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Abstract As a part of a heuristic for the fast detection of new word combinations
in text streams, we consider the NP-hard Partial Set Cover of Pairs problem.
There we wish to cover a maximum number of pairs of elements by a prescribed
number of sets from a given set family. While the approximation ratio of the greedy
algorithm for the classic Partial Set Cover problem is completely understood,
the same question for covering of pairs is intrinsically more complicated, since the
pairs insert some graph-theoretic structure. The best approximation guarantee for the
first greedy step can be rephrased as a problem in extremal combinatorics: Assume
that we may place a fixed number of subsets of fixed and equal size in a set, how
many different pairs of elements can we cover? In this paper we introduce a method
to calculate optimal approximation guarantees, and we demonstrate its use on the
smallest set families.

Keywords Partial set cover · Greedy approximation · Extremal set family ·
Novelty detection

1 Introduction

We say that a set B covers every pair {u, v} of its elements u, v ∈ B. A family F
of sets covers a pair {u, v} if some B ∈ F covers {u, v}. We are concerned with the
following problem that we call Partial Set Cover of Pairs: Given m subsets
C1, . . . ,Cm of a set C , and an integer r < m, select a family of r of these sets Ci that
covers a maximum number of pairs of elements of C .
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1294 P. Damaschke

The more established Partial Set Cover problem asks to cover elements rather
than pairs. To see that our problem is a special case of it, consider the pairs in C as
elements of the set

(C
2

) = {{u, v}| u, v ∈ C, u �= v} and replace everyCi with
(Ci
2

)
. As

we observed in [3], Partial Set Cover of Pairs is NP-complete and alsoW [2]-
complete with parameter r . Thus we want fast approximate solutions, even for fixed
small r . The greedy algorithm for Partial Set Cover (of Pairs) sequentially
takes s sets each of which covers a maximum number of further elements (pairs). For
Partial Set Cover, they cover at least a 1 − (1 − 1/r)s fraction of the optimal
number of elements covered by r sets, and this is the best possible guarantee for the
greedy rule [5,8]. Now it is natural to ask how to obtain better approximation ratios
for the special case of Partial Set Cover of Pairs.

Unlike partial cover problems, the original Set Cover problem asks to cover all
elements by a minimum number of sets. Its approximability [1,6] and parameterized
complexity (see, e.g., [10]) are well known. Aspects of partial covering are much less
studied, as in [4,9]. Covering of pairs is also related to covering of edges by cliques
in graphs [2,7], but it is not the same problem.

Our interest in Partial Set Cover of Pairs originates from the fast detection
of new combinations of items in data streams, e.g., combinations of words in streams
of texts about a common topic. We refer to [3] for more details. There, C is the set
of different words in a text, n = |C |, and C1, . . . ,Cm are sets of words in some
earlier texts with large overlaps C ∩ Ci of word content. One can easily enumerate
the new pairs of elements (words), i.e., pairs that appear in C but not in any earlier
Ci , in O(n2) time. But if a handful of the sets Ci , say r of them, cover already the
vast majority of pairs in C , we can exclude these pairs (trivially they are not new) and
check the remaining pairs for being new, in subquadratic time. Texts about a common
topic are likely to have such large overlaps. It is not an option to simply list the pairs
explicitly, as this would already take O(n2) time. But by a succinct description of the
pairs covered by a set family and random sampling strategies, we can do s greedy
steps faster. Actually the time can be exponential in s resp. r [3], but this is not an
issue, since these parameters are fixed and small.

