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INTRODUCTION: Cancer is a leading cause of
death worldwide, and there is great need to de-
fine themolecular mechanisms driving the de-
velopment and progression of individual tumors.
The Hallmarks of Cancer has provided a frame-
work for a deeper molecular understanding of
cancer, and the focus so far has been on the ge-
netic alterations in individual cancers, including
genome rearrangements, gene amplifications,
and specific cancer-driving mutations. Using
systems-level approaches, it is now also possi-

ble to define downstream effects of individual
genetic alterations in a genome-wide manner.

RATIONALE: In our study, we used a systems-
level approach to analyze the transcriptome of
17 major cancer types with respect to clinical
outcome, based on a genome-wide transcrip-
tomics analysis of ~8000 individual patients
with clinical metadata. The study was made
possible through the availability of large open-
access knowledge-based efforts such as the

Cancer Genome Atlas and the Human Protein
Atlas. Here, we used the data to perform a
systems-level analysis of 17 major human can-
cer types, describing both interindividual and
intertumor variation patterns.

RESULTS: The analysis identified candidate
prognosticgenesassociatedwithclinicaloutcome
for each tumor type; the results show that a large
fraction of cancer protein-coding genes are differ-
entially expressed and, inmany cases, have an im-
pact on overall patient survival. Systems biology
analyses revealed that gene expressionof individ-
ual tumorswithin a particular cancer varied con-

siderably and could exceed
the variation observed be-
tweendistinct cancer types.
Nogeneralprognostic gene
necessary for clinical out-
comewas applicable to all
cancers.Shorterpatientsur-

vivalwasgenerally associatedwithup-regulation
of genes involved inmitosis and cell growth and
down-regulation of genes involved in cellular
differentiation. The data allowedus to generate
personalized genome-scalemetabolicmodels for
cancer patients to identify key genes involved in
tumor growth. In addition, we explored tissue-
specific genes associatedwith the dedifferentia-
tion of tumor cells and the role of specific cancer
testis antigens on a genome-wide scale. For lung
and colorectal cancer, a selection of prognostic
genes identified by the systems biology effort
wereanalyzed in independent,prospectivecancer
cohortsusing immunohistochemistry to validate
the gene expression patterns at the protein level.

CONCLUSION: A Human Pathology Atlas has
been created as part of theHumanProteinAtlas
program to explore the prognostic role of each
protein-coding gene in 17 different cancers. Our
atlas uses transcriptomics and antibody-based
profiling to provide a standalone resource for
cancer precision medicine. The results demon-
strate the power of large systems biology efforts
that make use of publicly available resources.
Using genome-scale metabolic models, cancer
patients are shown tohavewidespreadmetabolic
heterogeneity, highlighting the need for precise
andpersonalizedmedicine for cancer treatment.
Withmore than900,000Kaplan-Meier plots, this
resource allows exploration of the specific genes
influencing clinical outcome for major cancers,
paving the way for further in-depth studies
incorporating systems-level analyses of cancer.
All data presented are available in an interac-
tive open-access database (www.proteinatlas.org/
pathology) to allow for genome-wide exploration
of the impact of individual proteins on clinical
outcome in major human cancers.▪
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Schematic overview of the Human Pathology Atlas. A systems-level approach enables
analysis of the protein-coding genes of 17 different cancer types from ~8000 patients. Results
are available in an interactive open-access database.
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Cancer is one of the leading causes of death, and there is great interest in understanding
the underlying molecular mechanisms involved in the pathogenesis and progression of
individual tumors. We used systems-level approaches to analyze the genome-wide
transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical
outcome. A general pattern emerged: Shorter patient survival was associated with
up-regulation of genes involved in cell growth and with down-regulation of genes involved
in cellular differentiation. Using genome-scale metabolic models, we show that cancer
patients have widespread metabolic heterogeneity, highlighting the need for precise and
personalized medicine for cancer treatment. All data are presented in an interactive
open-access database (www.proteinatlas.org/pathology) to allow genome-wide
exploration of the impact of individual proteins on clinical outcomes.

C
ancer is one of the leading causes of death
worldwide, and both the incidence and
prevalence of cancer continue to increase.
Most current cancer drugs are effective only
in a subgroup of patients owing to inter-

individual tumor heterogeneity, and large gaps
remain in our current understanding of the best
treatment approaches and the underlying molec-
ular mechanisms driving cancer pathogenesis (1).
There is therefore an urgent need for the develop-
ment of personalized diagnostic and therapeu-
tic strategies usingmethods such as systems-level
analysis (2–4). Such approaches can be used to
study the genome-wide effect of gene rearrange-
ments, amplifications, and specific cancer-driving
mutations on protein-coding regions.
Thanks to large open-access knowledge-based

efforts, such as The Cancer Genome Atlas (TCGA)
(5), the Human Protein Atlas (HPA) (6), the GTEx
consortium (7), and recount2 (8), it is now pos-
sible to explore the genome-wide expression of
individual genes in different tissues and cancers
(9). The database resource from TCGA represents
a comprehensive and coordinated effort to accel-

