
Verifying data- and control-oriented properties combining static and
runtime verification: theory and tools

Downloaded from: https://research.chalmers.se, 2024-03-13 08:03 UTC

Citation for the original published paper (version of record):
Ahrendt, W., Chimento, M., Pace, G. et al (2017). Verifying data- and control-oriented properties
combining static and runtime verification:
theory and tools. Formal Methods in System Design, 51(1): 200-265.
http://dx.doi.org/10.1007/s10703-017-0274-y

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Form Methods Syst Des (2017) 51:200–265
DOI 10.1007/s10703-017-0274-y

Verifying data- and control-oriented properties
combining static and runtime verification: theory and
tools

Wolfgang Ahrendt1 · Jesús Mauricio Chimento1 ·
Gordon J. Pace2 · Gerardo Schneider3

Published online: 4 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Static verification techniques are used to analyse and prove properties about pro-
grams before they are executed. Many of these techniques work directly on the source code
and are used to verify data-oriented properties over all possible executions. The analysis is
necessarily an over-approximation as the real executions of the program are not available
at analysis time. In contrast, runtime verification techniques have been extensively used for
control-oriented properties, analysing the current execution path of the program in a fully
automatic manner. In this article, we present a novel approach in which data-oriented and
control-oriented properties may be stated in a single formalism amenable to both static and
dynamic verification techniques. The specification language we present to achieve this that
of ppDATEs, which enhances the control-oriented property language of DATEs, with data-
oriented pre/postconditions. For runtime verification of ppDATE specifications, the language
is translated into a DATE. We give a formal semantics to ppDATEs, which we use to prove
the correctness of our translation from ppDATEs to DATEs. We show how ppDATE specifi-
cations can be analysed using a combination of the deductive theorem prover KeY and the
runtime verification tool LARVA. Verification is performed in two steps: KeY first partially
proves the data-oriented part of the specification, simplifying the specification which is then
passed on to LARVA to check at runtime for the remaining parts of the specification including
the control-oriented aspects. We show the applicability of our approach on two case studies.

B Wolfgang Ahrendt
ahrendt@chalmers.se

Jesús Mauricio Chimento
chimento@chalmers.se

Gordon J. Pace
gordon.pace@um.edu.mt

Gerardo Schneider
gerardo@cse.gu.se

1 Chalmers University of Technology, Gothenburg, Sweden

2 University of Malta, Msida, Malta

3 University of Gothenburg, Gothenburg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0274-y&domain=pdf
http://orcid.org/0000-0002-5671-2555

Form Methods Syst Des (2017) 51:200–265 201

Keywords Runtime verification · Static verification · Java · Program analysis

1 Introduction

Runtime verification has been touted as a practical verification technique, and although
it does not provide program analysis before deployment, it can check correct behaviour
post-deployment by observing whether actual execution paths at runtime conform to the
specification. Runtime verification scales up much more effectively than static analysis both
in terms of performance and in terms of applicability to diverse contexts in which a program
may interact with various other systems, services, libraries and be deployed.

Despite the fact that overheads induced by runtime verification might be small when
compared to the computational effort required for static analysis, the fact that is done while
the software is live can be problematic and prohibitive for certain systems. In this paper
we present an approach to address the issue of runtime overheads through the use of static,
deductive verification—an approach which also has the benefit of being able to verify parts
of the specification a priori for all potential execution paths, leaving only parts which could
not be proved before deployment to be checked dynamically.

Apart from the computational power required to perform the analysis, deductive and run-
time verification have largely been applied to disjoint areas—whereas deductive analysis has
been extensively used to verify properties focusing on a system’s data, e.g., [2,23,28,30],
runtime verification has been extensively used to verify control-flow properties with rea-
sonable overheads [11,15,18,33]. Combining the two approaches has the additional benefit
that static analysis might be more effective in proving the parts of a specification which
dynamic analysis might struggle most with. The challenge is thus to design a specification
language which allows the expression of combined data- and control-flow properties in such
a manner that they can be effectively decomposed for the application of different verification
techniques.

The StaRVOOrS framework [5] addresses these issues by identifying a specification
notation for such properties and a verification methodology combining static and dynamic
analysis to verify combined control- and data-oriented properties. Although one may envisage
different ways to combine static and dynamic analysis tools, a crucial requirement is that
the specification languages used in the tools chosen are either identical, or can be somehow
combined to allow for rich specifications getting the best of both approaches. Similar to
mode automata [31] we have chosen to adopt an automata-based specification language (for
the control-flow properties) but extended with data-flow properties encoded in the different
states of the formalism.

This article is a significantly extended and revised version of two papers. In [3] we intro-
duced the formalism ppDATE, where parts of the syntax where left underspecified, and we
gave a high-level description of the algorithm to translate ppDATE into DATE [18], the
formalism used in the runtime verification tool Larva [19]. In [16] we presented the tool
StaRVOOrS, a full implementation of the framework introduced in [3,5].

The novel contributions of this paper, going beyond the results reported in [3] and [16] are
the following: (i) We present a complete formal definition of ppDATE automata, including
a formal semantics for the formalism (Sect. 5); (ii) A proof of soundness of the algorithm
to translate from ppDATE specifications into DATE ones (Sect. 7). (iii) The application of
our approach to SoftSlate Commerce, an open-source Java shopping cart web application
(Sect. 9); (iv) A description of the results of the case study including an analysis of the

123

202 Form Methods Syst Des (2017) 51:200–265

verification process providing evidence that our approach reduces the overhead of the runtime
monitoring (Sect. 9).

Structure of the paper Sect. 2 provides background information regarding the verification
techniques used on this paper. Section 3 introduces informally the specification language
ppDATE. Sect. 4 introduces the StaRVOOrS framework and provides a description of
its workflow. Section 5 presents formally the specification language ppDATE, and Sect. 6
provides its operational semantics. Sect. 7 gives a translation algorithm from ppDATEs into
DATEs, and provides a proof of correctness. Sect. 8 presents a fully automated tool which
implements the StaRVOOrS framework. Sections 9 and 10 discuss two case studies which
illustrate the benefits of using StaRVOOrS for verifying software. Sect. 11 discusses related
work. We conclude this paper in Sect. 12.

2 Preliminaries

The work presented in this article is centred around static and runtime verification of Java
systems. To implement these verification techniques, we use the deductive verifier KeY
and the runtime verifier Larva. In this section, we introduce these tools at a high level
of abstraction, but with sufficient detail to enable the understanding of the rest of the
paper.

2.1 The deductive verifier KeY

KeY [2] is a deductive verification tool for data-centric functional correctness properties of
Java source code. KeY generates proof obligations in dynamic logic (DL), a modal logic for
reasoning about programs. DL extends first-order logic with two modalities, 〈p〉φ and [p]φ,
where p is a program and φ is another DL formula. The formula 〈p〉φ is true in a state s
if there exists a terminating run of p, starting in s, resulting in a state where φ holds. The
formula [p]φ holds in a state s if all terminating runs of p, starting in s, result in a state in
which φ holds. For deterministic programs p, the only difference between the two modalities
is that termination is stated in 〈p〉φ, and assumed in [p]φ.

KeY features (static) verification of Java source code annotated with specifications written
in the Java Modelling Language (JML) [29]. JML allows for the specification of pre- and
postconditions of method calls, and class/interface invariants. The main features of KeY are
the translation of JML annotated Java programs to Java DL, and a theorem prover for validity
of Java DL formulae, using a sequent calculus, covering almost all features of sequential Java
(with the exception of generics and floating-point types currently). Given a set of formulae
Γ , the sequent Γ � 〈p〉φ holds if p, when starting in a state fulfilling all formulae in Γ ,
terminates in a state fulfilling φ. The calculus uses the symbolic execution paradigm. For that,
DL is extended by explicit substitutions. During the symbolic execution of p, the effects of p
are gradually, starting from the front, turned into explicit substitutions. Thereby, after some
proof steps, a certain prefix of p has turned into a substitution σ , representing the effects so
far, while a remaining program p′ is yet to be executed. While verifying p, an intermediate
proof node may look like Γ � σ 〈p′〉φ. It tells us that, if Γ was true before the original
program p, and σ is the accumulated effect up to now, then φ will be true after executing the
remaining program p′.

As an example, consider a proof of the following DL sequent:

x > 0, y > 0 � 〈x=x+y;y=x-y;x=x-y;if(x%2==0){p1}else{p2};q〉φ (1)

123

Form Methods Syst Des (2017) 51:200–265 203

(where p1, p2, and q are Java fragments and φ is some postcondition). The sequent says
that in each state where x and y are positive, the program given in the modality (which first
swaps x and y using arithmetics) will terminate and result in a state where φ holds. When
proving this sequent, the KeY prover will first, in a number of steps, turn the three leading
assignments into explicit substitutions, apply the first to the second, the result to the third,
and perform arithmetic simplification, arriving at

x > 0, y > 0 � (x ← x+y ‖y ← x ‖x ← y)〈if(x%2==0){p1}else{p2};q〉φ
where (x ← x+y ‖y ← x ‖x ← y) denotes the explicit (parallel) substitution resulting
from symbolic execution of the first three statements. A ‘right-win’ semantics is adopted to
resolve clashes in substitutions, such that the above simplifies to:

x > 0, y > 0 � (y ← x ‖x ← y)〈if(x%2==0){p1}else{p2};q〉φ
In general, most proofs branch over case distinctions, often triggered by Boolean decisions
in the source code. The branching happens by applying rules like the following, simplified1

if rule:

if
Γ, σ(b) � σ 〈s1 ω〉φ Γ, σ(¬b) � σ 〈s2 ω〉φ

Γ � σ 〈if b s1 else s2 ω〉φ
In our example, applying the if rule to the latest sequent results in splitting the proof into two
branches, with the following sequents, respectively:

x > 0, y > 0, (y ← x ‖x ← y)(x%2 = 0) � (y ← x ‖x ← y)〈p1;q〉φ
x > 0, y > 0, (y ← x ‖x ← y)(¬(x%2 = 0)) � (y ← x ‖x ← y)〈p2;q〉φ

Applying the substitution on the left side of either sequent results in:

x > 0, y > 0, y%2 = 0 � (y ← x ‖x ← y)〈p1;q〉φ (2)

x > 0, y > 0, ¬(y%2 = 0) � (y ← x ‖x ← y)〈p2;q〉φ (3)

Note that in this step, by applying the swapping substitution, the branching condition (x
being even or odd) on the state after swapping got translated into a condition on the prestate
of the original program p, before the swapping. The resulting sequents tell us, among other
things, that if y is even (respectively odd) in the prestate of p, then path p1 (respectively p2)
is taken in the execution of p. In general, when building a proof in such a symbolic manner,
the left side of sequents accumulate conditions on the original prestate through a particular
execution path.

Once all proof branches are closed, we have a complete proof of the root sequent. However,
a proof attempt may result in a partial proof, only, where some proof branches are closed and
others are not. Such partial proofs are important for the work presented in this article. In the
above example, consider a partial proof where the left branch, i.e., the sub-proof for sequent
(2), is closed, whereas the right branch, i.e., the sub-proof for sequent (3), is not closed. From
this partial proof, we can conclude that the following modification of the root sequent (1) is
valid:

x > 0, y > 0, y%2 = 0

� 〈x=x+y;y=x-y;x=x-y;if(x%2==0){p1}else{p2};q〉φ (4)

1 The simplified rule ignores side effects or exceptions possibly caused by b.

123

204 Form Methods Syst Des (2017) 51:200–265

start

connDrop↓ | c == 5 �→ unreliable!

connDrop↓ | c < 5 �→ c ++

foreach transfer :

start bad

start↓(transfer) | true �→ unreliable? | true �→

receive↓ | true �→

end↓(transfer) | true �→

receive↓ | true �→

Fig. 1 Example of a DATE specification

(We added y%2 = 0 to the left side of (1), as additional assumption.) This sequent can
be proven by replaying the original proof, where now both branches would close. The left
branch closes as the sub-proof for (2) will replay identically. The right branch closes because
the following variant of (3) can be closed immediately, due to contradicting assumptions:

x > 0, y > 0, y%2 = 0, ¬(y%2 = 0) � (y ← x ‖x ← y)〈p2;q〉φ
2.2 The runtime verifier LARVA

Larva2 [19] is an automata-based runtime verification tool for Java programs. As with many
other runtime verifiers, Larva automatically generates a runtime monitor from a property
written in a formal language, in its case using Dynamic Automata with Timers and Events
(DATEs) [18]. Transitions in a DATE are of the form: event | condition �→ action, where
event is what triggers the transition, the condition is checked and must hold in order the
transition to take place, and the action is a code snippet to be performed when taking the
transition (after checking the condition). DATEs are an extension of timed automata—they are
effectively finite state automata, whose transitions are triggered by system events (primarily
entry pointsf↓ and exit pointsf↑ of methods) and timers, but augmented with: (i) A symbolic
state which may be used as conditions to guard transitions and can be modified via actions
also specified on the transition; (ii) replication of automata, through which a new automaton
is created for each discovered instance of an object; (iii) communication between automata
using standard CCS-like channels with c! acting as a broadcast on channel c and which can be
read by another automaton matching on event c? Full details of the formalisation of DATEs
can be found in [19].

The automata illustrated in Fig. 1 represent an example of DATE automata describing
a property which should hold during a connection. The first automaton ensures that if the
connection drops (eventconnDrop↓) occurs five times, a message is broadcast (over channel
unreliable) to highlight the fact that the connection port is unreliable. The second automaton
(with the foreach keyword) ensures that every time a file transfer is initiated, an automaton is
created to monitor that transfer. If during the transfer (i.e. between the events start↓ and
end↓) one receives event unreliable?, no further transfers may occur.

2 Logical Automata for Runtime Verification and Analysis.

123

Form Methods Syst Des (2017) 51:200–265 205

In order to monitor a system using Larva, the user must provide the system to be mon-
itored (a Java program) and a set of properties in the form of a Larva script (a textual
representation of DATEs). Larva transforms the set of properties into monitoring code
together with AspectJ code to link the system with the monitors. Since the Java byte code is
used for instrumentation, it is possible to monitor third-party software with Larva, though
knowledge of methods names is still required.

3 ppDATE: a specification language for data- and control-oriented
properties

In many cases, verification tools perform more effectively on a particular style of specification.
In combining two different verification tools which use very different analysis techniques,
one challenge is that if we adopt an off-the-shelf language, we cannot expect to derive useful
verification results from both tools. Given that deductive verification tools like KeY perform
much better on data-centric properties, while runtime verification tools like Larva perform
better on control-flow properties, we have defined a specification language to combine the
two types of properties. In real scenarios, there is often a need to specify both, rich data
constraints and legal execution sequences.

Data-oriented properties are typically written in expressive formalisms (like first-order
logic), but typically give invariants about specific points in the execution of a system, rather
than properties across traces of execution. JML is one such languages, which focuses pri-
marily on pre/postconditions of method calls and class invariants, but is not well suited for
specifying which sequences of events or states are correct. In contrast, control-oriented spec-
ification languages specialise primarily on identifying legal sequences of events or states, for
instance using automata or temporal logics. Although constraints about the data are possible,
they are usually cumbersome and greatly increase the computational complexity required to
verify them. DATE is one such specification language.

Coding control-flow into data-centric languages, like coding legal execution traces via
model/ghost fields in JML, or including data-flow information in control-centric languages,
like considering variable updates as events in DATE specification, can lead to substantial
increase in the complexity of the specification from an understandability and/or verification
perspective.

In order to address this, we propose ppDATE, a formalism to deal with both types of
properties ensuring understandability and tractability of analysis using the StaRVOOrS ver-
ification framework. ppDATE [3] is an automata-based formalism to specify both control-
and data-oriented properties. ppDATEs are basically transition systems with states and tran-
sitions between states. Transitions are labelled by a trigger (tr), a condition (c), and an action
(a). Together, the label is written tr | c �→ a. A transition is enabled to be taken whenever
its trigger is active and its condition holds. A trigger is activated by the occurrence of either
a visible system event such as the invocation or termination of a method execution, or a
ppDATE internal event generated by certain actions labelling other transitions. If a transition
is taken, we will say that it fires. The conditions may depend on the values of system vari-
ables (i.e., variables of the system under scrutiny) and the values of ppDATE variables. The
latter can be modified via actions in the transitions. ppDATE states represent the status of an
observer of a system (rather then, directly, the status of a system itself). Note that each state
essentially represents the set of observed system traces leading to that state. The language
also offers parallelism on the specification side, in the sense that different ppDATEs run in
parallel, possibly communicating which each other through events, and possibly creating

123

206 Form Methods Syst Des (2017) 51:200–265

new ppDATEs on demand. This parallelism allows for a strong separation of concerns in the
specification.

In addition to the above, a particular feature of the ppDATE is that states may be tagged
with any number of Hoare triples, to specify the computation of a method in a history-
context sensitive way. For instance, assume that a ppDATE state q is tagged with the Hoare
triple {π} f oo{π ′}. This means that, if foo is invoked after a system trace which led the
observer to q , and if furthermore π holds at the time of the invocation, then π ′ should be
satisfied upon termination of this execution of foo. This allows for data-centric specifica-
tion of individual methods’ behaviour (Hoare triple), however in a control sensitive manner
(state).

Compared to usual automata based (or temporal logic based) specification approaches,
ppDATE is more expressive concerning the computation on data. Compared to data-centric
pre/post-specification (like, e.g., JML), ppDATE can avoid the coding of some notion of
status into additional data and additional constraints in the pre/postconditions.

To write a ppDATE, a good approach may be to, first, define the control-oriented properties,
i.e., the automata. Next, one shall proceed to define the different Hoare triples. Finally, one
places the Hoare triples on the appropriate states of the ppDATE.

Below, we provide a few examples of ppDATE specifications. On this examples, tr↓
means that the method associated to the trigger tr has just been called, and tr↑ means that
method associated to the trigger tr has terminated its execution.

Example 1 Let us consider a coffee machine system where after a certain amount of coffee
cups are brewed, its filters have to be cleaned. If the limit of coffee cups is reached, the
machine should not be able to brew any more coffee. In addition, while the coffee machine
is active (a coffee cup is being brewed), it is not possible to start brewing another coffee, or
to clean the filters.

Figure 2 illustrates a ppDATE describing this part of the system. In other words, whenever
the coffee machine is not active, i.e., the machine is not brewing a cup of coffee, and the
method brew starts the coffee brewing process, then it is not possible either to execute this
method again, or to execute the method cleanF (which initialises the task of cleaning the
filter), until the initialised brewing process finishes.

The previous property can be interpreted as follows: initially being in state q , state which
represents that the coffee machine is not active, whenever method brew is invoked and it
is possible to brew a cup of coffee (i.e., the limit of coffee cups was not reached yet), then
transition t1 shifts the ppDATE from state q to state q ′. While in q ′, state which represents
that the coffee machine is active, if either method brew or method cleanF are invoked,
then transitions t3 or transition t4 shift the ppDATE to state bad , respectively. This indicates
that the property was violated. On the contrary, if method brew terminates its execution,

q : (i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

q′ : (iii) {cups < limit} brew() {cups == \old(cups)}
(iv) {true} cleanF() {cups == \old(cups)}

bad

t1 : brew↓ | cups < limit �→ skip

t4 : cleanF↓ | true �→ skip t3 : brew↓ | true �→ skip

t2 : brew↑ | true �→ skip

Fig. 2 A ppDATE controlling the brew of coffee

123

Form Methods Syst Des (2017) 51:200–265 207

then transition t2 shifts the ppDATE from state q ′ to state q . Note that the names used on
the transitions, e.g. t1, t2, etc, are not part of the specification language. They are included to
simplify the description of how the ppDATE works.

In addition to this, the Hoare triples in state q ensure the properties: (i) if the amount of
brewed coffee cups has not reached its limit yet, then a coffee cup can be brewed; (ii) cleaning
the filters sets the amount of brewed coffee cups to 0. Property (i) has to be verified if, while
the ppDATE is on state q , the method brew is executed and its precondition holds. A similar
situation stands for the property (ii) with respect to the method cleanF. Regarding state
q ′, the Hoare triples in this state ensure the properties: (iii) no coffee cups are brewed; (iv)
filters are not cleaned. Property (iii) and (iv) are verified if either method brew and method
cleanF are executed, and their preconditions hold, respectively. Here, remember that this
state represents that the coffee machine is active. Thus, if it occurs that either the method
brew or the method cleanF are executed while the ppDATE is on this state, then, as this
would move the ppDATE to state bad, one would expect the value of the variable cup to
remain unchanged. This is precisely what is verified when either property (iii) or (iv) are
analysed.

Note that none of the Hoare triples makes reference to the state of the coffee machine, i.e.
there is no information about whether the machine is active or not. This is due to fact that the
state of the machine is implicitly defined by the states of the ppDATE. If the ppDATE is in
state q , the coffee machine is not active. However, if it is in state q ′, then the machine is active.
Therefore, it is possible to assume that on each state the Hoare triples are context dependent
and thus contain such information. This is the reason why, we can describe properties with the
same precondition, but with different postconditions depending on the state of the ppDATE
in which they are placed. �

Example 2 In this example let us consider a file system where only 10 file transfers can be
performed between a log in and log out of a user.

Figure 3 illustrates a ppDATE describing part of the behaviour of this system. This
ppDATE ensures the property: no more than 10 file transfers take place in a single login
session. In other words, once a user logs in the system (login), she can only perform 10 file
transfers (transferFile) before logging out (logout). This fact is tracked using the
ppDATE variable c. This variable keeps count of the number of files transferred in a single
session. Whenever a user logs in, the ppDATE moves to state q ′ and c is set to 0 (zero). While
in q ′, this variable is increased by one every time a file transfer is performed. If at some point
the user transfers a file but the value of c is bigger than 10, then the ppDATE moves to state
bad , i.e., the property was violated.

qstart

q′ : (i) {true} fileTransfer(f) {bytes == \old(bytes) + size(f)}
(ii) {write ∈ rights(f)} rename(f,n) {name(f) == n}

bad

login↑ | sessionIsOpen() �→ c = 0

transferFile↓ | c > 10 �→ skip
transferFile↓ | c ≤ 10 �→ c ++

logout↓ | true �→ skip

Fig. 3 A ppDATE limiting file transfers

123

208 Form Methods Syst Des (2017) 51:200–265

Fig. 4 High-level description of the StaRVOOrS framework workflow

In addition to this, the Hoare triples in state q ′ ensure the properties: (i) the number of
bytes transferred increases when a file transfer is done; (ii) renaming a file works as expected
if the user has the sufficient rights. �

4 The STARVOORS framework

The StaRVOOrS framework (Static and Runtime Verification of Object-Oriented Soft-
ware), originally proposed in [5], combines the use of the deductive source code verifier KeY
[2] with that of the runtime monitoring tool Larva [19], to analyse and monitor systems
with respect to a ppDATE specification. Note that the definition of the specification language
ppDATE, which enables the effective combination of the results from the two verification
approaches, is a major contribution of StaRVOOrS. ppDATE allows our framework to
naturally address the intrinsic differences between the verification tools—whereas one typi-
cally verifies data-centric properties in deductive verifiers like KeY, one typically focuses on
control-flow properties using runtime verifiers like Larva.

