E ∼ SD(T )‖U(0) − u(0)‖ + SG(T )�tr + SC(T )�t−1/2,

where �t is the size of the time step, r the order of convergence of the numeri-
cal method, and SD(T ), SG(T ), SC(T ) are stability factors which can be computed
a posteriori.

This estimate shows in particular that the size of the global error is determined
in competition between the term EG ∼ �tr , which decreases when the time step is
reduced, and the term EC ∼ �t−1/2, which increases when the time step is reduced.
This has three effects:

(i) there is an optimal step size or step size regime where none of the terms is
dominating;

(ii) for a given numerical precision, the computability of the system (1) is limited
by the size of the minimum/optimal step size;

(iii) the highest accuracy (smallest error) will be obtained by a high-order method
which can achieve a small discretisation error EG for a relatively large step
size, yielding a small computational error EC .

The points (i)–(ii) are illustrated in Fig. 1.

Fig. 1 The global error is initially reduced when the time step �t is reduced but then starts to increase as
a result of accumulated round-off errors; see Section 4.1.2 for details
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3 Error analysis

Our error analysis is based on the solution of an auxiliary dual problem and fol-
lows the techniques developed in [7–9] and [2], with extensions to account for the
accumulation of round-off errors. The key ideas of the dual-weighted approach to
error estimation developed in the above references are:

• expression of the global error, or the error in a global functional of the computed
solution, in terms of the residual R = U̇ − f (U(t), t) of a computed solution U

and the solution z of the auxiliary dual problem;
• approximate (numerical) solution of the dual problem;
• estimation of the global error in terms of the residual R and a computed

approximation zh of the dual solution z.

Challenges involved in the dual-weighted approach involve appropriate choice of ini-
tial data for the dual problem and numerical strategies for efficient (low-cost) solution
of the dual problem. For a detailed discussion, we refer to references [7–9] and [2].

3.1 Sketch of proof

We first sketch out the main ideas of our analysis in the case of a linear system
Au = b, where A ∈ R

N×N and u, b ∈ R
N . This sketch presents the essential ideas

without unnecessary technical complications. We then return to the analysis of the
system of ordinary differential (1). For a more detailed account, see for example [12].

Let u be the exact solution of the linear system Au = b and let U ≈ u be an
approximate solution with residual R = AU − b �= 0. Our aim is to express the error
e = U − u in terms of the residual R.

Introduce the dual problem
A�z = ψ,

where A� denotes the transpose (adjoint) of the matrix A, z denotes the dual solution
and ψ ∈ R

N is a given vector. It then follows that

(ψ, e) = (A�z, e) = (z, Ae) = (z, AU − Au) = (z, AU − b) = (z, R). (2)

This error representation expresses any linear functional (represented by its Riesz
representer ψ) of the error e in terms of the residual R via the dual solution z. Note
that different linear functionals result in different data ψ for the dual problem and
thereby different dual solutions z. Note also that the error representation (2) is valid
independently of which numerical method is used to compute the approximation U .
Assume now further that the numerical method can be formulated as a Galerkin (or
Petrov-Galerkin) method, which is the case for many methods; see [30]. We may then
expect the residual R to satisfy

(v, R) = 0 (3)

for all vectors v in some subspace V ⊂ R
N . We then obtain the error estimate

|(ψ, e)| = |(z, R)| = |(z − πz,R)| ≤ |z − πz| |R|, (4)

where πz ∈ V is any approximation of the dual solution z in the subspace V . This
shows that the error is a product of the factor SG = |z−πz|, which measures howwell
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z may be approximated in V , and the residual R. However, if U is computed using
finite numeric precision, typically using double precision arithmetic on a standard
computer, we cannot expect that the (3) are satisfied exactly. The best we can hope is
therefore that R satisfies

|(v, R)| ≤ |v|εmach

for all v ∈ V . Thus, we must modify the error estimate (4) as follows:

|(ψ, e)| = |(z, R)| = |(z − πz,R) + (πz, R)| ≤ |z − πz| |R| + |(πz, R)|
≤ |z − πz| |R| + |πz|εmach = SG|R| + SC εmach,

where the two stability factors are SG = |z − πz| and SC = |πz|, accounting for
accumulation of discretisation (Galerkin) and computational errors, respectively.