1.1 Contributions

For the greedy algorithm for Partial Set Cover of Pairs we ask: If r sets Ci

cover a fraction c of pairs in C , what fraction g is covered by the first s greedy sets?
The approach in [3] works only for c = 1 and yields coarse lower bounds on g for
c < 1. Here we present a framework and method to obtain optimal g directly and
for general c. The main ingredients are: an asymptotic notion of coverage that yields
disjunctions of linear inequalities as optimality criteria, a handy characterization of
the extremal (“adversarial”) set families, and structure theorems for the case s = 1
that greatly limit the search space. Then we demonstrate these tools on the smallest r ,
where we also make some structural observations like symmetry breaking. This work
should provide a stepping stone towards a full analysis of the greedy algorithm. It
shows that we can “linearize” and therefore manage the continuous aspects. In further
research it remains to understand the combinatorial side.
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2 The basic concepts

We may identify a bit string p with the set {i : pi = 1} if this causes no confusion.
Reading 0 and 1 as Boolean values we define p ∧ q by (p ∧ q)i := pi ∧ qi for all
i . Similarly we define p ∨ q. We say that p and q intersect if p ∧ q �= o (the zero
string). We write p ⊂ q if pi ≤ qi for all i . Recall n = |C |. We define the size of a
subset of C as its normalized cardinality: a set with xn elements has size x . Below we
define the coverage of a set family F as the fraction of pairs in C covered by F . But
as we are concerned with fixed r and large n, we can neglect lower-order terms. This
will greatly simplify our calculations.

Definition 1 A family F of r subsets C1, . . . ,Cr that induces a partitioning of C
divides C into 2r (possibly empty) classes C(p), where each p = p1 . . . pr is a string
of r bits, and C(p) = {v ∈ C | ∀i : v ∈ Ci ⇔ pi = 1}. Let x(p) = |C(p)|/|C |
denote the size of C(p). The pair coverage, simply coverage, of F is defined as

π(F) :=
∑

p| p �=o

x(p)2 + 2

⎛

⎝
∑

{p,q}| p �=q, p∧ q �=o

x(p) · x(q)

⎞

⎠

The factor 2 appears, since the second sum is taken over unordered pairs. It is not
hard to see that π(F) is indeed the fraction of pairs in C covered by F , subject to an
O(1/n) term for each summand. Thus, for fixed r this deviation vanishes as n grows.
Clearly, many summands in the equation in Definition 1 can be zero. With some abuse
of notation we also call x(p) the size of p, and we call the string p and the class C(p)
positive if x(p) > 0.

Recall that r and s are fixed. Throughout the paper let c denote the optimal coverage
that can be achieved by a sub-family of r sets from a given set family, and let g denote
the coverage of the family obtained by the first s greedy steps. We call 1 − g/c the
missing fraction of covered pairs.

Notation c and g can be similarly defined for Partial Set Cover, with elements
rather than pairs. Then the mentioned result [5,8] for Partial Set Cover can be
rephrased as follows: Every greedy step reduces themissing fraction by a factor 1−1/r
or better, this guarantee is optimal, and this result does not depend on c.We also remark
that the optimality proof is merely based on the pigeonhole principle and induction
on s, see [5]. It turns out that, for Partial Set Cover of Pairs, it is much more
intricate to figure out the optimal missing fractions. The intuitive reason is that pairs
impose additional graph-theoretic structure on the problem. However, any improved
result for the first greedy steps (which might be easier to analyze than the general
problem) yields immediate progress for general s as well: Suppose that we can prove,
for some s0, that the missing fraction is strictly smaller than (1− 1/r)s0 . Then we can
still apply the general result for Partial Set Cover to the subsequent greedy steps
that reduce the missing fraction by a factor 1 − 1/r each. Thus we obtain improved
(although not the best possible) results also for any s > s0 greedy steps.

As we want to calculate approximation guarantees, we imagine an adversary that
wants to present a set family that fools the greedy algorithm:
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1296 P. Damaschke

Definition 2 Let r, s, t be any fixed integers with r, s ≤ t , and let c be any fixed real
number with 0 < c ≤ 1. We call a set family G with t sets an adversarial family if
some sub-family F ⊂ G of r sets has the optimal coverage c among all sub-families
of r sets, and the coverage g of the greedy solution with s sets from G is as small as
possible, for the given r, s, t , and c.

Lemma 1 For any fixed numbers r, s and c there exists an adversarial family with
t ≤ r + s − 1 sets that minimizes g, across all possible values of t .