The abstract workflow of the use of StaRVOOrS is given in Fig. 4. This workflow is
applied fully automatically in four consecutive stages: Deductive Verification, Specification
Refinement, Translation and Instrumentation, and Monitor Generation.

In theDeductiveVerification stage, given a Java programP and a ppDATE specificationS ,
the modulePre/post-ConditionGenerator transforms all the Hoare triples—assigned to the
various states of S—into JML contracts , which are textually added toP as annotations of the
respective methods. In this step, the association of pre/postcondition pairs to ppDATE states
in S is lost, which is intentional and natural. Note that each ppDATE state represents the set
of event histories leading to that state. The deductive verifier, however, offers analysis of the
effect of methods in terms of system data, and has no notion of the history of events preceding
a method call.3 Once all JML contracts are generated, the Deductive Verifier module uses
KeY in an attempt to statically verify each of them. The result is either a complete proof, or a
partial proof where some branches are closed and others are not (see Sect. 2.1), or an entirely
open proof, where no branches are closed. In our setting, partial proofs are the most common
case. One reason is that we use KeY only fully automatically, not employing its interactive
features. Also, we do not assume users to provide loop invariants, or similar annotations
which support the prover. Finally, KeY has no knowledge of the context (ppDATE state)
in which the Hoare triple at hand should hold. To illustrate this point, consider the Hoare

3 There exist approaches to deductive verification which are history-aware, including a KeY version for the
compositional verification of distributed systems [4]. These approaches are however much more heavyweight,
both in terms of specification as well as verification, than what we are aiming at in this work. The same holds
for approaches based on refinement.

123

Form Methods Syst Des (2017) 51:200–265 209

triples (i) and (iii) from our (deliberately primitive) example in Fig. 2. The implementation
of brew() is given by:

public void brew() {
if (!active && cups < limit)

cups++;
}

KeY will produce partial proofs for these Hoare triples because the specification does not
provide any information on how q and q ′ relate to the field active. In general, the missing
information can be an arbitrary condition on the system state, more than just a Boolean as is
the case here.

In the Specification Refinement stage,4 the Partial Specification Evaluation module
evaluates the results produced by KeY in order to refine S . This refinement is performed in
two steps. In the first step, all fully verified Hoare triples are deleted, resulting in a ppDATES’ .
Any Hoare triple related to a contract which is not fully verified by KeY is left in the states
of S’ to be verified at runtime. In the second step, S’ is refined into a ppDATES” by
strengthening the preconditions of those Hoare triples in S’ which were partially verified by
KeY. For that, the partial KeY proofs are analysed, to extract branch conditions corresponding
to the closed branches of the proof. In the example in Sect. 2.1, that ‘closed branch condition’
is y%2 = 0 in sequent (4). Note again that the branch condition is a condition on the prestate
of the code being verified. Let us abbreviate the ‘closed branch(es) condition’ as cbc for now.
A Hoare triple {π} f oo{π ′} that was partially verified by KeY is clearly equivalent to having
two Hoare triples {π ∧ cbc} f oo{π ′} and {π ∧¬cbc} f oo{π ′}. However, as we know that the
first one is valid (by the proof replay argument from Sect. 2.1), only the second one needs
to be checked at runtime. For this reason, every Hoare triple {π} f oo{π ′} in S’ that was
partially verified by KeY is replaced by {π ∧ ¬cbc} f oo{π ′}, resulting in S” . At runtime,
checking such an optimised Hoare triple is trivial whenever π is false or cbc is true, as the
postcondition does not need to be checked then. For instance, analysis of the partial proof of
Hoare triple (i) in Fig. 2 will result in the closed branch condition ¬active. Therefore, (i)
is replaced by {cups < limit∧ active} brew() {cups == \old(cups)+1} (we
simplified away double negation). Note that, in cases where the history context, i.e., ppDATE
state, is the only information that was missing to close a partial proof, cbc actually represents
a refinement of the according ppDATE state to a condition on internal system data, which
will always be true when f oo is called in that state. We can remark already here that this is
the phenomenon which made the monitoring speedup particularly dramatic in the Mondex
case study, see Sect. 10.

In the Translation and Instrumentation stage, the Specification Translation module
translates S” into an equivalent specification in DATE format (D), which can be used by the
runtime verifier Larva (see the next stage). The most significant change of this translation
is that the Hoare triples are translated away, using notions native to DATE (see Sect. 7.2).
This change also requires to instrument P , through the Code Instrumentation module, in
order to (i) distinguish between different executions of the same code unit, and to (ii) evaluate
Hoare triples in the states of S” at runtime. Regarding (i), method declarations get a new
argument which is used as a counter for invocations of this method. Regarding (ii), not every
condition in a pre/postcondition of a Hoare triple can be directly written as a Java Boolean
Expression, e.g., quantified expressions. Thus, methods which operationalise the evaluation
of those conditions are added to P .

4 For readability, we use ∧ and ¬ in this paragraph, instead of the ppDATE syntax && and !.

123

210 Form Methods Syst Des (2017) 51:200–265

Finally, in the Monitor Generation stage, the instrumented version of P (P’) and the
DATE specification D are used by the Runtime Verifier module to generate a monitor M .
For this, Larva generates M from D by using aspect-oriented programming techniques to
capture relevant system events. Such events allow to link P’ with M. Later, once deployed,
M and P’ are executed together. If M identifies any violation at runtime, it will report an
error trace for further analysis.

5 Formal definition of ppDATEs

5.1 Notation

We will use the following notation to write quantified formulae, based on the notation used
by Gries [27].

∀ x · R(x) · B(x)

∃ x · R(x) · B(x)

These formulae mean “for all x satisfying R, B is fulfilled” and “there exists x satisfying
R for which B is fulfilled”, respectively. Both R and B are formulae potentially containing
x as a free variable. We will refer to R and B as the range and body of the quantified
formula, respectively. This notation relates to standard (un-ranged) quantified formulae in
the following way:

∀ x · R(x) · B(x) ≡ ∀ x · (R(x) → B(x))

∃ x · R(x) · B(x) ≡ ∃ x · (R(x) ∧ B(x))

5.2 ppDATE

In this section we formally define the notion of ppDATE previously introduced in Sect. 3. In
order to do so, we first introduce formal definitions for triggers, conditions and actions.

Definition 1 Given a set of method names Σ , the syntactic category of triggers is defined
as follows:

tr igger ::= systemtrigger
| actevent?

systemtrigger ::= methodname↓ | methodname↑

where methodname ∈ Σ . �
In the previous definition, systemtrigger matches a visible system event, such as the

point of entry into a method or the termination of a method execution. Given a method name
σ ∈ Σ , σ↓ represents entering method σ and σ↑ represents the termination of the execution
of σ .

In addition, actevent represents an event generated by the execution of an action in a
transition of a ppDATE, which we will call action events. This kind of events can only
be generated by bang (“!”) actions (see Definition 2). An action h! generates the action
event h, which in the next step can activate the trigger h? This way, action events enable
communication among ppDATEs, where h! and h? mean sending and receiving a message,
respectively.

123

Form Methods Syst Des (2017) 51:200–265 211

As we have mentioned before, whenever a transition is fired an action can be executed.
The following shows the definition of actions.

Definition 2 Actions are syntactically defined as follows:

action ::= skip
| v = e
| actevent!
| create(template, args)
| action ; action
| if condSys∪V then action
| Program

�

skip is the effect-less action. The ‘=’ is an assignment operator, v is a ppDATE variable and e
is a (side-effect free) expression that may depend on system variables and ppDATE variables;
actevent! represents the generation of action event actevent; create represents the creation
of a ppDATE, where template is a ppDATE template to be instantiated (see Definition 8), and
args are the values which the formal parameters of template are instantiated with; the ‘;’ is the
sequence operator for actions; if-then is a conditional whose branching condition depends on
the valuations of system variables (Sys) and ppDATE variables (V); and Program represents
a side-effect free program (see Definition 3), i.e., it is restricted to not have any effect on the
system which could in turn be observed by the (ppDATE generated) monitor. For instance,
a Program could perform logging of system/monitor behaviour. More powerful Programs,
which would for instance allow error recovery, are relevant, but left for future work.

Definition 3 A side-effect free program has the properties that

– its execution always terminates,
– the method calls on its body do not generate any observable system event,
– it does not interfere with the system under scrutiny, i.e., it does not modify the values of

system variables. �
Boolean expressions are used in different contexts: (i) conditions (c) of transitions; (ii)

conditions of if-then actions, and (iii) pre- and postconditions (π , π ′) in Hoare triples. As a
syntactic category for such Boolean expressions, we chose Boolean JML expressions. They
extend Boolean Java expressions, and thereby allow Java methods as sub-expressions (like
in ‘m.get(k) == o’). Additional features of Boolean JML expressions include universal
and existential quantification, which are frequently used in Hoare triples, the ability to refer
in a postcondition to a) the return value (with ‘\result’), and b) the preexecution value of
an expression (like in ‘x == \old(x + y)’).

Definition 4 Boolean JML expressions (BJMLE) are recursively defined as follows:

– any side-effect free Boolean Java expression is a BJMLE,
– if a and b are BJMLEs, and x is a variable of type t, the following expressions are

BJMLEs:

– !a, a&&b, and a||b
– a == > b (“a implies b”)
– a < == > b (“a is equivalent to b”)
– (\forall t x; a)

(“for all x of type t, a holds”)
– (\exists t x; a)

(“there exists x of type t such that a”)

123

212 Form Methods Syst Des (2017) 51:200–265

– (\forall t x; a; b)
(“for all x of type t fulfilling a, b holds”)

– (\exists t x; a; b)
(“there exists an x of type t fulfilling a,
such that b”)

– replacing any sub-expression e in a BJMLE with \old(e) gives a BJMLE,
– replacing any sub-expression in a BJMLE with \result gives a BJMLE, (well-

typedness is context dependent, see Definition 5) �
We do not give a formal definition of the semantics of BJMLE here, just the following

comments. The meaning of negation, conjunction, disjunction, implication, and equivalence
are standard. The same is true for the first two forms of quantification. Concerning the other
two forms, “. . .a; b)”, they relate to standard quantification in exactly the same way as was
explained in Sect. 5.1. (The only difference is that there we discussed meta-level notation,
whereas BJMLE is part of ppDATE.) The constructs \old and \result are only allowed
in postconditions of Hoare-triples (i.e., in π ′). \result refers to the return value of a (non-
void) method. \old allows to evaluate sub-expressions not in the post-state (which is the
default), but in the prestate of a method’s execution. For instance, ‘x == \old(x + y)’
in a postcondition of method m says that the difference between the values of x before and
after the execution of m is the value which y had before m’s execution.

In order to allow or disallow \old and \result, in the following, we provide one
syntactic category for postconditions, and one for all other conditions.

Definition 5 The syntactic category of postconditions over variables in Var, postcondVar ,
is given by Boolean JML expressions over Var. (Well-typedness of postconditions is context
dependent, assuming that \result has the same type as the specified method.) The syn-
tactic category condVar is given by Boolean JML expressions over Var containing neither
\result nor \old. �

Now we can formally define ppDATE. As a ppDATE describes properties about a par-
ticular system, we assume that every time we make reference to the set of system variables,
these variables belong to the system under scrutiny.

Definition 6 Given a set of system variables Sys and a set of ppDATE variables V , a ppDATE
m is a tuple (Q, t, B, q0,Π) such that:

– Q is the finite set of states.
– t is the transition relation among states in Q, where each transition is tagged with (i)

a trigger; (ii) a condition; (iii) an action which may change the valuation of ppDATE
variables: t ⊆ Q × tr igger × condSys∪V × action × Q.

– B ⊆ Q is the set of bad states.
– q0 ∈ Q is the initial state.
– Π is a function which tags each state ofm with Hoare triples for particular method names

in Σ : Π ∈ Q −→ P(condSys × Σ × postcondSys). �

We will write q
tr |c �→a−−−−→m q ′ to mean that, given a ppDATE m whose transition relation is t ,

(q, tr, c, a, q ′) ∈ t . The subscript m is omitted if it is clear from the context. In addition, we
will use the usual Hoare triple notation {π} σ {π ′} ∈ Π(q) to denote (π, σ, π ′) ∈ Π(q).

Example 3 Consider once again, the ppDATE shown in Fig. 3. It can be formalised as follows:
m = (Q, t, B, q0,Π), where,

123

Form Methods Syst Des (2017) 51:200–265 213

– Q = {q, q ′,bad},
– V = {c},
– Σ = {fileTransfer, login, logout},
– B = {bad},
– q0 = q.

Furthermore, the transition relation t consists of four elements, including:

q ′ fileTransfer↓|c≤10 �→c++−−−−−−−−−−−−−−−−−−→ q ′ and q ′ fileTransfer↓|c>10 �→skip−−−−−−−−−−−−−−−−−−→ bad. In addition, rela-
tion Π is defined as follows:

Π(q) = { {true} fileTransfer(f) {bytes == \old(bytes)} }
Π(q ′) = { {true} fileTransfer(f) {bytes == \old(bytes) + size(f)},

{write ∈ rights(f)} rename(f,n) {name(f) == n} }
�

In addition to ppDATEs which exist up-front, and ‘run’ from the beginning of a system’s
execution, new ppDATEs can be created by existing ones. For instance, one may want to
create a separate ‘observer’ for each new user logged into a system. For that, one needs to
be able to define parameterised ppDATEs, which we call templates, and allow ppDATEs to
create new instantiations of templates. Given a ppDATE m, the creation of a new ppDATE,
which will run in parallel to m, can be achieved by using action create on a transition of m.
This action receives as arguments a ppDATE template describing the ppDATE to be created
and a list of arguments to instantiate the quantified variables on the template. Below, we
formally define ppDATE templates.

Definition 7 ppDATE templates of order n are recursively defined as follows:

– The set of ppDATE templates of order 0 is exactly the set of ppDATEs.
– Assume C is a syntactic sub-category of ppDATE (Definition 6), i.e., a syntactic (sub-

)category of Q, t, B, q0, or Π , respectively. If m is a ppDATE template of order n, then
λX:C.m′ is a ppDATE template of order n + 1, where m′ is the result of replacing, in m,
some (sub-)term trm of category C by X . We call X the template variable of λX:C.m′.

�
In the above definition, a template of order n+1 is defined by ‘abstracting’ over templates of
order n, annotating the abstracted ‘hole’ X by the right category, such that template instanti-
ation (see below) can be guaranteed to result in a well-typed ppDATE. When constructing a
ppDATE template, the choice of trm in Definition 7 does not matter. Its only role is to carry
well-typedness of ppDATEs over to ppDATE templates. Informally, the above definition
says that, within λX:C.m′, the X can appear anywhere in m′ where a term of category C is
expected.

We will refer to ppDATE templates without referring to an order to mean templates that
are of order greater than 0. Formally:

Definition 8 The set of ppDATE templates Tppd , is defined as the union of ppDATE tem-
plates of order n ≥ 1.

If X is a vector of template variables X1, . . . , Xn and C is a vector of syntactic categories
C1, . . . ,Cn , then we can write λX:C .m to mean λX1:C1 . . . λXn:Cn .m.

123

214 Form Methods Syst Des (2017) 51:200–265

Finally, we define what it means to instantiate a ppDATE template:

Definition 9 Given a term trm of syntactic category C , the instantiation of a ppDATE tem-
plate with term trm, denoted inst(m, trm), is defined by:

inst(λX:C.m, trm) = m[X/trm]
where m[X/trm] denotes the result of substituting all occurrences of X in m by trm.

We can expand template instantiation to multiple arguments in the following way. Given
n ≥ 2, assume X = X1, . . . , Xn , and C = C1, . . . ,Cn , and trm = trm1, . . . , trmn (with
trmi ∈ Ci). We extend the instantiation function inst to an arbitrary number of arguments in
the following way:

inst(λX:C .m, trm)

= (by syntactic convention)

inst(λX1:C1 . . . λXn:Cn .m, trm1, . . . , trmn)
d f=
inst(inst(λX1:C1 . . . λXn:Cn .m, trm1), trm2, . . . , trmn)

Example 4 Figure 5 illustrates a ppDATE template, based on the ppDATE depicted in
Fig. 2. Let us call it one-at-a-time. This template has two parameters: C , which represents
a condition, and S, which represents a method name. Then, by executing the action cre-
ate(one-at-a-time, cups < limit,brew), it would instantiate the ppDATE depicted in Fig. 6,
i.e.,C is instantiated with cups < limit and S is instantiated withbrew. This ppDATE spec-
ifies the property: it is not possible to brew one more coffee cup until the brewing process is
done.

one-at-a-time = λ C, S : cond, trigger.

qstart

q′

bad

S↓ | C �→ skip

S↓ | true �→ skip

S↑ | true �→ skip

Fig. 5 ppDATE template example

inst(one-at-a-time, cups < limit, brew) =

qstart

q′

bad

brew↓ | cups < limit �→ skip

brew↓ | true �→ skip

brew↑ | true �→ skip

Fig. 6 ppDATE created using the template illustrated in Fig. 5

123

Form Methods Syst Des (2017) 51:200–265 215

In the rest of this work we will only consider the use of deterministic ppDATEs. Formally:

Definition 10 We say that a ppDATE m is deterministic if, for any two transitions of m with
same trigger tr which go from a state q to a different state, their conditions are mutually
exclusive:

∀ tr, c, c′, a, a′, q, q ′, q ′′·
q

tr |c �→a−−−−→m q ′ and q
tr |c′ �→a′
−−−−−→m q ′′ · not (c and c′)

�
Note that the previous property should hold for any possible instance of the (boolean) vari-
ables appearing in both c and c′. In addition, although determinism on the Hoare triples’
preconditions is not problematic in itself, we choose to extend the determinism condition to
ensure that for any two Hoare triples in a single state over the same function have disjoint
precondition so as to have a more effective monitoring algorithm of these triples: for any
{π1} σ {π ′

1} and {π2} σ {π ′
2} in Π(q), not (π1 and π2).

After having defined (individual) ppDATEs, we can now define a network of ppDATEs.

Definition 11 A ppDATE network pn is represented with a tuple (M, V, ν0, Tppd):

– M is a set of ppDATEs. If m ∈ M , then we say that m = (Qm, tm, Bm, q0m,Πm).
– V is a set of ppDATE variables.
– ν0 is the initial valuation5 of variables in V.
– Tppd is a set of ppDATE templates. �

Note that on a network, whenever a trigger is activated, several ppDATEs can have an
enabled transition ready to be fired, i.e., a transition whose trigger is active and whose
condition holds. Whenever this happens all these enabled transitions are fired in parallel.
Also note that the set of ppDATE variables V is global to the network of ppDATEs, rather
than local to individual ppDATEs. Thereby, V is effectively the ‘shared memory’ of the
network.

Finally, we extend the notion of deterministic ppDATE to a ppDATE network.

Definition 12 A ppDATE network pn = (M, V, ν0, Tppd) is deterministic whenever every
ppDATE in M is deterministic and every ppDATE which can be created when executing
action create is deterministic. �

6 ppDATE semantics

In this section we present the semantics of a network of ppDATEs by introducing structural
operational semantics (SOS) rules. These rules will show how a global configuration is
shifted to a new one by considering events and system variables valuations in a system trace.

Informally, a global configuration (L , ν) (of a ppDATE network) consists of a set L of
local configurations (one for each ppDATE in the set of ppDATEs of the network and one
for each generated instance of a ppDATE template), and a valuation ν of the set of ppDATE
variables V (associated to the ppDATE network). The local configurations store the current
state, and record, for each ongoing method execution whose precondition was fulfilled at call
time, the postcondition to be checked on exit.

5 A valuation is a mapping from variables to values of adequate types.

123

216 Form Methods Syst Des (2017) 51:200–265

Every time the system under scrutiny generates an event, e.g., by entering or leaving a
method, all local configurations in L with enabled transitions will replace their current state
value by the state indicated in the fired transition, and execute the action of this transition,
all simultaneously. For instance, given a ppDATE m whose current state is q , and with a

transition t1 of the form q
tr |c �→a−−−−→m q ′, when a system event triggers tr (and condition c

holds), then t1 is fired, state q is replaced by q ′ in the appropriate local configuration in L , and
a is executed. If the executed actions contain ppDATE variables assignments, the valuation
ν is updated. In addition, any action event generated by these executions will be stored in a
buffer.

Once all the previous enabled transitions are fired, every transition that become enabled
by the events in the buffer will be fired as well. For instance, let us assume that action a in
transition t1 (only) generates the action event h, i.e., a = h!, and that a ppDATE m′ running

in parallel to m is in state q ′′, and has a transition t2 of the form q ′′ h?|true �→a′
−−−−−−−→m′ q ′′′. Then,

whenever t1 is fired, execution of h! will add to the buffer an event which will enable t2, due
to the fact that trigger h? is activated by h and its condition (trivially) holds. Therefore, after
firing t1, t2 will be also fired.

Note that the buffer will be emptied before firing the transitions enabled by the events
consumed from the buffer. Therefore, the buffer only contains events generated by the recent
action executions, and no events from previous ones. This procedure is repeated until no new
action event is generated, i.e., the buffer is empty. In general, the process may not terminate,
however if we want to guarantee termination, we can adopt an approach which ensures
that there is no transitive mutual communication dependencies over the set of automata as
explained in the original semantics of Larva [18].

6.1 Events, valuations, and traces

ppDATE networks describe which system behaviours are allowed, and which are not. Here,
we consider as behaviour basically a series of system events, where each event also comes
with a ‘snapshot’ of the values of (visible) system variables, taken at the time where the event
occurs. Formally, these snapshots are valuations, i.e., mappings from variables to values (of
adequate types). Apart from the observed system, the ppDATE networks themselves may
create new events.