We now return to the analysis of the system (1), including the definition of the
corresponding dual problem, derivation of the error representation and error estimate,
and finally a careful analysis of the contribution from round-off errors.

3.2 Error representation

For the system (1), the dual (linearized adjoint) problem takes the form of an initial
value problem for a system of linear ordinary differential equations:

−ż(t) = Ā�(t)z(t), t ∈ [0, T ),

z(T ) = zT .
(5)

Here, Ā denotes the Jacobian matrix of the right-hand side f averaged over the
approximate solution U and the exact solution u:

Ā(t) =
∫ 1

0

∂f

∂u
(sU(t) + (1 − s)u(t), t) ds. (6)

For a system of ODEs, the choice of initial data zT for the dual problem determines
which component of the global error that should be estimated at final time. Thus with
zT = (1, 0, 0, . . . , 0), one obtains an estimate for the error in the first component of
the solution at final time. The data zT corresponds to the vector ψ in Section 3.1.

Before deriving the error representation, we note the following important property
(mean-value theorem) satisfied by the matrix Ā:

Ā(t)(U(t) − u(t)) =
∫ 1

0

∂f

∂u
(sU(t) + (1 − s)u(t), t)(U(t) − u(t)) ds

=
∫ 1

0

∂

∂s
f (sU(t) + (1 − s)u(t), t) ds =f (U(t), t)−f (u(t), t).

Based on the formulation of the dual problem we may now derive a (standard)
error representation (Theorem 1); see [7–9] and [2]. It represents the error in an
approximate solution U (computed by any numerical method) in terms of the resid-
ual R of the computed solution and the solution z of the dual problem (5). The only
assumption we make on the numerical solution U is that it is piecewise smooth on
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a partition of the interval [0, T ] (or that it may be extended to such a function). At
points where U is smooth, the residual is defined by

R(t) = U̇ (t) − f (U(t), t). (7)

Theorem 1 (Error representation) Let u : [0, T ] → R
N be the exact solution of the

initial value problem (1), let z : [0, T ] → R
N be the solution of the dual problem (5),

and let U : [0, T ] → R
N be any piecewise smooth approximation of u on a partition

0 = t0 < t1 < · · · < tM = T of [0, T ], that is, U |(tm−1,tm] ∈ C∞((tm−1, tm])
for m = 1, 2, . . . ,M (U is left-continuous). Then, the error U(T ) − u(T ) may be
represented by

〈zT , U(T ) − u(T )〉 = 〈z(0), U(0) − u(0)〉 +
M∑

m=1

〈z(tm−1), [U ]m−1〉 +
∫ T

0
〈z, R〉 dt,

where R(t) = U̇ (t) − f (U(t), t) is the residual of the approximate solution U and
[U ]m−1 = U(t+m−1) − U(tm−1) = limt→t+

m−1
U(t) − U(tm−1).

Proof By the definition of the dual problem, we find that

〈zT , e(T )〉 = 〈zT , e(T )〉−
∫ T

0
〈ż+Ā�z, e〉 dt = 〈zT , e(T )〉−

M∑
m=1

∫ tm

tm−1

〈ż+Ā�z, e〉 dt,

where e = U −u. Noting that 〈Ā�z, e〉 = 〈z, Āe〉 and integrating by parts, we obtain

〈zT , e(T )〉 = 〈z(0), e(0)〉 +
M∑

m=1

[
〈z(tm−1), [U ]m−1〉 +

∫ tm

tm−1

〈z, ė − Āe〉 dt
]

,

where [U ]m−1 = U(t+m−1) − U(t−m−1) = U(t+m−1) − U(tm−1) denotes the jump of U

at t = tm−1. By the construction of Ā, it follows that Āe = f (U, ·)−f (u, ·). Hence,
ė − Āe = U̇ − f (U, ·) − u̇ + f (u, ·) = U̇ − f (U, ·) = R, which completes the
proof.

