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Arbitrary representations of an involutive commutative unital F-algebra A as a 
subalgebra of FX are considered, where F = C or R and X �= ∅. The Gelfand 
spectrum of A is explained as a topological extension of X where a seminorm on the 
image of A in FX is present. It is shown that among all seminorms, the sup-norm 
is of special importance which reduces FX to �∞(X). The Banach subalgebra of 
�∞(X) of all Σ-measurable bounded functions on X, Mb(X, Σ), is studied for which 
Σ is a σ-algebra of subsets of X. In particular, we study lifting of positive measures 
from (X, Σ) to the Gelfand spectrum of Mb(X, Σ) and observe an unexpected shift 
in the support of measures. In the case that Σ is the Borel algebra of a topology, we 
study the relation of the underlying topology of X and the topology of the Gelfand 
spectrum of Mb(X, Σ).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is common to look at rings and algebras as families of functions over a nonempty set with values in a 
suitable ring or field. This is especially helpful if one wants to study the ideal structure of a ring or algebra 
which naturally involves topological notions, mainly compactness.

In this article, we summarize some observations about topological algebras in an abstract manner. One 
motivation comes from [3] which attempts to represent positive linear functionals on a given commutative 
unital algebra as an integral with respect to a positive measure on the space of characters of the algebra. 
This is done by realizing the algebra as a subalgebra of continuous functions over the character space.

During the present article we always assume that A is an involutive commutative algebra over the field 
F = R or C equipped with a seminorm ρ. In Section 2, first we provide a brief overview of the theory of 
seminormed algebras and their Gelfand spectrum. Then, we assume that A can be embedded into (FX , ρ)
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for a nonempty set X where ρ is a submultiplicative seminorm on a subalgebra of FX that contains the 
image of A. This induces a seminormed structure on A as well. Theorem 2.5 gives a necessary and sufficient 
condition for X to be dense in the Gelfand spectrum of A, that is, when the topology induced by the 
seminorm is equivalent to the topology induced by the sup-norm defined in (2).

Motivated by [3], where positive linear functionals on an algebra are presented as integrals with respect 
to constructibly Radon measures, in Section 3, we consider a measurable structure Σ on X and study the 
spectrum of the algebra of bounded measurable functions on (X, Σ), denoted by Mb(X, Σ). We prove that 
positive measures on X lift to positive measures over the spectrum of Mb(X, Σ), but this lifting shifts the 
support of the original measure out of X modulo at most a countable subset of X (Propositions 3.7 and 
3.8). At the end we choose Σ to be the Borel algebra of a topology τ on X and observe some connections 
between τ and the spectrum of Mb(X, Σ) (Proposition 3.10 and Theorem 3.11).

1.1. Notations

Let X be a non-empty set and S be a structure on X which induces a topology on X. We denote this 
topology by τ(X, S). For instance, let S be a family of functions, defined on X, with values in a topological 
space. Then τ(X, S) is the coarsest topology on X which makes every function in S continuous.

Let (X, τ) be a topological space. We denote the set of all τ -continuous F-valued functions on X by 
C(X, τ) or C(X) if there is no risk of confusion. We use Cb(X) (or Cb(X, τ)) to denote the set of all 
f ∈ C(X) which are bounded on X. If (X, τ) is locally compact, C0(X) denotes the set of all f ∈ CbX

which are vanishing at infinity.
Let P (X) be the power set of X. The σ-algebra of sets induced on X by a set Λ ⊆ P (X) is denoted by 

σ(Λ). In particular if τ is a topology on X, then σ(τ) is the σ-algebra of all Borel subsets of (X, τ) denoted 
by Bτ .

2. Involutive subalgebras of �∞(X)

The set theory which is applied in this paper is ZFC. Throughout this article all algebras are assumed 
to be involutive (also called ∗-algebra) and commutative over a field F (which is either R or C as specified). 
Subsequently, all F-valued ∗-algebra homomorphisms are also supposed to be F-module maps.