erate our understanding of cancer (5), and the
HPA and GTEx represent international efforts
to map the expression of protein-coding genes in
normal human tissues. Many of the patients in-
cluded in the TCGA database are also accompa-
nied by clinical survival metadata, allowing clinical
outcomes to be associated with genome-wide ex-
pression patterns of protein-coding genes and
metabolic modeling of individual cancer patients.
Such analysis is facilitated by the recent sugges-
tion that there is a gene-specific correlation be-
tween RNA and protein levels in human tissues
and cells, allowing quantitative analyses of mRNA
levels to be used as proxies for the corresponding
protein levels (10).
Here, we used data from TCGA and the HPA

efforts to perform a systems-level analysis of
17 major human cancer types corresponding to
7932 tumor samples, and describe both inter-
individual and intertumor variation patterns.
The analysis identified candidate prognostic
genes associated with clinical outcome for each
tumor type and generated metabolic models for
individual patients. A Human Pathology Atlas
has been created as part of the Human Protein
Atlas program to explore the prognostic role of
each protein-coding gene in each cancer type by
means of transcriptomics and antibody-based
profiling (Fig. 1A). More than 100 million Kaplan-
Meier survival plots were generated as part of
the genome-wide analysis of potential prognos-
tic genes in these cancers. More than 900,000
survival plots—each accompanied with statistical
significance—can be visualized at the new pa-
thology resource.

To investigate the key prognostic genes affect-
ing patient survival, we generated cancer-specific
coexpression networks for each of the studied
cancer types and examined the functional rela-
tionship between the prognostic genes and the
genes associated with Hallmarks of Cancer (11).
Personalized genome-scale metabolic models
(GSMMs) for the tumors in each cancer patient
were generated to study the individualmetabolic
differences among tumors. This analysis also al-
lowed us to study the role of tissue-specific genes
in the “dedifferentiation” of cancer and the role of
specific cancer testis antigens (CTAs) on a genome-
wide scale. For two of the cancer types, lung and
colorectal cancer, a selection of prognostic genes
identified by the systems biology effort were
analyzed in independent prospective cancer co-
horts, using immunohistochemistry (IHC) to val-
idate the gene expression patterns at the protein
level.
All primary Human Pathology Atlas data are

freelyavailablewithout restrictions in thepublicopen
access database (www.proteinatlas.org/pathology)
that is part of the Human Protein Atlas program.
Significant prognostic genes in each cancer type
are highlighted together with Kaplan-Meier plots
based on overall survival and accompanied with
data for individual gene expression heterogene-
ity of prognostic genes at the time of diagnosis.

Transcriptome analysis of
human cancers

We retrieved RNA sequencing (RNA-seq) data
together with clinical metadata corresponding
to the 33 different human cancers that are avail-
able in TCGA (table S1). As a result, data were
collected from 9666 individuals out of the 11,000
cancer patients included in the TCGA project from
the Genomic Data Commons (GDC) Data Portal
(https://gdc-portal.nci.nih.gov/). First, using hier-
archical clustering, we investigated the relation-
ship between the global gene expression patterns
of all protein-coding genes in the 33 cancer types
(n = 19,571) and the gene expression patterns in
37 normal human tissues obtained from 162 healthy
subjects in the HPA project (6) (fig. S1). RNA-seq
data from all cancer tissues and all normal tissues
were processed in the same bioinformatics pipe-
line and normalized as fragments per kilobase
of exon per million fragments mapped (FPKM).
We found that a majority of all cancers (26 of
33) clustered in the same group, while the ma-
jority of the normal tissues (33 of 37) clustered
in a different group, indicating that most cancer
types share expression features that render them
significantly different from normal tissues. Nota-
bly, we found that liver tissue and the primary
form of liver cancer, hepatocellular carcinoma, as
well as bone marrow and acute myeloid leukemia
clustered together, suggesting that these pheno-
types are more closely related independent of a
benign or malignant status.
Wepreviously classified all protein-coding genes

into six different categories according to their ex-
pression across normal tissues and organs (6).
The classification, based on a FPKM cut-off >1,
ranged fromgenes expressed in all tissues to those
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with tissue-restricted expression and those not
detected in any of the analyzed tissues. The tran-
scriptomics data for the 33 different cancers al-
lowed us to classify the protein-coding genes into
six different categories based on the expression
level. Our analysis revealed that a large fraction
(41%) of the protein-coding geneswere expressed
in all analyzed cancers, while approximately 46%
(n = 9057) displayed more tumor type-restricted
expression. Among the protein-coding genes, 13%
were not detected in any tumor types investigated
(fig. S2 and table S2). The majority of the genes
(n = 5772) detected in all samples were shared
between cancers and normal tissues, whereas
2401 additional genes were expressed in all can-
cers analyzed, but with more restricted expres-
sion in the normal tissues. These “housekeeping”
genes in tumors are enriched in biological func-

tions related toDNAreplication and the regulation
of apoptosis and mitosis (table S3 and fig. S3).
Subsequently, we focused our analysis on 17

tumor types with large numbers of patients avail-
able in the TCGA data set accompanied by clinical
metadata (Fig. 1A and table S4). The connectivity
among these 17 cancers was determined using
principal components analysis (PCA) based on
the expression pattern of all protein-coding genes
(Fig. 1B and fig. S4). We observed a relationship
among cancer types that shared a similar tissue
type of origin or similar morphological features
and phenotypic expression patterns. For example,
cancers with a dominating squamous cell carci-
noma phenotype, such as cervical or head and
neck cancer, clustered together close to the re-
lated urothelial cell carcinoma and non–small cell
lung cancer (NSCLC), which also contains a large

fraction of squamous cell carcinoma. Adeno-
carcinomas that originate from the gastrointestinal
tract, including pancreatic cancer, also clustered
separately from the cluster containing the three
adenocarcinomas representing female cancer (i.e.,
breast, endometrial, and ovarian cancer). Inter-
estingly, testicular germ cell tumors were located
close to melanoma and were well separated from
the more classical epithelial tumor types, whereas
glioma (brain) and hepatocellular (liver) carci-
noma clearly represented the most divergent
tumor types in this global expression analysis.