An event may therefore either be a system event (i.e., generated by the system under
scrutiny due to entering or leaving a method) or an action event (i.e., generated by the
execution of an action ! in a ppDATE transition). Formally:

Definition 13 Given a set of method names Σ , the syntactic category of events is defined as
follows:

ξ ::= systemevent | actevent systemevent ::= systemtriggerN �

A systemevent consists of a systemtrigger which is indexed with a natural number rep-
resenting the nth execution of the method associated to the trigger. Such an index will be
considered an identifier6 unique to each execution of the method.

We distinguish the set of system variables valuations ΘSys, with typical element θ , and the
set of ppDATE variable valuations N , with typical element ν. We represent valuations both as

6 These identifiers can be created automatically using techniques as those presented in [24] or through stack
frame references.

123

Form Methods Syst Des (2017) 51:200–265 217

functions and (functional) relations7, i.e., sets of pairs. This means that the notation β(v) =
val is equivalent to the notation (v, val) ∈ β. The union of valuations is therefore a set union
such that, for any two valuations β and β ′, β∪β ′ = {(v, val) | (v, val) ∈ β or (v, val) ∈ β ′}.
In the presentation of examples, we limit the valuations to those variables which matter for
the example at hand, for simplicity.

In our semantic rules, we will use union over valuations only when the domain of valuations
do not overlap, as for instance in θ ∪ ν. Another operation on valuations is the modification
of a valuation β at variable x by value val, written β[x ← val]. It is defined as:

β[x ← val](v) =
{
val iff v = x
β(v) otherwise

Given a set of variables S, a valuation β for S, and condition c ∈ condS , we will write
β |� c to denote that c is satisfied by β. This is however not sufficient for postconditions
as they can refer to two valuations, after and before (“\old”) a method’s execution. For
that, |� will be overloaded. Given a set of system variables Sys, valuations θ and θ ′, and a
postcondition c ∈ postcondSys, we will write θ, θ ′ |� c to denote that c is satisfied by θ and
θ ′. When this is used, θ ′ will be the current valuation of Sys when exiting a certain method
execution, whereas θ holds the valuation from before that method execution. We only sketch
the definition of |� here as it follows the standard of first-order logic semantics. We use the
two semantic truth values T and F . For c ∈ condS , we define β |� c iff evalβ(c) = T ,
where evalβ is recursively defined over the structure of c as standard in first-order logic8,
with the base case evalβ(x) = β(x) for variables x. For c ∈ postcondSys, we define
θ, θ ′ |� c iff evalθ,θ ′(c) = T . The definition of evalθ,θ ′ is almost identical to the definition
evalβ , with the base case evalθ,θ ′(x) = θ ′(x) for program variables x. The only case
in the definition where the pre-valuation θ matters is the evaluation of \old-expressions:
evalθ,θ ′(\old(e)) = evalθ (e). This means that, in postconditions, the post-valuation θ ′
acts as the default, however not inside \old-expressions, where instead the pre-valuation θ

counts. The other additional operator in postconditions is \result. To handle its evaluation
properly, we assume a special system variable named \result. Whenever a non-void
method returns, its return value, say val, is assigned to \result, such that, in the post-
valuation θ ′, we have θ ′(\result) = val.

A system trace is a sequence of tuples consisting of an event and a ‘system snapshot’, i.e.,
a valuation of the system variables taken at the time when that event occurs.

Definition 14 A system trace w is a sequence of tuples in systemevent × ΘSys, i.e. w ∈
(systemevent × ΘSys)

∗. �
6.2 Configurations

Given a system trace w, each tuple in w will shift a global configuration of a ppDATE network
to another. Global configurations are defined in terms of local configurations.

Definition 15 Given a set of method names Σ , a local configuration is a tuple (m, q, ρ)

where m is a ppDATE, q ∈ Qm , and ρ ⊆ P(systemevent × postcondSys × ΘSys). �
The tuple (m, q, ρ) is a configuration of ppDATE m—where q represents the current

state, and ρ allows to monitor potential violations of Hoare triples. For that, ρ stores which

7 A (binary) relation R is functional if {(x, y), (x, y′)} ⊆ R implies y = y′.
8 To be precise, eval has one extra parameter, which is a logical variable assignment, needed to define the
evaluation of quantified formulas. We omit that parameter since it is unimportant for our discussion here.

123

218 Form Methods Syst Des (2017) 51:200–265

exit event (∈ systemevent) should cause a checking of which postcondition (∈ postcond).
The semantic rules described below (Sect. 6.4) will guarantee that only method exit events
(of the form σ

↑
i) will appear in ρ. During the processing of a trace, the appearance of (σ

↓
i , θ)

at the same time as the current state has a Hoare-triple with a fulfilled precondition, θ |� π ,
the corresponding postcondition π ′ is associated with σ

↑
i in ρ, together with θ . Later, the

appearance of (σ
↑
i , θ ′) will cause a look-up of (σ

↑
i , π ′, θ) in ρ, in order to check θ, θ ′ |� π ′.

Example 5 Recall the ppDATE illustrated in Fig. 2, here called m. Its initial local configu-
ration is (m, q,∅). Then, after firing transition t1 whenever the system event brew↓

id (with
id ∈ N) occurs, assuming that the field cups is valuated to zero, the next local configuration
is (m, q ′, {(brew↑

id, cups == \old(cups) + 1, {(cups, 0)})}). �
Definition 16 Given a ppDATE network pn = (M, V, ν0, Tppd), a global configuration for
pn is a tuple (L , ν) such that:

– L is a set of local configurations. For each m ∈ M , there is exactly one q and one ρ,
such that (m, q, ρ) ∈ L . For each (m, q, ρ) ∈ L , we have q ∈ Qm and either m ∈ M or
m = inst(t, args), for some t ∈ Tppd .

– ν is ppDATE variable valuation with domain V . �
Before giving an example, we define the notion of initial global configuration for a ppDATE
network.

Definition 17 Given a ppDATE network pn = (M, V, ν0, Tppd) where m ∈ M is the tuple
(Qm, tm, Bm, q0m,Πm), the initial global configuration Cinit (pn) is defined as the tuple
(L0, ν0), where L0 = {(m, q0m,∅) | m ∈ M} is the set of initial local configurations. �
Example 6 Let us assume a ppDATE network pn = ({m,m′}, {v}, {(v, 0)},∅), such

that q0m′
tr |true �→v=v+1−−−−−−−−−→m′ q1m′ . The initial global configuration for pn is Cinit (pn) =

(L0, {(v, 0)}), where L0 = {(m, q0m,∅), (m′, q0m′ ,∅)}. Then, if the given transition is fired,
the new global configuration is (L ′, {(v, 1)}), where L ′ = {(m, q0m,∅), (m′, q1m′ ,∅)}. �

In the above example, the action v = v + 1, does not generate any event. In general,
however, actions may generate events. For storing action events (and process them in the
next step), we introduce the concept of extended global configuration.

Definition 18 Given a ppDATE network pn = (M, V, ν0, Tppd), and a set of system vari-
ables Sys, an extended global configuration for pn is a tuple (L , ν, E, θ) such that:

– (L , ν) is a global configuration for pn,
– E ⊆ P(ξ) is a set of events,
– θ ∈ ΘSys is a system variables valuation. �
E contains the events to be processed in the next (small) step. In the operational semantics
to be described below, E will either be a singleton set containing a system event, or a set of
action events generated by the executions of actions in the latest transition.

Example 7 Let us assume a ppDATE network pn = ({m,m′}, {v}, {(v, 0)},∅), such that

q1
foo↓|true �→h!−−−−−−−−→m q2, q ′

1
h?|true �→v=v+1−−−−−−−−−−→m′ q ′

2, Πm(q1) = {{π}foo{π ′}}, with q1 and
q ′

1 the initial states of m and m′, respectively. In addition, let us assume that C1 =
(L1, {(v, 0)}, {foo↓

id},∅) is an extended global configuration for pn (for some index id ∈ N),

123

Form Methods Syst Des (2017) 51:200–265 219

where L1 = {(m, q1,∅), (m′, q ′
1,∅)}. Then, when the given transition ofm is fired, given that

π holds and the current system variables valuation is θ , the next extended global configuration
for pn is C2 = (L2, {(v, 0)}, {h},∅), where L2 = {(m, q2, {(foo↑

id, π
′, θ)}), (m′, q ′

1,∅)}.
After that, event h in C1 triggers the given transition of m′, leading to the extended global
configurationC3 = (L3, {(v, 1)},∅,∅), where L3 = {(m, q2, {(foo↑

id, π
′, θ)}), (m′, q ′

2,∅)}.
�

The structural operational semantics given in Sect. 6.4 formalises such behaviour.

6.3 Semantics of actions

When assigning meaning to actions, there are two levels to consider. One is the level of
the local actions, executed when an individual ppDATE takes a transition. The semantics
of those is sequential, as defined below. On top of the assignments changing the ppDATE
variable valuation, the local actions may generate events, and create new instances of ppDATE
templates.

The other level is parallel actions, where we compose simultaneous actions of transitions
taken in parallel by different ppDATEs. Here, we need to devote special care to exclude
conflicting writes to, as well as race conditions between reads and writes from/to, the same
variable. Also, we need to make sure that if only one ppDATE writes to x , then the parallel
composition propagates this effect. All this makes it necessary to keep track of all reads and
writes at the local level, prior to execute the parallel composition. However, the treatment
of the local effects and newly created ppDATEs is simpler: we just take the union of those
when doing the parallel composition.

Definition 19 For each a ∈ action, itsmeaning [[a]]θ,ν (relative to system/ppDATE variable
valuations θ and ν) is given by a tuple (ν′,W, R, E, New), where:

– ν′ ∈ N is a ppDATE variable valuation computed (locally) in a,
– W ⊆ V is a set of ppDATE variables written to in a,
– R ⊆ V is a set of ppDATE variables read from in a,
– E ⊆ actevent is a set of action events generated in a,
– New ⊆ ppDATE is a set of ppDATEs newly created in a.

Given that pvars returns the ppDATE variables appearing in its argument(s), [[a]]θ,ν =
(ν′,W, R, E, New) is defined as follows

[[skip]]θ,ν = (ν,∅,∅,∅,∅)

[[v = e]]θ,ν = (ν[v ← evalθ∪ν(e)], {v}, pvars(e),∅,∅)

[[h!]]θ,ν = (ν,∅,∅, {h},∅)

[[create(t, args)]]θ,ν = (ν,∅, pvars(args),∅, inst(t, args))

[[a1 ; a2]]θ,ν =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ν2,W1 ∪ W2, R1 ∪ R2, E1 ∪ E2,New1 ∪ New2)

where

[[a1]]θ,ν = (ν1,W1, R1, E1,New1)

and

[[a2]]θ,ν1 = (ν2,W2, R2, E2,New2)

123

220 Form Methods Syst Des (2017) 51:200–265

[[if c then a]]θ,ν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ν′, W, R ∪ pvars(c), E,New)

if θ ∪ ν |� c and [[a]]θ,ν = (ν′,W, R, E,New)

(ν,∅, pvars(c),∅,∅)

otherwise

[[prog]]θ,ν = [[skip]]θ,ν

�
Following the definition of actions (Definition 2), the prog in the last line above is a side-effect
free program, i.e., it has no effect which could be noticed in the current formalism, which is
why we can simulate it with skip. prog will have purposes orthogonal to our formalisation,
like logging.

We are now in the position to define the parallel composition of actions. Imagine we
have a configuration with 5 parallel ppDATEs, 3 of which have enabled transitions, with
actions a1, a2, and a3, respectively. Assume moreover that the current ppDATE variable
valuation is ν. The parallel composition of the meaning of a1, a2, and a3, is performed by
mergeParal Actsν({[[a1]], [[a2]], [[a3]]}) = (ν′, E ′, New′). The function mergeParalActs
takes a set of semantic actions as input, and computes a resulting valuation ν′, a resulting
set of events E ′, and a resulting set of newly generated ppDATEs, New′. The sets E ′ and
New′ will simply be the union of the corresponding sets from [[a1]], [[a2]], and [[a3]]. But the
resulting valuation is slightly more involved. Actions may conflict (e.g., we write to the same
variable in different actions), or have race conditions (i.e., we read from a variable and write
to it in different actions). In those cases, we leave the result of mergeParalActs deliberately
undefined. In all other cases, the different effects of the actions are merged. The index of the
merging function, ν, serves as a fall back for those variables which have not been written to.
In particular, ν′ = ν in case the set of actions to be merged is empty.

These explanations are formalised in the following function, merging a set of action
meanings (Definition 19):

Definition 20 mergeParal Actsν({(ν1,W1, R1, E1,New1), . . . , (νn,Wn, Rn, En,Newn)})

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

undefined
if ∃ i, j · (i, j ∈ [1, . . . , n] and i �= j) · (Wi ∩ Wj �= ∅ or Wi ∩ R j �= ∅)

(ν′, E ′,New′) otherwise, where

E ′ = ⋃n
i=1 Ei , New′ = ⋃n

i=1 Newi , ν′(v) =
{

νi (v) if v ∈ Wi

ν(v) if v /∈ ⋃n
i=1 Wi

�

Note that if there are no actions to merge, we have mergeParal Actsν(∅) = (ν,∅,∅).

6.4 Structural operational semantics

In this section we give structural operational semantics rules (SOS) for ppDATEs. These
rules will have the following generic form:

name

H1

· · ·
Hn

Goal

where name is a label used to identify the rule, Goal is the property enforced by the rule
and the premises H1, · · · , Hn are assumptions over the values of the Goal.

123

Form Methods Syst Des (2017) 51:200–265 221

6.4.1 Auxiliary predicates

In the semantic definitions given below, we use the following predicates.
activatedByGiven a (transition) trigger tr and an event e, predicate activatedBy(tr, e) holds
if tr and e match, in the following way:

activatedBy(tr, e)
d f={ ∃ i · i ∈ N · e = tri iff e ∈ systemevent

tr = e? iff e ∈ actevent

For instance, the trigger σ↓ is activated by the systemevent σ↓
3 , and the trigger h? is activated

by actevent h (generated before by the execution of action h!). �
nextState Given a local configuration (m, q, ρ), a state q ′, an event e, a system variables
valuation θ and a ppDATE variables valuation ν, predicate next State holds whenever there
exists an enabled transition on m going from q to q ′. We formally write this as follows,

next State((m, q, ρ), e, θ, ν, q ′) d f=
∃ tr, c, a · q tr |c �→a−−−−→m q ′ and

activatedBy(tr, e) and θ ∪ ν |� c

�
checkOnExit Given a local configuration (m, q, ρ), a system event σ

↓
id, a system variables

valuation θ , and a postcondition π ′, predicate checkOnExit holds if there exists a condition
π such that the Hoare-triple {π} σ {π ′} is associated to state q , and π holds. We formally
write this as follows,

checkOnExit((m, q, ρ), σ
↓
id, θ, π ′) d f=

∃ π · {π} σ {π ′} ∈ Πm(q) and θ |� π

�
enabled Given a local configuration l, an event e, a system variables valuation θ , and a
ppDATE variables valuation ν, predicate enabled holds if either l has an enabled transition
or it has a Hoare triple associated to q which has to be memorised. Formally,

enabled(l, e, θ, ν)
d f=

∃ q ′ · next State(l, e, θ, ν, q ′)
or
∃ π ′ · checkOnExit(l, e, θ, π ′)

�
toBeExecuted Given a local configuration (m, q, ρ), an event e, a system variables valuation
θ , a ppDATE variables valuation ν, and an action a, predicate toBeExecuted holds if there
exists an enabled transition such that a is its action. Formally,

toBeExecuted((m, q, ρ), e, θ, ν, a)
d f=

∃ tr, c, q ′ · activatedBy(tr, e) and

q
tr |c �→a−−−−→m q ′ and θ ∪ ν |� c

�

123

222 Form Methods Syst Des (2017) 51:200–265

entry1

checkOnExit((m, q, ρ), σ↓
id, θ, π′)

nextState((m, q, ρ), σ↓
id, θ, ν, q′)

(m, q, ρ)
(σ↓

id,θ,ν)
↪−−−−−−→ (m, q′, ρ ∪ {(σ↑

id, π′, θ)})

entry2

� π′ · checkOnExit((m, q, ρ), σ↓
id, θ, π′)

nextState((m, q, ρ), σ↓
id, θ, ν, q′)

(m, q, ρ)
(σ↓

id,θ,ν)
↪−−−−−−→ (m, q′, ρ)

entry3

checkOnExit((m, q, ρ), σ↓
id, θ, π′)

� q′ · nextState((m, q, ρ), σ↓
id, θ, ν, q′)

(m, q, ρ)
(σ↓

id,θ,ν)
↪−−−−−−→ (m, q, ρ ∪ {(σ↑

id, π′, θ)})

exit
nextState((m, q, ρ), σ↑

id, θ, ν, q′)

(m, q, ρ)
(σ↑

id,θ,ν)
↪−−−−−−→ (m, q′, ρ)

act

e ∈ actevent
nextState((m, q, ρ), e, θ, ν, q′)

(m, q, ρ)
(e,θ,ν)

↪−−−−→ (m, q′, ρ)

Fig. 7 Small step rules for local configurations

6.4.2 Small steps for local configurations

The first step to define SOS rules describing the behaviour of a ppDATE network is to
introduce rules showing how a local configuration performs a small step.

Given an event e, a system variables valuation θ , and a ppDATE variables valuation ν,

a small local configuration step (or simply small step local), written
(e,θ,ν)

↪−−−→, takes a local
configuration (m, q, ρ) to some other local configuration (m, q ′, ρ′). This step relation is
defined by the rules shown in Fig. 7. If e is an entry event of the form σ

↓
id, there are three

different possibilities: (i) there is an enabled transition in m going from state q to state q ′,
and there is a Hoare triple {π} σ {π ′} associated to q such that π holds (entr y1); (ii) there is
an enabled transition in m going from state q to q ′, but no Hoare triple {π} σ {π ′} associated
to q such that π holds (entr y2); or (iii) there are no enabled transitions in m, but there is a
Hoare triple {π} σ {π ′} associated to q such that π holds (entr y3).

In case of (entr y1), the next state reached by the enabled transition is q ′, and ρ gets
extended by the tuple (σ

↑
id, π

′, θ), in order to track the information about the postcondition
which has to be checked upon the exit of method σ . Entry event identifiers are assumed to
be unique in traces, and thereby, σ

↑
id is unique in ρ. In case of (entr y2) and (entr y3), only

one of these two effects takes place. Then, apart from entry events, whenever e is either an
exit event, i.e., it has the form σ

↑
id, or an action event, by the rules exit and act, respectively,

(e,θ,ν)
↪−−−→ results in the local configuration (m, q ′, ρ), where q ′ is the next state reached by the
enabled transition.

123

Form Methods Syst Des (2017) 51:200–265 223

iter

Len = {l | l ∈ L, enabled(l, e, θ, ν), e ∈ E}
Lnch = L\Len

Lch = {l′ | l ∈ Len, l
(e,θ,ν)

↪−−−−→ l′, e ∈ E}
Acts = {a | l ∈ Len, toBeExecuted(l, e, θ, ν, a), e ∈ E}
mergeParalActsν({[[a]]θ,ν |a ∈ Acts}) = (ν′, E′,New′)

Lnew = {(m, q0m, ∅) | m ∈ New′}
L′ = Lch ∪ Lnch ∪ Lnew

(L, ν, E, θ) � (L′, ν′, E′, θ)

Fig. 8 Small step rule for extended global configurations

shift
(L, ν, {e}, θ) �∗ (L′, ν′, ∅, θ)

(L, ν)
(e,θ)
===⇒ (L′, ν′)

Fig. 9 Big step rules for global configurations

6.4.3 Small steps for extended global configurations

Given an extended global configuration EC = (L , ν, E, θ), the relation small step for
extended global configurations (or simply small step global), written as �, takes EC to some
extended global configuration (L ′, ν′, E ′, θ) by following rule i ter (depicted in Fig. 8). Note
that in the rule’s premises we define the set Len of all the local configurations (m, q, ρ) ∈ L
such that m has an enabled transition whose triggers are activated by the events in E . Len

is used to define both the set Lnch of local configurations in L that will not change, and
the set Lch of the local configurations obtained after performing a small step on the local
configurations in Len . These two sets are used to define L ′. Next, we define the set Acts of
all the actions which label the ‘firing’ transitions, and merge the meaning of those actions,
which results in the valuation ν′ and events E ′ of the new extended global configuration. We
also initialise local configurations Lnew for the newly created ppDATEs from New′. Finally,
L ′ is the union of Lch , Lnch and Lnew.

Note that if mergeParalActs is undefined, due to conflicts in parallel variable assignments
(see Definition 20), then no global small step is defined, i.e., the execution aborts.

6.4.4 Big steps for global configurations

Given a ppDATE network pn = (M, V, ν0, Tppd), a global configuration (L , ν) such that
for all (m, q, ρ) ∈ L , m ∈ M and q ∈ Qm , and ν a valuation of the ppDATE variables
V , a system event e and the system variables valuation θ , the relation big step rules for

global configurations (or simply big step global), written
(e,θ)��⇒, shifts (L , ν) to some global

configuration (L ′, ν′), written (L , ν)
(e,θ)��⇒ (L ′, ν′), by rule shift given in Fig. 9. Note that

here e and θ are external to the global configuration of the ppDATE network: they come from
the system acting as input to each step of the global configuration.

This rule means that whenever e occurs while the current system variables valuation is θ ,
(L , ν) shifts to (L ′, ν′) if the transitive closure of the relation small step global (�, Fig. 8)
takes the extended global configuration (L , ν, {e}, θ) to the extended global configuration
(L ′, ν′,∅, θ). We need the transitive closure because the execution of actions may generate
action events which also have to be consumed, meaning that we iterate using small step
global until the set obtained by applying rule i ter is the empty set. After having reached

123

224 Form Methods Syst Des (2017) 51:200–265

(L ′, ν′,∅, θ), the small steps are saturated, because any configuration (, ,∅,) is a fixed-
point of �.

Lemma 1 For each set of local configurations L, ppDATE variable valuation ν, and system
variables valuation θ , the extended global configuration (L , ν,∅, θ) is a fixed-point of the
relation small step global, i.e.,

(L , ν,∅, θ) � (L , ν,∅, θ)

Proof In rule iter (Fig. 8), if E = ∅, then Len = Lch = Acts = ∅, and Lnch = L . From the
note below Definition 20, we deduce that (ν′, E ′, New′) = (ν,∅,∅), such that Lnew = ∅,
and L ′ = Lnch = L . Therefore, (L ′, ν′, E ′, θ) = (L , ν,∅, θ). �

We can now define the semantics of ppDATEs by identifying how a system trace changes
the global configuration associated to a network of ppDATEs.