Proof In a given set family G we keep only the sets of F (defined above) and those
selected by the greedy algorithm; any further sets can be removed without changing
c and g. These are at most r + s sets. Moreover, the last greedy set is always from F ,
since otherwise we could remove it from G without making c worse, whereas g can
only decrease. Thus, at most r + s − 1 sets remain. ��

By extending a set we mean that we add more elements to it. Trivially, if a set in a
family is extended, the coverage of this family can only increase. Similarly, shrinking
a set means to subtract some elements from it. The benefit of the following lemma is
that it will be easier to work with fixed g.

Lemma 2 For any fixed integers r, s, t and c < 1, a set family G is adversarial if and
only if no change of the class sizes x(p) can both increase the optimal coverage π(F)

to some value larger than c and preserve the greedy coverage g.

Proof If we can obtain an optimal coverage c′ > c and keep the same greedy coverage
g, we can afterwards shrink all sets by multiplying all class sizes x(p), p �= o, with
a common factor below 1, such that we get back the optimal coverage c and obtain
some greedy coverage g′ < g, thus G was not adversarial.

Conversely, if G is not adversarial, we can change the class sizes to obtain a family
with optimal coverage c but some greedy coverage g′ < g. Next, we can always
extend some set to increase the optimal coverage to some c′ > c. (Take any uncovered
pair {u, v} and extend some set Ci with u ∈ Ci to include v, too.) Further extensions
of sets can only increase the optimal coverage further, and the greedy coverage will
eventually reach g again. This last conclusion requires some care. It is not obvious
that the greedy coverage is monotone when sets are extended (because the greedy
algorithm may then switch to other sets), however, g′ changes continuously with the
class sizes and will eventually be 1, hence we reach a situation where g′ = g. ��

The effect of an infinitesimal change of a class size x(p) on the coverage of a set
family is given by the partial derivative. Since the coverage is a polynomial of degree
2, the derivatives are just linear functions in the variables x(p). It will be convenient
to express this observation as follows: Any change of some x(p) to x(p) + h with an
infinitesimal h > 0 (a “change x(p) + h” for short) adds ∂π(F)

∂x(p) · h to the coverage.
Clearly, for every bit string p we have:

∂π(F)

∂x(p)
= 2x(p) + 2

⎛

⎝
∑

q| p �=q, p∧ q �=o

x(q)

⎞

⎠ = 2

⎛

⎝
∑

q| p∧ q �=o

x(q)

⎞

⎠
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Lemma 3 If infinitesimal changes x(p) + h(p) are applied to all strings p (under
the obvious constraint

∑
p h(p) = 0), then π(F) changes by

2
∑

p

h(p)
∑

q| p∧ q �=o

x(q) = 2
∑

q

⎛

⎝
∑

p| p∧ q �=o

h(p)

⎞

⎠ x(q)

Lemma 3 follows instantly from the previous equation. We refer to the sum in
parantheses as the coefficient of x(q).

3 The first greedy step

Now we provide some more specialized tools for the first greedy step, that is, for the
case s = 1. As argued earlier, results on the first greedy step imply already general
approximation guarantess (for any s) for Partial Set Cover of Pairs which are
better than those inherited from Partial Set Cover.

Definition 3 Consider a change h(p) applied to the sizes x(p) of the classes induced
by a set family. The change is called homogeneous if:

1. The change is non-zero: ∃p : h(p) �= 0.
2. No cell size becomes negative: ∀p : x(p) + h(p) ≥ 0.
3. The total sum of changes is zero:

∑
p h(p) = 0.

4. All set sizes are preserved: ∀i : ∑
p| pi=1 h(p) = 0.

Theorem 1 For any fixed r and s = 1, and for every c, there exists an adversarial
family of coverage c that (i) consists of only r sets, which (ii) have equal size. Fur-
thermore, a family satisfying (i) and (ii) is adversarial if and only if no homogeneous
change increases the coverage.