Definition 2.1. Let A be a commutative ∗-algebra. A function ρ : A −→ [0, ∞] is called a quasi-norm on A
if

(1) ∀a ∈ A ρ(a∗) = ρ(a),
(2) ∀a, b ∈ A ρ(a + b) ≤ ρ(a) + ρ(b) (subadditive),
(3) ∀r ∈ F ∀a ∈ A ρ(ra) = |r|ρ(a).

ρ is called submultiplicative if

(4) ∀a, b ∈ A, ρ(ab) ≤ ρ(a)ρ(b) where the product of ∞ and 0 is ∞.

A quasi-norm ρ on A is called a seminorm if ρ(a) < ∞ for every a ∈ A.

Let A be a commutative ∗-algebra and let ρ be a quasi-norm on A. The set of all elements of A with a 
finite quasi-norm ρ is denoted by Bρ(A), i.e.,

Bρ(A) = {a ∈ A : ρ(a) < ∞}.
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If ρ is a submultiplicative quasi-norm, it is clear that Bρ(A) is a ∗-subalgebra of A and the restriction of ρ to 
Bρ(A) is a seminorm. A ∗-algebra A with a seminorm ρ forms a seminormed algebra if ρ is submultiplicative. 
For a seminormed algebra (A, ρ), the set of all non-zero ∗-algebra homomorphisms α : A −→ F is denoted 
by X (A). The set spρ(A) of all ρ-continuous ∗-algebra homomorphisms belonging to X (A) is called the 
Gelfand spectrum of (A, ρ). Every element a ∈ A induces a map â : X (A) −→ F defined by â(α) := α(a) for 
each α ∈ X (A). Next, we have a characterization of all ρ-continuous F-valued ∗-algebra homomorphisms. 
The following lemma was proved as Lemma 3.2 in [2].

Lemma 2.2. Let (A, ρ) be a commutative seminormed ∗-algebra and α ∈ X (A). Then α ∈ spρ(A) if and only 
if |α(a)| ≤ ρ(a), for all a ∈ A.

The Gelfand spectrum spρ(A) (as well as X (A)) naturally carries a Hausdorff topology as a subspace 
of FA with the product topology. For a real number r > 0, let Dr := {c ∈ F : |c| ≤ r}. According to 
Lemma 2.2, spρ(A) ⊆

∏
a∈A Dρ(a). One simple approximation argument implies that every element in the 

closure of spρ(A) is a ∗-algebra homomorphism. But it also belongs to 
∏

a∈A Dρ(a). Therefore, the closure 
of spρ(A) is a subset of spρ(A) ∪ {0} where 0 is the constant linear functional zero on A. From now on, we 
use spρ(A) to denote it as a topological subspace of 

∏
a∈A Dρ(a). Note that, for each a ∈ A, â is an element 

in C(X (A)) and subsequently, its restriction to spρ(A) belongs to C(spρ(A)).
Note that the difference between the following corollary and [2, Corollary 3.3] is due to the fact that we 

exclude zero in the definition of X (A).

Corollary 2.3. Let (A, ρ) be a commutative seminormed ∗-algebra. If A is unital then spρ(A) is compact. If 
spρ(A) is compact then there exists an element a0 ∈ A such that |α(a0)| ≥ 1 for every α ∈ spρ(A).

Proof. If A is unital, one may use the identity element, 1, (for which we have α(1) = 1 for every α ∈
spρ(A)) to show that 0 does not belong to the closure of spρ(A). Therefore, spρ(A) is indeed a closed set in ∏

a∈A Dρ(a), and subsequently, spρ(A) is compact.
Now suppose that spρ(A) is compact. Therefore, spρ(A) is a closed subset of 

∏
a∈A Dρ(a), not containing 0. 