Definition 21 We define how a system trace w ∈ (systemevent × ΘSys)
∗ shifts a ppDATE

from the global configuration (L , ν) to the global configuration (L ′, ν′), written (L , ν)
w�⇒

(L ′, ν′), by induction over w:

(L , ν)
ε�⇒ (L ′, ν′) d f= L = L ′ and ν = ν′;

(L , ν)
w:(e,θ)����⇒ (L ′, ν′) d f= ∃ L ′′, ν′′ · (L , ν)

w�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L ′, ν′);
For this definition we will overload the operator we previously introduced to represent

the relation big step global, i.e., ⇒ since it is straightforward to distinguish between the two
from the context.

6.5 Valid traces and violating traces

Before defining violating system traces, we have to introduce the notion of counter-example.

Definition 22 Given a network of ppDATEs pn = (M, V, ν0, Tppd), a system trace

w ∈ (systemevent × ΘSys)
∗ is called a counter-example if Cinit (pn)

w�⇒ (L , ν), and (i)

∃ m, q, ρ · (m, q, ρ) ∈ L · q ∈ Bm ; or (ii) w = w1 ++ 〈(σ↑
id , θ

′)〉, Cinit (pn)
w1�⇒ (L ′, ν′) and

∃ m, q, ρ, π ′, θ · ((m, q, ρ) ∈ L ′and (σ
↑
id , π

′, θ) ∈ ρ) · θ, θ ′ �|� π ′. �
(The symbol ++ represents the concatenation of traces.) This means that a counter-example
either (i) ends in a bad state (in one of the local configurations), or (ii) ends with the exiting of
a method execution who’s postcondition (stored in ρ) is currently violated. Note that (i) and
(ii) are not exclusive, so a counter-example may have both properties at once. Also note that
violations of preconditions when entering methods is not mentioned here. In our semantics,
the violation of preconditions does not as such result in a counter example. It only means
that the postcondition of the corresponding Hoare triple does not need to be checked further
on (see entr y2, Fig. 7).

Example 8 Recall the ppDATE m shown in Fig. 2, and let us assume that it is in state q . Then,
for any system variables valuation θ , w = 〈(brew↓

1 , θ), (brew↓
2 , θ)〉 is a counter-example

corresponding to the case (i) of Definition 22.
In addition, if the trigger cleanF↓

1 is activated and the postcondition of the Hoare triple
{true} cleanF() {cups == 0} is violated when method cleanF terminates, then
w′ = 〈(brew↓

1 , θ), (brew↑
1 , θ), (cleanF↓

1 , θ), (cleanF↑
1 , θ)〉 is a counter-example cor-

responding to the case (ii) of Definition 22. �

123

Form Methods Syst Des (2017) 51:200–265 225

Definition 23 The set of violating system traces of a ppDATE network pn, written VT (pn),
is defined to be system traces which have a counter-example of pn as a prefix. �
Definition 24 The set of valid system traces of a ppDATE network pn, written VAT (pn),
is defined to be the system traces which are not violating. �
Example 9 The following system traces, for the coffee machine system of Fig. 2, are all
valid:
w = 〈(brew↓

1 , θ), (brew↑
1 , θ), (brew↓

2 , θ), (brew↑
2 , θ)〉

w′ = 〈(brew↓
5 , θ), (brew↑

5 , θ), (cleanF↓
2 , θ), (cleanF↑

2 , θ)〉
w′′ = 〈(cleanF↓

4 , θ), (cleanF↑
4 , θ), (brew↓

2 , θ), (brew↑
2 , θ)〉 �

7 From ppDATE to DATE

In our framework, KeY first tries to prove all Hoare-triples of a ppDATE m, and then the
partial proofs are used to get an optimised ppDATE m′. To make the property m′ runtime-
checkable, we further translate away the (remaining/optimised) Hoare triples, to arrive at a
set of parallel (pure) DATEs that can be processed by Larva.

In this section, we formally define DATEs, we present the algorithm used by StaRVOOrS
to translate ppDATEs into DATEs, finally, after introducing the semantics of DATEs, we
prove soundness of the translation.

7.1 DATE

DATE [18] is a formalism similar to ppDATE, except that the automata do not include Hoare
triples in the states. DATEs also include support for timers, which are not in ppDATEs.
However, since the work we present here does not use timers, we leave them out from the
formalisation. Formally:9

Definition 25 A DATE is a ppDATE of the form (Q, t, B, q0,Π∅), where relation Π∅ rep-
resents that there are no Hoare triples assigned to any of the states in Q, i.e., Π∅(q) = ∅,
∀q ∈ Q. �

Note that since a DATE is effectively a ppDATE, the semantics for DATEs are already
covered by the semantics of ppDATEs. We will also refer to a (deterministic) network of
ppDATEs where each ppDATE in the network is a DATE, as a network of DATEs and
similarly DATE templates.

7.2 Translation from ppDATEs to DATEs

Here we present how to translate a ppDATE (network) into a DATE (network). However,
first, let us intuitively analyse how the ppDATE depicted in Fig. 2, which we will refer to as
m, can be translated into a DATE m′.

For simplicity, we assign the following names to the different Hoare triples in the states
of m.

– h1: {cups < limit}brew() {cups == \old(cups)+1}
9 Note that the definition of DATE given here is different from the one given in [18] as Π∅ was not defined
in the original formulation. It is easy to see that the formulations are equivalent (modulo the differences
mentioned above).

123

226 Form Methods Syst Des (2017) 51:200–265

exit cond checker = λ S, A : Σ, cond.

start ok

bad

S↑ | A �→ skip

S↑ | ¬A �→ skip

Fig. 10 DATE template for verifying postconditions of Hoare triples

– h2: {true}cleanF() {cups == 0}
– h3: {cups < limit}brew() {cups == \old(cups)}
– h4: {true}cleanF() {cups == \old(cups)}

Then, we begin the translation by generating the DATE template illustrated in Fig. 10,
which will be used to create DATEs in charge of controlling the postconditions of the previous
Hoare triples.

Next, we start dealing with the translation of the transitions of m. m′ will have exactly the
same set of states asm, and it will have similar transitions to the ones ofm. The only difference
is that the transitions in m′ will also have to address the verification of the Hoare triples. For
instance, while being in state q , if the method brew() is executed and the precondition of
h1 holds, then its postcondition will have to be verified whenever method brew() finishes
its execution.

Therefore, for every transition of the form q
σ↓|c �→a−−−−−→m q ′, such that a Hoare triple

{π} σ {π ′} is in q , m′ will include a modified version of this transition in such a way that
whenever this transition is fired, if π holds, then the execution of its action will have to create
an instance of template exi t_cond_checker . Thus, transitions t1, t3 and t4 (recall Fig. 2) are
modified as follows:

– t ′1 : q brew↓|cups<limit�→skip ; a1−−−−−−−−−−−−−−−−−−−→m′ q ′

– t ′3 : q ′ brew↓|true�→skip ; a2−−−−−−−−−−−−−−→m′ bad

– t ′4 : q ′ cleanF↓|true�→skip ; a3−−−−−−−−−−−−−−−→m′ bad

where,

– a1 : if (cups < limit) then
create(exit_cond_checker,brew,part_eval(cups==\old(cups)+1))

– a2 : if (cups < limit) then
create(exit_cond_checker,brew,part_eval(cups==\old(cups)));

– a3 : if (true) then
create(exit_cond_checker,cleanF,part_eval(cups == \old(cups))).

In the previous transitions we have used as the conditions of the if-expressions in actions
a1, a2 and a3, the preconditions of the different Hoare triples to be verified in each case.
Moreover, function part_eval partially evaluates its argument, replacing the expressions
\old(e) operator the current value of e. If a postcondition does not include such operator,
then part_eval is the identity. Note that even though the if-expression in the transitions
t ′1 and t ′4 may seem unnecessary, we include it anyway in order to exactly reflect how the
translation algorithm works.

123

Form Methods Syst Des (2017) 51:200–265 227

qstart

q′

bad

t′1

t′4 t′3

t′2

t′5

Fig. 11 Translation to DATE of the ppDATE illustrated in Fig. 2

In addition, if at a certain state, a Hoare triple has to be verified, but in that state there are
no outgoing transitions with an event related to the method in the Hoare triple, then a new
transition is added to m′ in order to be able to control such Hoare triple. For instance, in state
q the following self-transition has to be added in order to verify h2 and h3.

– t ′5 : q cleanF↓|true�→a4−−−−−−−−−−−−→m′ q

where,

– a4 : create(exit_cond_checker,cleanF,part_eval(cups == 0))

Again, we use the preconditions of the Hoare triples as conditions of the previous action.

Given a transition q
tr |c �→a−−−−→m q ′ such that (i) tr fires upon exiting a method, or (ii) tr

fires upon entering a method but there is no Hoare triple associated to this method in q , these

transitions remain untouched, i.e., it is translated as q
tr |c �→a−−−−→m′ q ′. For instance, transition

t2 is translated as follows.

– t ′2 : q ′ brew↑|true�→skip−−−−−−−−−−−→m′ q

Figure 11 illustrates the DATE obtained when translating m following the previous steps.
Note that whole translation would consist on the previous DATE and the generated template
exit_cond_checker.

7.2.1 Translation algorithm

For clarity of presentation we give two algorithms, one for the case when no Hoare triples
clashes arise, and one for the full case. Intuitively, we call it a clash if the behaviour of a
method σ , in a certain ppDATE state q , is defined by both, a Hoare triple in q , and an outgoing
transition from q . Formally, we define a clashing Hoare triple as follows.

Definition 26 Given a ppDATE network pn = (M, V, ν0, Tppd) such that every ppDATE
m ∈ M is defined as the tuple (Qm, tm, Bm, q0m,Πm), a Hoare triple {π} σ {π ′} ∈ Πm(q),
for some q ∈ Qm , is called clashing if an outgoing transition from q is guarded by trigger

σ↓ (i.e., ∃ c, a, q ′ · q σ↓|c �→a−−−−−→m q ′). A clash-free ppDATE is a ppDATE with no clashing
Hoare triples. �

We now present the algorithm to translate a clash-free ppDATE network into a DATE
network. The translation works by replacing each Hoare triple {π} σ {π ′} in a state q of a

123

228 Form Methods Syst Des (2017) 51:200–265

ppDATE by a new reflexive transition (from q to q) triggered by an entry into function σ such
that the precondition π holds, and a parallel DATE is created, checking the postcondition.

We assume a function part_eval ∈ postcond �→ cond , which removes \old con-
structs in postconditions. The function performs partial evaluation—replacing each\old(e)
with the current value of e. Our algorithm syntactically places the part_eval function in
an action that will be executed when the according method is entered, i.e., partial evaluation
does not happen during the translation algorithm, but at runtime, when the method is entered.

Algorithm 1 Given a clash-free ppDATE network pn = (M, V, ν0, Tppd), such that every
ppDATE m ∈ M is defined as the tuple (Qm, tm, Bm, q0m,Πm), we can construct a DATE
network equivalent to pn in the following manner:

1. With each Hoare triple {π} σ {π ′} in a ppDATE state, replace in π ′ each instance of the
\result by the variable ret. This variable will represent the value returned by the
method associated to the Hoare triple/ makes its own instance of this variable).

2. Generate the following DATE template:
exi t_cond_checker = λ S, A : Σ, cond.

start ok

bad

S↑ | A �→ skip

S↑ | ¬A �→ skip

This template will be used to create DATEs handling the verification of the postcondition
of the method.

3. Transform M, the set of ppDATEs of pn, into the set of DATEs M ′ = {m′ | m′ =
(Qm, t ′m, Bm, q0m,Π∅),m ∈ M} such that t ′m follows the rules below:

3a. each Hoare triple {π} σ {π ′} in Πm(q) is replaced by q
σ↓|π �→a−−−−−→m′ q, where a =

create(exi t_cond_checker, σ, part_eval(π ′));
3b. each transition q

tr |c �→a−−−−→m q ′ remains unchanged, i.e. q tr |c �→a−−−−→m′ q ′

4. Translate Tppd (the set of ppDATE templates in pn) into a set of DATE templates Td by
repeatedly applying step 3a. and 3b. to the body of templates.

5. Extend the set Td by including the template generated in step 2. Let us call this extension
T ′
d .

6. Finally, the resulting DATE network is defined to be (M ′, V, ν0, T ′
d).

This translation works well except that it would introduce non-determinism when the
ppDATE includes clashes. To extend the translation to work in the presence of clashes, we
transform Hoare triples clashing with a transition into a family of disjoint transitions, each
of which performs the transition but also checks whether the postcondition checker should
be created.

Algorithm 2 Given a (possibly clashing) ppDATE network pn, we construct a network of
DATEs equivalent to pn by using Algorithm 1 except that we replace steps 3.a and 3.b, by
the following:

3a1. Each non-clashing Hoare triple: {π} σ {π ′} in Πm(q) is turned into a transition

q
σ↓|π �→create(exi t_cond_checker,σ,part_eval(π ′))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→m′ q

123

Form Methods Syst Des (2017) 51:200–265 229

3a2. For each clashing Hoare triple: {π} σ {π ′} ∈ Π(q), clashing with n outgoing tran-

sitions, q
σ↓|ck �→ak−−−−−−→ qk (0 ≤ k < n):

Replace q
σ↓|ck �→ak−−−−−−→m qk with: q

σ↓|ck �→(ak ;ifπ then a)−−−−−−−−−−−−−−−→m′ qk;

Add the following transition: q
σ↓|(!c0&&...&&!cn&&π)�→a−−−−−−−−−−−−−−−−−→m′ q,

where, in both cases, a = create(exi t_cond_checker, σ, part_eval(π ′))
3b. each transition q

tr |c �→a−−−−→m q ′ such that either Πm(q) = ∅, Πm(q) �= ∅ but there
is no Hoare triple associated to trigger tr , or trigger tr is activated by an exit event,

remains unchanged, i.e. q
tr |c �→a−−−−→m′ q ′.

7.3 Proof of soundness of the translation algorithm

In this section we will show that the translation algorithms introduced in the previous section
are sound.

7.4 Coupling invariant lemmas

Here, we formally introduce two lemmas which together form the coupling invariant that is
used to prove soundness. The proofs of these lemmas can be found in “Appendix 1”.

Lemma 2 states that given a trace, both a ppDATE network pn and its translation to DATE
will change their initial global configuration to global configurations (L , ν) and (L̃, ν′),
respectively, such that ν = ν′, and that for every (m, q, ρ) ∈ L where m is in pn, there is
a local configuration (m′, q ′,∅) ∈ L̃ such that m′ is the translation of m and both m and m′
are in the same state, and vice versa.

In this lemma we represent the translation of a single ppDATE to DATE with the function
κ ∈ ppDATE �→ DATE.

Lemma 2 Given a network of ppDATEs pn = (M, V, ν0, Tppd), its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d), a trace w ∈ (systemevent × ΘSys)
∗, and the global

configurations (L , ν) and (L̃, ν′),

Cinit (pn)
w�⇒M (L , ν) and Cinit (ppd2DATE(pn))

w�⇒M ′ (L̃, ν′)
implies

ν = ν′
and

∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′ and q = q ′

and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′
and

∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′

and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L · q = q ′

123

230 Form Methods Syst Des (2017) 51:200–265

Lemma 3 states that given a trace, if this trace shifts a ppDATE network pn and its DATE
translation from their respective initial global configuration to some global configurations
(L , ν) and (L̃, ν′), respectively, then for each entry (σ

↑
id, π

′, θ) in a ρ component of a local
configuration in L there is one local configuration in L̃ whose DATE component is an instance
of the template exi t_cond_checker in charge of controlling π ′, and vice versa.

Lemma 3 Given a network of ppDATEs pn = (M, V, ν0, Tppd), its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d), a trace w ∈ (systemevent × ΘSys)
∗, and the global

configurations (L , ν) and (L̃, ν′),

Cinit (pn)
w�⇒M (L , ν) and Cinit (ppd2DATE(pn))

w�⇒M ′ (L̃, ν′) implies ψ(L , L̃)

where,

ψ(L , L̃) = ∀ m, q, ρ · (m, q, ρ) ∈ L ·
∀ σ

↑
id, π

′, θ · (σ
↑
id, π

′, θ) ∈ ρ ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · m′ = inst (exi t_cond_checker, σ, π ′)

and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′·

∃ σ
↑
id, π

′ · m′ = inst (exi t_cond_checker, σ, π ′)
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ L · (σ

↑
id, π

′, θ) ∈ ρ

�

7.4.1 Proof of soundness

We can now prove the soundness of the translation algorithm. Below we provide the formal-
isation of this property and an intuitive explanation for it. However, a rigorous proof of this
theorem can be found in “Appendix 2”.

Theorem 1 Given a ppDATE network pn = (M, V, ν0, Tppd), and its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d),

VT (pn) = VT (ppd2DATE(pn))

Proof To prove the soundness of the translation algorithm we will show that both a ppDATE
network pn and its translation to a DATE network have the same set of violating traces.
Intuitively, we will prove that given a trace w which is violating for pn, i.e., w ∈ VT (pn),
is also violating for pn’s translation, i.e., w ∈ VT (ppd2DATE(pn)), and vice versa.

In the case when w ∈ VT (pn), by definition of counter-examples of ppDATEs, w has a
prefix w′ such that either (i) w′ takes the initial global configuration Cinit (pn) to a global
configuration (L ′, ν′) such that the state component of L ′ is a bad state; (ii) given a method
σ and a system variables valuation θ ′, w′ can be written as w1 ++ (σ

↑
id, θ

′) such that w1

takes Cinit (pn) to a global configuration (L ′, ν′) where there exists a local configuration in
L ′ whose ρ component contains a tuple (σ

↑
id, π

′, θ), such that π ′ fails to be satisfied in the

‘moment’ event σ
↑
id appears.

In the case of (i), we use the fact that (by Lemma 2), if w′ takes the translation from the
initial global configuration Cinit (ppd2DATE(pn)) to a global configuration (L̃, ν), for every
local configuration in L ′, there is a local configuration in L̃ such that its state component
is the same. Thus, there is a local configuration in L̃ whose state component is a bad state,
which means that w′ is a counter-example of the translation as well.

123

Form Methods Syst Des (2017) 51:200–265 231

In the case of (ii), due to the fact that a Hoare triple {π} σ {π ′} has to be verified, we know
that some local configuration will have a ρ component such that (σ

↑
id, π

′, θ) ∈ ρ. We can
now use the fact that by Lemma 3, tuple is handled by a DATE in the translation (which
verifies the postcondition). Thus, there exists a DATE controlling π ′ which fails moving to
a bad state, i.e., w′ is a counter-example of the translation as well.

In order to prove the opposite direction, we assume w ∈ VT (ppd2DATE(pn)). Again,
since this is a counter-example and this is a DATE (and thus cannot fail due to a violated
postcondition), it can be only the case that w has a prefix w′ such that this prefix takes the
initial global configuration Cinit (ppd2DATE(pn)) to a global configuration (L̃, ν) such that
there is a local configuration in L̃ whose state component is a bad state. Then, assuming that
w′ takes pn from the initial global configuration Cinit (pn) to a global configuration (L ′, ν′),
we proceed to do a case analyses depending whether the bad state belongs to a DATE which
was controlling the postcondition of a Hoare triple or not. In the affirmative case, we will use
this fact to show that, given certain method σ and a system variables valuation θ ′, w′ can be
selected to be a prefix which can be written as w1 ++ (σ

↑
id, θ

′) such that w1 takes Cinit (pn)

to a global configuration (L ′, ν′) where the verification of the postcondition fails whenever
event σ

↑
id occurs. Therefore, w′ is a counter-example of pn. Finally, (by Lemma 2), there is

a local configuration in L ′ such that its state component is the same as the bad state in L̃ .
Therefore, w′ is a counter-example of pn. �

8 The STARVOORS tool implementation

In this section we present how the (fully automatic) verification tool StaRVOOrS [16]
implements the framework presented in Sect. 4. To illustrate this, we use a running example
of a bank system in which users log in to perform transactions.10 The set of logged-in users is
implemented as a Hashtable object, whose class represents an open addressing hashtable
with linear probing as collision resolution. Method add, which is used to add objects into the
hashtable, first attempts to put the corresponding object at the position of its computed hash
code. However, if that index is occupied, then add searches for the nearest following index
which is free. Figure 12 depicts a code snippet for this method. Within the hashtable object,
users are stored into an array arr. This means that the set of logged-in users has its capacity
limited by the length of arr. In order to check in a straightforward manner whether the
capacity of arr is reached or not, a field size keeps track of the amount of stored objects
and a field capacity represents the (total) number of objects that can be added into the
hash table. In addition, this system has to fulfil the properties described with the ppDATE
template depicted in Fig. 13. This template specifies the following properties:

(i) A user has to be logged-in in order to perform a deposit, i.e. a deposit should happen
between a login and a logout.

(ii) Provided there is space in the hashtable, executing method add with object o and key
k should add the object to the table.

Property (i) is verified with the transitions of the ppDATE template, whereas property (ii) is
represented by the Hoare triple in state q1. If size < capacity, then there is room
in the hashtable for one more element, and if method add places the object o in the
hashtable, there exists an index in the array arr such that o is placed in that index, i.e.,
∃ int i; i > = 0&&i < capacity; arr[i] == o. Note that the given Hoare

10 Both the source code and the ppDATE specification for this example are available from [38].

123

232 Form Methods Syst Des (2017) 51:200–265

1 public void add (Object o, int key) {
2 if (size < capacity) {
3 int i = hash_function(key);
4 if (h[i] == null) {
5 h[i] = o;
6 size ++;
7 return;
8 }
9 else {

10 while (h[i] != null) {
11 if (i == capacity -1) i = 0;
12 else {i++;}
13 }
14 h[i] = o;
15 size ++;
16 return;
17 }
18 }
19 }

Fig. 12 Code snippet for method add

prop-deposit-temp = λ f : UserInterface.

q1 : {size < capacity} add(o,k) {∃ i. arr[i] == o}start q2

bad

login(f)↑ | true �→ skip

deposit(f) ↓
| val

>
0 �→

skip

logout(f)↓ | true �→ skip

deposit(f)↓ | val > 0 �→ skip

Fig. 13 ppDATE specification of properties for a bank system

triple is only included in state q1 since only a successful login leads to the execution of the
method add, i.e., this Hoare triple is context dependent; and that login(f)↓ means that
method login associated to the trigger is the one defined within object f . In addition, we
assume that the specification of the system has a ppDATE with a single state q and single

transition of the form q
new(o)↓|true�→create(prop−deposi t−temp,o)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q , such that the trigger

new(o)↓ is activated by the declaration of an object o of the classUserInterface. Thus,
this ppDATE creates an instance of the template in Fig. 13 every time an object of the class
UserInterface is declared.