Proof Property (i) follows from Lemma 1, and (ii) is trivially achieved by extending
the non-maximum sets. Next, the changes that preserve both g and property (ii) are
exactly the homogeneous changes. Hence the claimed equivalence holds, as a special
case of Lemma 2. ��

Now our strategy for calculating approximation guaranteess for the first greedy
set can be outlined as follows. Once we manage to characterize the structure of the
adversarial families, it will be straightforward to express g as a function of c, or vice
versa. Theorem 1 is used to narrow down the possible adversarial families. Due to
Theorem 1 it suffices to identify homogeneous changes that raise c, and the increase is
computed as in Lemma 3. We consider the simplest homogeneous changes, affecting
the smallest number of classes:

Definition 4 Let a, b, p, q be any four distinct strings with x(a) > 0, x(b) > 0,
p ∧ q = a ∧ b, and p ∨ q = a ∨ b. Then we call x(a) − h, x(b) − h, x(p) + h,
x(q) + h a quartet change. A quartet change with a ⊂ b is a rhombus change.

Lemma 4 Every quartet change is homogeneous, moreover, every rhombus change
preserves or increases the coverage.
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1298 P. Damaschke

Proof Examining the four possible combinations of pi , qi , ai , bi for each i we see
that the size ofCi is unchanged, hence every quartet change is homogeneous. Suppose
that, additionally, a ⊂ b. Then any bit string t intersects the following of p, q, a, b:
either none, or all four, or b and p, or b and q, or b and p and q. The coefficient of x(t)
in Lemma 3 is positive in the last case, and zero in all other cases. Hence the coverage
can only grow. ��

We will use Lemma 4 as follows. Every pair of strings a, b with x(a) > 0 and
x(b) > 0 gives rise to quartet changes, for any p and q as specified in the Lemma.
Since, byTheorem1, the change of the coveragemust not be positive, Lemma3 implies
several linear inequalities with class sizes as variables. By contraposition, any adver-
sarial family must satisfy x(a) = 0 or x(b) = 0 or all these linear inequalities. This
greatly restricts possible adversarial families. (Of course, similar reasoning applies to
homegeneous changes in general.) However, we also stress that this does not make
the characterization of adversarial families straightforward. Due to the disjunctions
above, we cannot simply apply Farkas’ lemma for the solvability of systems of linear
equations.

We define the (Hamming) weight of a bit string as the number of 1s, and the
(Hamming) distance of two bit strings as the number of bits in which they differ. With
some abuse of notation, the weight of the class C(p) means the weight w of string p,
and we also call C(p) a w-class. (Do not confuse size and weight.) The next small
lemma about coefficients (see Lemma 3) saves some recurring calculations; later on
we will not explicitly mention when it is used.

Lemma 5 In a homogeneous change, the coefficient of x(t) for any 1-class C(t) is
zero. In a quartet change, the coefficient of x(t) is nonzero if and only if t intersects
exactly three of a, b, p, q.

Proof If t has weight 1, let i be the unique index with ti = 1. The strings p that
intersect t are exactly those with pi = 1. Since |Ci | = ∑

p| pi=1 x(p) is not changed,
we have

∑
p| pi=1 h(p) = 0, which is the first assertion. The assertion on quartet

changes follows from this observation: If t intersects some of the quartet strings at
some position j , it must intersect a second one with an opposite change, since |C j | is
preserved. ��

More substantial is the following theorem that extends Theorem 1. Using the fact
that rhombus changes cannot lower the coverage, we confine the positive classes to
some narrow “stripe” in the partial order of bit strings:

Theorem 2 For any fixed r and s = 1, and for every coverage c, there exists an
adversarial family that consists of only r sets of equal size, and where x(a) = 0 or
x(b) = 0 holds for every pair of strings a, b with a ⊂ b and distance at least 2.