Remark 1 Theorem 1 holds for any piecewise smooth function U : [0, T ] → R
N , in

particular for any piecewise smooth extension of any approximate numerical solution
obtained by any numerical method for (1).

3.3 Error estimation

We next investigate the contribution to the error in the computed numerical
solution U from errors in initial data, numerical discretization, and computation
(round-off errors), E = ED + EG + EC , and derive sharp bounds for each term.

The partition of the error into contributions from data errors, discretization errors
and computational errors is guided by a natural decomposition of the error repre-
sentation into terms that would give a zero net contribution to the total error, if the
source of the error were to be removed. Thus, the data error ED is precisely zero
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if the error in initial data is zero, the discretisation error EG is zero in the limit as
the time step goes to zero, and the computational error is zero if the discrete equa-
tions that define the numerical solution in each time step are solved exactly, which
can only accomplished in the absence of round-off errors. The precise definitions of
these contributions are stated in Theorem 2.

To estimate the computational error, we introduce the discrete residual R̄ defined
as follows. For any p ≥ 0, let {λk}pk=0 be the Lagrange nodal basis for Pp([0, 1]),
the space of polynomials of degree ≤ p on [0, 1], on a partition 0 ≤ τ0 < τ1 <

· · · < τp ≤ 1 of [0, 1], that is, span{λk}pk=0 = Pp([0, 1]) and λi(τj ) = δij . Then, the
discrete residual R̄k is defined on each interval (tm−1, tm] by

R̄m
k = λk(0)[U ]m−1 +

∫ tm

tm−1

λk((t − tm−1)/�tm)R(t) dt, k = 0, 1, . . . , p. (8)

We also define the corresponding interpolation operator π onto the space of piece-
wise polynomial functions on the partition 0 = t0 < t1 < · · · < tM = T

by

(πv)(t) =
p∑

k=0

v(tm−1 + τk�tm) λk((t − tm−1)/�tm), t ∈ (tm−1, tm].

We may now prove the following a posteriori error estimate.

Theorem 2 (Error estimate) Let u : [0, T ] → R
N be the exact solution of the initial

value problem (1), let z : [0, T ] → R
N be the solution of the dual problem (5), and

let U : [0, T ] → R
N be any piecewise smooth approximation of u on a partition

0 = t0 < t1 < · · · < tM = T of [0, T ], that is, U |(tm−1,tm] ∈ C∞((tm−1, tm]) for
m = 1, 2, . . . ,M (U is left-continuous). Then, for any p ≥ 0 such that the dual
solution z is p + 1 times differentiable, the following error estimate holds:

E ≡ 〈zT , U(T ) − u(T )〉 = ED + EG + EC, (9)

where

|ED| ≤ SD ‖U(0) − u(0)‖,
|EG| ≤ SG Cp max

[0,T ]
{
�tp+1(‖[U ]‖/�t + ‖R‖)} ,

|EC | ≤ SC C′
p max
0≤k≤p

max
[0,T ]

‖�t−1R̄k‖.

Here, Cp and C′
p are constants depending only on p. The stability factors SD , SG,

and SC are defined by

SD = ‖z(0)‖,
SG =

∫ T

0
‖z(p+1)‖ dt,

SC =
∫ T

0
‖πz‖ dt.
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The precise definitions of the data error ED , the discretization error EG and the
computational error EC are:

ED = 〈z(0), e(0)〉,

EG =
M∑

m=1

[
〈z(tm−1) − πz(t+m−1), [U ]m−1〉 +

∫ tm

tm−1

〈z − πz,R〉 dt
]

,

EC =
M∑

m=1

[
〈πz(t+m−1), [U ]m−1〉 +

∫ tm

tm−1

〈πz,R〉 dt
]

.

Proof Starting from the error representation of Theorem 1, we add and subtract
the degree p left-continuous piecewise polynomial interpolant πz defined above to
obtain

〈zT , e(T )〉 = 〈z(0), e(0)〉
+

M∑
m=1

[
〈z(tm−1) − πz(t+m−1), [U ]m−1〉 + ∫ tm

tm−1
〈z − πz,R〉 dt

]

+
M∑

m=1

[
〈πz(t+m−1), [U ]m−1〉 + ∫ tm

tm−1
〈πz,R〉 dt

]

≡ ED + EG + EC.