So, there exist a finite set {a1, . . . , am} and ε > 0 such that for each α there is an i with |α(ai)| ≥ ε1/2. Now 
set a := a∗1a1 + · · · + a∗mam. Then, this particular element a, satisfies |α(a)| ≥ ε for each α ∈ spρ(A). Let 
k = inf{|α(a)| : α ∈ spρ(A)} ≥ ε and a0 := a/k. The claim follows for a0. �
Remark 2.4. Every non-unital commutative seminormed ∗-algebra (A, ρ) can be embedded into the unital 
∗-algebra A1 := A ⊕ F with multiplication (a, λ)(b, γ) = (ab + γa + λb, λγ) and involution (a, λ)∗ = (a∗, ̄λ). 
Defining ρ1(a + λ) = ρ(a) + |λ| we also obtain a seminorm on A1 which makes the natural embedding 
a �→ (a, 0) continuous. For each α ∈ X (A), define the extension α′(a, λ) = α(a) + λ which is obviously an 
element in X (A1). So one can regard X (A) as a subset of X (A1). Regarding F as a commutative algebra, we 
know that X (F) has only one element which is the identity map. For an element β ∈ X (A1), note that if the 
restriction β|A is non-zero, it is formed by the element β|A ∈ X (A) as descried above. Hence, X (A1) \X (A)
consists of exactly one element, denoted here by ∞̂, which maps (a, λ) to λ for all a ∈ A and λ ∈ F. Clearly, 
∞̂ ∈ spρ1(A1), therefore A is a closed maximal ideal of A1. Moreover, if spρ(A) is not compact, spρ1(A1) is 
the one-point compactification of spρ(A).

Every ∗-algebra homomorphism φ : A −→ B induces a mapping φ∗ : X (B) −→ X (A) ∪ {0} defined by 
φ∗(β) = β ◦ φ for each β ∈ X (B). Suppose that B is equipped with a seminorm ρ. The homomorphism φ
induces a seminorm ρφ on A defined by ρφ(a) = ρ(φ(a)). If ρ is submultiplicative, then so is ρφ. The map 
φ as a homomorphism between seminormed ∗-algebras (A, ρφ) and (B, ρ) is continuous. Therefore φ∗ maps 
spρ(B) continuously into spρ (A).
φ
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Here we are mainly interested in the case where B is a ∗-subalgebra of FX for a non-empty set X where 
FX is the space of all F-valued functions on X furnished with pointwise multiplication and the canonical 
F-conjugate involution. This generally enables us to realize sp(A) relative to X as follows.

Let ρ be a submultiplicative quasi-norm on FX with ρ(1) ≥ 1 where 1 denotes the constant function 
which takes 1 all over the X. There is a natural map e : X −→ X (FX) which, to every x ∈ X, assigns the 
evaluation map ex : FX −→ F, defined by ex(f) := f(x). It is clear that ex ∈ X (FX). We denote the set 
of all ρ-continuous evaluations by Xρ. Note that by Lemma 2.2, for every x ∈ X, ex ∈ Xρ if and only if 
ex ∈ spρ(Bρ(FX)). In symbols:

Xρ = {ex : x ∈ X, ex ∈ spρ(Bρ(FX))}. (1)

Let ι : A −→ Bρ(FX) be a ∗-algebra homomorphism. By abuse of notation, we use ι∗ to denote the 
induced map ι∗|X : X −→ spρ(A).

Theorem 2.5. Let A be a commutative ∗-algebra and ι : A −→ Bρ(FX) be a ∗-algebra homomorphism, where 
ρ is a submultiplicative quasi-norm on FX with ρ(1) ≥ 1. Define ρι := ρ ◦ ι on A. Then ι∗(Xρ) is dense in 
spρι

(A) if and only if there exists D > 0 such that

ρι(a) ≤ D · sup
x∈Xρ

|ex(ιa)|,

for all a ∈ A.