Proof We start from an adversarial family as in Theorem 1. Let a and b be any positive
strings with a ⊂ b and distance at least 2. We can assume that a has minimum weight
among all positive strings, since otherwise we could replace a with some positive
a′ ⊂ a, obtaining a pair of strings a′ and b with the mentioned properties. Similarly,
we can assume that b has maximum weight among all positive strings. Since a and b
have distance at least 2, there exist strings p and q with a = p ∧ q and b = p ∨ q. We
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do a rhombus change on a, b, p, q. By Lemma 4 this does not affect the set sizes and
can only increase c. Since the family was already adversarial, actually the coverage is
preserved, and we reach x(a) = 0 or x(b) = 0. Altogether we get rid of some positive
classes with minimum or maximum weight. By iterating this step we eventually loose
all pairs of strings with a, b as specified above, and the assertion is proved. ��

In the following we demonstrate the application of these tools. We start from Theo-
rem 2 and then infer the existence of adversarial families with specific class sizes. We
focus on s = 1 and the smallest r , but we consider the whole range of c. Remember
that c and g denote the optimal and greedy coverage, respectively, and that g is the
square of the (common) size of the sets, if g = 1. In the quartet changes we always
use h > 0.

4 Case r = 2 and s = 1

We have x(10) = x(01) due to the equal set sizes, and x(11) = 0 or x(00) = 0.
Hence there exists an adversarial family that consists of either two disjoint sets of
size

√
g ≤ 1

2 , or of two sets of size
√
g > 1

2 whose union contains all elements.

Straightforward calculation yields g = (1−
√

1−c
2 )2, which grows from 1

4 to 1, when

c grows from 1
2 to 1. Thus the missing fraction decreases from 1

2 to 0, whereas for
Partial Set Cover it would constantly be 1

2 . In the subsequent cases we will omit
this final step of explicit calculations, and we only identify the adversarial families.

5 Case r = 3 and s = 1

If x(100) > 0 and x(011) > 0, then the quartet change x(100) − h, x(011) − h,
x(110)+h, x(001)+h raises c by (x(011)−x(110)) ·2h, thus x(110) ≥ x(011) > 0.
Since |C1| = |C3|, we also get x(100) + x(110) = x(001) + x(011), from which
x(001) ≥ x(100) > 0 follows. Thus we can do the opposite quartet change as well,
such that x(110) = x(011) and x(100) = x(010) follow. Since this reasoning also
applies to all symmetric cases, all 2-classes have the same size, and so have all 1-
classes.

The quartet change above is not applicable if x(p) = 0 or x(q) = 0 holds for
all complementary pairs p, q (that is, p ∧ q = 000, p ∨ q = 111). Assume that
some empty classes in two complementary pairs have different weights, say x(100) =
x(110) = 0. By |C1| = |C3| this also means x(001) = x(011) = 0. But now |C2| > 0
and equality of set sizes implies x(010) > 0 and x(101) > 0, a contradiction. Thus,
either all 1-classes or all 2-classes are empty. By equality of set sizes again, all 2-classes
have the same size, and so have all 1-classes.

If x(000) > 0 then all other positive classes have weight 1, thus the three sets
are disjoint. If x(111) > 0 then all other positive classes have weight 2, that is, they
pairwise intersect, hence c = 1.But then the change x(110)+h, x(101)+h, x(011)+h,
x(111) − 3h shrinks the sets while c remains 1, thus the family was not adversarial.
It remains the case when x(000) = x(111) = 0. Let x1 and x2 denote the (common)
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1300 P. Damaschke

size of the 1-classes and 2-classes, respectively. Then c = 3x21 + 9x22 + 12x1x2 and
g = x21 + 4x22 + 4x1x2, respectively, thus g = 1

3c + x22 . For
1
3 ≤ c ≤ 1 we find that g

grows from 1
3 to 4

9 , and we have characterized the adversarial families.

6 Case r = 4 and s = 1

In order to better distinguish the quartet changes we denote them by the weights of
the positive strings involved. Quartet changes and their implications are described
with the understanding that, of course, they also apply in all symmetric cases, under
permutations of the r sets.

