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FIBERED THREEFOLDS AND LANG-VOJTA’S CONJECTURE

OVER FUNCTION FIELDS

AMOS TURCHET

Abstract. Using the techniques introduced by Corvaja and Zannier in 2008
we solve the non-split case of the geometric Lang-Vojta Conjecture for affine

surfaces isomorphic to the complement of a conic and two lines in the projective
plane. In this situation we deal with sections of an affine threefold fibered over
a curve, whose boundary, in the natural projective completion, is a quartic
bundle over the base whose fibers have three irreducible components. We
prove that the image of each section has bounded degree in terms of the Euler
characteristic of the base curve.

1. Introduction

Lang-Vojta1 Conjecture (see [Voj87], [CS86, Chapter XV] or [HS00], F.3.5 for a
more basic introduction) is one of the most celebrated conjectures in Diophantine
Geometry, generalizing to the logarithmic case the well-known Lang’s Conjecture
(see [Lan83]—in dimension 2 the conjecture is known as the Bombieri-Lang Con-
jecture). The conjecture predicts degeneracy of S-integral points in varieties of
log-general type and reads as follows.

Conjecture 1.1. Let κ be a number field, S a finite set of places containing the
archimedean ones. Let X be a quasi-projective variety defined over κ and let X →
SpecOκ,S be a model of X over the S-integers. Then, if X is of logarithmic general
type, X (Oκ,S) is not Zariski dense.

Here a quasi-projective variety is said to be of log-general type if there exists a
desingularization X1 → X and a compactification X̃ of X1 such that the boundary
divisor D = X̃ \ X1 has normal crossing singularities and KX̃ + D is big. If one
starts with a presentation X = Y \D for a projective Y , this is equivalent to the
existence of a log-resolution Y ′, D′ of the couple Y,D such that KY ′ +D′ is big.

When X is of dimension 2, since the spectrum of the ring of S-integers has
dimension 1, the model X can be thought of as an arithmetic threefold whose S-
integral points correspond bijectively to sections of the structure map such that the
image intersects the boundary D over points of S. This geometric viewpoint can
be carried over the so-called geometric version of the Lang-Vojta conjecture, i.e.,
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where the number field is replaced by a function field of a curve. In these settings
the conjecture becomes:

Conjecture 1.2 (Lang-Vojta). Let C̃ be a smooth projective curve defined over an
algebraically closed field κ of characteristic 0, and let S be a finite set of points of
C̃. Let X be a smooth affine surface defined over κ(C̃). If X is of log-general type,

then there exists a bound for the degree of images of each section C̃ \ S → X in

terms of the Euler characteristic of C̃ \ S.

The curve C = C̃ \S plays the role of the spectrum of the S-integers in Conjecture

1.1 while morphisms C̃ \S → X correspond to integral points over the function field

of the curve C̃. Conjecture 1.2 asks for a bound of the degree of curves on surfaces of
log-general type depending on the genus and the number of points in the pullback
of D; this property, after the work of Demailly [Dem97], is often called (weak)
algebraic hyperbolicity.

One of the most studied cases is the one in which X̃ = P2
C
, when Conjecture

1.2 predicts weak algebraic hyperbolicity for the complement of a plane curve of
degree at least 4. In this situation the split case (see Remark 1.4 for a discussion
and definition of split case) is known when D has degree four and four irreducible
components, and follows as an application of Stothers-Mason abc Theorem ([BM86]
and [Vol85]). In a different direction, and with different methods, the split case of
the conjecture has been proved for very generic D of degree at least five by work
of Chen [Che04] and, independently, of Pacienza and Rousseau [PR07]. In [CZ08],
Corvaja and Zannier proved, among other things, the three components and degree
four split case and state a possible generalization of their main theorem when the
divisor D is not defined over the ground field. In this paper we deal with the
situation that corresponds, geometrically, to the study of images of curves under
sections of a fibered threefold. In particular, the aim of this paper is to prove the
following result.