Proof. Note that by Lemma 2.2, for each a ∈ A,

sup
β∈spρι

(A)
|â(β)| ≤ ρι(a).

(⇒) Since ι∗(Xρι
) is dense in spρι

(A) we have

sup
x∈Xρ

|ex(ιa)| = sup
β∈spρι

(A)
|β(a)|,

and it suffices to take D = 1.
(⇐) In contrary, suppose that α ∈ spρι

(A) \ ι∗(Xρ). There exists f ∈ C(spρι
(A)) such that f(α) = 1 and 

f |ι∗(Xρ) = 0, by Urysohn’s lemma. Since Â separates points of spρι
(A), â ∈ C(spρι

(A)), and spρι
(A)

is compact, by Stone–Weierstrass theorem, it is dense in C(spρι
(A)). Therefore, for ε > 0, there is 

aε ∈ A with ‖f − âε‖ < ε. Take an ε > 0 such that 1−ε
ε > D. Then |f(α) − α(aε)| = |1 − α(aε)| < ε or 

1 − ε < |α(aε)| < 1 + ε. Also |f(ι∗ex) − ex(ιaε)| = |0 − ιaε(x)| < ε for all x ∈ Xρ. Now

sup
β∈spρι

(A)
|β(aε)| ≤ ρι(aε) ≤ D sup

x∈Xρ

|ex(ιa)| ≤ Dε < 1 − ε,

and hence |α(aε)| < 1 − ε, a contradiction which completes the proof. �
The immediate implication of Theorem 2.5 is that if one is to realise a unital commutative algebra as a 

subalgebra of (FX , ρ) the natural choice for ρ is the sup-norm over X which is defined by

‖f‖X = sup
x∈X

|f(x)|. (2)

We denote B‖.‖X
(FX) by �∞(X). According to Theorem 2.5 the image of X under the map x �→ ex is dense 

in sp‖·‖ (�∞(X)) and also for ι : A −→ �∞(X), we have ι∗(X‖·‖X
)
‖·‖Xι = sp‖·‖ (A).
X Xι
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It is well known that if (X, τ) is a completely regular Hausdorff space, then sp‖·‖Xι
(Cb(X)) is the Stone–

Čech compactification of (X, τ). Moreover, every Hausdorff compactification of (X, τ) is homeomorphic 
to the spectrum of a unital subalgebra of Cb(X). In the next section we study the algebra of bounded 
measurable functions for a measurable structure on X.

3. Measurable structures on X

Let Σ be a σ-algebra of subsets of X. Let Mb(X, Σ) be the ∗-algebra of all bounded Σ-measurable F-valued 
functions on (X, Σ). Suppose that Mb(X, Σ) separates the points of X. Hence, there is an injection from X
onto a dense subset of sp‖·‖X

(Mb(X, Σ)). Although we are assuming that Mb(X, Σ) separates points of X, 
this does not imply that Σ contains singletons as we see in the following example.

Example 3.1. Recall that a topological space (X, τ) is called a T0 space if for each pair x, y of distinct points 
of X, either x /∈ {y}τ or y /∈ {x}τ . Then characteristic functions of open sets clearly separate points of X. 
Let ω1 be the first uncountable ordinal and X = ω1 + 1. The family of sets Ra := {x ∈ X : x > a} (a ∈ X) 
forms a basis for a topology on Y = X \ {0}. This topology is evidently T0 and satisfies the first axiom of 
countability at every point except ω1. Although {ω1} =

⋂
ω1>a Ra, every countable intersection of sets Ra

for a < ω1 contains ordinals smaller than ω1. Thus {ω1} does not belong to the σ-algebra Σr generated by 
{Ra : a ∈ X}, while Mb(Y, Σr) separates points of Y . Note that the topology of Y in this case is not first 
countable. Singletons always belong to the σ-algebra of Borel subsets of first countable spaces.