Individual variation among cancers

To determine the individual gene expression pat-
terns within and among certain cancer types, we
used PCA to visualize the global expression pat-
terns for all 9666 individual tumors that were
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Fig. 1. Analysis of the global expression patterns of protein-coding
genes in human cancers. (A) Schematic drawing of the Human
Pathology Atlas effort described herein. (B) Principal components analysis
(PCA) showing the similarities in expression of 19,571 protein-coding genes

among 17 cancer types. See fig. S4 for additional PCA analysis with more
stratified patient cohorts. (C) PCA plot showing the individual differences
in the genome-wide global expression profiles among the 17 cancer types
in 9666 individual patients.
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included in the patient cohorts, representing the
17 major cancer types (Fig. 1C). The results showed
that the interindividual variation within each type
of cancer was considerable, and that there was a
large overlap in expression among individuals
with different cancer types. One exception was
liver cancer (Fig. 1C, upper left), in which the in-
dividual tumors showed relatively unique global
expression patterns with little overlap with the
other cancer types. Thus, gene expression varies
considerably in individual tumors within a parti-
cular cancer subtype. For some patient tumors, the
global expression pattern resembles other cancer
types more than it does the given type of diagnosed
cancer, which reinforces previous discoveries (12).

Clinical outcome based on gene
expression analysis

First, we analyzed the survival data from the
TCGA metadata (fig. S5 and table S4). Prostate
cancer and testis cancer (germ cell tumors) have
the most favorable 3-year survival rates (98% and
97%, respectively), while high-grade glioma and
pancreatic cancer have the lowest 3-year survival
rates (8% and 35%, respectively). The patient sur-
vival data and matched transcriptomic data en-
abled us to perform gene-centric and genome-wide
survival analyses to identify prognostic genes
across the 17 cancer types. For each cancer, all
patients with survival data were included in the
Kaplan-Meier survival analysis spanning 10 years
as extracted from the metadata. The RNA levels
at the time of diagnosis were plotted against the
survival data as extracted from the follow-up
clinical data (see examples in Fig. 2A). For each
gene and cancer type, the patient cohort was
stratified into two groups with the highest and
lowest expression (FPKM) based on individual
expression levels. To choose the best FPKM cut-
offs for grouping the patients most significantly,
we used all FPKM values from the 20th to 80th
percentiles to group the patients, examined sig-
nificant differences in the survival outcomes of
the groups, and selected the value yielding the
lowest log-rank P value. In total, more than 100
million Kaplan-Meier plots were generated that
corresponded to all 19,571 protein-coding genes
across the 17 cancer types. As a comparison, we
also tested the method described by Hothorn and
Lausen (13) and the results were highly similar
(fig. S6). Two examples of genes in the liver cancer
cohort are shown in Fig. 2B, including the sur-
vival data for the individual patients in the liver
cancer cohort.
We identified two types of prognostic marker

genes in terms of clinical outcome: (i) unfavorable
prognostic genes, for which higher expression of
a given gene was correlated with a poor patient
survival outcome, and (ii) favorable prognostic
genes, for which higher expression of a given
gene was correlated with a longer patient survival
outcome. A prognostic gene for a given cancer
was defined as a gene for which the expression
level above or below the experimentally deter-
mined cutoff in an individual patient yields a
significant (P < 0.001) difference in overall survi-
val. The ratios of favorable and unfavorable prog-

nostic genes varied among the different types of
cancer. In Fig. 2C, the numbers of prognostic genes
for each of the 17 cancer types are shown, with
more detailed information provided in table S5.
It is noteworthy that 2375 genes showed opposite
effects on prognosis depending upon cancer type
and location, highlighting the need to perform
functional studies of prognostic genes. See table
S6 for a complete list of the prognostic associa-
tion of all genes in all cancers.
In Fig. 2A, examples of favorable and un-

favorable prognostic genes are shown for five of
the cancer types, based on the optimal stratifica-
tion P value calculated for each gene and cancer.
In each case, a significant separation (P < 0.001)
of the survival rate could be observed on the basis
of differences in the expression levels of the re-
spective gene. For some genes, the prognostic
value has previously been reported in the litera-
ture; one example is RBM3 (RNA binding motif
protein 3) (Fig. 2A), which has been implicated
in survival of colorectal cancer (14). However, most
of the identified prognostic genes lacked prior re-
ports of a survival link to a given cancer, making
them potential candidates for follow-up studies.
We extended the survival analysis by construct-