8.1 ppDATE specification as an input script for STARVOORS

Before describing how StaRVOOrS works, we need to introduce how a ppDATE specifica-
tion is written as an input script for this tool. Below, we show the input script for the ppDATE
template illustrated in Fig. 13, and the ppDATE which creates its instances. In addition, we

123

Form Methods Syst Des (2017) 51:200–265 233

give a brief description of each one of the sections this script. For a full description on how
to write ppDATEs as an input script for our tool, one may refer to the StaRVOOrS User
Manual.11

IMPORTS { main.UserInterface ; main.Hashtable ; }

GLOBAL {
PROPERTY prop-deposit {

PINIT { (prop-deposit-temp, UserInterface) }
}

}
TEMPLATES {
TEMPLATE prop-deposit-temp (UserInterface uf) {

TRIGGERS {
login_exit(String un, int pwd)

= {UserInterface f.login(un, pwd)exit()} where {uf = f}
logout_entry()

= {UserInterface f.logout()entry} where {uf = f}
deposit_entry(int val)

= {UserInterface f.deposit(val)entry} where {uf = f}
}
PROPERTY prop_deposit {

STATES {
ACCEPTING { q2 ; }
BAD { bad ; }
STARTING { q1 (add_ok) ; }

}
TRANSITIONS {
q1 -> q2 [login_exit \ f.getUser() != null]
q1 -> bad [deposit_entry]
q2 -> q1 [logout_entry \ f.getUser() != null]
q2 -> q2 [deposit_entry \ f.getUser() != null]

}
}
}

}
CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}
HashTable {arr.length == capacity}
HashTable {arr != null}
HashTable {size >= 0 && size <= capacity}
HashTable {capacity >= 1}

}
HTRIPLES {

HT add_ok {
PRE {size < capacity}
METHOD {Hashtable.add}
POST {(\exists int i; i>= 0 && i < capacity; arr[i] == o)}
ASSIGNABLE {size, arr[*]}

}
}

The section IMPORTS lists the Java packages which may be used in any of the other sections
of the script, in this case UserInterface and Hashtable. The section TEMPLATES
contains the description of the ppDATE templates (tagged by TEMPLATE). Here, the section
TRIGGERS is used to declare the different triggers which may be used in the transitions
of the ppDATE, i.e, login_exit, logout_entry, deposit_entry, and the sec-
tion PROPERTY describes the different states, i.e., q1, q2 and bad, and transitions of the

11 This document is available from [38], in the Downloads section.

123

234 Form Methods Syst Des (2017) 51:200–265

ppDATE. Note that the syntaxq1 (add_ok) associates the Hoare triple tagged asadd_ok
to state q1. This means that the Hoare triple add_ok has to be verified if the method asso-
ciated to it, in this case method add, is executed whenever the ppDATE is in state q1. The
section GLOBAL contains the description of the ppDATE. Here, ppDATEs are described in
the same manner as in a TEMPLATE section. However, note that it is also possible, as it
is the case in our example, to use the special section PINIT when describing the section
PROPERTY. Section PINIT represents a ppDATE with single state, and a looping transition
which is fired every time an object of the class listed within this section (UserInterface
in our example) is declared, leading to the creation of an instance of the listed template for
that object (prop-deposit-temp in our example). We have included this special case because
it is quite common to have ppDATEs only focus on creating instances of a template upon
declaration of a particular object. Regarding the section CINVARIANTS, class invariants are
described by the syntax class_name {invariant}, meaning that invariant has to
be fulfilled by all the methods in the class class_name. These invariants are only meant
as a help for the deductive verification of the Hoare triples (see Sect. 8.2). If no invariants are
needed, then this section can be omitted. Finally, the section HTRIPLES gives a list of named
Hoare triples (tagged by HT). Here, PRE describes the precondition of the Hoare triple, POST
describes the postcondition of the Hoare triple, METHOD indicates which one is the method
associated to the Hoare triple, and ASSIGNABLE lists the (class) variables that might be
modified when the method associated to the Hoare triple is executed. Note that the predicates
in invariants, pre- and postconditions follows JML-like syntax and pragmatics. For instance,
in the Hoare triple add_ok the second semicolon separates the range predicate (i > =0
&& i < capacity) from the desired property over integers in that range, (arr[i]==o).

8.2 Running STARVOORS

StaRVOOrS is a fully automatic verification tool which takes the Java source code of the
system under scrutiny and a file with the ppDATE specification for this system and produces
(i) a runtime monitor, (ii) an instrumented version of the system given as input with event
generation and additional code infrastructures required, (iii) a report summarising the results
of the deductive verification of the Hoare triples, and (iv) a refined version (if any) of the
provided ppDATE specification.

This tool implements the framework described in Sect. 4 with each stage of the framework,
i.e., Deductive Verification, Specification Refinement, Translation and Instrumentation, and
Monitor Generation, being performed automatically by the tool. Below, we describe the
implementation of these stages through the use of the working example.

8.2.1 Deductive verification

The first step performed by StaRVOOrS is the deductive verification of the Hoare triples
associated to the states of the ppDATE (template) using KeY. To accomplish this, StaR-
VOOrS extracts the Hoare triples specified in the ppDATE script, converts them into JML
contracts, and then annotates these contracts in the Java sources, before the corresponding
method declaration. For instance, the following JML contract associated to method add is
extracted from the Hoare triple add_ok:

requires size < capacity;
ensures (\exists int i; i>= 0 && i < capacity ; arr[i] == o);
assignable size, arr[*];

123

Form Methods Syst Des (2017) 51:200–265 235

Note that the requires clause describes the precondition of add, the ensures clause
describes the postcondition of add, and the assignable clause lists the (class) variables
that might be modified when add is executed.

Once all the JML contracts are in place, i.e., they are annotated in the code, StaRVOOrS
uses KeY to verify them. First, KeY generates proof obligations in Java Dynamic Logic for
each JML contract. Next, it attempts to prove the contracts automatically. Finally, it stores the
results of all the verification attempts in a XML file. Here, note that even though it could be
possible to allow for user interaction (using KeY’s elaborate support for interactive theorem
proving), we chose to use KeY in automatic mode, since StaRVOOrS targets users untrained
in theorem proving. StaRVOOrS generates a report summarising the results produced by
KeY in an easy to understand format.

Using our running example, when KeY tries to verify the previous JML contract, it will
result in a partial proof. This analysis is shown in the following fragment of the generated
XML file:

<executionPath
pathCondition="arr[hash_function(key)] = null"
verified="true"/>

<executionPath
pathCondition="!arr[hash_function(key)] = null"
verified="false"/>

This indicates that while KeY was symbolically executing method add, there was a branch-
ing in the condition arr[hash_function(key)] = null, leading to two possible
execution paths (depending on its truth value). Recalling the code snippet in Fig. 12, this
condition corresponds to the condition on the if-expression in line 4. Thus, the execution
path for the condition arr[hash_function(key)] = null corresponds to the case
where the arrayarr has a free slot at the hash code of key, whereas the execution path for the
condition !arr[hash_function(key)] = null corresponds to the case where the
program enters the while-loop in line 10, searching for the next free slot in arr. In addition, in
the XML, the component verified represents whether KeY was able to prove the branch of
the proof (verified=true), or not (verified=false). Therefore, from the previous
fragment of the XML file we know that KeY was able to close the branch where the array arr
has a free slot (= null) at the hash code of key, but it was not able to verify the other case
(where the program enters a loop searching for the next free slot). The main reason why KeY
was not able to prove the latter case is the lack of loop invariants to deal with the while-loop.

8.2.2 Specification refinement

The output of KeY is then used to refine the Hoare triples in the specification based on what was
(partially) proved. The Hoare triples associated to JML contracts which were fully verified by
KeY are entirely removed from the specification, while the precondition of the Hoare triples
associated to partially proved JML contracts are refined based on what KeY managed to prove.
The new precondition is the conjunction of the original precondition with the disjunction of
new preconditions corresponding to open proof goals, i.e., the path condition on each different
execution paths. Note that StaRVOOrS generates a new ppDATE specification script based
on such refinements, instead of modifying the provided ppDATE script.

In the example, the precondition of the Hoare triple add_ok will be refined with the
condition for the one goal not closed by KeY, i.e., !(arr[hash_function(key)] ==
null). The Hoare triple will thus be strengthened as follows:

123

236 Form Methods Syst Des (2017) 51:200–265

HT add_ok {
PRE {size < capacity && !(h[hash_function(key)] == null)}
METHOD {Hashtable.add}
POST {(\exists int i; i>=0 && i<capacity; arr[i]==o)}
ASSIGNABLE {size, arr[*]}

}

8.2.3 Translation and instrumentation

Once the refined ppDATE specification is ready, StaRVOOrS translates it into (pure) DATE
formalism using the algorithm from Sect.7.2. This enables the monitor generation by Larva
(explained in the next stage). In addition, in order to properly address the refined ppDATE,
our tool operationalise the conditions and instruments the code, as described below.

Pre/postcondition operationalisation

In this step, the tool syntactically analyses the specification for expressions in pre- and post-
conditions of the Hoare triples which may have to be operationalised, i.e., transformed into
algorithmic procedures. For instance, transforming either existential or universal quantifica-
tions into loops.

During the operationalisation process, the tool creates Java code containing the imple-
mentation of all necessary methods for runtime verification, including those generated to
algorithmically check the pre/postconditions.

In our example, as the postcondition of the Hoare triple add_ok has an existential quan-
tifier, it has to be operationalised, producing the following method:

1 public static boolean add_ok_post_opE_1(Hashtable hasht, Object o, int key) {
2 boolean r = false;
3 for (int i = 0 ; i < hasht.capacity ; i++) {
4 if (hasht.arr[i] == o) { r = true ; break; }
5 }
6 return r;
7 }

The for-loop declaration in line 3 is created from the conditions in the range of the existential
quantification, i.e., i > =0 && i < capacity, and the condition of the if-expression
in line 4 is created from the condition in the body of the existential quantification, i.e.,
arr[i]==o. Thus, if any value on the range of the existential quantification fulfils its body,
then this method returns true, i.e., exists a value that fulfils the existential quantification.
Otherwise, it returns false, i.e., it does not exist a value fulfilling the existential quantifi-
cation.

Code instrumentation

Next, StaRVOOrS instruments the Java source code of the system adding identifiers to
each method associated to a Hoare triple in the refined ppDATE specification script, and
additional code to get fresh identifiers. As mentioned in Sect. 4, these identifiers will be
used to distinguish different executions of the same method. However, in order to avoid
modifying all the calls to these methods in the entire system, we have opted to introduce this
instrumentation in the form of auxiliary methods. For instance, in our working example the
method add has to be instrumented, resulting in:

123

Form Methods Syst Des (2017) 51:200–265 237

public void add (Object o, int key) {
addAux(o,key,fid.getNewId());

}
public void addAux (Object o, int key, Integer id) {...}

The methodaddAux implementation corresponds to the body of methodadd in Fig. 12. This
method represents the instrumentation of method add with the extra argument Integer
id, which is used as identifier. In addition, method add now simply calls addAux, but
generating a fresh identifier for the call using function fid.getNewId.

Moreover, the previously generated DATE specification is modified accordingly, to refer
to the instrumented version of the methods. In our example, the DATE specification would
be modified to refer to method addAux instead of method add.

8.2.4 Monitor generation

Finally, StaRVOOrS uses Larva to automatically generate a monitor from the DATE
specification obtained in the previous stage. Larva takes this DATE and generates the
monitoring system and aspects instrumenting the communication between the system and
the monitor [19].

9 Case study: SoftSlate Commerce

SoftSlate Commerce (or simply SoftSlate) [36] is an open-source Java shopping cart web
application designed following a Model-View-Controller architecture. A user of SoftSlate
sends a request to a server hosting the application via a web browser. Then, the server
processes the received request and executes an action associated to it (Controller layer). Such
action may require to interact with and/or modify the information in the database (Model
layer), e.g., information about users, products, orders, etc. Finally, once the request is fully
processed, the server sends back a response to the user. The information in this response
will be reflected on a web page loaded on the browser (View layer). The administrator of the
application interacts with it in a similar fashion.

SoftSlate offers a basic implementation of a shopping cart web application featuring outer
space related pictures, whose server is set up by using Apache Tomcat [1]. This implemen-
tation is meant to be used by developers to start building their own web applications.

In this case study we analyse an extension of the SoftSlate basic implementation. This
extension increases modularity of parts of the implementation, to better link it to the required
properties. Basically, we have created a few helper methods in order to better observe the
various steps performed by a user to checkout a purchase. In addition, we have modified a
few methods to receive an entire object instead of some of its components, and to properly
access the components.

As our main focus is to verify the source code offered by SoftSlate, in our extension we
are not adding any new feature to the ones already provided in the basic implementation, i.e.,
the functionality of the basic implementation and our extension is the same.

Note that when we started developing this case study there was an open source version of
SoftSlate available online. However, later, this version was not available anymore. Thus we
cannot distribute the sources we have used. However, in [38] one may find the files for the
ppDATE specifications described below.

123

238 Form Methods Syst Des (2017) 51:200–265

9.1 ppDATE specification

Here we introduce two ppDATEs specifications, one describing a property related to the log
in and log out of users in the web application, and one describing a property related to the
checkout of the purchases performed by the users of the application. These properties address
basic functionalities which we consider that a web cart application should offer.

Note that even though we could have either described more properties or specified more
control- and data-oriented behaviour in the properties we are depicting in this section, the
ppDATEs introduced here are sufficient to highlight the benefits of using StaRVOOrS in a
real application. In addition, for readability reasons, Hoare triples are not going to be included
on the figures depicting the ppDATEs. Moreover, as the application is placed in a server, the
monitor generated by our tool is placed in the server as well.

Login–logout

Users can freely browse through the web site of the application. However, if they want to
buy products (i.e., pictures), they have to be logged in the application, to be able to proceed
to the checkout section.

Figures 14 and 15 illustrate the specification. The ppDATE in Fig. 14 creates instances
of the ppDATE template login–logout whenever an object of class User is created, and the
ppDATE template login–logout (Fig. 15) describes the following properties:

start

User.new↑ | true �→ create(login-logout, \result)

Fig. 14 ppDATE in charge of creating instances of the template login–logout

login-logout = λ u : User.

logoutstart login

bad

login(u)↑ | Ok �→ skip

logout(u) ↑
| O

k �→
skip

orderComplete(u) ↓
| true �→

skip

login(u)↑ | Fails �→ skip

login(u)↑ | Ok �→ skip

logout(u)↑ | Ok �→ skip

logout(u)↑ | Fails �→ skip

orderComplete(u)↓ | true �→ skip

Fig. 15 ppDATE template describing properties about the log in and log out of users

123

Form Methods Syst Des (2017) 51:200–265 239

(i) A user has to be logged in the application in order to perform a purchase, i.e., the
checkout of a purchase can only happen between a login and a logout.

(ii) If a user is logged in, then that user cannot successfully log in again in the application
until she logs out from it.

(iii) If a user is not logged-in, then that user cannot successfully log out from the application.
(iv) A user can only proceed to the checkout section if her status is a valid one.
(v) A user who is not a costumer cannot proceed to the checkout section.

The transitions of the ppDATE described by the template control properties (i)–(iii).
Initially, this ppDATE is in state logout. Then, whenever there is a successful login, the
ppDATE moves to state login. Later, once the user logs out, the ppDATE returns to state
logout. Therefore, if a purchase is performed (i.e., an order is checkout) while the ppDATE
is in state login, then the ppDATE remains in that state. However, if a purchase is performed
while the ppDATE is in state logout, then it shifts to state bad.12 In addition, while being at
state logout, if an attempt to log in is not successful, then the ppDATE stays in that state; and
if there is a successful logout, then the ppDATE shifts to state bad due to the fact the user is
considered to be logged out while the ppDATE is in that particular state. Something similar
happens when the ppDATE is in state login. (In Fig. 15, Fails and Ok are abbreviations, for
presentation purpose, of real Java expression checking the failure or success of the respective
operations.)

Regarding properties (iv) and (v), they are addressed using Hoare triples. For instance,
property (iv) is represented as follows:

{ !baseForm.getUserStatus().equals("Registered")
&& !baseForm.getUserStatus().equals("Unapproved"); }

prepareCheckout(baseForm)
{ \result.equals("success"); }

As the only non valid statuses are “Registered” and “Unapproved”, if the status of the user is
not one of these values, then starting a purchase, i.e., using method prepareCheckout,
should return “success”. Regarding property (v), a user is only considered to be a costumer
if she has logged-in into the application. Even though this property seems to be similar to
property (i), this similarity is only apparent. Property (i) only addresses the proper order in
which the methods should be executed, whereas property (v) focuses on controlling how the
data related to a user is modified during such executions. Finally, both properties (iv) and (v)
are only placed in state login because that is the only state in which a successful purchase
can occur, i.e., (iv) and (v) are context dependent data-oriented properties.

Purchases checkout

We consider that a purchase starts whenever an item (i.e., a product) is added to the cart. A
user can continue either by adding other items to the cart or by removing some of the items
from the cart. We refer to all the items in a cart as the order.

Once the user finishes the creation of her order, she may proceed to the checkout page. In
SoftSlate, a checkout is realised in four steps. First, the user enters the contact information
and delivery address. Then, the shipping method is selected (either ground transport or air
transport), after which the user enters her credit card details. Finally, a confirmation for the
order is requested. If accepted, the order is settled. Later, when the user receives the items,
the order is considered to be completed.

12 Shifting to state bad means that a property was violated.

123

240 Form Methods Syst Des (2017) 51:200–265

start

User.new↑ | true �→ create(prop-checkout, \result)

Fig. 16 ppDATE in charge of creating instances of the template prop-checkout

prop-checkout = λ u : User.

startstart one two

four three

bad

checkout(u)↓ | true �→ skip setp1(u)↑ | true �→ skip

checkout(u)↓ | true �→ skip s
t
e
p
2
(
u
) ↑

| true �→
skip

checkout ↓ | true �→
skip

step3(u)↑ | true �→ skip

checkPrices(u)↑ | !ret �→ skip

checkPrices(u)↑ | ret �→ skip
step4(u) ↑

| true �→
skip

ad
dI

te
m(

u)
↓

| t
ru
e

�→
sk
ip

Fig. 17 ppDATE template describing properties related to checkout of purchases

Note that a user can modify her order as long as she has not yet confirmed it. If so, whenever
she proceeds to the checkout section again, all its required steps have to be performed one
more time. In addition, if the user removes all the items in an order, clears the cart or logs
out,13 then the order is considered to be removed.

Figures 16 and 17 illustrate a ppDATE specification where the ppDATE in Fig. 16 creates
instances of the ppDATE templateprop-checkout whenever an object of classUser is created,
and the ppDATE template prop-checkout (Fig. 17) describes the following properties:

(1) The checkout of a purchase should be performed following the four required steps.
(2) It should not be possible to buy zero or less items.
(3) The expiration date of the credit card should not earlier than the current date.
(4) The price of a product should be positive.
(5) Before a purchase is completed, taxes should be processed.
(6) The total cost of a purchase should be equal to the sum of the prices of all the products

to be purchased.
(7) If the price of an item changes, then its price in the order of the user should be updated.

13 Logging out clears the cart.

123

Form Methods Syst Des (2017) 51:200–265 241

Again, consider the transitions of the ppDATE described by the template. When the first
item is added to the cart, the ppDATE shifts to state one. In this state, once the first step of the
checkout is completed, the ppDATE shifts to state two, and so on until reaching state four.
In state four, once the order is settled, the ppDATE shifts back to state start in order to wait
for a possible new purchase. Moreover, while being at either state one, two, three or four, if
there is any change in the order, then the ppDATE shifts to state one, meaning that all the
steps of the checkout have to be performed again. This is enough to control property (1).

Note that for readability reasons, in states one, two, three and four we have not included
transitions going to state start whenever the user logs out, the cart is cleared or all the items
in the cart are removed. In addition, we have not included transitions going to state bad from
either state one, two, three or four if a step of the checkout was performed in a wrong way.
For instance, if while being at state one either a second step, a third step or a fourth step of a
purchase occurs instead of the first step, then the ppDATE shifts to state bad.

Regarding property (7), since the method in charge of updating the orders whenever the
price of an item changes in the database is fully implemented using different Java libraries,
writing an appropriate Hoare triple for it would require introducing several work-arounds.
Instead, we implemented a method which compares the prices of the items in the order with
their prices in the database, and include it as part of the information validation process cor-
responding to the fourth step of the purchase. Thereby, in state four there are two transitions
controlling the result of this method [Most real world applications of this kind would guaran-
tee prices for some defined duration, and adjust it when that time has passed. For simplicity,
we only model the latter in (7).].

Properties (2–6) are addressed with Hoare triples. Properties (2–4) are related to the
integrity of the information introduced by either the users, in the case of (2) and (3), or the
administrator, in the case of (4), on their requests to the server. Property (5) is related to the
proper processing of taxes associated to the items in the current order. Property (6) enforces
that the total amount that the user has to pay for her order should be equal to the sum of the
totals of all the items included in the order.

As items could be added to the cart at any time during a purchase, property (2) is included
in all the states of the ppDATE, with exception of the state bad.

On the other hand, property (3) is context dependent. This property should only be enforced
on state three, which represents the step of a purchase where a user enters her credit card
details. Note that, as it is in this case, a single property might be associated to several Hoare
triples. For instance, below we introduce two of the four Hoare triples which describe property
(3),

{ cardYear > actualYear; }
checkDate(cardMonth,cardYear, actualMonth,actualYear)
{ \result; }

{ cardYear < actualYear; }
checkDate(cardMonth,cardYear, actualMonth,actualYear)
{ !\result; }

Regarding property (4), we assume that initially all the data in the database is properly set.
Therefore, this property should only be enforced every time that the administrator modifies
the price of an item. As this may happen at any time during a purchase, this property is
included in all the states of the ppDATE, with exception of the state bad.

