
1 INTRODUCTION

Development of virtual methods to improve the ef-
ficiency of the development by reducing cost and
lead-time while at the same time improving quality
and robustness is of strategic relevance and im-
portance to the vehicle industry [1].

With the increase of mechatronic chassis systems,
testing of these systems using hardware-in-the-loop
requires real-time simulation models. Furthermore,
the introduction of high-fidelity dynamic simulators
has proven useful for testing and assessment of the
human-machine interaction [2]. Nevertheless, with
the increasing demands for virtual testing, currently
used medium fidelity models are no longer sufficient
to capture higher-order phenomena such as brake jud-
der, wheel imbalance, choppiness, etc. In [3] the con-
clusion was that current real-time simulation models
are valid to approximately 5 Hz, requiring higher or-
der models for trustworthy evaluation of advanced
driver support systems. Also component characteris-
tics, such as suspension hard-point locations are usu-
ally not directly available in simplified vehicle mod-
els that use look-up table representations of the
suspension.

This paper presents the development of a real-time
high fidelity vehicle dynamics model developed with
Dymola and the Vehicle Dynamics Library (VDL)

that closely matches a model based on Adams/Car
that is currently used for high-fidelity off-line simu-
lations. The real-time model directly references the
model parameters used for the off-line model and can
be distributed as executable models using the func-
tional-mockup interface (FMI) standard [4], [5].

2 BUILDING AND PARAMETERIZING MOD-

ELS

The modeling and parameterization scheme is
based on the model topology being defined independ-
ent of the parameter data. In the off-line model, the
topology with bodies and joints and/or bushings is
stored in templates, and the data that parameterizes
the model is stored in a parameter database. Thus, the
equivalent topology is built for the real-time model
which then reads data directly from off-line model
data files.
2.1 Topology definition

The real-time model is based on Modelica, an ob-
ject oriented language for developing models based
on differential algebraic equations (DAEs) [6]. When
the model is compiled to executable code, the models
and the connections between them are transformed
into one system of DAEs that goes through symbolic
manipulation, index reduction and equation sorting to

Real-Time Simulation of Elasto-kinematic Multi-body Vehicle Models

Matthijs Klomp
Vehicle Dynamics, Volvo Car Group

Peter Sundström
Modelon AB

Albin Johnsson
Vehicle Dynamics, Volvo Car Group

ABSTRACT: This paper presents the development of a real-time capable high fidelity multi-body vehicle dy-
namics model based on differential algebraic equations (DAE) that is compiled into ordinary differential equa-
tions (ODE) form using index reduction, symbolic manipulation and equation sorting. This model is shown to
closely match an offline high fidelity model based on high index solvers. The real-time model directly refer-
ences the model parameters used by the offline model and can be distributed in executable form according to
standard interfaces. The real-time performance is achieved by applying inlining of an implicit Euler solver into
the model formulation to get stable execution with fixed time steps, and by parallelizing the execution over
multiple processor cores. The presented approach gives a more accurate and configurable real-time model com-
pared to the current, lookup-table based, solution.

generate a formulation that can be simulated using or-
dinary differential equation (ODE) solvers.

The chassis used in this work has a double wish-
bone suspension at the front and an integral rear link
suspension at the rear with a transverse leaf spring.
Figure 1 shows the front linkage topology viewed in
Dymola.

Figure 1. Front linkage layout.

The front suspension is based on existing tem-

plates in VDL while the rear suspension is a custom
topology, shown in Figure 2.

Figure 2. Rear linkage layout.

There’s a lower H-arm connected with two bush-
ings on the chassis side and a ball joint and a bushing
on the upright side. Two additional link arms with
two bushings each connect the upright to the chassis.

The transverse leaf spring in the rear suspension is
modelled as a set of pure translational springs, shown
in Figure 3. This is a simplification of a finite element
(FE) based component in the offline model. The main

reason for this simplification is to improve model per-
formance as the model is meant to be used in real-
time applications. There are three main spring com-
ponents, one vertical stiffness between each side and
the chassis as well as a roll stiffness directly attached
between the two sides. In addition, there are lookup
table based forces that can be defined as a function of
wheel travel to incorporate the lateral and longitudi-
nal force characteristics of the leaf spring. All these
stiffnesses are tuned to the behavior of the offline
model.