We denote sp‖·‖X
(Mb(X, Σ)) by ξΣX which is a compact Hausdorff space. Since Mb(X, Σ) separates the 

points of X, there is an injection ψ : X −→ ξΣX such that ψ(X) is a dense subset of ξΣX. Further, for 
every bounded Σ-measurable function f on X, the function f ◦ ψ−1 is continuously extendible over ξΣX. 
Also, ξΣX is unique (up to a homeomorphism) with this property in the sense that for every other compact 
Hausdorff space, say γX, with X as a dense subset, so that the elements of Mb(X, Σ) are continuously 
extendible to γX, there is a continuous map ι : γX −→ ξΣX agreeing on the images of X in ξΣX and γX.

For E ∈ Σ, let χE be the characteristic function of E, defined on X. Denoting its continuous extension 
to ξΣX with χ̃E we have:

(χ̃E)2 = (χ2
E )̃ = χ̃E ;

thus it ranges over {0, 1}, which implies that χ̃E itself must be the characteristic function of a set, say Ẽ in 
ξΣX.

Lemma 3.2. Let E ∈ Σ. Then E = Ẽ where E is the closure of E in ξΣX.

Proof. It is clear that Ẽ = χ̃−1
E ({1}) is closed and E ⊆ Ẽ. Thus E ⊆ Ẽ. If z /∈ E, then for an open 

neighbourhood U of z we have U ∩E = ∅. Therefore there is a function f ∈ Mb(X, Σ) and an open interval 
I in R such that z ∈ f̃−1(I) ⊆ U . Let F = f−1(I) ∈ Σ, then E ∩ F = ∅, so χE · χF = 0 and χ̃E · χ̃F = 0. 
Since χ̃F (z) = 1 the later equation implies χ̃E(z) = 0. This contradicts the assumption z ∈ Ẽ, therefore 
Ẽ = E. �

Using the above lemma, we investigate some properties of X as a subspace of ξΣX.

Corollary 3.3. Let Σ be a σ-algebra of subsets of X.

(1) E is a clopen subset of ξΣX for every E ∈ Σ;
(2) Σ̃ := {Ẽ : E ∈ Σ} forms a basis for the topology of ξΣX;
(3) Σ̃ is the set of all clopen subsets of ξΣX.
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In addition, if Σ contains all singletons, then

(4) X is an open dense subspace of ξΣX whose subspace topology is discrete;
(5) For a subset Y ⊂ X, Y = Y if and only if Y is finite.
(6) For x ∈ X and E ∈ Σ, x ∈ Ẽ if and only if x ∈ E.

Proof. (1) Since E = Ẽ = χ̃−1
E ({1}) = χ̃−1

E (1
2 , ∞) and χ̃E is continuous, we conclude that Ẽ is clopen.

(2) The family {Ẽ : E = f−1([0, 1]
)

for f ∈ Mb(X, Σ)} forms a basis for the closed subsets of ξΣX. Note 
that E = f−1([0, 1]

)
∈ Σ and Ẽ = E = f̃−1([0, 1]

)
which is clopen by (1) and the conclusion follows.

(3) By (1) and (2), ξΣX is totally disconnected. Suppose that Y ⊆ ξΣX is clopen. Since ξΣX is compact, 
so is Y . By (2), as an open set, Y =

⋃
i∈I Ẽi for a family {Ei}i∈I ⊂ Σ. Therefore, Y = Ẽi1 ∪ · · · ∪ Ẽin for 

some i1, . . . , in ∈ I, which belongs to Σ̃.
(4) By (1), the closure of every element of Σ is open in ξΣX. Since the topology of ξΣX is Hausdorff 

and Σ contains all singletons, singletons are closed. Therefore {x} is clopen for every x ∈ X and hence X
is open in ξΣX. Moreover, by Theorem 2.5, X is dense in ξΣX.