In relation to property (5), in SoftSlate whenever the taxes of items are processed, the
status of the order changes to “Tax processed”. This change is done by using the following
method,

123

242 Form Methods Syst Des (2017) 51:200–265

public void setStatus(String s) { status = s;}

This method might be simply specified as follows:

{ true; } setStatus(s) { status.equals(s); }

However, due to the fact that taxes are processed while the ppDATE is in state four, that
we know which particular value should be written when updating the status of the order,
i.e., “Tax processed”, and that ppDATE allows us to write context dependent properties, we
include in four the following Hoare triple:

{ true; } setStatus(s) { status.equals("Tax processed"); }

Regarding property (6), it is represented by the following Hoare triple:

{ true; }
updateOrderAndDeliveryTotals(user,order,item)
{ user.getOrder().getSubtotal().doubleValue() ==

(\old(user).getOrder().getSubtotal().doubleValue()
+ item.getTotal().doubleValue());}

In short, the new total amount is equal to the old total amount plus the amount of the newly
added item.

9.2 Using STARVOORS

The previous specifications were analysed on a PC Pentium Core i7 using a sinlge core. A
similar setup was used to perform the experiments in the following Sect. (9.3).

Since SoftSlate uses many Java libraries, to perform static analysis on its source code it
was necessary to generate stub files for some of these libraries in order to allow KeY to find
information about their method declarations.

Login–logout

When feeding StaRVOOrS with this property and the source code of SoftSlate, it automati-
cally generates a runtime monitored version of the application and a report which summarises
the results obtained from the static analysis.

Regarding the result of the translation, it consisted of a DATE specification which looks
exactly like the original ppDATE specification. The static analysis and instrumentation pro-
cess takes 11 seconds, where most time is used by KeY to statically analyse the Hoare triples
(approximately 7 seconds). By inspecting the report we notice that KeY successfully verified
all the Hoare triples in the ppDATE specification. Thus, the refined ppDATE specification
to be translated was already a DATE, .i.e, the translation process did not have add any new
transitions to the specification.

Purchases checkout

When feeding StaRVOOrS with this property and the source code of SoftSlate, it automati-
cally generates a runtime monitored version of the application and a report which summarises
the results obtained from the static analysis. The static analysis and instrumentation process
takes 23 seconds, where most time is used by KeY to statically analyse the Hoare triples
(approximately 20 seconds). By inspecting the report we can see that properties (2) and (3)

123

Form Methods Syst Des (2017) 51:200–265 243

are fully proved, properties (4) and (5) are not proved, and that property (6) and (7) are
partially proved.

Regarding property (7), as KeY does not have any information about the state of purchases,
and this property is context dependent, obviously, it is not able to prove it. However, thanks to
the use of StaRVOOrS we can include this property in an appropriate state of the ppDATE,
fact which guaranties that whenever a purchase reaches such state, this property is going to
be verified at runtime by the generated monitor.

Regarding property (6), the report shows that this property postcondition is going to
be checked upon entering method updateOrderAndDeliveryTotals only if the
condition user.getOrder() != null holds. Thereby, this property is refined by
StaRVOOrS as follows:

{ user.getOrder() != null; }
updateOrderAndDeliveryTotals(user,order,item)
{ user.getOrder().getSubtotal().doubleValue() ==

(\old(user).getOrder().getSubtotal().doubleValue()
+ item.getTotal().doubleValue());}

This refined version of property (6) is the one verified by the generated monitor at runtime.
Finally, the result of the translation consisted on one DATE to create instances of the

obtained DATE template prop-checkout (the translation of its homonymous ppDATE tem-
plate), and three generated DATE templates whose instances verify properties (4)–(6). Note
that the instances of the generated DATE templates are created by actions on the transitions
of the DATE template prop-checkout.

9.3 Experimentation

9.3.1 Properties analysis

Login–logout

Although this property may appear to be simple, by verifying it we discovered unexpected
behaviour in SoftSlate when a user logs in, performs a purchase, and logs out. In spite of the
fact that the user was logged in the application, the monitor flagged a violation of property (iii).
It turned out that after performing the purchase, SoftSlate replaced the object representing
the logged-in user by a new one.

More concretely, the log file generated by the monitor showed that a new monitor, corre-
sponding to a new instance of the template login–logout, was generated for the ‘new’ user.
So, we got two different user objects, the one who originally logged in into the system (let’s
call it ulogged) and the new generated one (let’s call it unew). The new monitor (corresponding
to the user unew) would then be in its initial state, that is in the state logout. Thus, when the
(real) user tried to log out, the monitor corresponding to user unew shifted to a bad state,
while the monitor corresponding to user ulogged remained in state login. As a consequence,
property (iii) was violated.

In order to understand whether this is an error in the implementation we inspected the
source code to better understand how the login and purchase were implemented. We found
that each instance of class User was associated to a session, whose information was unique
for each different execution of the application. Though the relation between (real) users and
the session is bijective (for each real user there is a unique session, and vice versa), there were
(at least) two instances of the class User, ulogged and unew, associated with each session.

123

244 Form Methods Syst Des (2017) 51:200–265

login-logout = λ u : User.

logoutstart login

bad

login(u)↑ | Ok && !active �→ skip

logout(u) ↑
| O

k
&
&
!active �→

skip

orderComplete(u) ↓
|!active �→

skip

login(u) ↑
| O

k
&
&

active �→
skip

login(u)↑ | Fails �→ skip

logout(u)↑ | Ok && !active �→ skip

lo
gi
n(
u)

↑ | O
k
&
&

ac
ti
ve

�→
sk

ip

logout(u)↑ | Ok �→ skip

logout(u)↑ | Fails �→ skip

orderComplete(u)↓ | active �→ skip

Fig. 18 Extension on the ppDATE describing properties related to the log in and log out of users illustrated
in Fig. 15

We were not sure what were the real reasons behind this design decision, but the imple-
mentation seemed correct, and our specification did not capture this situation. So, we decided
to change our ppDATE template to capture this by including a Boolean variable reflecting
whether the (real) user was connected or not, which we refer to as active. The updated
ppDATE template is shown in Fig. 18. Further executions of the system (reproducing the
previous executions and providing new ones) did not violate this property.

Purchases checkout

We also run the system many times in order to analyse whether the execution of SoftSlate
fulfils the properties described by the provided ppDATE specification.

First, we performed several purchases to analyse if property (1) was fulfilled. We added
some items to the cart, bought them, and added and removed items at any stage of the
checkout of a purchase, and then completed the purchase. None of these operations violated
this property. We re-run the system executing the same steps as above to check property (5),
which was not violated.

Next, we continued performing purchases, but this time the administrator of the application
introduced modifications in the price of some items during the purchases. By doing so we
were able to analyse whether properties (4), (6) and (7) were violated.14

In order to check whether property (4) held, we executed the system logged in as admin-
istrator and as a normal user (in parallel). The user performed a purchase (and thus the item
was added to the cart), and as administrator we modified the price of the item introducing a
negative value as its new price. At this moment the monitor reported that property (4) was
violated. By inspecting the price of the modified item in the database, we could confirm
that the negative value provided by the administrator was actually assigned to the item. This
clearly was an error. We corrected this by not allowing to input negative numbers, and thus
property (4) was finally satisfied.

14 Remember that properties (2) and (3) were fully proved statically.

123

Form Methods Syst Des (2017) 51:200–265 245

Table 1 Performance of different purchases

Purchases (a) No monitoring (ms) (b) Monitoring (ms) S (c) Monitoring S ′ (ms)

1 800 1300 1100

10 10,500 15,500 13,000

100 120,000 190,000 150,000

On the other hand, when the administrator modified the price of an item introducing a
positive value as its new price, then property (4) was fulfilled as expected. However, we
noticed that property (7) was violated: some of the prices of the items in the order did not
match with the prices in the database.15 In particular, the mismatched values were those that
were modified by the administrator: the new prices were propagated to the database but they
were not updated in the visualisation of the cart (to the user). This was an error, and when
inspecting the code we realised that there was a method implementing the propagation of the
update, but it was not called when the change (done by the administrator) was performed.
We have not yet corrected this error in the original code.

Property (6) was not violated by any of the previous executions.

9.3.2 Runtime verification overhead analysis

In this section we analyse the overhead added to SoftSlate by the monitor generated using
StaRVOOrS. To perform this analysis, we considered three scenarios: several users per-
formed one purchase, 10 purchases in a row, and 100 purchases in a row.

Table 1 shows the average execution time of: (a) an unmonitored execution of SoftSlate;
(b) a monitored execution of SoftSlate using the original ppDATE specification S , and
(c) a monitored execution of SoftSlate using specification S ′, obtained from S via static
(partial) proof analysis using StaRVOOrS. In all three scenarios, the users and the server
hosting SoftSlate were ran in different computers, but with identical specifications. Note
that as SoftSlate is an interactive application, in order to perform these experiments we have
implemented a program which uses url connections to access the application and perform
a purchase.16 Therefore, our experiments consist on executing this program repeatedly and
measuring its execution time.

As expected, adding a monitor to SoftSlate introduced overhead on its execution time.
However, when we compared the overhead added by the monitor which uses the original
ppDATE specification (without optimisations) (b), with the one added by the monitor which
was generated using StaRVOOrS (c), one could notice a reduction in overheads gained by
using our tool.

Through optimisations introduced by StaRVOOrS, we obtained a version of the monitor
which, in relation to the times in (a), introduced in average a 25% of overhead to the execution
time of the system. On the contrary, the monitor without the optimisations of StaRVOOrS
introduced a 50% of overhead to the execution time.

Even though these results are not as impressive as the one we obtained on the case study
analysed in [3] (Mondex, also reported here in Sect. 10), the monitor generated by our

15 This also happened when entering negative numbers, but we only found out this when focusing on checking
property (7) after correcting the issue with negative inputs.
16 The package java.net is used here to handle the communication between our program and SoftSlate.

123

246 Form Methods Syst Des (2017) 51:200–265

tool for SoftSlate still has a better performance than the one which uses the original ppDATE
specification. The main difference lies in the amount of Hoare triples which have to be runtime
verified in each case study. Every time an experiment is performed to analyse SoftSlate, the
optimise monitor generated by StaRVOOrS verifies 3 Hoare triples, whereas the monitor
using the original ppDATE specification (without optimisations) verifies 5. However, each
experiment performed on Mondex requires the verification of 7 Hoare triples when using the
unoptimised version of the monitor, whereas the optimised one does not have to verify any
Hoare triples at all (cf. Sect. 10).

10 Case study: Mondex

Mondex is an electronic purse application which is used by smart cards products [32], and
has been considered as a verification benchmark problem since 2006, originally appearing
as case study as part of the Verified Software Grand Challenge [42]. Mondex’s original
sanitised specification can be found in [37]. It consists of a Z specification [35], together with
hand-written proofs of several properties.

Mondex essentially provides a financial transaction system supporting transferring of
funds between accounts, or purses. Whenever a person has to make a transaction, electronic
money is taken from their electronic purse and transferred to the target electronic purse. Such
transactions are performed following a multi-step message exchange protocol: (1) the source
and destination purses should (independently) register with the central fund transferring
manager; (2) await a request to deduct funds from the source purse; (3) await a request to
add the funds to the destination purse; and finally (4) an acknowledgement is sent to indicate
that the transfer took place before the transaction ends.

In our version of this case study we consider a Java implementation running on a desk-
top computer instead of a Java Card implementation running on smart cards. The principal
difference in the implementation is that in our version some methods return values to indi-
cate whether their output is normal or erroneous, instead of raising Java Card exceptions.
Our specification is strongly inspired by the JML formalisation presented in [40]. The full
specification and source code of our case study can be found in [38]. The specification (see
Fig. 19) consists of a ppDATE with 10 states, 25 transitions and a total of 26 different Hoare
triples. The implementation of Mondex consists on 514 lines of code (without comments)
which are distributed over 8 files.

Note that ppDATE allows us to represent the overall status of the observer using ppDATE
states. In other pre/post-style specification approaches, one would instead introduce addi-
tional data, and corresponding additional constraints, as is indeed done in [40] when
specifying Mondex with JML. Such additional data implies a certain complexity of the
specification, which somehow lacks the structure of the problem. We believe that specifica-
tions of this kind are sometimes developed with an automaton in mind. In ppDATE, we can
make that automaton explicit. This being said, we want to stress again that we took great
advantage of the JML specification of Mondex in [40].

10.1 ppDATE property

Figure 19 illustrates a ppDATE describing the top-level specification of Mondex. To keep
the ppDATE readable, the description of the different Hoare triples are not included in the
figure. (We will show some of them below.)

123

Form Methods Syst Des (2017) 51:200–265 247

Initialstart

Awaiting both

Awaiting toAwaiting from

Parties initialised

bad

Money deducted

Money deposited

Awaiting end

Good

transfer initialise↑(f, t, v, mbox) |
f .name! = t .name && ret == SUCCESS �→
pfrom = f ; pto = t ; pvalue = v ;

start from↑ |
pfrom.equals(f)
&& ret == SUCCESS
&& m.id == pfrom.namest

ar
t to

↑ |

pto
.eq

ual
s(t

)

&&
ret

==
SU

CC
ES

S

&&
m.id

==
pto

.na
me

start
from ↑

|

pfrom
.equals(f)

&&
ret ==

SUCCESS

&&
m

.id ==
pfrom

.name

st
ar
t
to

↑
|

pt
o.
eq
ua
ls(
t)

&&
ret

==
SU

CC
ES
S

&&
m

.id
==

pt
o.
na
me

re
q
↑

|
pfr
om

.eq
ua
ls(
f)

&&
ret

==
SU

CC
ES
S

&&
m

.id
==

pfr
om

.na
me

&&
m

.pa
yd
eta

ils
.va
lue

==
pv
alu

e

&&
pv
alu

e >
pfr
om

.ba
lan

ce

req↑ | pfrom.equals(f)
&& ret == SUCCESS
&& m.id == pfrom.name
&& m.paydetails.value == pvalue
&& pvalue <= pfrom.balance

val↑ | pto.equals(t)
&& ret == SUCCESS
&& m.id == pto.name
&& m.paydetails.value == pvalue

ack↑ | pfrom.equals(f)
&& ret == SUCCESS
&& m.id == pfrom.name

end transfer↓

In addition:

– All states have outgoing transitions for ret == SUCCESS && SENDER != party (where party
is the party from whom a message is not expected), going to a bad state.

– All states but Awating end have outgoing transitions for end transfer, going to a bad
state.

Fig. 19 ppDATE template describing properties related to checkout of purchases

At the automaton level, the ppDATE specifies the control-oriented property which indi-
cates how the multi-step message exchange protocol is suppose to work. For instance, after
the parties are initialised (encoded in state Parties Initialised), a message requesting to
transfer more money than the one available in the source purse should fail. Otherwise, such a
message should take the ppDATE to a state in which the protocol now allows for the money
to be transferred to the destination purse (named Money deducted). Note that the ppDATE
will not take any explicit action whenever the state BAD STATE is reached. It will stay in
this state until the whole monitor is restarted.

123

248 Form Methods Syst Des (2017) 51:200–265

In contrast, the pre/postconditions properties placed on the states of the ppDATE ensure
the well-behaviour of the methods involved in the individual steps of the protocol, behaviour
which obviously changes together with the status of the protocol. For instance, once two
purses agree on participating in a money transfer and the destination purse has requested for
certain amount of money, (encoded in state Money Deducted), method val_operation
which transfers money from the source purse to the destination one should succeed and
increase the money of the destination purse by the sent amount (provided the limit of its
account has not been reached), as shown in the Hoare triple below:

{ checkSameTransaction() == SUCCESS
&& transaction.value <= (ShortMaxValue - balance); }

val_operation
{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

On the other hand, if the same method is accessed after the funds have already been
transferred (encoded in state Money deposit), then the destination purse content should
remain unchanged, and the request should be ignored:

{ checkSameTransaction() == SUCCESS
&& transaction.value <= (ShortMaxValue - balance); }

val_operation
{ \result == IGNORED; }

Note that both Hoare triples above have the same precondition, but depending on the state
of the ppDATE (i.e., the state of the protocol) different behaviours (i.e., postconditions) are
expected for method val_operation.

10.2 Using STARVOORS

For this case study, we have used a setup identical to the one described in Sect. 9.2. Running
StaRVOOrS on the source code of Mondex and the ppDATE depicted in Fig. 19 automat-
ically produces a runtime monitored version of the application and a report summarising
the results obtained from the static analysis. The static analysis and instrumentation process
takes 1 minute 20 seconds, where most time is used by KeY to statically analyse the Hoare
triples (approximately 1 minute 15 seconds).

The monitor generated by our tool consists one DATE to control the main property, and
24 DATEs templates to control the postconditions which were only partially verified by
KeY, with 106 states and 196 transitions in total. By inspecting the report we can see that
the two Hoare triples associated to the initialisation and termination of a transaction were
fully proved, and that all the other 24 triples about the methods involved in the transaction
protocol were the partially verified ones. For instance, let us consider the property already
discussed in the previous section about method val_operation, which we will refer here
to as val_operation_ok:

{ checkSameTransaction() == SUCCESS
&& transaction.value <= (ShortMaxValue - balance); }

val_operation
{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

The report shows that the postcondition will have to be checked at runtime only when the
conditionstatus != 2 holds upon enteringval_operation (i.e., the destination purse

123

Form Methods Syst Des (2017) 51:200–265 249

Table 2 Performance of different transactions which do not violate any of the specified properties

Transactions (a) No monitoring (ms) (b) Monitoring S (ms) (c) Monitoring S ′ (ms)

10 8 120 15

100 50 3500 90

1000 250 330,000 375

is not waiting for the arrival of the requested money). Thus, the previous Hoare triple was
refined by StaRVOOrS as follows:

{ checkSameTransaction() == SUCCESS
&& transaction.value <= (ShortMaxValue - balance)
&& !(status == ProtocolStatus.Epv); }

val_operation
{ \result == SUCCESS

&& (balance == \old(balance) + transaction.value); }

This refined version of the property is the one which will be runtime verified by the generated
monitor.

The size of the source code of the original implementation of Mondex was 23.5kB. After
running the tool, the total size of all the generated files (i.e. instrumented version of the source
code and the implementation of the monitor) grows to 277.4kB.

10.3 Experimentation

We now summarise the experimental results of applying our approach to the Mondex case
study.

10.3.1 Normal behaviour

The Table 2 shows the execution time of: (a) an unmonitored implementation of Mondex; (b)
a monitored implementation using the original ppDATE specification S , and (c) a monitored
implementation using specification S’ , obtained from S via static (partial) proof analysis
using StaRVOOrS. In all three scenarios, the system is run over a numbers of transactions
which do not violate the specification. Note that in case (c), statically analysing all the Hoare
triples took KeY around 1 minute, which however is done once and for all prior to deployment.

As one would expect, the addition of a monitor to the system introduces execution time
overhead (b). However, if we compare this overhead to the one added by the monitor which
was generated by StaRVOOrS (c), one can see a substantial overhead reduction, gained
through the use of our tool. Through our optimisations we obtain a version which is at least
10 times faster for a low number of transactions, and this factor rises up to 900 when the
number of transactions is increased. This significant reduction in execution time overheads is
mainly due to the fact that monitoring data-centric properties may be prohibitively expensive.
In fact, using S , each method invocation involved in the transfer protocol creates an addi-
tional DATE that will check the postcondition on exit. However, the postcondition checker
is only created if the precondition holds on method invocation. In this case study, this causes
large overheads when monitoring the unoptimised specification. Using the results from static
verification, however, strengthens the preconditions by additional constraints, which in the
Mondex case state were always falsified at invocation time, meaning that no postcondition

123

250 Form Methods Syst Des (2017) 51:200–265

checker is ever created. Apparently, in Mondex, the algorithmic complexity of the individual
method implementations is limited enough such that KeY could fully prove the methods
correct (automatically) if only the internal constraints corresponding to the ppDATE states
were provided to KeY. But as they are not, KeY generates those constraints (closed branch
conditions, see Sect. 4), and adds their negation to the preconditions. With that, the precondi-
tions are never true at runtime. This phenomenon cannot be fully generalised to cases where
KeY really lacks (automated) proving power for the code at hand, or where the code is faulty
of course.

10.3.2 Faulty behaviour

Usually, it is hard to get full proofs when using a static verifier like KeY without considering
either user interaction with the prover or the use of special annotations, e.g., loop invariants,
to help the prover on its task. However, it might be the case that the static verifier does not
succeed in closing a branch in the proof due to the fact that the remaining open goal was
generated by an erroneous execution path. KeY cannot per se determine which one of these
situations is dealing with. Fortunately, Larva can detect the occurrence of the erroneous
case whenever it appears at runtime.

We have intentionally injected errors into Mondex source to verify that the opti-
mised monitor still detects them. Consider the case of a bug in the implementation of
method val_operation—the value of variable balance is incremented with a differ-
ent amount from the one given in the specification of the method. When analysing property
val_operation_ok, KeY obviously does not manage to prove it. Therefore, the whole
property will have to be runtime verified. The monitor spots this error reaching a bad state.

In addition, we have also considered incomplete and wrong specifications. In the case
where the specification is too weak, the implementation may fulfil it for wrong reasons.
As in all verification approaches, we may not catch this kind of problem. When using our
verification approach there lies the possibility that the problem propagates to a state in which
the specification is strong enough to identify it. For example, consider if the specification
does not specify how the variables of a purse should be initialised by the ConPurse class
constructor, and there is an implementation error where the variablebalance is initialised to
−1 instead of being initialised to 0. In spite of the error in the specification, KeY would proceed
normally with the proofs and the previous particular situation would not be directly controlled
on runtime. However, this erroneous initialisation leads to an erroneous initial charge of
money in the purses (performed using the method chargeMoney in class ConPurse).
As balance is negative, the previous method fails to update it with the new amount of
money. Hence, after applying chargeMoney the value of balance is still −1. Thereby,
whenever a purse tries to begin a transfer, either the method initialising the sender purse
during a transaction or the method initialising the receiver purse during a transaction will
fail its execution (the former due to insufficient funds and the latter due to a value overflow).
This failure leads to an unsuccessful termination of the transfer, which is detected by the
monitor controlling the transaction protocol and takes it to a bad state. This analysis can be
easily conclude by inspecting the execution trace generated by the monitor. This trace allows
one to backtrack through the execution of the different methods until reaching which was the
problem which was the cause the failure. In this scenario, it is important to note that in spite
of the fact that we have not enforced any Hoare triple on the constructor of class ConPurse,
it was specified and proved correct using KeY.