ing panels of the five most significant favorable
and unfavorable prognostic genes (table S7) for
each tumor type and used them to predict the
clinical outcome (Fig. 2A). Each of the five panels
generated a prognostic panel of high significance
(P < 10−5). Similarly, all of the other 12 cancer
types yielded prognostic panels in the same man-
ner with very high significance (table S7). It is
noteworthy that for cancers with more favorable
survival rates (e.g., testicular or prostate cancer),
a limited number of prognostic genes have been
identified, perhaps because the 3-year survival
probability for these cancers exceeds 95% and
thus larger patient cohorts are needed to obtain
prognostic genes with high significance. For two
of the tumors (i.e., renal and liver cancer), the
numbers of prognostic genes were much larger
than for the other cancers (6070 and 2892, re-
spectively) (Fig. 2C). This observation is interest-
ing because both are cancers with distinct features
and morphology, and liver cancer especially ap-
pears to be distantly related to other cancer types
(Fig. 1B). For renal cancer, the number of fa-
vorable (n = 2782) and unfavorable genes (n =
3288) was balanced, whereas there were a large
number of unfavorable prognostic genes (n =
2629) for liver cancer. An earlier study of renal
cancer based on TCGA data showed distinctly
different groups of patients that are not reflected
by morphological subtypes (e.g., clear cell, papil-
lary, and chromophobe phenotypes) (15). Thus,
the large number of prognostic genes may simply
reflect large global expression differences between
these two subtypes, resulting in a large number of
“passenger” genes and amuch smaller set of driver
genes affecting the clinical course of the patient.

Overlap of prognostic genes across
cancer types

We examined the extent of overlap of prognostic
genes among different cancer types. The correla-

tion among the 17 cancer types for favorable and
unfavorable prognostic genes was investigated
in a pairwise manner (Fig. 3A). For most cancers,
little correlation was observed, suggesting a rela-
tively limited number of common prognostic genes.
In contrast, a significant overlap of favorable prog-
nostic genes was observed for other cancers (e.g.,
renal, breast, lung, and pancreatic cancers). Simi-
larly, unfavorable prognostic genes for some can-
cers, including renal, liver, lung, and pancreatic
cancer, clustered together. However, a detailed
analysis revealed that no prognostic genes were
shared among more than 7 of the cancer types
(table S8).

Functional analysis of prognostic genes

A functional gene ontology (GO) analysis was
performed for the most significant prognostic
genes shared among the 17 major cancers, in-
cluding both favorable and unfavorable genes
(table S9). The results (Fig. 3B) suggest that
many of the common unfavorable genes are
related to cell proliferation, including mitosis, cell
cycle regulation, and nucleic acid metabolism.
In contrast, few GO functions were significantly
overrepresented by the common favorable genes;
the most enriched GO functions were positive
regulation of cell activation, regulation of immune
cell activation, and cell-cell adhesion.
Because genes associated with proliferation

were identified by the functional analysis, we
investigated the prognostic effect of all 314 cell
cycle genes defined by the Molecular Signature
database (16) in various cancer types. Interest-
ingly, more than 60% (n = 194) of these genes
were associated with an unfavorable clinical out-
come, with increased expression in at least one
of the analyzed cancer types (table S10). How-
ever, these prognostic cell cycle genes were gen-
erally only shared among a few cancers (Fig. 3C),
which suggests that although cell cycle genes are
commonly unfavorable genes, the use of a par-
ticular set of cell cycle genes and their effect on
clinical outcome may differ among individual
cancer types.

Tissue-enriched genes and
dedifferentiation in cancer

We further analyzed genes with high relative
expression that correlated with prolonged over-
all survival, for which a high expression level of
a particular gene was associated with a good clin-
ical outcome. Many of these favorable genes have
previously (6) been classified as elevated in cer-
tain normal tissues (table S11), as exemplified in
liver cancer (Fig. 3D), for which more than half
(n = 150) of the 263 favorable prognostic genes
were defined as tissue-elevated. To further inves-
tigate the molecular signatures related to differ-
entiation, we analyzed alterations in liver-enriched
genes (n = 154) defined by tissue-wide expression
studies of normal hepatocytes. Samples from nor-
mal liver tissue were analyzed and compared
with the transcriptomics patterns of the primary
liver cancer biopsies and the liver cancer–derived
HepG2 cell line. To further compare the expression
levels of the tissue-enriched proteins, we plotted
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the genome-wide transcriptomics data using the
relative changes between cancer/normal tissue
and cell line/normal tissue, respectively, for all
genes expressed in the normal liver. The liver-
enriched genes (red), liver group–enriched genes

(orange), and all other expressed genes (black) are
summarized in Fig. 4A. The global analysis dem-
onstrates a down-regulation in both the liver
cancer and the cancer cell line as compared with
the expression levels in normal liver tissue (lower

left quadrant). This quadrant contains 102 of the
154 liver-enriched genes (66%), which suggests
that liver-enriched genes are down-regulated as
a sign of dedifferentiation in both liver cancer
and liver cancer cell lines.