(5) If Y is finite, then since the topology of ξΣX is Hausdorff, it is also closed. Let Y be an arbitrary 
subset of X. The set Y ⊆ ξΣX is compact. If Y = Y , then {{x} : x ∈ Y } is an open cover of Y which will 
not have a finite subcover, if Y is infinite.

(6) Clearly if x ∈ E then x ∈ Ẽ. Conversely, suppose that x ∈ Ẽ \ E. Then E ⊆ Ẽ \ {x}. The superset 
is closed since {x} and Ẽ are both clopen in ξΣX by (5) and (1) respectively. Thus E = Ẽ ⊆ Ẽ \ {x}, 
a contradiction. �
Remark 3.4. Let Σ be a σ-algebra of subsets of an infinite set X. If there are infinitely many disjoint sets 
in Σ, then Mb(X, Σ) is not separable. The proof is similar to the classical proof of the fact that �∞(N) is 
not separable. Hence, in this case ξΣX is not metrizable. (It is classically known that for a compact space 
Y , C0(Y ) is separable if and only if Y is metrizable [1, Theorem 2.4].)

A topological space is called extremely disconnected if the closure of every open set is open. In the following 
we study this property for ξΣX. For the relation between Boolean algebras and extremely disconnected 
spaces see [6, §3.5] or [7, 22.4]. Commutative algebras with extremely disconnected Gelfand spectra are 
forming the commutative class of AW∗-algebras where F = C.

An algebra of sets is said to be complete if it is closed under arbitrary union and hence intersection

Proposition 3.5. Let Σ be a σ-algebra on X including all singletones. Then ξΣX is extremely disconnected 
if and only if Σ is complete.

Proof. Suppose that ξΣX is extremely disconnected and let Δ ⊆ Σ. Then U =
⋃

Y ∈Δ Ỹ is open and 
hence U is also open, thus by Corollary 3.3(3), it belongs to Σ̃, say U = Ẽ for some E ∈ Σ. We show 
that E =

⋃
Y ∈Δ Y . To do so, first suppose that ∃x ∈

(⋃
Y ∈Δ Y

)
\ E. Clearly x ∈ U = Ẽ. This violates 

Corollary 3.3(6). Conversely, if ∃x ∈ E \
⋃

Y ∈Δ Y , then 
⋃

Y ∈Δ Y ⊆ F for F = E \ {x} ∈ Σ. Therefore, 
U ⊆ F̃ . Also, by Corollary 3.3(6), F̃ ⊂ Ẽ \ {x}. On the other hand, since F̃ is clopen,

Ẽ = U ⊆ F̃ ⊆ Ẽ \ {x} � Ẽ,

a contradiction and hence the claim is proved.
Now, suppose that Σ is complete and let U be an open set in ξΣX. Take Δ ⊂ Σ such that U =

⋃
F∈Δ F̃ . 

Since Σ is complete, E =
⋃

F∈Δ F ∈ Σ and U ⊆ E = Ẽ. If Ẽ \ U , which is open, is not empty, then it 
contains a nonempty clopen Y ∈ Σ̃. Now V = Ẽ \ Y is a clopen set such that
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E ⊆ U ⊆ V = V̄ � Ẽ = Ē

which is a contradiction. Thus U = Ẽ is clopen and hence ξΣX is extremely disconnected. �
Let θ : A −→ �∞(X) be an algebra homomorphism and τ be a topology on X. Then one can show that 

the induced map θ∗|X : (X, τ) −→ sp‖·‖Xθ
(A) is continuous if and only if θA ⊆ Cb(X, τ). The following 

proposition is an analogue of this result for Mb(X, Σ) and Σ-measurability.

Proposition 3.6. Suppose that Σ is a σ-algebra on X �= ∅ such that every open subset of ξΣX belongs to σ(Σ̃). 
Let ι : A −→ �∞(X) be an algebra homomorphism. Then the induced map ι∗|X : (X, Σ) −→ sp‖·‖Xι

(A) is 
Σ-measurable if and only if ιA ⊆ Mb(X, Σ).