On the other hand, if a Hoare triple has an overly weak precondition or overly strong
postcondition, then KeY will fail to prove the Hoare triple. StaRVOOrS thus ensures that

123

Form Methods Syst Des (2017) 51:200–265 251

the Hoare triple is checked at runtime, which allows us to realise when expected results
arise. Finally, another scenario is when the user uses erroneous data, not detected by the
application. For instance, a user might request a transfer exceeding the amount of money in
a purse. In this situation, the method initialising the sender purse during a transaction will
fail its execution due to insufficient funds and this will lead to an unsuccessful termination
of the transfer. This unsuccessful termination is detected by the runtime monitor controlling
the transaction protocol.

11 Related work

The combination of different verification techniques is gaining more and more popularity.
One active area of research is the combination of testing and static analysis, e.g. [8,14,
17,20,25,26,39]. A direct comparison of our work with those would not be fully fair as
we have different objectives. We are not aiming at generating test cases, but at monitoring
the actual post-deployment runs of the system. What we have in common is that static
analysis/verification is used to limit the dynamic efforts, there by filtering test cases, here by
filtering checks at runtime.

Another line of research is the combination of testing and runtime verification. Decker
et al. in [22] introduce an extension of the testing framework JUnit, which adds runtime
verification artefacts to it. In this extension, during the execution of a test, a monitor is
in charge of checking whether the actual executed test conforms with the property being
monitored. In [7] Artho et al. present a framework where automated test case generation
benefits from the use of runtime verification in a similar way to [22]. Falzon and Pace [24]
study the combination of QuickCheck and Larva by presenting a technique which extracts
monitors from a QuickCheck testing specifications. Even though this line of work have a
different objective compare to ours, it is worth mentioning that the QuickCheck automata
used in [24] are quite similar to ppDATEs. QuickCheck automata employ pre/postconditions
as part of their transitions, as opposed to ppDATEs which include them in the states of the
automata. This similarity may suggest that it might be possible to extend our approach by
also including the possibility of perform testing.

Another area worth mentioning is the combination of runtime assertion checks with run-
time verification. In [21] de Boer et al. present SAGA, a framework which combines runtime
assertion checking with monitoring. In contrast to our approach which targets general data-
and control-oriented properties, SAGA focuses on the verification of both data-flow and
control-flow properties of Java classes and interfaces, e.g., interaction protocol among objects.

However, we are mainly interested in the combination of static verification and runtime
verification such that static verification is used to reduce the overhead introduced to the
system execution by monitoring properties. Wonisch et al. in [41] make use of program
transformations in order to avoid unsafe program executions. In [12] the efficiency of runtime
monitoring based on tracematches is improved by using a static analysis technique which
reduces the runtime instrumentation needed. The technique consists on three stages: exclusion
of some tracematches, elimination of inconsistent instrumentation points, and additionally
refinement of this analysis considering the order of execution.

Other works use this kind of combination but with different goals. In [13] Bodden and Lam
present CLARA, a framework which uses static techniques aiming to improve the monitors
themselves, instead of verifying software. The work by Zee et al. in [43] investigates the
combination of static and runtime verification, but aiming at a specification language whose
specifications may be both statically and runtime checked. With this goal in mind, they

123

252 Form Methods Syst Des (2017) 51:200–265

extend the static verifier Jahob by adding techniques to verify specifications at runtime. In
this approach, most of the properties which can be verified are data-oriented, as opposed to
ours where control-oriented properties are covered as well. In [34] Sözer integrates static
code analysis and runtime verification. On this approach, runtime verification statements are
created from static code analysis alerts, in order to generate monitors which will allow to
both check for possible faults in the system and eliminate false positives obtained in the static
phase.

Many specification approaches, such as SPARK [9], JML [29] and SPEC# [10] are sup-
ported by both static and runtime verification tools. Nevertheless, to the best of our knowledge,
static verification is not used to optimise the runtime verification of properties.

12 Conclusions

In this paper we have presented StaRVOOrS, a framework for verifying integrated data-
and control-oriented properties for Java programs, using a combination of static and runtime
verification. The StaRVOOrS tool-chain uses KeY [2] for static verification, and Larva
[19] for the verification performed at runtime.

We have presented the language ppDATE which is based on automata and pre/post con-
ditions to describe properties of both, the control flow and the data computations. The basic
structuring principle of the language is the composition of parallel automata, whose transi-
tions fire simultaneously in reaction to events of the observed system, but also in reaction to
events generated by some automata in the previous step. A distinguishing feature of the lan-
guage is the inclusion of functional properties of computation units into the above, thereby
capturing the dependency of functional properties on the history of previous events, by
assigning Hoare triples to (automata-theoretic) states. Finally, the template concept allows
to parameterise components in a great variety of ways, and create concrete instantiations
dynamically.

We also presented here a semantics of ppDATEs, precisely describing the interplay of
transitions, event consumption and generation, Hoare triple monitoring, creation of template
instances. We then use the semantics to prove soundness of the algorithm our tool uses to
translate ppDATE into DATE, allowing us to employ the DATE tool Larva as a back-end
for runtime verifying ppDATE specifications.

This article also reports on the application of StaRVOOrS to SoftSlate, an open-source
shopping cart web application. In this case study, we analyse ppDATEs describing properties
about the proper behaviour of the system while users perform purchases. We selected this
case study because verifying a real application is always quite challenging, and dealing with
it would gave us a better perspective regarding the benefits which can be obatined when using
our tool. We also report on the application of StaRVOOrS to the verification benchmark
Mondex, an electronic purse application. We demonstrate how properties can be verified
using combined static and runtime verification. This case study was selected because it is
a usual benchmark in the static verification community, and we thought that it would be
interesting to analyse what the use of runtime verification could bring into play.

As with all case studies, the empirical observations are difficult to generalise. However,
our experimental results give an indication of what gains are possible with our technique. For
SoftSlate, the overhead of pure runtime verification (without employing static verification)
is roughly 50%, a penalty which we get down to roughly 25% when using StaRVOOrS, by
facilitating static verification (cf. Sect. 9.3.2). These differences are much smaller compared
to when we applied StaRVOOrS to the Mondex case study, where pure runtime verification

123

Form Methods Syst Des (2017) 51:200–265 253

created a much higher overhead. Compared to that, the monitor created by StaRVOOrS was
10 times faster for a low number of transactions, and up to 900 times faster as the number
of transactions increase. ‘ When using the monitor generated from the original specification
provided for Mondex, the execution of each method involved in a transaction (7 in total)
creates an additional DATE to be traversed in parallel, which is in charge of checking the
postcondition. This would lead to the large overheads obtained in that case study. However,
when using the monitor generated by StaRVOOrS, thanks to the optimisations introduced
in the specification by this tool, no additional DATEs are created when a transaction is
performed, because the additional checks in the preconditions are false at runtime.

As a final remark, note that the efficiency gain for monitoring will benefit from any
improvements in the used static and runtime verifiers. For instance, if KeY is improved
in such a way that more branches are closed during the static proof, then this will have
an immediate effect in StaRVOOrS thus reducing the runtime overhead. Similarly, any
optimisation performed in Larva will only bring benefits to our tool.

We are currently looking at ways of pushing our techniques further. On one hand, we are
looking at techniques to add control-flow static analysis toStaRVOOrS, thus benefiting from
further optimisation prior to deployment. We are also looking at extending the framework
to deal with distributed systems [6], which brings in new challenges, and might require
assume-guarantee reasoning to enable us to perform static analysis based optimisations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Proofs of coupling invariant lemmas

In order to prove both Lemmas 4 and 5, we introduce the following two propositions. Propo-
sition 1 says that the translation algorithm only modifies the actions of the transitions in the
translated ppDATE network. Proposition 2 says that for every transition in the translation
either there is a similar transition in the original ppDATE network, or there is not such a
transition, due to the fact that the transition is a new loop transition (added by the translation
to control Hoare triples).

Remember that we represent the translation of a single ppDATE to DATE with the function
κ ∈ ppDATE �→ DATE.

Proposition 1 Given a ppDATE network pn = (M, V, ν0, Tppd) and its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d),

∀ m, q, q ′, tr, c, a ·
q

tr |c �→a−−−−→m q ′ and m ∈ M and κ(m) ∈ M ′·
(∃ a′ · q tr |c �→a′

−−−−→κ(m) q ′)

Proof Given a ppDATE m ∈ M and a state q ∈ Qm , whenever Πm(q) = ∅, Πm(q) �= ∅
but there is no Hoare triple associated to the method related to trigger tr , or the trigger is
associated to exiting a method, by Step 3b., transitions remain unchanged in the translation.
Therefore, a′ = a in these cases.

123

http://creativecommons.org/licenses/by/4.0/

254 Form Methods Syst Des (2017) 51:200–265

On the other hand, for each clashing Hoare triple {π} σ {π ′} ∈ Πm(q), by step 3a2., the

transition q
tr |c �→a−−−−→m q ′ is replaced by one of the following transitions:

q
tr |c �→{a;ifπ then create(post_checker,(σ↑

id,π
′)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→κ(m) q ′, or

q
tr |c �→{a;ifπ then create(post_checker_h,(σ

↑
id,vali)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→κ(m) q ′.

Thereby, either a′ = a; ifπ then create(post_checker, (e↑
id, π

′)}, or

a′ = a; ifπ then create(post_checker_h, (e↑
id, vali)}.

Finally, as in step 3a1 non-clashing Hoare triples add new transitions but do not modified
existing ones, this case trivially holds. �
Proposition 2 Given a ppDATE network pn = (M, V, ν0, Tppd) and its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d),

∀ m′, q, q ′, tr, c, a ·
q

tr |c �→a−−−−→m′ q ′ and m′ ∈ M ′·
(∃ m, a′ · m ∈ M, κ(m) = m′ · q tr |c �→a′

−−−−→m q ′)
or

((� m, a′ · m ∈ M, κ(m) = m′ · q tr |c �→a′
−−−−→m q ′) and (q = q ′))

Proof Each transition t ′ ∈ t ′m for any m′ ∈ M ′ is obtained by applying either step 3a1, 3a2

or 4b.
If t ′ was obtained by applying step 3a1, then it is a new loop transition added by the

translation, i.e., its origin and destination states are the same, and given a ppDATE m ∈ M
such that κ(m) = m′, there not exists a transition associated to t ′ in m. Therefore, the right
side of the disjunction holds.

If t ′ was obtained by applying step 3a2, then, given a ppDATE m ∈ M such that κ(m) =
m′, either there exists one transition on m with the same trigger, same condition, and similar
action (but without including the if-expression checking the precondition), or t ′ is a new
loop transition added by the translation. In the first case the left side of the disjunction holds,
whereas in the the second case the right side of the disjunction holds.

Finally, if t ′ was obtained by applying step 3b, then, given a ppDATE m ∈ M such that
κ(m) = m′,m has exactly the same transition. Therefore, the left-hand side of the disjunction
holds in these cases. �

Now, we proceed to prove the lemmas.

Lemma 4 Given a network of ppDATEs pn = (M, V, ν0, Tppd), its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d), a trace w ∈ (systemevent × ΘSys)
∗, and the global

configurations (L , ν) and (L̃, ν′),

Cinit (pn)
w�⇒M (L , ν) and Cinit(ppd2DATE(pn))

w�⇒M ′ (L̃, ν′)
implies

∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′ and q = q ′

and

∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′ ·

123

Form Methods Syst Des (2017) 51:200–265 255

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′

and

∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′

and

∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ ·
∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L · q = q ′

and

ν = ν′

Proof We proceed to prove this lemma by induction on the length of the trace w.

– Base case: w = ε (empty trace)

Cinit (pn)
ε�⇒M (L , ν) and Cinit (ppd2DATE(pn))

ε�⇒M ′ (L̃, ν′)
implies

∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M · (∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′and q = q ′)
and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′
and
∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′
and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L · q = q ′
ν = ν′

By Definitions 17 and 21, we know that

L0 = L and ν0 = ν and L ′
0 = L̃ and ν0 = ν′

implies

∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M · (∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′and q = q ′)
and

∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′ ·
∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′

∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′

and

∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ ·
∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L · q = q ′

and

ν = ν′

where L0 = {(m, q0m,∅) | m ∈ M}, and L ′
0 = {(m′, q0m′ ,∅) | m′ ∈ M ′}.

123

256 Form Methods Syst Des (2017) 51:200–265

Next, by substitution with the antecedents we have to prove

(1) ∀ m, q, ρ · (m, q, ρ) ∈ L0,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L ′

0 · κ(m) = m′ and q = q ′
and
(2) ∀ m′, q ′ · (m′, q ′,∅) ∈ L ′

0,m
′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L0 · q = q ′
and
(3) ∀ m, q, ρ · (m, q, ρ) ∈ L0,m /∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L ′
0,m

′ /∈ M ′ · q = q ′
and
(4) ∀ m′, q ′ · (m′, q ′,∅) ∈ L ′

0,m
′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L0 · q = q ′
and
(5) ν0 = ν0

As in L ′
0 all the DATE components of the local configurations correspond to the translation

of ppDATE in pn, both (1) and (2) are trivially fulfilled, and the ranges of both (3) and (4)
are never fulfilled, meaning that, as these ranges are empty (i.e., false), both expressions are
trivially evaluated to true. In addition, (5) is trivially fulfilled. Thereby, the base case holds.

– Inductive case: w = w′ : (e, θ)

IH: ∀ L , L̃, ν, ν′·
Cinit (pn)

w′�⇒M (L , ν) and Cinit (ppd2DATE(pn))
w′�⇒M ′ (L̃, ν′)

implies
∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′ and q = q ′
and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′
and
∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′
and
∀ m′, q ′ · (m′, q ′,∅) ∈ L ′,m′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L̃ · q = q ′
and

ν = ν′

Given the previous inductive hypothesis IH, we have to prove,

Cinit (pn)
w′:(e,θ)����⇒M (L , ν) and Cinit (ppd2DATE(pn))

w′:(e,θ)����⇒M ′ (L̃, ν′)
implies

∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′ and q = q ′

and

∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′ ·
∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′

123

Form Methods Syst Des (2017) 51:200–265 257

and

∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′

and

∀ m′, q ′ · (m′, q ′,∅) ∈ L ′,m′ /∈ M ′ ·
∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L̃ · q = q ′

and

ν = ν′

By Definition 21 we have,

(i) ∃ L ′′, ν′′ · Cinit (pn)
w′�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L , ν)

and

(i i) ∃ L ′′, ν′′ · Cinit (ppd2DATE(pn))
w′�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L̃, ν′)

Then, we proceed with the proof by assuming the antecedent of the implication. This
assumption allows us to remove the existential quantifiers in the antecedents by introducing
the fresh values L ′′ and ν′′ in (i), and the fresh values L̃ ′′ and ν′′′ in (ii). Therefore, we
have

(i ′) Cinit (pn)
w′�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L , ν)

and

(i i ′) Cinit (ppd2DATE(pn))
w′�⇒ (L̃ ′′, ν′′′) and (L̃ ′′, ν′′′) (e,θ)��⇒ (L̃, ν′)

Next, by IH we know

(i i i) ∀ m, q, ρ · (m, q, ρ) ∈ L ′′,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ ′′ · κ(m) = m′ and q = q ′

and
(iv) ∀ m′, q ′ · (m′, q ′,∅) ∈ L̃ ′′,m′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L ′′ · q = q ′
and
(v) ∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′
and
(vi) ∀ m′, q ′ · (m′, q ′,∅) ∈ L ′,m′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L̃ · q = q ′
and
(vi i) ν′′ = ν′′′

In relation to L , by (i) we know it is obtained from L ′′ after performing a big step with
(e, θ). Thereby, the local configurations on L are either the same as in L ′′, a modified version
of the ones in L ′′, or new local configurations added to control a DATE which is a new
instance of a template.

Let us introduce the sets Lnc, Lc and Lnew, to represent the local configurations in each
one of the previous categories, respectively. Then, we know that

(vi i i) L = Lnc ∪ Lc ∪ Lnew

123

258 Form Methods Syst Des (2017) 51:200–265

In addition, by using a similar approach with L̃ and (i i), we introduce the following sets.

(i x) L̃ = L̃nc ∪ L̃c ∪ L̃new

Let us come back now to the expression we want to prove.

(x) ∀ m, q, ρ · (m, q, ρ) ∈ L ,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · κ(m) = m′ and q = q ′

and
(xi) ∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ L · q = q ′
and
(xii) ∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′ · q = q ′
and
(xii i) ∀ m′, q ′ · (m′, q ′,∅) ∈ L ′,m′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L̃ · q = q ′
and
(xiv) ν = ν′

By (i i i) and (iv), as the values in both Lnc and L̃nc are the same as in L ′′ and L̃ ′′,
respectively, we know that these values fulfil all the previous expressions. Thereby, we can
reduce (vi i i) and (i x) to

(vi i i ′) L = Lc ∪ Lnew (i x ′) L̃ = L̃c ∪ L̃new

Regarding the newly created local configurations in both Lnew and L̃new, they do not fulfil
the ranges of the universal quantifications in neither (x)nor (xi). In addition, by Propositions 1
and 2, we know that the only difference in the executed actions in the ppDATEs in pn and
their translation is that the actions in the DATEs may include the creation of an instance of
template exi t_cond_checker . Besides, by step 4 in the translation algorithm, we now that
both the ppDATEs templates and their translations have similar transitions and are initialised
in the same state. Thus, (xii) and (xii) are fulfilled for these values, and we can reduce (vi i i)
and (i x) to

(vi i i ′′) L = Lc (i x ′′) L̃ = L̃c

Therefore, we have to prove,

(x ′) ∀ m, q, ρ · (m, q, ρ) ∈ Lc,m ∈ M ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃c · κ(m) = m′ and q = q ′

and
(xi ′) ∀ m′, q ′ · (m′, q ′,∅) ∈ L̃c,m′ ∈ M ′·

∃ m, q, ρ · m ∈ M, κ(m) = m′, (m, q, ρ) ∈ Lc · q = q ′
and
(xii ′) ∀ m, q, ρ · (m, q, ρ) ∈ L ,m /∈ M ·

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃c,m′ /∈ M ′ · q = q ′
and
(xii i ′) ∀ m′, q ′ · (m′, q ′,∅) ∈ Lc,m′ /∈ M ′·

∃ m, q, ρ · (m, q, ρ),m /∈ M ∈ L̃c · q = q ′
and
(xiv) ν = ν′

123

Form Methods Syst Des (2017) 51:200–265 259

By (i i i) and Proposition 1 we know that for every enabled transition of a ppDATE m ∈ M ,
there is one enabled transition in κ(m) ∈ M ′ performing the same change of state and, if any,
generating the same action events. Thereby, both pn and its translation will shift the local
configurations in Lc and L̃c, respectively, in the same manner, i.e., (x ′) holds.

In addition, by (iv) and Proposition 2 we know that for every enabled transition in a DATE
m′ ∈ M ′, there is either an enabled transition in a ppDATE m ∈ M , where κ(m) = m′, such
that this transition performs the same change of state and, if any, generates the same action
events, or the transition enabled in m′ is a loop transition.

In the first case, both pn and its translation will shift the local configurations in Lc and
L̃c, respectively, in the same manner. Thus, (xi ′) holds.

In the second case, the local configuration obtained after the shift is in the same state as
before the shift. Thus, by (iv), this (xi ′) holds.

Moreover, by IH, Propositions 1 and 2 we know that whenever a ppDATE in pn creates
an instance of a template, its translation will create an instance of the translation of such
template, and vice versa. Besides, by the step 4 in the translation algorithm, as such instances
have similar transitions, they will shift the local configuration associated to them in the same
manner. Therefore, both (xii ′) and (xii i ′) are fulfilled.

Finally, in relation to (xiv), by Propositions 1 and 2 we know that only difference in
the executed actions in pn and its translation is that the actions of the latter may include
the creation of an instance of template exi t_cond_checker (whose actions do not modify
ppDATE variables valuations). In addition, by step 4 in the translation algorithm we know
that both an instance of a ppDATE template and a similar instance of the translation of the
template will fire similar transitions (with the same actions). Therefore, they perform the
same modifications in the valuations ν′′ and ν′′′. Thus, by (vi i), (xiv) holds. �
Lemma 5 Given a network of ppDATEs pn = (M, V, ν0, Tppd), its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d), a trace w ∈ (systemevent × ΘSys)
∗, and the global

configurations (L , ν) and (L̃, ν′),

Cinit (pn)
w�⇒M (L , ν) and Cinit (ppd2DATE(pn))

w�⇒M ′ (L̃, ν′) implies ψ(L , L̃)

where,

ψ(L , L̃) = ∀ m, q, ρ · (m, q, ρ) ∈ L ·
∀ σ

↑
id, π

′, θ · (σ
↑
id, π

′, θ) ∈ ρ ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · inst (exi t_cond_checker, σ, π ′) = m′

and
∀ m′, q ′ · (m′, q ′,∅) ∈ L̃,m′ /∈ M ′·

∃ σ
↑
id, π

′ · inst (exi t_cond_checker, σ, π ′) = m′
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ L · (σ

↑
id, π

′, θ) ∈ ρ

Proof We proceed to prove this lemma by induction on the length of the trace w.

– Base case: w = ε (empty trace)

Cinit (pn)
ε�⇒M (L , ν) and Cinit (ppd2DATE(pn))

ε�⇒M ′ (L̃, ν′) implies ψ(L , L̃)

By Definitions 17 and 21 we know that

L0 = L and ν0 = ν and L ′
0 = L̃ and ν0 = ν′ implies ψ(L , L̃)

where L0 = {(m, q0m,∅) | m ∈ M}, and L ′
0 = {(m′, q0m′ ,∅) | m′ ∈ M ′}.