Uhlen et al., Science 357, eaan2507 (2017) 18 August 2017 4 of 11

Fig. 2. Identification of prognostic genes based on expression coupled
with clinical survival for 17 different cancer types. (A) Examples of Kaplan-
Meier plots for five major cancer patients stratified by the expression of an
unfavorable prognostic gene (first row), a favorable prognostic gene (second
row), and a combination of 10 prognostic genes (third row).The selected
unfavorable and favorable genes had the best log-rank P value based on the
Kaplan-Meier analysis, with average RNA expression levels more than the
median average expression of all protein-coding genes; the 10 marker genes
were a combination of the top five favorable and unfavorable genes with

expression higher than the median average expression. Black and red lines
show high and low (or, in the third row, favorable and unfavorable) expression,
respectively. (B) Examples of two prognostic genes in liver cancer. Left:
Distribution of log-rank P values against the RNA expression with different
RNA-level (FPKM) cutoffs. Right: Patient-centric scatterplot showing the
relationships between living years andRNAexpression of the prognostic genes.
(C) Numbers of genes showing favorable and unfavorable prognostic effects
in the 17 Human Pathology Atlas cancer types. Patient numbers for each
cancer are shown in parentheses.
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Metadata for the grade of malignancy (i.e.,
the degree of differentiation) are available in the
TCGA database, and this allowed us to analyze
the relative expression level of liver-enriched
genes in liver cancer and to compare different
grades of malignancy. The tumor grade was scored
using the modified nuclear grading scheme out-
lined by Edmondson and Steiner (17), with the
tumor grade categorized as low, intermediate,

or high. The malignancy grade (G1 to G3) (18)
was available for 341 cases. The analysis revealed
a significant correlation between the malignancy
grade and the expression pattern of liver-enriched
genes that were significantly down-regulated
in liver cancer. In Fig. 4B, examples of IHC-based
protein expression levels of a liver-enriched gene
(CYP2C9) are displayed for normal liver ver-
sus liver cancer with differing tumor grade. The

gene expression levels of CYP2C9 across all pa-
tients are also shown as box plots for different
tumor grades (Fig. 4C). In addition, we analyzed
the distribution of correlation coefficients for all
analyzed liver-enriched genes compared with
that of a randomly selected set of genes (Fig. 4D).
Randomly selected genes showed no correlation
(median rho = 0.07), whereas the tissue-enriched
genes showed a negative correlation, with reduced
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Fig. 3. Network analysis of prognostic genes. (A) Heat map showing
the hypergeometric P value for the pairwise overlap of prognostic genes
between the cancer types. (B) Bubble plot showing the common enriched
Gene Ontology (GO) functions among the 17 Human Pathology Atlas
cancer types. Bubble sizes represent numbers of genes in GO function; the
x and y axes indicate the directionalities and generalities of the GO terms.
Generality is defined by the number of cancers with their prognostic genes
overrepresenting the GO function; directionality is defined by the number
of cancers with their favorable genes overrepresenting the GO function
minus the number of cancers with unfavorable genes overrepresenting the

GO function. Note that only functions with more than five generalities are
labeled. All GO terms for each cancer are provided in table S9. Results
based on optional P value or hazard ratio cutoff–defined prognostic genes
are provided in fig. S7 and table S9. (C) Network plot showing the number
of cancer-specific and shared unfavorable cell cycle genes in all cancer
types. Note that all groups with only one gene were removed from the plot.
(D) Network plot showing the number of liver cancer–specific favorable genes
and the favorable genes shared among liver and other cancers in the
Human Pathology Atlas. Inset: Pie chart showing the fraction of elevated
normal liver genes among the liver cancer–specific favorable genes.
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expression of tissue-enriched genes in high-grade
tumors (grade G3). The results demonstrated a
molecular correlation between the expression
levels of tissue-enriched genes and tumor grade,
supporting the concept that dedifferentiated can-
cers are associated with decreased patient survival.

Cancer testis antigens in liver cancer

Cancer testis antigens are expressed in a wide
range of cancer types, whereas their expres-
sion in normal tissues is restricted to immune-
privileged sites such as the testis and placenta.
To explore this observation further, we investi-
gated the differential expression patterns of testis-
enriched genes in normal liver, primary liver
biopsies, and a liver cancer–derived cell line
(HepG2). A global analysis, shown in Fig. 4E

(upper right quadrant), showed that many of
the testis-enriched genes had higher expression
in the patient biopsy and cell line than in normal
liver tissue. The results support many previous
studies (19) that testis-enriched genes have higher
expression in cancer than in the corresponding
normal tissues.

Coexpression networks of
human cancers

The Hallmarks of Cancer (11) has laid an impor-
tant foundation for understanding cancer patho-
genesis, and from the corresponding cellular
processes, 2172 genes have recently been defined
as hallmark-related genes (16, 20). We thus de-
cided to investigate their relationship with the
prognostic genes reported here. Approximately

two-thirds (65%) of the “hallmark genes” were
predictive for clinical outcome in at least one of
the cancers analyzed, but a network analysis
revealed that none of the genes were shared
among the majority of cancers, with most genes
consequently affecting only a few of the cancer
types (Fig. 5A and figs. S8 and S9). Subsequently,
a cancer-specific coexpression network analysis
for all 17 major cancers (table S12; available at
http://inetmodels.com) was performed to iden-
tify genes that are expressed concurrently during
tumorigenesis. Figure 5B shows a coexpression
cluster in the lung cancer cohort, with enrich-
ment for both prognostic and hallmark genes.
Within this cluster, the hub genes (located in the
center) are generally more prognostic than those
with less coexpression. It is tempting to speculate
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Fig. 4. Correlation between tumor differentiation and expression of
liver-enriched genes. (A) Scatterplots showing the relative (fold) change
between the transcript expression level in liver cancer and normal liver
tissue (x axis) and the HepG2 cell line and normal tissue (y axis) for all
protein-coding genes. Individual genes are colored according to their
expression-based category in liver. All FPKM values less than 1 were set to
1 for the fold change calculation. (B) IHC staining of CYP2C9 proteins in
four normal tissues and different hepatocellular carcinoma samples. For
full IHC protein profiles, view the gene at www.proteinatlas.org/pathology.