6.1 The (1,2) quartet change and the case of positive 1-classes
If both x(1000) > 0 and x(0110) > 0, then the (1, 2) quartet change x(1000) − h,

x(0110)−h, x(1100)+h, x(0010)+h increases c by (x(0111)+x(0110)−x(1100)−
x(1101)) · 2h, thus we obtain x(1100) + x(1101) ≥ x(0110) + x(0111) > 0. Since
x(1000) > 0 implies that x(1101) = 0, this simplifies to x(1100) ≥ x(0110) +
x(0111) > 0. If additionally x(0010) > 0, then x(0111) = 0, furthermore we can
apply the opposite quartet change which yields x(1100) = x(0110). This proves the
following implications:

Suppose that x(1000) > 0 and x(0010) > 0. Then we have x(1100) = x(0110)
and, by symmetry, also x(1001) = x(0011). The existence of at least two posi-
tive 1-classes also rules out any positive 3-classes. Since all set sizes are equal,
we further conclude x(0100) = x(0001). Since |C2| = |C4|, this further means
x(1100) + x(0110) = x(1001) + x(0011), from which we can conlcude that
x(1100) = x(0110) = x(1001) = x(0011) =: w.

If also x(0100) = x(0001) > 0, it follows in the same way that all 2-classes
have equal size, and so have all 1-classes. Consider the other case when x(0100) =
x(0001) = 0. Then, since the set sizes are equal,we get x(0101) > w ≥ 0.But now the
(1, 2)-quartet change above, with positions 3 and 4 swapped, enforces w ≥ x(0101),
a contradiction. This shows: If at least two 1-classes are positive, then all classes of
equal weight have equal size.

Finally suppose that exactly one 1-class is positive, say x(1000) > 0. Recall that
x(0110) = 0, or an (1, 2) quartet change yields x(1100) ≥ x(0110) + x(0111).
In either case we get x(1100) ≥ x(0110), and similarly in all six symmetric cases.
By adding the resulting six inequalities we obtain x(1100) + x(1010) + x(1001) ≥
x(0110)+x(0101)+x(0011). Since 3|C1| = |C2|+|C3|+|C4|, we get that 3x(1000)+
2x(1100) + 2x(1010) + 2x(1001) = 2x(0110) + 2x(0101) + 2x(0011) + 3x(0111),
thus x(0111) ≥ x(1000) > 0. The (1, 3) quartet change x(1000) − h, x(0111) − h,
x(1100)+h, x(0011)+h increases c by (x(0111)+ x(0110)+ x(0101)− x(1100)) ·
2h, thus x(0111) + x(0110) + x(0101) ≤ x(1100). By adding the three symmetric
inequalities of this form, and another obvious step, we obtain 3x(0111)+2x(0110)+
2x(0101) + 2x(0011) ≤ x(1100) + x(1010) + x(1001), 3x(1000) + 2x(1100) +
2x(1010)+2x(1001) ≤ x(1100)+x(1010)+x(1001), a contradiction. Altogether we
see that the classes of equal weight also have equal size, unless all 1-classes are empty.
Let x1 and x2 denote the (common) size of all 1-classes and 2-classes, respectively.
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Then c = 4x21 +30x22 +24x1x2 and g = x21 +9x22 +6x1x2, thus g = 1
4c+ 3

2 x
2
2 , which

grows from 0.25 to 0.2916. This characterizes the adversarial families for 1
4 ≤ c ≤ 5

6 .

6.2 The case that all 1-classes are empty
If x(1110) > 0 and x(0011) > 0, then the (2, 3) quartet change specified by

x(1110) − h, x(0011) − h, x(1010) + h, x(0111) + h increases the coverage c by
(x(1100) − x(0101)) · 2h, thus x(1100) ≤ x(0101). By symmetry this also yields
x(1100) ≤ x(1001). Furthermore, if x(0101) > 0, then a similar (2, 3) quartet change
yields x(1010) ≤ x(0011) and x(1010) ≤ x(1001).