Theorem 1.3. Conjecture 1.2 holds true for X = P2 \ D where D over κ(C̃) is

a quartic bundle over C̃ such that DP has three irreducible components that are in
general position for each P ∈ C̃ \ S.

We note that recently, in [CZ13], Corvaja and Zannier vastly generalize the
results of [CZ08] for affine surfaces admitting a finite dominant map to the two-
dimensional torus G2

m. We expect that an approach similar to the one presented
here could lead to the extension of these results to the non-split case. It is also
worth mentioning that the author, in his Ph.D. Thesis [Tur14], constructed a new
method that can deal with the split case for complements of plane curves of degree
at least four in P2 with few components. However, the new tools used do not seem
to extend to the non-split case.

Remark 1.4 (Split and non-split case). Conjecture 1.2 considers integral point on a

quasi-projective varietyX defined over the function field κ(C̃) of a smooth projective

curve C̃. One can think of X as a family of varieties parametrized by points of C̃
in the following sense: roughly speaking X is given by a system of polynomial
equations with coefficient in κ(C̃); each time the coefficient specializes to a point of

κ we obtain a variety defined over κ. If X is a product Y × C̃, we will call this the
split (or constant) case of the conjecture; as the terminology suggests, this can be
reduced to study integral points on the variety Y defined over the base field κ. In



FIBERED THREEFOLDS AND LANG-VOJTA’S CONJECTURE 8539

the description above, this means that each specialization of the coefficients gives
the same variety Y , i.e., the coefficients are in κ. In particular if X = X̃ \D is split,

then both X̃ and D are defined over κ. If, on the other hand, X is not a product,
then the coefficient of the system of polynomials defining X do not all belong to
κ. In this situation the specialization of such coefficients leads to different varieties
over κ; we will refer to this as the non-split case. The results of [CZ08] deal with
the split case where, in the above notation, Y is the complement of a conic and two
lines in general position in P2. Our results deal with the corresponding non-split
problem in which, in particular, D is not defined over κ but over κ(C̃).

We will now describe precisely our result. Denote by κ an algebraically closed
field of characteristic 0 over which all algebraic varieties will be defined. Let C be
an affine curve (by which we always mean an integral separated scheme of finite

type over Spec(κ)) with normalization C̃ \S, for a (unique) smooth complete curve

C̃ and a finite subset S. The Euler characteristic of the affine curve C is defined as

χ(C) := χS(C̃) = 2g(C̃)− 2 + �S,

i.e., the Euler characteristic of the curve C̃ \ S.
We recall briefly for the reader’s convenience the ideas of [CZ08]. Given the

affine surface X = P2 \D, where D is a divisor consisting of a conic and two lines in
general position, one can assume that one of the lines is the line at infinity. In such
a contest one is led to the study of affine curves in the complement of a line and a
conic in the affine plane. Morphisms from an affine curve C̃ \ S to such a surface
can be expressed as f : P �→ (u1(P ), y(P )), for a couple of rational functions u1, y

of C̃, with the property that the zeros and the poles of u1, and the poles of y are
contained in S. Using explicit equations for D, one can write down an equation
satisfied by these functions and another unit u2 that is as follows:

y2 = u2
1 + λu1 + u2 + 1.

Bounding the degree of the morphism f is then equivalent to bound the height of
solutions to the previous equation. Hence the problem relies on solving the equation
in so-called S-units u1, u2 and S-integer y. For this the authors consider a specific
differential form on the curve with respect to which the previous equation can be
differentiated. Then one can prove that this new equation should have many zeros
in common with the previous one and hence, using a gcd argument for S-units, its
solutions have either bounded height or fulfill a dependence relation. In both cases
one can conclude the proof of Conjecture 1.2.

We note, passim, that the differential equation obtained by the use of the dif-
ferential form is of particular interest in the context of relating these results to
hyperbolicity problems: notably this equation is strictly related to the problem of
finding sections of logarithmic jet differentials, a feature which is essential in results
obtained in the complex analytic case (see [Mou12] and [Rou09] for more details).