(C) Box plots showing the expression levels of liver tumor samples of different
neoplasm grades for three representative liver-enriched genes for CYP2C9.
(D) Box plot showing the distribution of correlation coefficients
(Spearman’s rho) between the neoplasm grade and expression for a
random set of genes and all liver-enriched genes in liver tumors.
(E) Scatterplots for all protein-coding genes showing the fold change in
testis-specific antigen in liver cancer and normal liver tissue (x axis) and in
the HepG2 cell line and normal liver tissue (y axis). Individual genes are
colored according to their expression-based category in the testis.
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that the hub genes in this cluster are lung cancer
“drivers” and that the genes located around the
outer boundary are lung cancer “passengers.”
Using somatic copy number alteration data in
a TCGA pan-cancer analysis, we found that
36.4% of the genes in this cluster (table S13)
were amplified or deleted in their chromosomal
regions (21).
Among cancer-specific coexpression clusters,

those that were significantly enriched with prog-
nostic genes (hypergeometric test, P ≤ 0.05) were
named prognostic clusters, and an average of 13.9

clusters per cancer were enriched with prognos-
tic genes (fig. S10 and table S14). A functional
analysis, as exemplified by lung cancer (Fig. 5C
and fig. S9), showed thatmanyprognostic clusters
were enriched with genes associated with the
hallmark genes, such as those involved in DNA
repair, cell proliferation, angiogenesis, and cell-
cell signaling, implying that those processes or
pathways may be associated with lung cancer
progression. Across the 17 cancer types, the frac-
tions of prognostic genes associated with the
hallmark genes were determined (Fig. 5D and

fig. S9); more than half (57% on average) of the
prognostic genes were not identified as hallmark
genes butwere coexpressedwith hallmark genes.
It remains to be determined whether many of
the prognostic genes identified herein have a
passive or dominant role in the development of
cancer.

Personalized metabolic networks for
cancer patients

Tumors increase the nutrient import from the
environment to fulfill biosynthetic demands
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Fig. 5. Coexpression analysis reveals the relationship with the Hallmarks
of Cancer and clues for drivers among prognostic genes. Gene
coexpression of 17 cancers was investigated on the basis of established
cancer coexpression networks. (A) Network plot showing the number of
cancer-specific and shared prognostic cancer hallmark genes in all cancer
types. Note that all groups with fewer than four genes were removed from the
plot. (B) A gene coexpression cluster from the coexpression network of
lung cancer enriched with both hallmark and prognostic genes. (C) Network

plot showing coexpression clusters of lung cancer. All nodes indicate
gene coexpression clusters; edges indicate significant coexpression links
between clusters. The gray, yellow, and red color of the nodes indicates
that the cluster was significantly enriched with hallmark genes, prognostic
genes, and both cases, respectively. (D) Bar plot showing the fraction
of prognostic genes that are mere hallmark genes (red), coexpressed
in hallmark gene clusters (pink), or not coexpressed with hallmark
genes (gold).
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associated with proliferation, making use of these
nutrients to both maintain viability and build
new biomass (22–24). To investigate the metabolic
reprogramming of each tumor, we generated per-
sonalized GSMMs for tumors from more than
7000 of the 17 major cancer patients based on
transcriptomics data and generic human GSMM
HMR2 (25) as previously described (26) (Fig. 6A).
The resulting personalized GSMMs ranged in size
from 2070 to 4058 metabolites, 2093 to 5261 re-
actions, and 978 to 2102 associated genes (fig. S11
and table S15). A total of 4889 metabolites, 6977
reactions, and 2760 genes were shared across the
models; 1419 metabolites, 1020 of the reactions,
and 334 of the genes were present in all person-
alized GSMMs. The personalized GSMMs are

available in the BioModels Database (www.
ebi.ac.uk/biomodels) with accession numbers
MODEL1707110000 to MODEL1707116752.
PersonalizedGSMMsmay allow for the investi-

gation of common and unique biological func-
tions for each patient (27). Using personalized
GSMMand constraint-basedmodeling,we inves-
tigated heterogeneities of individual cancers by
identifying genes within a tumor that are impor-
tant for its growth (3). Thismethod is suitable for
studying cancer metabolism because it assumes
an increase in tumor growth rate under optimal
conditions and hence searches for metabolic flux
distributions to produce essential biomass pre-
cursors at high rates (2, 28, 29). We found signif-
icant differences in the essential genes catalyzing

