A Generalized Finite Element Method for Linear Thermoelasticity
Artikel i vetenskaplig tidskrift, 2017

We propose and analyze a generalized finite element method designed for linear quasistatic thermoelastic systems with spatial multiscale coefficients. The method is based on the local orthogonal decomposition technique introduced by Malqvist and Peterseim (Math. Comp. 83 (2014) 2583-2603). We prove convergence of optimal order, independent of the derivatives of the coefficients, in the spatial H-1-norm. The theoretical results are confirmed by numerical examples.

multiscale

local orthogonal decomposition

Linear thermoelasticity

a priori analysis

generalized finite element

Författare

Axel Målqvist

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Anna Persson

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Mathematical Modelling and Numerical Analysis

0764-583X (ISSN) 1290-3841 (eISSN)

Vol. 51 1145-1171

Ämneskategorier

Matematik

DOI

10.1051/m2an/2016054