Remark 1.5. It is natural to ask whether the methods introduced by Corvaja and
Zannier can tackle higher dimensional analogues of the Geometric Lang-Vojta Con-
jecture. Such a generalization can be achieved if more general gcd estimates were
available. In particular one would be interested in bounding gcd(f(a, b, c), g(a, b, c))
for (at least) 3 S-units, a, b and c. At the present we are not aware of any result
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of this type. We note, however, that the Nevanlinna analogues in higher dimen-
sions for algebraic degeneracy of holomorphic curves are known (see for example
[NWY07, Theorem 5.4]).

Our goal in this paper is to generalize this situation to the so-called non-split
case, i.e., the case of Lang-Vojta Conjecture for the complement of a conic and
two lines in P

2, where now the divisor has field of definition strictly bigger than
the ground field. As in the split case, we are going to reduce the problem to solve
a Diophantine equation and bound the height of its solutions using the Corvaja
and Zannier method. In our case, the equation that describes this setting reads as
follows:

(1.1) y2 = u2
1 + λ(P )u1 + u2 + 1.

Here again y is an S-integer, u1, u2 are S-units, and λ will be a rational function on
the curve C̃. We note that this equation is precisely the same considered in [CZ08],
where now the polynomial in the right-hand side has non-constant coefficients. Ge-
ometrically, this corresponds to the data of an (affine) threefold X, fibered over the
curve C, where each fiber is isomorphic to P2 \D and D is a divisor consisting of a
conic and two lines. Each solution of the equation (1.1) gives a section of the fibra-
tion X → C. This could be formalized using the theory of integral models, where
S-integral points of a variety defined over a function field of a curve correspond to
sections of the structure map given by the model, such that the inverse image of
the divisor D is supported on S. However, we are not going to use this approach
in this article.

The situation we will consider is made explicit in the following diagram:

(1.2) X

π

��
C λ ��

σ

��

P1

The parameter λ(P ) will be a function depending on the divisor on the fiber over
P and σ will be a section of the projection π. We observe that in [CZ08], the

morphisms considered by Corvaja and Zannier from the affine curve C = C̃ \ S to
P2 \D can be seen as sections of the trivial (P2 \D)-bundle over the curve C. Here
the trivial bundle is replaced by a fibration, in which the divisor at infinity in the
fibers is moving. Moreover, generalizing the situation of the constant case, the three
irreducible components of the divisor D = DP are not supposed to be in general
position for every P ∈ C̃ (although we need some restriction on the “degeneracy”
of the divisor).

Our main result, from which Theorem 1.3 follows, is the following.

Theorem 1.6. Let C̃, S,X be as above. Let σ : C → X be a non-constant section for
the fibration π : X → C, where each fiber is isomorphic to P

2 \D. Then there exist
effectively computable constants C1, C2 such that, in a suitable projective embedding
of X, the curves σ(C̃) verify

deg σ(C̃) ≤ C1 · χS(C̃) + C2.

In section 3 we are going to explicitly determine the constant C1, C2 using one
natural compactification of the affine variety we are considering. This will result in
having the constants depending explicitly on the height of the rational function λ.
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Remark 1.7. Readers familiar with [CZ08] will easily recognize a lot of similarity
in the proof: one could also say that, a part from some geometric description in the
first two sections, we basically cover the same steps carrying out the computations
in a different framework. We nevertheless decided to include each intermediate
step, even the one much closer to that of Corvaja and Zannier, in order to make
this article accessible to all readers.

Notation. We now set the notation for the proofs and we will follow as much as
possible the one introduced in [CZ08]. From now on C̃ will be a smooth complete

algebraic curve defined over κ of genus g = g(C̃) and S ⊂ C̃ will be a finite set of

points of C̃. We shall denote by OS the ring κ[C̃ \ S] of regular functions on the

affine curve C = C̃ \ S and we will call it the ring of S-integers (elements of OS

are just rational functions on C̃ with poles contained in the set S). The group of

units O∗
S is called the group of S-units, i.e., rational functions on C̃ with poles and

zeros contained in S. As before we define the Euler characteristic of the affine curve
C = C̃ \ S as χS(C̃) = χ(C̃ \ S) = 2g(C̃)− 2 + �S.