We first note that the data error ED is bounded by ‖z(0)‖ ‖e(0)‖ ≡ SD ‖e(0)‖. By
an interpolation estimate, we may estimate the discretisation error EG by

EG ≤
M∑

m=1

[
‖z(tm−1) − πz(t+m−1)‖ ‖[U ]m−1‖ +

∫ tm

tm−1

‖z − πz‖ ‖R‖ dt
]

≤ Cp max
[0,T ]

{
�tp+1(‖[U ]‖/�t + ‖R‖)

} M∑
m=1

∫ tm

tm−1

‖z(p+1)‖ dt,

where
∑M

m=1

∫ tm
tm−1

‖z(p+1)‖ dt = ∫ T

0 ‖z(p+1)‖ dt ≡ SG and Cp is an interpolation
constant. Finally, to estimate the computational error, we expand πz in the nodal
basis to obtain

EC =
M∑

m=1

p∑
k=0

〈
z(tm−1 + τk�tm), λk(0)[U ]m−1 +

∫ tm

tm−1

λk((t − tm−1)/�tm)R(t) dt

〉

=
M∑

m=1

p∑
k=0

〈z(tm−1 + τk�tm), R̄m
k 〉 =

M∑
m=1

�tm

p∑
k=0

〈z(tm−1 + τk�tm), �t−1
m R̄m

k 〉

≤
M∑

m=1

�tm

p∑
k=0

‖z(tm−1 + τk�tm)‖ ‖�t−1
m R̄m

k ‖

≤ max
0≤k≤p

max
[0,T ]

‖�t−1R̄k‖
M∑

m=1

�tm

p∑
k=0

‖z(tm−1 + τk�tm)‖

≤ C′
p max
0≤k≤p

max
[0,T ]

‖�t−1R̄k‖
M∑

m=1

∫ tm

tm−1

‖πz‖ dt,
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where
∑M

m=1

∫ tm
tm−1

‖πz‖ dt = ∫ T

0 ‖πz‖ dt ≡ SC and C′
p is a constant depending only

on p. This completes the proof.

Remark 2 Theorem 2 estimates the size of 〈zT , U(T ) − u(T )〉 for any given vec-
tor zT . We may thus estimate any bounded linear functional of the error at the final
time by choosing zT as the corresponding Riesz representer. In particular, we may
estimate the error in any component ui(T ) of the solution by setting zT to the ith unit
vector for i = 1, 2, . . . , N .

Remark 3 In the practical application of Theorem 2, we make the approximation
u ≈ U in the linearisation (6) since the exact solution u is not known. This is common
practice in the error analysis literature. As a result, the computed error estimate is
valid only in the regime when the computed trajectory U stays close to the exact
trajectory u. Interestingly, the result is that—for the examples we have encountered—
the estimate of Theorem 2 overestimates the size of the error when U is no longer
close to u and the linearisation is no longer valid.

Theorem 2 extends standard a posteriori error estimates for systems of ordinary
differential equations in two ways. First, it does not make any assumption on the
underlying numerical method, other than that the produced numerical solution U is
piecewise differentiable with bounded derivatives. Second, it includes the effect of
numerical round-off errors. A similar estimate can be found in [25] but only for the
simplest case of the piecewise linear cG(1) method (Crank–Nicolson).

Our analysis effectively treats round-off errors in a similar way to how numerical
quadrature errors are treated in the classical a posteriori error analysis [7]. In partic-
ular, the analysis is based on the formulation of a single continuous dual (adjoint)
problem. In recent work, Estep and colleagues have shown that for iterative meth-
ods, the effect of the iteration error can be analyzed using a new dual problem with
a different linearisation than the linearisation (6) commonly used for nonlinear prob-
lems [4, 10]. This improves the applicability of the a posteriori to account for the
different sources contributing to the total error: discretisation error and iteration error.
In the current work, the analysis is based on the classic linearisation (6) and a single
dual problem to account for the stability and accumulation of all error sources. As
will be shown in Section 4, this gives an estimate for the accumulation of round-off
errors in very good agreement with numerical experiments.

