
1 INTRODUCTION 

Development of virtual methods to improve the ef-
ficiency of the development by reducing cost and 
lead-time while at the same time improving quality 
and robustness is of strategic relevance and im-
portance to the vehicle industry [1].  

With the increase of mechatronic chassis systems, 
testing of these systems using hardware-in-the-loop 
requires real-time simulation models. Furthermore, 
the introduction of high-fidelity dynamic simulators 
has proven useful for testing and assessment of the 
human-machine interaction [2]. Nevertheless, with 
the increasing demands for virtual testing, currently 
used medium fidelity models are no longer sufficient 
to capture higher-order phenomena such as brake jud-
der, wheel imbalance, choppiness, etc. In [3] the con-
clusion was that current real-time simulation models 
are valid to approximately 5 Hz, requiring higher or-
der models for trustworthy evaluation of advanced 
driver support systems. Also component characteris-
tics, such as suspension hard-point locations are usu-
ally not directly available in simplified vehicle mod-
els that use look-up table representations of the 
suspension.  

This paper presents the development of a real-time 
high fidelity vehicle dynamics model developed with 
Dymola and the Vehicle Dynamics Library (VDL) 

that closely matches a model based on Adams/Car 
that is currently used for high-fidelity off-line simu-
lations. The real-time model directly references the 
model parameters used for the off-line model and can 
be distributed as executable models using the func-
tional-mockup interface (FMI) standard [4], [5]. 

2 BUILDING AND PARAMETERIZING MOD-

ELS 

The modeling and parameterization scheme is 
based on the model topology being defined independ-
ent of the parameter data. In the off-line model, the 
topology with bodies and joints and/or bushings is 
stored in templates, and the data that parameterizes 
the model is stored in a parameter database. Thus, the 
equivalent topology is built for the real-time model 
which then reads data directly from off-line model 
data files.  
2.1 Topology definition 

The real-time model is based on Modelica, an ob-
ject oriented language for developing models based 
on differential algebraic equations (DAEs) [6]. When 
the model is compiled to executable code, the models 
and the connections between them are transformed 
into one system of DAEs that goes through symbolic 
manipulation, index reduction and equation sorting to 
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generate a formulation that can be simulated using or-
dinary differential equation (ODE) solvers. 

The chassis used in this work has a double wish-
bone suspension at the front and an integral rear link 
suspension at the rear with a transverse leaf spring. 
Figure 1 shows the front linkage topology viewed in 
Dymola.  

 
 
Figure 1. Front linkage layout. 

 
The front suspension is based on existing tem-

plates in VDL while the rear suspension is a custom 
topology, shown in Figure 2.  

 
 
Figure 2. Rear linkage layout. 

There’s a lower H-arm connected with two bush-
ings on the chassis side and a ball joint and a bushing 
on the upright side. Two additional link arms with 
two bushings each connect the upright to the chassis. 

The transverse leaf spring in the rear suspension is 
modelled as a set of pure translational springs, shown 
in Figure 3. This is a simplification of a finite element 
(FE) based component in the offline model. The main 

reason for this simplification is to improve model per-
formance as the model is meant to be used in real-
time applications. There are three main spring com-
ponents, one vertical stiffness between each side and 
the chassis as well as a roll stiffness directly attached 
between the two sides. In addition, there are lookup 
table based forces that can be defined as a function of 
wheel travel to incorporate the lateral and longitudi-
nal force characteristics of the leaf spring. All these 
stiffnesses are tuned to the behavior of the offline 
model. 

 

 
 
Figure 3. Transverse leaf spring model. Top attachment is to 
chassis, left and right are for the two linkage sides. 

 
The front and rear suspensions are put together 

into a chassis model based on library templates, 
shown in Figure 4. 

 

 
 
Figure 4. Model diagram of full chassis model. 

 
A 3D visualization of the full chassis is shown in 

Figure 5. The visualization includes 3d models of 
each individual linkage component based on CAD 
data.  



 
 
Figure 5. 3D visualization of the full chassis model. 

 
The full chassis model has 252 continuous time states. 
2.2 Parameterization 

In the real-time model, data is accessed using a 
general-purpose data handling method called 
DataAccess. Several file formats can be read with this 
method, including TeimOrbit which is the format 
used in the offline model.  

In general, data-aware components are responsible 
for reading all the data that it requires from the data 
file.  For example, a data-aware mass part only takes 
a data file path and a part name as parameters and then 
reads the associated mass and inertia data. Similarly, 
a bushing takes a bushing file path as input and then 
reads force and torque characteristics directly from 
the file. 

Reading model data directly from the source data 
files eliminates the need to manually enter parameters 
in the real-time model and the associated risk of user 
error in doing so. Furthermore, the effort to parame-
terize the model with the data files can be done once 
and then the data files can be changed to update the 
model, assuming the topology stays the same. 