For any rational function a ∈ κ(C̃) we define its height to be its degree as a

morphism to P
1. More explicitly, if we associate to each point v ∈ C̃ a discrete

valuation of the function field κ(C̃) trivial on κ and normalized, so that its value
group is Z, then the height of a can be expressed as

HC̃(a) :=
∑
v∈C̃

max{0, v(a)},

where we denoted the valuation with the same letter v. Given a dominant morphism
of smooth irreducible projective curves D̃ → C̃, an element a ∈ κ(C̃) can be viewed

as a rational function on D̃ via the inclusion κ(C̃) ⊂ κ(D̃) given by the morphism.

The height of a with respect to D̃ verifies

HD̃(a) = [κ(D̃) : κ(C̃)] ·HC̃(a).

2. Configuration of a conic and two lines

In this section we will analyze configurations of a conic and two lines in P2. Our
aim is to prove that a moduli space for equivalence classes of these divisors is of
dimension one.

Let D be the sum of a smooth conic D1 and two distinct lines D2, D3 in P
2

defined over κ. This divisor has at most five singular points, four of which lie on
the conic, i.e., the four points of intersection between D1 and D2+D3; these points
are distinct in the case when D1, D2, D3 are in general position, i.e., D has normal
crossing singularities. We want to characterize completely isomorphism classes of
such divisors.

First we observe that each class possesses a representative with a fixed conic D1

as a component of degree two. Hence the problem can be reduced to study isomor-
phism classes of unordered couples of lines not tangent to D1 whose intersection is
not on the conic. One such divisor is visible in Figure 1. Second one can notice
that the problem is equivalent to the study of classes of fourples of points on P1,
via the isomorphism between the conic and P1 (here we fix the ordering of the lines
such that the line D2 is the one passing through the first two points, and the line
D3 passes through the last two points); we say that two fourples are in the same
class if the corresponding unordered couple of unordered couples of points coincide.
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P1

P2 P3

P4

D1D2 D3

Figure 1. Configuration of a conic and two lines in general position

This means precisely that the divisors consisting of the fixed conic D1 and the lines
D2 and D3 passing through the ordered points are isomorphic.

A moduli space for our problem will therefore be represented by a scheme with
a map from M0,4

∼= Gm \ {1}, where the last isomorphism is given by the cross-
ratio. This follows from the easy observation that fourples with the same cross-ratio
are in the same class. However, the map from M0,4 will not be injective: as an
example, consider the following two fourples (P1, P2, P3, P4) and (P2, P1, P3, P4),
which clearly are in the same class, since

{{P1, P2}, {P3, P4}} = {{P2, P1}, {P3, P4}},
but their cross-ratios are inverse of each other. Hence we expect the map from
the moduli of fourples of points in P1 to our moduli space to be many-to-one. To
describe it more precisely we use the following basic lemma.

Lemma 2.1. Let P = (P1, . . . , P4) and Q = (Q1, . . . , Q4) be two fourples such that
P �= Q in M0,4, i.e., they don’t have the same cross-ratio. Then, if they are in the
same class, i.e., they represent the same divisor, then there exists a permutation σ
such that, σ(P ) = (Pσ(1), . . . , Pσ(4)) = Q, as elements of M0,4.

Hence we are reduced to calculate which permutations of four points give rise
to isomorphic configurations of divisors. We can then consider the action of the
permutation group S4 on an ordered set of four points in the projective line, i.e., an
element of (P1)4; an easy case by case analysis shows that the subgroup of S4 under
which a class of fourples is invariant is G = 〈(12), (13)(24), (14)(23)〉. Hence, by
classic properties of the cross-ratio, the only non-trivial action of G in M0,4 comes
from elements of the form (12) ·G. This corresponds precisely to the example made
before, in which the first two points are flipped.