We will also use the (2, 2) quartet change: If x(1100) > 0 and x(0011) > 0, then
x(1100) − h, x(0110) + h, x(0011) − h, x(1001) + h increases the coverage c by
(x(1100) + x(0011) − x(0110) − x(1001)) · 2h, thus it holds x(1100) + x(0011) ≤
x(0110) + x(1001).

6.2.1 Subcase: All 2-classes are positive
Suppose that two 3-classes are positive, too, say x(1110) > 0 and x(0111) > 0. By

applying the inequalites from (2, 3) quartet changes we see x(1010) = x(0011) and
x(1100) = x(0101). Now a new phenomenon arises: The superposition of two (2, 3)
quartet changes x(1110)− 2h, x(0101)− h, x(0011)− h, x(1100)+ h, x(1010)+ h,
x(0111) + 2h increases c by (x(1100) + x(1010) − x(0101) − x(0011))) · 2h.
That is, the variables that increase/decrease are on the positive/negative side, thus
c will further increase by this symmetry breaking. Thus, at most one 3-class is pos-
itive, say x(1110) ≥ 0. Notably, classes of equal weight are no longer of equal
size.

Since |Ci | = |C4|, for i = 1, 2, 3, we have x(1110) + x(1100) + x(1010) =
x(0101)+x(0011), and similarly in the symmetric cases. These three equations imply
that x(1001) − x(0110), x(0101) − x(1010), x(0011) − x(1100) are equal. Since the
sums and differences, respectively, of the sizes of complementary 2-classes are equal,
we conclude in the case x := x(1110) ≥ 0 that x(1001) = x(0101) = x(0011) =: y
and x(1100) = x(1010) = x(0110) =: z. Observe g = 9y2, c = 1 − 6yz,
x + 3y + 3z = 1, and 2y = x + 2z, where the last equation comes from the equality
of set sizes. Straightforward algebra yields g = 1

4c+ 1
24 + 1

6 x + 1
96 x

2 for 0 ≤ x ≤ 2
5 .

6.2.2 Subcase: Exactly one 2-class is empty
Say x(1100) = 0. If both x(1110) > 0 and x(1101) > 0, we can again raise c

by (2, 3)-changes, thus only one of these classes is positive, say only x(1110) > 0.
Furthermore, we have x(0011) ≥ x(1010) + x(0101) and x(0011) ≥ x(1001) +
x(0110), since otherwise some (2, 2) quartet change could raise c. As |C1| + |C2| =
|C3| + |C4| and |C3| = |C4|, we have x(1110) ≥ 2x(0011) ≥ x(1010) + x(0101) +
x(1001) + x(0110) and x(1110) + x(1010) + x(0110) = x(1001) + x(0101). This
yields x(1010) + x(0110) = 0, a contradiction, hence this case is impossible.

6.2.3 Subcase: At least two 2-classes are empty
If only two complementary 2-classes are empty, then a (2, 2) quartet change can

increase c. Hence two incident 2-classes must be empty, say x(1100) = x(1010) = 0.
Now, if both x(1001) > 0 and x(0110) > 0, then both x(0101) ≥ x(1001)+ x(0110)
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and x(0011) ≥ x(1001) + x(0110) > 0 must hold to prevent (2, 2) quartet changes
from raising c. Since |C1| = |C2|, we conclude x(1001) + x(1011) = x(0110) +
x(0101) + x(0111) ≥ x(1001) + 2x(0110) > x(1001), thus x(1011) > 0. Since
x(0110) > 0, a (2, 3) quartet change can be avoided only by x(1001) ≤ x(1100) =
0, a contradiction. It follows x(1001) = 0 or x(0110) = 0. With the remaining
possible positive classes the coverage is 1, and due to earlier work [3] on the special
case c = 1, the only adversarial family in this case is given by x(1110) = 2

5 and
x(1001) = x(0101) = x(0011) = 1

5 .
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