We now investigate the propagation of numerical round-off errors in more detail.
As in Theorem 2, EC denotes the computational error defined by

EC =
M∑

m=1

[
〈πz(t+m−1), [U ]m−1〉 +

∫ tm

tm−1

〈πz,R〉 dt
]

. (10)

Theorem 2 bounds the computational error in terms of the discrete residual defined
in (8). The discrete residual tests the continuous residual R = U̇ − f of (1) against
polynomials of degree p. In particular, it tests how well the numerical method
satisfies the relation

U(tm) = U(tm−1) +
∫ tm

tm−1

f (U, ·) dt. (11)
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With a machine precision of size εmach, our best hope is that the numerical method
satisfies (11) to within a tolerance of size εmach for each component of the vector U .
It follows by the Cauchy–Schwarz inequality that

max
k,m

‖R̄m
k ‖ ≤ εmach

√
N.

We thus have the following corollary.

Corollary 1 The computational error EC of Theorem 2 is bounded by

|EC | ≤ SC C′
p

εmach
√

N

min[0,T ] �t
.

This indicates that the computational error scales like �t−1; the smaller the time
step, the larger the computational error. At first, this seems non-intuitive, but it is a
simple consequence of the fact that a smaller time step leads to a larger number of
time steps and thus a larger number of round-off errors.

3.4 Estimation of round-off errors

The estimate of Corollary 1 is overly pessimistic. It is based on the assumption that
round-off errors accumulate without cancellation. In practice, the round-off error
is sometimes positive and sometimes negative. As a simple model, we make the
assumption that the round-off error is a random variable which takes the value+εmach
or −εmach with equal probabilities,

(R̄m
k )i =

{ +εmach, p = 0.5,
−εmach, p = 0.5,

(12)

for all m, k, i. In reality, round-off errors are not uncorrelated random variables, but
the simple model (12) may still give useful results. For a discussion on the applica-
bility of random models to the propagation of round-off errors, see [15] (Section 2.8)
and [14].

Under the assumption (12), we find that the expected size of the computational
error scales like �t−1/2. As we shall see in the next section, this is also confirmed
by numerical experiments. A similar result is obtained in a series of papers by
Li et al. [23, 24]. In [23], it is first noted that there exists an optimal time step; that is,
a time step for which discretisation errors and round-off errors balance. In [24], it is
then found that the round-off error is inversely proportional to the square root of the
time step. These results are confirmed by the following theorem.

Theorem 3 Assume that the round-off error is a random variable of size ±εmach with
equal probabilities. Then, the root-mean squared expected computational error EC

of Theorem 2 is bounded by

(E[E2
C])1/2 ≤ SC2

√
C′

p

εmach

min[0,T ]
√

�t
,



Numer Algor (2017) 76:191–210 201

where SC2 =
(∫ T

0 ‖πz‖2 dt
)1/2

and C′
p is a constant depending only on p.

Proof As in the proof of Theorem 2, we obtain

EC =
M∑

m=1

p∑
k=0

〈z(tm−1 + τk�tm), R̄m
k 〉 =

M∑
m=1

p∑
k=0

N∑
i=1

zi(tm−1 + τk�tm)(R̄m
k )i,

where by assumption (R̄m
k )i = εmachxmki and xmki = ±1 with probability 0.5 and

0.5, respectively. It follows that

E2
C =

M∑
m,n=1

p∑
k,l=0

N∑
i,j=1

zi(tm−1 + τk�tm)zj (tn−1 + τl�tn) ε2machxmkixnlj

=
∑

(m,k,i)=(n,l,j)

z2i (tm−1 + τk�tm) ε2machx
2
mki

+
∑

(m,k,i)�=(n,l,j)

zi(tm−1 + τk�tm)zj (tn−1 + τl�tn) ε2machxmkixnlj .