Proof. By assumption, every Borel subset of ξΣX belongs to σ(Σ̃). A basic open set of sp‖·‖Xι
(A) is of the 

form â−1(O) where O ⊆ F is open and a ∈ A. Looking at the inverse image of â−1(O) under ι∗, we have

ι∗|−1
X â−1(O) = ι̂a−1(O) ∩X (3)

(⇒) Suppose that ι∗ is Σ-measurable. If in contrary ιa /∈ Mb(X, τ) for some a ∈ A, then there exists 
a set O ⊆ F, such that ι̂a−1(O) ∩X is not Σ-measurable and hence by (3), ι∗|X cannot be Σ-measurable 
which is a contradiction.

(⇐) If each ιa is Σ-measurable, then ι̂a−1(O) is Σ-measurable for any open O ⊆ F and again by (3), ι∗|X
is Σ-measurable. �

It is not known to the authors if the assumption “every open subset of ξΣX belongs to σ(Σ̃)” in Propo-
sition 3.6 is essential or not. One can show that this assumption rules out some examples including X = N

and Σ = P (N), the power set of X.

3.1. Measures on (X, Σ) and ξΣX

Starting with a measurable structure (X, Σ) such that Mb(X, Σ) separates the points of X. We identified 
X as an open dense subset of a totally disconnected compact space ξΣX where every bounded Σ-measurable 
function on X extends continuously to ξΣX. This naturally leads one to ask about the relation between 
measures on (X, Σ) and ξΣX.

Proposition 3.7. Let μ be a finite positive measure on (X, Σ). Then μ extends to a Borel measure ∗μ on 
ξΣX, satisfying

∀E ∈ Σ ∗μ(Ẽ) = μ(E).

Proof. Define a linear functional L : C(ξΣX) −→ F by

L(f) =
∫
X

f |X dμ, ∀f ∈ C(ξΣX).

Clearly L is positive and hence by Riesz representation theorem, there exists a Borel measure ∗μ on ξΣX
such that

L(f) =
∫

ξΣX

f d ∗μ, ∀f ∈ C(ξΣX).

Note that for every E ∈ Σ, ∗μ(Ẽ) =
∫
χ̃E d ∗μ = L(χ̃E) =

∫
χE dμ = μ(E). �
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Although the measure ∗μ obtained in Proposition 3.7 seems to be mainly supported on X, but in fact, 
the size of X ∩ supp(∗μ) is rather small as it is pointed out in the following proposition.

Proposition 3.8. Let μ be a finite Borel measure on ξΣX and Σ contains all singletons. Then X ∩ supp(μ)
is at most countable.

Proof. By definition, a point x ∈ ξΣX belongs to supp(μ) if and only if for every neighbourhood U of x, 
μ(U) > 0. Every singleton {z} for z ∈ X is open in ξΣX, thus for every z ∈ X ∩ supp(μ), μ({z}) > 0. Since 
μ(ξΣX) < ∞, X ∩ supp(μ) cannot be uncountable. �
Corollary 3.9. Let μ be a finite positive measure on (X, Σ) where Σ contains all singletons. If μ({x}) = 0, 
for some x ∈ X, then x /∈ supp(∗μ).

Proof. Since {x} ∈ Σ and μ({x}) = 0, χx ∈ Mb(X, Σ) and 
∫
X
χxdμ = 0. Thus ∗μ({x}) =

∫
ξΣX

χ̃xd ∗μ = 0. 
But {x} is open and hence x /∈ supp(∗μ). �
3.2. Borel algebra of a topology

Let (X, τ) be a T1 topological space. Since the topology τ is T1, singletons are Borel and hence Mb(X, Bτ )
separates points of X. Clearly the inclusion ι : Cb(X, τ) −→ Mb(X, Bτ ) is continuous and hence ι∗ :
ξBτ