123

260 Form Methods Syst Des (2017) 51:200–265

Next, by substitution with the antecedents,

L0 = L and ν0 = ν and L ′
0 = L̃ and ν0 = ν′ implies ψ(L0, L ′

0)

Thus, by the definition of ψ we have to prove that,

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M} ·
∀ σ

↑
id, π

′, θ · (σ
↑
id, π

′, θ) ∈ ρ ·
∃ m′, q ′ · (m′, q ′,∅) ∈ {(m′, q0m′ ,∅) | m′ ∈ M ′}·
inst (exi t_cond_checker, σ, π ′) = m′

and
∀ m′, q ′ · (m′, q ′,∅) ∈ {(m′, q0m′ ,∅) | m′ ∈ M ′},m′ /∈ M ′·

∃ σ
↑
id, π

′ · inst (exi t_cond_checker, σ, π ′) = m′
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M}·

(σ
↑
id, π

′, θ) ∈ ρ

First, let us analyse the expression,

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M} ·
∀ σ

↑
id, π

′, θ · (σ
↑
id, π

′, θ) ∈ ρ ·
∃ m′, q ′ · (m′, q ′,∅) ∈ {(m′, q0m′ ,∅) | m′ ∈ M ′}·
inst (exi t_cond_checker, σ, π ′) = m′

As ρ is always the empty set, the condition (σ
↑
id, π

′, θ) ∈ ρ will always evaluate to false.
Therefore,

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M} ·
∀ σ

↑
id, π

′, θ · f alse·
∃ m′, q ′ · (m′, q ′,∅) ∈ {(m′, q0m′ ,∅) | m′ ∈ M ′}·
inst (exi t_cond_checker, σ, π ′) = m′

Then, as the range of the inner universal quantification is empty (i.e., false), it is trivially
evaluated to true.

∀ m, q, ρ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M} · true
Finally, as the body of the previous universal quantification is simply the value true and

its range is not empty, the whole expression is trivially evaluated to true.
Now, let us analyse the expression,

∀ m′, q ′ · (m′, q ′,∅) ∈ {(m′, q0m′ ,∅) | m′ ∈ M ′},m′ /∈ M ′·
∃ σ

↑
id, π

′ · inst (exi t_cond_checker, σ, π ′) = m′
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M}·

(σ
↑
id, π

′, θ) ∈ ρ

As in the initial configuration of the translation of pn there are no instances of DATE
templates, the range of the universal quantification is always evaluated to false. Therefore,

∀ m′, q ′ · f alse·
∃ σ

↑
id, π

′ · inst (exi t_cond_checker, σ, π ′) = m′
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ {(m, q0m,∅) | m ∈ M}·

(σ
↑
id, π

′, θ) ∈ ρ

Thus, as the range of the universal quantification is empty (i.e., false), the whole expression
is trivially evaluated to true. Thereby, the base case holds.

123

Form Methods Syst Des (2017) 51:200–265 261

– Inductive case: w = w′ : (e, θ)

IH: ∀ L , L̃, ν, ν′ ·
Cinit (pn)

w′�⇒M (L , ν) and Cinit (ppd2DATE(pn))
w′�⇒M ′ (L̃, ν′) implies ψ(L , L̃)

Given the previous inductive hypothesis IH, we have to prove,

Cinit (pn)
w′:(e,θ)����⇒M (L , ν) and Cinit (ppd2DATE(pn))

w′:(e,θ)����⇒M ′ (L̃, ν′) implies ψ(L , L̃)

By Definition 21 we have,

(i) ∃ L ′′, ν′′ · Cinit (pn)
w′�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L , ν)

and

(i i) ∃ L ′′, ν′′ · Cinit (ppd2DATE(pn))
w′�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L̃, ν′)

implies ψ(L , L̃)

Then, we proceed with the proof by assuming the antecedent of the implication. This
assumption allows us to remove the existential quantifiers in the antecedents by introducing
the fresh values L ′′ and ν′′ in (i), and the fresh values L̃ ′′ and ν′′′ in (ii). Therefore, we have

(i ′) Cinit (pn)
w′�⇒ (L ′′, ν′′) and (L ′′, ν′′) (e,θ)��⇒ (L , ν)

and

(i i ′) Cinit (ppd2DATE(pn))
w′�⇒ (L̃ ′′, ν′′′) and (L̃ ′′, ν′′′) (e,θ)��⇒ (L̃, ν′)

Next, by IH we know that ψ(L ′′, L̃ ′′). Thus, we have

(i i i) ψ(L ′′, L̃ ′′)

In relation to L , by (i ′) we know it is obtained from L ′′ after performing a big step with
(e, θ). Thereby, the local configurations on L are either the same as in L ′′, a modified version
of the ones in L ′′, or new local configurations added to control a DATE which is a new
instance of a template.

Let us introduce the sets Lnc, Lc and Lnew, to represent the local configurations in each
one of the previous categories, respectively. Then, we know that

(iv) L = Lnc ∪ Lc ∪ Lnew

In addition, by using a similar approach with L̃ and (i i ′), we introduce the following sets.

(v) L̃ = L̃nc ∪ L̃c ∪ L̃new

As in the translation the set L̃new contains both the instances of ordinary templates and
the instances of the templates about Hoare triples, we split L̃new into the sets L̃ ′

new and L̃h ,
to represent each one of the previous categories, respectively. Thus,

(v′) L̃ = L̃nc ∪ L̃c ∪ L̃ ′
new ∪ L̃h

Now, let us come back to the expression ψ(L , L̃). By (iv) and (v′), we replace it by

ψ(Lnc ∪ Lc ∪ Lnew, L̃nc ∪ L̃c ∪ L̃ ′
new ∪ L̃h)

By (i i i), as the values in both Lnc and L̃nc are the same as in L ′′ and L̃ ′′, respectively, we
know that the former fulfil ψ . Thereby, we can reduce the previous expression to

ψ(Lc ∪ Lnew, L̃c ∪ L̃ ′
new ∪ L̃h)

123

262 Form Methods Syst Des (2017) 51:200–265

In addition, newly created local configurations in both Lnew and L̃ ′
new do not fulfil the

ranges of the quantified expressions in ψ . Then, we can discard them.

ψ(Lc, L̃c ∪ L̃h)

Next, by the definition of ψ , we have

(vi) ∀ m, q, ρ · (m, q, ρ) ∈ Lc ·
∀ σ

↑
id, π

′, θ · (σ
↑
id, π

′, θ) ∈ ρ ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃c ∪ L̃h · inst (exi t_cond_checker, σ, π ′) = m′

and
(vi i) ∀ m′, q ′ · (m′, q ′,∅) ∈ L̃c ∪ L̃h,m′ /∈ M ′·

∃ σ
↑
id, π

′ · inst (exi t_cond_checker, σ, π ′) = m′
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ Lc · (σ

↑
id, π

′, θ) ∈ ρ

In relation to the configurations in L̃c, as they were obtained from configurations in L̃ ′′,
by (i i i) we know they fulfil (vi i) (same DATE component). Thereby, we only need to prove
that

(vi) ∀ m, q, ρ · (m, q, ρ) ∈ Lc ·
∀ σ

↑
id, π

′, θ · (σ
↑
id, π

′, θ) ∈ ρ ·
∃ m′, q ′ · (m′, q ′,∅) ∈ L̃c ∪ L̃h · inst (exi t_cond_checker, σ, π ′) = m′

and
(vi i ′) ∀ m′, q ′ · (m′, q ′,∅) ∈ L̃h,m′ /∈ M ′·

∃ σ
↑
id, π

′ · inst (exi t_cond_checker, σ, π ′) = m′
implies ∃ m, q, ρ, θ · (m, q, ρ) ∈ Lc · (σ

↑
id, π

′, θ) ∈ ρ

Now, let us focus on (vi). If event e is either an exit event, or an entry event which does not
require to verify any Hoare triple, then it does not introduce any new values in ρ components
of the local configurations in Lc. Thus, by (i i i), (vi) is fulfilled in both cases.

If event e is an entry event which requires the check of Hoare triples, then by Lemma 4
and Proposition 1, we know that for every enabled transition which requires the verification
of a Hoare triple in pn, a similar transition will be fired in its translation whose action will
create a DATE in charge of controlling such Hoare triple. Thus, for every new entry in a ρ

component in Lc, a new local configuration is added in L̃h . Thereby, (vi) holds.
Regarding (vi i ′), if event e is either an exit event, or an entry event which does not require

to verify any Hoare triple, then L̃h = ∅. Thus, as the range of universal quantification is
empty, (vi i ′) is trivially fulfilled in both cases.

If event e is an entry event which requires the check of Hoare triples, then by the rules
entr y1 and entr y3 in the relation small step local, we know that a new tuple is going to
be added to the ρ component of the local configuration in Lc which are associated to the
ppDATEs whose current state possess a Hoare triple that has to be verified. In addition, a
local configuration is going to be included in L̃h for the DATE instantiated to control the
corresponding Hoare triple. Thereby, (vi i ′) holds. �

123

Form Methods Syst Des (2017) 51:200–265 263

Appendix 2: Proof of soundness

Theorem 2 Given a ppDATE network pn = (M, V, ν0, Tppd), and its translation
ppd2DATE(pn) = (M ′, V, ν0, T ′

d),

VT (pn) = VT (ppd2DATE(pn))

Proof To prove this theorem we will show that,

∀ w · w ∈ (systemevent × ΘSys)
∗ · w ∈ VT (pn) iff w ∈ VT (ppd2DATE(pn))

In the following, we abbreviate ppd2DAT E(pn) by dn.

– w ∈ VT (pn) implies w ∈ VT (dn)

As w ∈ VT (pn), by Definition 22 we know that it has a prefix w′ such that either,

(i) Cinit (pn)
w′�⇒M (L ′, ν′) and ∃ (m, q, ρ) · (m, q, ρ) ∈ L ′ · q ∈ Bm , or

(ii) w′ = w1 ++ 〈(σ↑
id, θ

′)〉, Cinit (pn)
w1�⇒ (L ′, ν′) and ∃ m, q, ρ, π ′, θ · ((m, q, ρ) ∈

L ′and (σ
↑
id, π

′, θ) ∈ ρ) · θ, θ ′ �|� π ′.

In relation to (i), let us assume that exists (L̃, ν) such that Cinit (dn)
w′�⇒M ′ (L̃, ν). Then,

by Lemma 2 we know that for every local configuration in L ′, there is a local configuration in
L̃ such that its state component is the same. Therefore, as in L ′ there is a local configuration
in a bad state, there is a local configuration in L̃ in a bad state, i.e. w′ is a counter-example
of dn. Thereby, w ∈ VT (dn).

Regarding (ii), it corresponds to the case where (at least) one Hoare triple is not fulfilled
when event σ

↑
id occurs. Here, by Lemma 3 we have

ψ(L ′, L̃)

Therefore, by (ii) and ψ(L ′, L̃) we know that

∃ m′, q ′ · (m′, q ′,∅) ∈ L̃ · inst(exi t_cond_checker, σ,part_eval(π ′)) = m′

Let us assume that the local configuration (m′, q ′,∅) is the one satisfying the previous
existential quantification. In addition, let us assume (L̃, ν) to be given by Cinit (dn)

w1�⇒M ′
(L̃, ν). Then, once σ

↑
id occurs, as by (ii) we know that the π ′ is not fulfilled, m′ will shift to

a bad state. Thereby, w′ is a counter-example of dn, i.e. w ∈ VT (dn).

– w ∈ VT (dn) implies w ∈ VT (pn).

As w ∈ VT (dn), by Definition 22 and the fact that every DATE in dn has no Hoare triples
associated to its states, we know that it has a prefix w′ such that,

Cinit (dn)
w′�⇒M ′ (L̃, ν) and ∃ (m, q, ρ) · (m, q, ρ) ∈ L̃ · q ∈ Bm

Now let us assume that exists (L ′, ν′) such that Cinit (pn)
w′�⇒M (L ′, ν′). In addition, let

us assume that the bad state in L̃ belongs to a local configuration associated to a DATE m′,
which is an instance of the template exi t_cond_checker , i.e., m′ was created to control a
Hoare triple. Let us represent this Hoare triple as {π} σ {π ′}. Then, by Lemma 3 we know
that,

(1) ∃ m, q, ρ, θ · (m, q, ρ) ∈ L ′ · (σ
↑
id, π

′, θ) ∈ ρ

123

264 Form Methods Syst Des (2017) 51:200–265

We will assume that the ppDATE m and the valuation θ are the ones fulfilling (1). Note
that the index id is introduced by Lemma 3. Next, as m′ is in a bad state we know that
whenever σ

↑
id occurs, π ′ is not fulfilled. Thus, let us assume that the selected prefix is of the

form w′ = w1 ++ 〈(σ↑
id, θ

′)〉. Thereby, by Definition 22, w′ is a counter-example of pn, i.e.
w ∈ VT (pn).

On the other hand, if the bad state in L̃ does not belongs to a local configuration associated
to a DATE m′ which is an instance of the template exi t_cond_checker , then by Lemma 2
we know that there is a local configuration in L ′ such that its state component is the same as
the bad state in L̃ . Therefore, w′ is a counter-example of pn, i.e. w ∈ VT (pn). �

References

1. Apache Tomcat. http://tomcat.apache.org/
2. Ahrendt W, Beckert B, Bubel R, Hähnle R, Schmitt PH, Ulbrich M (eds) (2016) Deductive software

verification—the KeY book (LNCS), vol 10001. Springer, Berlin
3. Ahrendt W, Chimento JM, Pace GJ, Schneider G (2015) A specification language for static and runtime

verification of data and control properties. In: FM’15 (LNCS), vol 9109. Springer, Berlin
4. Ahrendt W, Dylla M (2012) A system for compositional verification of asynchronous objects. Sci Comput

Program 77:1289–1309
5. Ahrendt W, Pace G, Schneider G (2012) A unified approach for static and runtime verification: framework

and applications. In: ISoLA’12 (LNCS), vol 7609. Springer, Berlin
6. Ahrendt W, Pace GJ, Schneider G (2016) StaRVOOrS—episode II: strengthen and distribute the force.

In: ISoLA’16 (1) (LNCS), vol 9952. Springer, Berlin
7. Artho C, Barringer H, Goldberg A, Havelund K, Khurshid S, Lowry M, Pasareanu C, Rosu G, Sen

K, Visser W et al (2005) Combining test case generation and runtime verification. Theor Comput Sci
336(2–3):209–234

8. Artho C, Biere A (2015) Combined static and dynamic analysis. In: AIOOL’05 (ENTCS) vol 131, pp
3–14

9. Barnes J (2012) SPARK: the proven approach to high integrity software. Altran Praxis. http://www.altran.
co.uk

10. Barnett M, Rustan K, Leino M, Schulte W (2005) The Spec# programming system: an overview. In:
CASSIS’05 (LNCS) vol 3362. Springer, Berlin, pp 49–69

11. Barringer H, Goldberg A, Havelund K, Sen K (2004) Rule-based runtime verification. In: VMCAI’04,
pp 44–57

12. Bodden E, Hendren LJ, Lhoták O (2007) A staged static program analysis to improve the performance
of runtime monitoring. In: ECOOP’07 (LNCS), vol 4609

13. Bodden E, Lam P (2010) Clara: partially evaluating runtime monitors at compile time—tutorial supple-
ment. In: RV’10 (LNCS) vol 6418, pp 74–88

14. Burdy L, Cheon Y, Cok DR, Ernst MD, Kiniry JR, Leavens GT, Rustan K, Leino M, Poll E (2005) An
overview of JML tools and applications. Int J Softw Tools Technol Transf 7(3):212–232

15. Chen F, Roşu G (2005) Java-MOP: a monitoring oriented programming environment for Java. In:
TACAS’05 (LNCS), vol 3440. Springer, Berlin, pp 546–550

16. Chimento JM, Ahrendt W, Pace GJ, Schneider G (2015) StaRVOOrS: a tool for combined static and
runtime verification of Java. In: Bartocci E, Majumdar R (eds) Runtime verification (LNCS), vol 9333.
Springer, Berlin, pp 297–305

17. Christakis M, Müller P, Wüstholz V (2012) Collaborative verification and testing with explicit assump-
tions. In: FM’12: formal methods - 18th international symposium, Paris, France, August 27-31, 2012.
Proceedings, pp 132–146

18. Colombo C, Pace GJ, Schneider G (2009) Dynamic event-based runtime monitoring of real-time and
contextual properties. In: FMICS’08 (LNCS), vol 5596. Springer, Berlin, pp 135–149

19. Colombo C, Pace GJ, Schneider G (2009) LARVA: a tool for runtime monitoring of Java programs. In:
SEFM’09, IEEE Computer Society, pp 33–37

20. Csallner C, Smaragdakis Y(2005) Check ’n’ crash: combining static checking and testing. In: 27th Inter-
national Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA,
pp 422–431

123

http://tomcat.apache.org/
http://www.altran.co.uk
http://www.altran.co.uk

Form Methods Syst Des (2017) 51:200–265 265

21. de Boer FS, de Gouw S, Johnsen EB, Wong PYH (2013) Run-time checking of data- and protocol-oriented
properties of Java programs: an industrial case study. In: Shin Sung Y, Maldonado Jos C (eds) SAC. ACM,
pp 1573–1578

22. Decker N, Leucker M, Thoma D (2013) jUnitRV—adding runtime verification to JUnit. In: NASA formal
methods (LNCS), vol 7871. Springer, Berlin

23. Ernst G, Pfähler J, Schellhorn G, Haneberg D, Reif W (2015) KIV: overview and verifythis competition.
Int J Softw Tools Technol Transf 17(6):677–694

24. Falzon K, Pace G (2012) Combining testing and runtime verification techniques. In Model-based method-
ologies for pervasive and embedded software, 8th international workshop, MOMPES 2012, Essen,
Germany, September 4, 2012, pp 38–57

25. Flanagan Cormac, Leino K Rustan M, Lillibridge Mark, Nelson Greg, Saxe James B, Stata Raymie (2002)
Extended Static Checking for Java. In Knoop Jens, Hendren Laurie J , editors, PLDI’02, pages 234–245.
ACM

26. Ge X, Taneja K, Xie T, Tillmann N (2011) DyTa: dynamic symbolic execution guided with static verifi-
cation results. In: Proceedings of the 33rd international conference on software engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21–28, 2011, pp 992–994

27. Gries D (1987) The science of programming, 1st edn. Springer, Berlin
28. Jacobs B, Smans J, Philippaerts P, Vogels F, Penninckx W, Piessens F (2011) Verifast: a powerful, sound,

predictable, fast verifier for C and Java. In: NASA formal methods (LNCS), vol 6617. Springer, pp 41–55
29. Leavens GT, Poll E, Clifton C, Cheon Y, Ruby C, Cok D, Müller P, Kiniry J, Chalin P (2007) JML

reference manual. Draft 1.200
30. Leino K Rustan M (2010) Dafny: an automatic program verifier for functional correctness. In: Clarke

EM, Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning (LPAR-16) (LNCS),
vol 6355. Springer, Berlin

31. Maraninchi F, Rémond Y (2000) Running-modes of real-time systems: a case-study with mode-automata.
In: Proceedings of 12th euromicro conference on real-time systems (ECRTS 2000), 19–21 June 2000,
Stockholm, Sweden, pp 257–264

32. MasterCard International Inc. Mondex web page. http://www.mondexusa.com/
33. Reger G (2016) An overview of MarQ. In: Proceedings of runtime verification—16th international con-

ference, RV 2016 (LNCS), vol 10012. Springer
34. Sözer H (2015) Integrated static code analysis and runtime verification. Softw Pract Exp 45(10):1359–

1373
35. Spivey JM (1989) The Z notation: a reference manual. Prentice-Hall Inc, Upper Saddle River
36. SoftSlate Commerce. www.softslate.com/
37. Stepney S, Cooper D, Woodcock J (2000) An electronic purse: specification, refinement and proof.

Technical monograph PRG-126, Oxford University Computing Laboratory
38. StaRVOOrS web page. http://cse-212294.cse.chalmers.se/starvoors/
39. Tillmann N, Halleux Jonathan de (2008) Pex-white box test generation for .nET. In: Beckert B, Hähnle

R (eds) Tests and proofs (LNCS), vol 4966. Springer, Berlin, pp 134–153
40. Tonin I (2007) Verifying the mondex case study. The KeY approach. Technical Report 2007-4, Universität

Karlsruhe
41. Wonisch D, Schremmer A, Wehrheim H (2013) Zero overhead runtime monitoring. In: SEFM’13 (LNCS),

vol 8137. Springer, Berlin, pp 244–258
42. Woodcock J (2006) First steps in the verified software grand challenge. In: SEW’06. IEEE Computer

Society, pp 203–206
43. Zee K, Kuncak V, Taylor M, Rinard MC (2007) Runtime checking for program verification. In: RV’07

(LNCS), vol 4839. Springer, Berlin, pp 202–213

123

http://www.mondexusa.com/
www.softslate.com/
http://cse-212294.cse.chalmers.se/starvoors/

	Verifying data- and control-oriented properties combining static and runtime verification: theory and tools
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The deductive verifier KeY
	2.2 The runtime verifier Larva

	3 ppDATE: a specification language for data- and control-oriented properties
	4 The StaRVOOrS framework
	5 Formal definition of ppDATEs
	5.1 Notation
	5.2 ppDATE

	6 ppDATE semantics
	6.1 Events, valuations, and traces
	6.2 Configurations
	6.3 Semantics of actions
	6.4 Structural operational semantics
	6.4.1 Auxiliary predicates
	6.4.2 Small steps for local configurations
	6.4.3 Small steps for extended global configurations
	6.4.4 Big steps for global configurations

	6.5 Valid traces and violating traces

	7 From ppDATE to DATE
	7.1 DATE
	7.2 Translation from ppDATEs to DATEs
	7.2.1 Translation algorithm

	7.3 Proof of soundness of the translation algorithm
	7.4 Coupling invariant lemmas
	7.4.1 Proof of soundness

	8 The StaRVOOrS tool implementation
	8.1 ppDATE specification as an input script for StaRVOOrS
	8.2 Running StaRVOOrS
	8.2.1 Deductive verification
	8.2.2 Specification refinement
	8.2.3 Translation and instrumentation
	Pre/postcondition operationalisation
	Code instrumentation
	8.2.4 Monitor generation

	9 Case study: SoftSlate Commerce
	9.1 ppDATE specification
	Login–logout
	Purchases checkout

	9.2 Using StaRVOOrS
	Login–logout
	Purchases checkout

	9.3 Experimentation
	9.3.1 Properties analysis
	Login–logout
	Purchases checkout
	9.3.2 Runtime verification overhead analysis

	10 Case study: Mondex
	10.1 ppDATE property
	10.2 Using StaRVOOrS
	10.3 Experimentation
	10.3.1 Normal behaviour
	10.3.2 Faulty behaviour

	11 Related work
	12 Conclusions
	Appendix 1: Proofs of coupling invariant lemmas
	Appendix 2: Proof of soundness
	References