We now note that x2
mki = 1. Furthermore, yijklmn = xmkixnlj is a random variable

which takes the values +1 and −1 with equal probabilities. We thus find that

E[E2
C] = ε2mach

M∑
m=1

p∑
k=0

N∑
i=1

z2i (tm−1 + τk�tm) + 0

= ε2mach

M∑
m=1

p∑
k=0

‖z(tm−1 + τk�tm)‖2

≤ ε2mach

min[0,T ] �t

M∑
m=1

�tm

p∑
k=0

‖z(tm−1 + τk�tm)‖2 ≤ S2
C2

C′
p

ε2mach

min[0,T ] �t
,

where SC2 =
(∫ T

0 ‖πz‖2 dt
)1/2

. This completes the proof.

Remark 4 By Cauchy–Schwarz, the stability factor SC of Theorem 2 is bounded by√
T SC2 .

Remark 5 In [14], the effect of numerical round-off error accumulation and its rela-
tion to Brownian motion (Brouwer’s law) are discussed in the context of symplectic
methods for Hamiltonian systems. It should be noted that although the assumptions
of Theorem 3 are similar to those in [14], namely that the process of error accumula-
tion for round-off errors is random rather than systematic, the point under discussion
in the present work is different: the effect of time step size rather than the effect of
the interval length.
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3.5 Application to Galerkin finite element methods

We conclude this section by discussing how the above error estimates apply to the
particular methods used in this work. The estimate of Theorem 2 is valid for any
numerical method but is of particular interest as an a posteriori error estimate for the
finite element methods cG(q) and dG(q) (see [6, 16–18]).

The continuous and discontinuous Galerkin methods cG(q) and dG(q) are formu-
lated by requiring that the residual R = U̇ − f (U, ·) be orthogonal to a suitable
space of test functions. By making a piecewise polynomial ansatz, the solution may
be computed on a sequence of intervals partitioning the computational domain [0, T ]
by solving a system of equations for the degrees of freedom on each consecutive
interval. For a particular choice of numerical quadrature and degree q, the cG(q) and
dG(q) methods both reduce to standard implicit Runge–Kutta methods.

In the case of the cG(q) method, the numerical solution U is a continuous
piecewise polynomial of degree q that on each interval (tn−1, tn] satisfies∫ tn

tn−1

v R dt = 0 (13)

for all v ∈ Pq−1([tn−1, tn]). It follows that the discrete residual (8) is zero if p ≤
q−1. However, this is only true in exact arithmetic. In practice, the discrete residual is
nonzero and measures how well we solve the cG(q) (13), including round-off errors
and errors from numerical quadrature.1 For the cG(q) method, we further expect the
residual to converge as�tq . Thus, choosing p = q−1 in Theorem 2, one may expect
the error for the cG(q) method to scale as

E = ED + EG + EC ≤ S(T )
(
εmach + �t2q + �t−1/2εmach

)
. (14)

Here, S(T ) denotes a generic stability factor. As in Theorem 2, each term con-
tributing to the total error is in reality multiplied by a particular stability factor. In
practice, however, the growth rates of the different stability factors are similar and
related by a constant factor.

4 Numerical results

In this section, we present numerical results in support of Theorem 2 and Theo-
rem 3. The examples are the well-known Lorenz system and Van der Pol oscillator.
Both examples illustrate the competing convergence rates for discretisation errors,
decreasing rapidly for smaller time steps, and computational errors (round-off error),
increasing for smaller time steps.

The numerical results were obtained using the authors’ software package Tan-
ganyika [27] which implements the methods described in [25] using high precision

1To account for additional quadrature errors present if the integral of (13) is approximated by quadrature,
one may add and subtract an interpolant πf of the right-hand side f in the proof of Theorem 2 to obtain
an additional term EQ = SQ max[0,T ] ‖πf − f ‖ where SQ = ∫ T

0 ‖z‖ dt ≈ SC .
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numerics provided by GMP [13]. A complete code for reproducing all results in this
paper is available at [22]. Although the software package Tanganyika supports adap-
tive time-stepping, the focus of the current examples are not on strategies for adaptive
time step selection, but rather on verifying the theoretical predictions of the effect of
numerical round-off errors and the separation of contributions to the total error stated
in Theorem 2. For details on the implementation, see [20].