Figure 3. Transverse leaf spring model. Top attachment is to
chassis, left and right are for the two linkage sides.

The front and rear suspensions are put together

into a chassis model based on library templates,
shown in Figure 4.

Figure 4. Model diagram of full chassis model.

A 3D visualization of the full chassis is shown in

Figure 5. The visualization includes 3d models of
each individual linkage component based on CAD
data.

Figure 5. 3D visualization of the full chassis model.

The full chassis model has 252 continuous time states.
2.2 Parameterization

In the real-time model, data is accessed using a
general-purpose data handling method called
DataAccess. Several file formats can be read with this
method, including TeimOrbit which is the format
used in the offline model.

In general, data-aware components are responsible
for reading all the data that it requires from the data
file. For example, a data-aware mass part only takes
a data file path and a part name as parameters and then
reads the associated mass and inertia data. Similarly,
a bushing takes a bushing file path as input and then
reads force and torque characteristics directly from
the file.

Reading model data directly from the source data
files eliminates the need to manually enter parameters
in the real-time model and the associated risk of user
error in doing so. Furthermore, the effort to parame-
terize the model with the data files can be done once
and then the data files can be changed to update the
model, assuming the topology stays the same.

3 MODEL CORRELATION

Initial validation of the real-time model has been
carried out against its offline counterpart in order for
it to be useful. For this purpose, test rig experiments
were set up with the real-time model which excites
the suspension in the same way as the existing test
cases used with the offline model.

The test rig model keeps the chassis side of the sus-
pension fixed relative to ground while moving wheel
pads in the vertical direction to generate motion in the
wheel centers. Additional force and torque can also
be applied, either in the wheel center or in the contact
patch. Figure 6 shows the front suspension when it is
simulated in the test rig.

Figure 6. Front suspension in test rig.

Figure 7 and Figure 8 shows examples of the cor-

relation result for the front suspension in a parallel
wheel travel test.

Figure 7. Front suspension in test rig.

Figure 8. Front suspension in test rig.

4 REAL-TIME ADAPTATIONS

Besides the symbolic manipulation of the model
equations, which in itself gives very efficient simula-
tion code, there are two main techniques used to im-
prove real-time performance of the vehicle models.
Inline integration and parallelization.
4.1 Inline integration

Inline integration [7] is a method to achieve real-
time performance of stiff systems. With fixed step
solvers, the discretization formulae of the solver are
incorporated into the equations systems of the model
before doing structural analysis and symbolic manip-
ulation to allow further performance improvements.

In this case, an implicit Euler solver is used, which
gives stability in each timestep even with larger
timesteps, as opposed to an explicit solver which
would need small enough timesteps with regard to
system dynamics to achieve stability. The implicit
solver is used successfully with timesteps up to 2ms
for the model in this paper. The drawback with is that
this typically gives large non-linear equation systems
requiring iterative solving.
4.2 Parallelization

When the above approach is applied to the chassis
model it results in a single non-linear equation system
of size {218}. The cost of solving non-linear equation
systems increases exponentially with their size,
meaning that large systems of equations needs to be
avoided in order to achieve real-time performance.
This can be done by introducing parallelization of the
model equations. Methods for parallelizing model ex-
ecution were introduced in [8].

By introducing decoupling elements between front
and rear suspensions, left and right linkages and be-
tween linkages and wheels, the equation system can
be divided into 13 smaller systems with sizes {30, 1,
1, 30, 1, 1, 21, 1, 1, 21, 1, 1, 21}. Two advantages are
introduced by this decoupling. With the exponential
increase in computational effort with equation system
size, the reduction of the sizes of equation systems
improve performance a great deal. Furthermore, the
equation systems can now be solved in parallel, al-
lowing the use of multi-core processors.