3 MODEL CORRELATION 

Initial validation of the real-time model has been 
carried out against its offline counterpart in order for 
it to be useful. For this purpose, test rig experiments 
were set up with the real-time model which excites 
the suspension in the same way as the existing test 
cases used with the offline model. 

The test rig model keeps the chassis side of the sus-
pension fixed relative to ground while moving wheel 
pads in the vertical direction to generate motion in the 
wheel centers. Additional force and torque can also 
be applied, either in the wheel center or in the contact 
patch. Figure 6 shows the front suspension when it is 
simulated in the test rig. 

 
 
Figure 6. Front suspension in test rig. 

 
Figure 7 and Figure 8 shows examples of the cor-

relation result for the front suspension in a parallel 
wheel travel test. 

 
 
Figure 7. Front suspension in test rig. 

 
 
Figure 8. Front suspension in test rig. 

  



4 REAL-TIME ADAPTATIONS 

Besides the symbolic manipulation of the model 
equations, which in itself gives very efficient simula-
tion code, there are two main techniques used to im-
prove real-time performance of the vehicle models. 
Inline integration and parallelization. 
4.1 Inline integration 

Inline integration [7] is a method to achieve real-
time performance of stiff systems. With fixed step 
solvers, the discretization formulae of the solver are 
incorporated into the equations systems of the model 
before doing structural analysis and symbolic manip-
ulation to allow further performance improvements.  

In this case, an implicit Euler solver is used, which 
gives stability in each timestep even with larger 
timesteps, as opposed to an explicit solver which 
would need small enough timesteps with regard to 
system dynamics to achieve stability. The implicit 
solver is used successfully with timesteps up to 2ms 
for the model in this paper. The drawback with is that 
this typically gives large non-linear equation systems 
requiring iterative solving.  
4.2 Parallelization 

When the above approach is applied to the chassis 
model it results in a single non-linear equation system 
of size {218}. The cost of solving non-linear equation 
systems increases exponentially with their size, 
meaning that large systems of equations needs to be 
avoided in order to achieve real-time performance. 
This can be done by introducing parallelization of the 
model equations. Methods for parallelizing model ex-
ecution were introduced in [8].  

By introducing decoupling elements between front 
and rear suspensions, left and right linkages and be-
tween linkages and wheels, the equation system can 
be divided into 13 smaller systems with sizes {30, 1, 
1, 30, 1, 1, 21, 1, 1, 21, 1, 1, 21}. Two advantages are 
introduced by this decoupling. With the exponential 
increase in computational effort with equation system 
size, the reduction of the sizes of equation systems 
improve performance a great deal. Furthermore, the 
equation systems can now be solved in parallel, al-
lowing the use of multi-core processors. 

5 PERFORMANCE 

The real-time model has been benchmarked with 
respect to performance on a regular desktop com-
puter. This gives an indication of the turnaround times 
needed to execute the model. The performance is ex-
pected to improve even further when executed on a 
dedicated real-time platform. The accuracy of the 
model is also verified when using the real-time solver. 

5.1 Performance 
When running in Dymola on a regular Windows 

laptop (i7-3630QM CPU @ 2.40GHz) the model sim-
ulates each time step at 1-1.5ms turnaround time. Fig-
ure 9 shows the execution times for each time step 
during a double lane change maneuver. The model is 
stable with both 1 and 2 ms timesteps so even on a 
desktop computer the model can be simulated in real-
time. With 2 ms timestep, each step apart from the 
initial ones are calculated within the duration of the 
timestep.  

 

 

Figure 9. Real-time execution times per time step with 1ms and 
2ms time steps. Each time step takes the same amount of time 
regardless of the length of the timestep. 

 
Figure 10 shows histograms for the execution 

times, showing that the time taken for each time step 
is stable at 1-1.5ms. 
 

 

Figure 10. Real-time turnaround time per time step shown as 

histograms. Similar turnaround times are seen with both 

timesteps. 

5.2 Accuracy  
The use of implicit solvers can have detrimental 

effects on model accuracy if important model dynam-
ics are excluded by the larger timestep. Model accu-
racy with the real-time solver is verified by compar-
ing with a variable step solver in Dymola. Figure 11 
show lateral acceleration output with a frequency 
sweep as steering wheel angle input. The variable step 
solver Dassl, is used as baseline and the real-time 
solver output is shown with 1 and 2ms timesteps. 

 



 

Figure 11. Solver comparison of lateral acceleration output 

with a frequency sweep as steering input 

6 CONCLUSION 

The DAE based model is shown to give real-time 
performance of high fidelity vehicle models on regu-
lar laptop computers. This is expected to improve 
when executed on a dedicated real-time platform.  

The modeling and parameterization scheme which 
uses existing data files allows a shorter update cycle 
when adjusting model parameters on real-time plat-
forms since lookup tables do not have to be regener-
ated. 

The real-time model is useful for many different 
applications including driver-in-the-loop simulators 
and HIL system verification. 
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