4.1 The Lorenz system

We first consider the well-known Lorenz system [28], a simple system of three
ordinary differential equations exhibiting rapid amplification of numerical errors:

⎧⎪⎨
⎪⎩

ẋ = σ(y − x),

ẏ = rx − y − xz,

ż = xy − bz,

(15)

where σ = 10, b = 8/3, and r = 28. We take u(0) = (1, 0, 0).
The Lorenz system is deterministically chaotic. In the context of a posteriori error

analysis of numerical methods for the solution of ODE initial value problems, as
in the present work, this means that solutions may, in principle, be computed over
arbitrarily long time intervals, but to a rapidly increasing cost as function of the final
time T .

4.1.1 Computability and growth of stability factors

In [11], computability was demonstrated and quantified for the Lorenz on time inter-
vals of moderate length (T = 30) on a standard desktop computer. This result was
further extended to time T = 48 in [26], using high order (‖e(T )‖ ∼ �t30) finite
element methods. Solutions over longer time intervals have been computed based on
shadowing (the existence of a nearby exact solution), see [5], but for unknown ini-
tial data. Related work on high-precision numerical methods applied to the Lorenz
system include [31] and [19].

Fig. 2 Growth of the stability factor SC (left) for the Lorenz system on the time interval [0, 1000] and a
detailed plot on the time interval [0, 50] (right)
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Fig. 3 Accurate reference solution for the three components of the Lorenz system on the interval [0, 1000]
with the x and y components plotted in blue and green respectively (and almost overlaid) and the z

component in red
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Fig. 4 Error at time T = 30 for the cG(1) solution (left) and at time T = 40 for the cG(5) solution
(right) of the Lorenz system. The slopes of the green lines are −0.35 ≈ −1/2 and 1.95 ≈ 2 for the cG(1)
method. For the cG(5) method, the slopes are −0.49 ≈ −1/2 and 10.00 ≈ 10

In [21], the authors study the computability of the Lorenz system in detail on the
time interval [0, 1000]. Computability is here defined as the maximal final time T =
T (εmach) such that a solution may be computed with a given machine precision εmach.
The computability may be estimated by examining the growth rate of the stability
factors appearing in the error estimate of Theorem 2. By numerical solution of the
dual problem, it was found in [21] that the stability factors grow exponentially as
S(T ) ∼ 100.388T ∼ 100.4T ; see Fig. 2. By examining in detail the terms contributing

to the error estimate (9), one finds that an optimal step size is given by �t ∼ ε

1
2q+ 1

2
mach

and that the computability of the Lorenz system is given by

T (εmach) ∼ 2.5nmach, (16)

where nmach = − log10 εmach is the number of significant digits. Based on this
estimate, one may conclude that with 16-digit precision, the Lorenz system is com-
putable on [0, 40], while using 400 digits, the Lorenz system is computable on
[0, 1000].

We stress that the plot of the stability factor in Fig. 2 gives a good account for the
rate of error accumulation as long as the numerical solutionU stays close to the exact
solution u, which is indeed the case for our computed solution. However, once U

departs significantly from u, the growth rate indicated by Fig. 2 will grossly overes-
timate the error accumulation, since the numerical solution will settle into a bounded
orbit (of radius R ≈ 50). The total error itself will remain bounded, whereas the sta-
bility factor would indicate an exponential growth. This means that the exponential
growth rate S(T ) ∼ 100.4T can be used to estimate the limit of computability—the
point at which the solution is no longer computable with given resources—but does
not give a correct account for the growth rate beyond that point.

In Fig. 3, we plot the solution of the Lorenz system on the interval [0, 1000].
The solution was computed with cG(100), which is a method of order 2q = 200,
a time step of size �t = 0.0037, 420-digit precision arithmetic,2 and a tolerance

2The requested precision from GMP was 420 digits. The actual precision is somewhat higher depending
on the number of significant bits chosen by GMP.
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for the discrete residual of size εmach ≈ 2.26 · 10−424. The very rapid (exponential)
accumulation of numerical errors makes the Lorenz “fingerprint” displayed in Fig. 3
useful as a reference for verification of solutions of the Lorenz system. If a solution is
only slightly wrong, the error is quickly magnified so that the error becomes visible
by a direct inspection of a plot of the solution.