tricarboxylic acid (TCA) cycle metabolism in
liver cancer (Fig. 6B). As shown, the enzyme FH
(fumarate hydratase) is identified as a conserved
gene for tumor growth in all liver cancer patients
analyzed,whereas SDHA (succinate dehydrogenase
complex, subunit A) is important for tumor growth
in ~60% of liver cancer patients, and ACLY (ATP
citrate lyase) is key for tumor growth in fewer than
5% of liver cancer patients. In total, we identified
2553 essential genes that can inhibit or kill tumor
growth in any of the analyzed samples and found
that 55 (2%) of the key genes are common in all
cancer patients analyzed, regardless of the cancer
type (table S14).Notably,we found that only 10% to
25% of the essential genes were conserved inmore
than 80% of patients of each cancer type (Fig. 6C).
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Fig. 6. Genome-scale metabolic models (GSMMs) of cancers.
(A) Concept of personalized GSMMs, which are comprehensive compila-
tions of all the metabolic reactions within a particular cell, tissue, organ, or
organism. By mapping the transcriptomic data from cancer patients,
personalized GSMMs could be reconstructed for investigation of the
specific metabolic viabilities for each individual. (B) Heat map showing the
essential enzymes in the TCA cycle for all glioma patients to exemplify

the heterogeneity within the same cancer patient group. Only enzymes
that were key in at least one patient are shown. (C) Bar plot showing
the fraction of genes that were common in key genes in different
proportions of patients for 17 Human Pathology Atlas cancers. (D) Circos
plot showing the top 10 common metabolic pathways that were over-
represented by key genes in 17 Human Pathology Atlas cancers.
Abbreviated names are provided in Fig. 1A and table S17.
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When we investigated the associated biolog-
ical functions, a vastmajority of these geneswere
associated with central metabolic functions that
are essential for normal tissues (Fig. 6D and table
S16), and the corresponding proteins are thus not
suitable as targets for drug development. There-
fore, we performed toxicity tests using themodels
generated for healthy tissues and observed that,
in many cases, the potential inhibition of 76 to
81% of these targets could be predicted to have
severe side effects, because the target is essential

in at least somenormal tissues.Moreover, we also
predicted that 32 gene targets that are mainly
involved in nucleotide metabolism were pre-
dicted to be nontoxic in healthy tissues (fig. S12)
but key in more than 80% of the tumor of the
patient, regardless of the cancer type. These genes
may therefore hold promise as potential targets
for cancer treatment. In general, gene targets
with less toxicity in normal tissue were key for
tumor growth in fewer than 20% of cancer pa-
tients. Our analysis thus demonstrates the large

heterogeneities in different cancer patients from
ametabolic perspective and shows a path to indi-
vidualized treatment of patientsbasedonmetabolic
modeling, thereby highlighting the importance
of systems-level analysis for precision cancer
treatment.

Examination of genes in lung cancer

Further validation of prognostic genes identified
through analyses of TCGA data was performed
using an independent cohort of lung cancer

Uhlen et al., Science 357, eaan2507 (2017) 18 August 2017 9 of 11

Fig. 7. Validation of
selected genes with a
prognostic effect in lung
cancer. Kaplan-Meier plots
for RNA level separation
from the TCGA cohort, RNA
level separation from the
HPA cohort, and protein-
level separation are shown in
the first, second, and third
columns, respectively. The
log-rank P values are shown
in the lower left corner of
eachKaplan-Meier plot. IHC
stained tissues representing
high and low protein expres-
sion are shown in the fourth
and fifth columns, respec-
tively.The protein expression
levels across 17 cancer
types analyzed by IHC in
the Human Pathology Atlas
are shown at the right.
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(NSCLC) patients (n = 357). We used available
RNA-seq data from 199 individual tumors (30)
and paraffin-embedded tumor tissue material
in a tissue microarray (TMA) format from 357
patients (31). On the basis of transcriptomic data,
the 100 most significant lung cancer prognostic
genes identified in the TCGA analysis showed a
high degree of overlap with prognostic genes in
the independent NSCLC cohort (74% with P <
0.1, 45%with P < 0.01). In addition, the panel for
lung cancer shown in Fig. 2A was also validated
in this independent cohort (fig. S13).
To further investigatewhether prognostic genes

identified through genome-wide transcriptomics
analyses could be verified at the protein level, we
performed antibody-based IHC analyses of TMAs
with tumor tissue (n = 357) for eight selected
targets (Fig. 7). The IHC-based analysis confirmed
that the corresponding protein expression pattern
was also significantly associated with prognosis,
and this was also supported by the RNA-seq data
in the independent NSCLC cohort. Examples
(Fig. 7) include the endoplasmic reticulum oxido-
reductase a protein ERO1A (32) and two mem-
bers of the S100 family (S100A10 and S100A16).
The latter two proteins have been suggested as
prognosticmarkers at the protein level in NSCLC
adenocarcinoma (33, 34). We could confirm the
prognostic association of both S100A10 and
S100A16 in the NSCLC cohort containing both
adenocarcinomas and squamous cell carcinomas.
The proliferationmarkerMKI67 has been studied
in a number of cancer types; however, its clinical
application has been debated (35), andMKI67 has
not been included in routine NSCLC diagnostics
(36). In the present investigation, MKI67 was as-
sociated with an unfavorable prognosis in the
TCGA data set, which was also confirmed at both
the RNA and protein level in the independent
NSCLC cohort. SLC2A1 (solute carrier family
2 member 1), also known as GLUT1, is a down-
stream gene of the hypoxic marker HIF1A and
plays a role in glucose transport. TACC3 (trans-
forming acidic coiled coil–containing protein 3)
is involved in controlling normal cell growth
and differentiation. Overexpression of SLC2A1
and TACC3 was previously associated with a
poor prognosis in lung cancer (37, 38), and here
we found that expression level associates with
clinical outcome in lung cancer. Anillin (ANLN),
an actin-binding protein required for cytokinesis,
plays an important role in cell division and has
been suggested as a prognostic marker in breast
cancer (39) and lung cancer (40). Here, our TCGA
analysis show prognostic value in lung, renal,
pancreatic, and liver cancers, and the analysis
of the independent lung cohort implies that
thismay be a favorable prognostic gene for clinical
outcome.