X −→ sp‖·‖X
(Cb(X, τ)) is onto. Consequently, if τ is completely regular, then βX is a continuous image 

of ξBτX where βX is the Stone–Čech compactification of X (look at [4, 6.5]). If Bτ = τ then ξBτ
and β are 

identical and ι∗ is injective. It is natural to ask if there is any relation between topological structures of 
(X, τ) and ξBτ

X.
Let x ∈ X and Nτ (x) be the family of open neighbourhoods of x in τ and Ñτ (x) = {Ũ : U ∈ Nτ (x)}. 

Define the halo of x in ξBτ
X as

h(x) :=
⋂

Ñτ (x).

The set h(x) is compact and contains all points of ξBτ
X that cannot be distinguished from x via the image 

of τ . If τ is Hausdorff, then for each y ∈ X such that x �= y, there are open sets Ux, Uy ∈ τ with Ux∩Uy = ∅. 
Thus Ũx ∩ Ũy = ∅, and therefore h(x) ∩ h(y) = ∅.

Proposition 3.10. If τ is Hausdorff, then h(x) is open if and only if {x} is open in (X, τ).

Proof. If {x} is open, then {x} ∈ Nτ (x). Since ˜{x} = {x}, clearly, x ∈ h(x) ⊆ {x}. Conversely, if h(x) is 
open, then it is clopen and hence, by Corollary 3.3(3), h(x) = Ẽ for some E ∈ Bτ . If E �= {x}, then E
contains another point y ∈ X, y �= x. Thus y ∈ h(x) which implies that h(x) ∩ h(y) �= ∅, contradicting the 
above argument before the proposition. �

Proposition 3.10 can be read as h(x) = {x} if and only if {x} is open in (X, τ). The following shows how 
the compactness of a Borel subset of (X, τ) is reflected in ξBτ

X.

Theorem 3.11. Let Y ⊆ (X, τ) be a Borel subspace. Then Y is compact if and only if Ỹ ⊆
⋃

y∈Y h(y).

Proof. (⇒) Suppose that Y is compact and let z ∈ ξBτ
X \

⋃
y∈Y h(y). We show z /∈ Ỹ . Since z /∈

⋃
y∈Y h(y), 

for each y ∈ Y , there exists Oy ∈ Nτ (y) such that z /∈ Õy. Now {Oy : y ∈ Y } is an open cover of the compact 
set Y . Let {Oy1 , . . . , Oyk

} be such that Y ⊆
⋃k

i=1 Oyi
, then Ỹ ⊆

⋃k
i=1 Õyi

which proves z /∈ Ỹ , and hence 
Ỹ ⊆

⋃
h(y).
y∈Y
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(⇐) Suppose that Ỹ ⊆
⋃

y∈Y h(y), but Y is not compact. Then there exists an open cover {Oi}i∈I of Y
with no finite subcover. So, for every finite subset {i1, . . . , in} of I,

Y ∩
(

n⋂
k=1

Oc
ik

)
�= ∅.

Since Y is Borel, Ỹ is compact and hence {Õc
i}i∈I forms a basis for an ultrafilter F in ξBτ

X. Clearly Ỹ ∈ F
and hence z = limF ∈ Ỹ (for more detail on filters see [8, §12]). For every y ∈ Y , there exists i ∈ I such 
that Oi ∈ Nτ (y) and hence z /∈ Õi. Thus z /∈ h(y) ⊆ Õi. This proves

z ∈ Ỹ \
⋃
y∈Y

h(y),

as desired. �
It is worth mentioning that the results of Subsection 3.2 resemble significant similarities between proper-

ties of ξBτ
X and nonstandard extensions of (X, τ). We can consider ξBτ

X as a nonstandard model of (X, τ)
and characterize halos as analogue to monads and so on. In this scope, Theorem 3.11 is the analogue of 
Robinson’s theorem [5, Theorem III.2.2] on nonstandard extensions of compact spaces.
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