4.1.2 Order of convergence and optimal step size

We next investi gate how the accumulated error at final time depends on the size of the

time step �t . According to (14), we expect the error to scale like �t2q +�t− 1
2 εmach.

Fig. 5 Top: The accumulated total error at final time T = 40 for numerical solutions of the Lorenz system
with different step size �t and polynomial degree q using the cG(q) method. Due to the random nature of
the round-off errors, the data has been smoothed. Lower left: Contour lines of the smoothed data. Lower
right: The raw data included for completeness
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Thus, for a gradually decreasing step size, we expect the error to decrease at a rate of

�t2q . However, as the time step becomes smaller the second term �t− 1
2 will grow

and, for small enough �t , be the dominating contribution to the error. This picture
is confirmed by the results presented in Fig. 4 for two numerical methods, the 2nd
order cG(1) and the 10th order cG(5) method. Of particular interest in this figure
is the very short range in which the 10th order convergence of the cG(5) method is
recovered; with only 16 digits of precision, the dominating contribution to the total
error is the accumulated round-off error. We also note that for both methods, one may
find an optimal size of the time step �t for which both contributions to the total error
are balanced.

In Fig. 5, results are presented for an investigation of the influence on both the step
size �t and the polynomial degree q in the cG(q) method. As expected, the minimal
error is obtained when both the polynomial degree q and the step size are maximal.
Maximising the step size minimizes the influence of numerical round-off errors (the

term �t− 1
2 ), and as a consequence the polynomial degree q must be large in order to

suppress the discretisation error (the term �t2q ).

4.2 The Van der Pol oscillator

We next consider the Van der Pol oscillator, given by the second order ODE
ü = μ(1 − u2)u̇ − u.

Rewritten as a system of first order equations, it reads{
u̇1 = u2,

u̇2 = μ(1 − u21)u2 − u1.
(17)

Fig. 6 Growth of the computational stability factor SC(T ) for the Van der Pol oscillator (17)
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Fig. 7 Detail of growth of the computational stability factor SC(T ) for the Van der Pol oscillator (17)

We compute solutions on [0, 2μ] for μ = 103 and u(0) = (2, 0). This config-
uration is used as a test problem for ODE solvers in [29]. For large values of the
parameter μ, the solution quickly approaches a limit cycle.

As for the Lorenz system, the stability factors(s) grow very rapidly (exponen-
tially), as indicated in Figs. 6 and 7. However, the rapid growth is localized in time
close to T ≈ 807 · n for n ∈ N. For times before or after these points of instabil-
ity, the stability factor is of moderate size. This means that solutions are difficult to
compute only at points near the points of instability; that is, a solution may be easily
computed at time t = 1000 but not at time t = 807.

This rapid growth of stability factors is reflected in the growth of the error for
numerical solutions as shown in Figs. 8 and 9. Examining these plots in more detail,
we notice that the error grows in accordance with the error estimate of Theorem 2

Fig. 8 Growth of error for solutions of the Van der Pol oscillator (17) computed with time step�t = 10−3
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Fig. 9 Detail of growth of error for solutions of the Van der Pol oscillator (17) computed with time step
�t = 10−3

and (14). For the numerical solutions studied in Figs. 8 and 9, the discretisation error
dominates for low order methods. As the polynomial degree q is increased, the error
decreases until the point when the computational error starts to dominate. We notice
that the baseline error is of size E ∼ 10−14 for the highest order methods when the
stability factor is of size S ∼ 102, and the error spikes at E ∼ 10−4 at times when
the stability factor takes on large values S ∼ 1012. This is in good agreement with
the error estimate: E ∼ S · 10−16.

5 Conclusions

We have proved error estimates accounting for data, discretization, and compu-
tational (round-off) errors in the numerical solution of initial value problems for
ordinary differential equations. These error estimates quantify the accumulation rates
for numerical round-off error as inversely proportional to the square root of the step
size, and proportional to a specific computable stability factor. The effect of round-
off errors is mostly pronounced for large values of the stability factor, which includes
both chaotic dynamical systems as well as long-time integration of systems which
exhibit only a moderate growth of the stability factor.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.
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