5 PERFORMANCE

The real-time model has been benchmarked with
respect to performance on a regular desktop com-
puter. This gives an indication of the turnaround times
needed to execute the model. The performance is ex-
pected to improve even further when executed on a
dedicated real-time platform. The accuracy of the
model is also verified when using the real-time solver.

5.1 Performance
When running in Dymola on a regular Windows

laptop (i7-3630QM CPU @ 2.40GHz) the model sim-
ulates each time step at 1-1.5ms turnaround time. Fig-
ure 9 shows the execution times for each time step
during a double lane change maneuver. The model is
stable with both 1 and 2 ms timesteps so even on a
desktop computer the model can be simulated in real-
time. With 2 ms timestep, each step apart from the
initial ones are calculated within the duration of the
timestep.

Figure 9. Real-time execution times per time step with 1ms and
2ms time steps. Each time step takes the same amount of time
regardless of the length of the timestep.

Figure 10 shows histograms for the execution

times, showing that the time taken for each time step
is stable at 1-1.5ms.

Figure 10. Real-time turnaround time per time step shown as

histograms. Similar turnaround times are seen with both

timesteps.

5.2 Accuracy
The use of implicit solvers can have detrimental

effects on model accuracy if important model dynam-
ics are excluded by the larger timestep. Model accu-
racy with the real-time solver is verified by compar-
ing with a variable step solver in Dymola. Figure 11
show lateral acceleration output with a frequency
sweep as steering wheel angle input. The variable step
solver Dassl, is used as baseline and the real-time
solver output is shown with 1 and 2ms timesteps.

Figure 11. Solver comparison of lateral acceleration output

with a frequency sweep as steering input

6 CONCLUSION

The DAE based model is shown to give real-time
performance of high fidelity vehicle models on regu-
lar laptop computers. This is expected to improve
when executed on a dedicated real-time platform.

The modeling and parameterization scheme which
uses existing data files allows a shorter update cycle
when adjusting model parameters on real-time plat-
forms since lookup tables do not have to be regener-
ated.

The real-time model is useful for many different
applications including driver-in-the-loop simulators
and HIL system verification.

7 REFERENCES

[1] J. Rauh, "Virtual development of ride and handling

characteristics for advanced passenger cars," Vehicle

System Dynamics, vol. 40, no. 1-3, pp. 135-155, 2003.

[2] P. Goupil and G. Puyou, "A High Fidelity

AIRBUS Benchmark for System Fault," in

Proceedings of the 4th European Conference for

Aerospace Sciences (EUCASS), St. Petersburg, 2011.

[3] W. C. Prescott, G. Heirman, M. Furman, J. De

Cuyper, L. Dragon, A. Lippeck and H. Brauner, "Using

High-Fidelity Multibody Vehicle Models in Real-Time

Simulations," in SAE World Congress & Exhibition -

SAE 2012-01-0927, Detroit, 2012.

[4] J. Andreasson, N. Machida, M. Tsushima, J.

Griffin and P. Sundström, "Deployment of high-

fidelity vehicle models for accurate real-time

simulation," in Proceedings of the 1st Japanese

Modelica Conference, Tokyo, 2016.

[5] J. Andreasson, H. Elmqvist, J. Griffin, D.

Henriksson, S.-E. Mattson and H. Olsson, "Real-Time

Simulation of Detailed Vehicle Models," in

Proceedings of the 12th International Symposium on

Advanced Vehicle Control, Tokyo, 2014.

[6] "Modelica," 2016. [Online]. Available:

www.modelica.org.

[7] H. Elmqvist, M. Otter and F. E. Cellier, "Inline

Integration: A new mixed symbolic/numeric approach

for solving differential-algebraic equation systems," in

Proceedings of the European Simulation

Multiconference, Prague, 1995.

[8] H. Elmqvist, S. Mattson and H. Olsson, "Parallel

Model Execution on Many Cores," in Proceedings of

the 10th International Modelica Conference, Lund,

2014.