Examination of genes in colon cancer

We investigated a large, independent, prospec-
tively collected population-based cohort of colo-
rectal cancer patients available in TMA format to
assess possible prognostic protein signatures. In
this cohort, mRNA expression data (RNA-seq)
were also available for a smaller subset of the

patients (n = 60). Six targets with prognostic
significance in colorectal cancer based on TCGA
datawere selected for IHC staining on the TMAs.
All six genes were verified as related to prognosis
at both the RNA level (n = 60) and protein level
(n = 745) (fig. S14).

The Human Pathology Atlas

As part of this publication, we launch a new
open-access resource named the Human Pathol-
ogy Atlas as part of the Human Protein Atlas
(www.proteinatlas.org/pathology), presenting the
Kaplan-Meier survival plots for all protein-coding
genes in 17 different tumor types. A survival plot
of the patient cohort, with the respective cancer
and gene divided into two equal groups (median),
is presented on the basis of RNA levels.More than
900,000 survival plots (as exemplified by Fig. 2C)
are presented in the new pathology resource to
allow investigators to explore the clinical signifi-
cance of patient survival related to specific genes
in specific cancers, together with the associated
transcriptomic, proteomic, and clinical informa-
tion.A total of 13,088Kaplan-Meier plotswithhigh
significance (P < 0.001) are highlighted, and the
data are presented in a gene-centricmanner for all
human protein-coding genes across the analyzed
cancer types. Each prognostic gene for a given
cancer type is shown, including theKaplan-Meier
plots (Fig. 2A), together with the underlying data
for the selection of suitable FPKM cutoffs for
patient stratification (Fig. 2B) and the individual
survival data for all patients (Fig. 2B). In addition,
IHC analysis using a TMA-based analysis of the
corresponding proteins in patients with the re-
spective cancer types is presented for a majority
of the protein-coding genes. More than 5 million
IHC-based cancer tissue images are included in
the atlas, showing protein expression patterns
for individual tumors of each cancer type. All
IHC images have been manually annotated by
certified pathologists. Thus, the resource allows
researchers to explore the possible prognostic
value of all human protein-coding genes related
to expression levels in different forms of human
cancer.

Discussion

Our results demonstrate the power of large sys-
tematic “big data” efforts that make use of pub-
licly available resources, such as the TCGAdatabase
used herein. The compiled data show that a large
fraction of human protein-coding genes are dif-
ferentially expressed in cancer and that this dif-
ferential expression in many cases has an impact
on patient survival. Prognostic genes appear to
be restricted to only a few cancer types, and no
geneswere informative across a large set of cancer
patients. A general pattern emerged, with unfavor-
able genes showing an up-regulation associated
with mitosis and cell growth, whereas the down-
regulation of genes associated with cellular dif-
ferentiation was associated with shorter patient
survival. However, it is important to point out
that for a given prognostic gene, we observe a
huge variation in terms of clinical outcome for
the corresponding patient, implying the need

for further sophisticated studies to better com-
prehend the concept of prognostic genes.
The prognostic genes we identified should be

validated in independent patient cohorts, as ex-
emplified by the validation using antibody-based
TMAs of a selection of the genes identified in
lung cancer. The clinical metadata in the TCGA
resource did not include therapeutic regimens
for the patients, nor whether death was related
to the diagnosed cancer. In addition, the differ-
ent sample and effect sizes for different cancers
would affect the number of prognostic genes
obtained by survival analysis and log-rank test.
Moreover, the purity of the tumor samples should
also affect the survival analysis, as previously
reported (41). Hence, there is a need for follow-up
validation studies in more controlled indepen-
dent cancer cohorts before a potential prognostic
gene can be confirmed. An important quest for
the near future is to identify which prognostic
genes are functionally important (“drivers”) with
functional consequences that are required for
carcinogenesis and tumor progression, andwhich
of the apparent prognostic genes are merely co-
expressed with these “driver” genes.
We generated cancer-specific coexpression

networks to study the functional relationship
between the prognostic genes and genes asso-
ciated with Hallmarks of Cancer. This network-
dependent analysis enabled the identification of
genes with a key role in the survival of patients.
The personalized genome-scale GSMMs allowed
us to identify genes that were critical for tumor
growth by demonstrating a huge heterogeneity
among patients from a metabolic perspective,
highlighting the need for precise and person-
alized medicine for cancer treatment. In this
context, the new Human Pathology Atlas is a
useful standalone resource for cancer precision
medicine. With its more than 900,000 Kaplan-
Meier plots, this resource enables insights con-
cerning the specific involvement of genes in
clinical outcome for all themajor cancers, paving
the way for further in-depth studies incorporating
systems-level analyses of cancer. All data pre-
sented herein are available in an interactive open-
access database (www.proteinatlas.org/pathology)
to allow for genome-wide exploration of the im-
pact of individual proteins on clinical outcome
in major human cancer types.
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