In order to completely describe isomorphism classes of degree four and three
component divisors in P2 it is sufficient to define a map

λ′ :

{
degree four and three

component divisors in P
2

}
−→ P

1,

constant on isomorphic divisors. By the description given above we obtain a natural
2:1 map, from the moduli space M0,4 to the moduli space of degree four and three
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component divisors; this map simply associates to each fourple the two lines passing
to the four points. With abuse of notation we indicate as λ′ the composition

λ′ : M0,4 →
{

degree four and three
component divisors in P2

}
→ P

1,

which is defined as

λ′(P1, P2, P3, P4) =
β (P1, P2, P3, P4)

2 + 1

β (P1, P2, P3, P4)
− 2

= β(P1, P2, P3, P4) +
1

β(P1, P2, P3, P4)
− 2

where β is the cross-ratio. We observe that the involution (12) inverts the cross-
ratio hence the function λ′ is constant on fourples in the same class. The presence
of the −2 in the formula comes from the fact that we want the zeros and the poles
of λ′ to contain all the fourples corresponding to divisors which fail to be normal-
crossing; these are precisely the ones in which the cross-ratio is either not defined,
or takes values 0,∞ and 1.

In our computation we will assume that the set S contains all the points where
the fiber has boundary divisor defined by a fourple that is either a pole or a zero of
λ′. This will, in particular, allow us to apply Theorem 4.9 and to obtain a stronger
result, given the fact that our final result will not depend on the negativeness or
positiveness of the Euler characteristic of the base curve. Namely, our bound on the
degree of the curves will have a constant term depending on the height of λ but all
the constants will not depend on the sign of the characteristic. At the same time,
this is not a strong restriction because λ′ will be a datum of the variety we want
to deal with and hence it does not depend on the method used for the proof (see
section 3 for a precise definition of λ and its role in the definition of the threefold
X).

With abuse of notation we will sometimes indicate the value λ′(P1, . . . , P4) as
λ′(D) where the configuration of D is defined by the points P1, . . . , P4 on the conic
D1.

3. Affine threefolds

We are interested in a specific class of affine threefolds fibered over affine curves
which generalizes the trivial P2 \ D-bundle considered in the split case. In more
detail we will consider the following class of affine threefolds:

(	) X is an affine threefold fibered over the affine curve C such that

the completion of the fibration is the trivial P2-bundle over C̃. Every
fiber π−1(P ) for a point P ∈ C̃ is of the form P2 \DP where DP is
a divisor of P2 of degree four consisting of an irreducible conic and
two lines such that there are at least four distinct singular points.
If the point P is in C, then the function λ′ is regular on DP , i.e.,
DP has normal crossing singularities.

A picture of this situation can be seen in the diagram (1.2).

Example 3.1. Consider a plane smooth affine curve C in P2
C
. For each point

P ∈ C let tP denote the tangent line to C at P . This defines a fibration over C
in the following way: over a point P ∈ C let XP be the complement in P2 of the
divisor formed by a fixed quadric D1, the line at infinity D∞ (assuming a choice of
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P1

P2

P3

π −1(P1) π −1(P2) π −1(P3)

D1
D∞

D3,P1

D1
D∞ ∞

D3,P2

D1
D

D3,P3

X

π

C

Figure 2. Fibered threefold

coordinate has been made) and the line D3,P = tP . A picture of this situation can
be seen in Figure 2.

The threefold

X =
⋃
P∈C

XP → C,

can be seen as a surface defined over the function field of the smooth completion C̃
of C, where a point of the surface P ∈ X (k(C̃)) corresponds to a section σP : C̃ → X̃
such that σ−1

P (D) ⊂ C̃ \ C. In particular in the case in which the divisor

DP = D1 +D∞ +D3,P

has normal crossing for all P ∈ C̃ \ S, being degD = 4, each fiber is of log-general
type. Therefore, Theorem 1.6 can be applied giving a bound for the degree of
images σP (C̃) as expected by Conjecture 1.2.

It follows from the definition of the class (	) that giving such a threefold is
equivalent to giving a rational function

λ : C̃ ��� P
1,

which associates to a point P ∈ C̃ a point of P1 viewed as the value of the function
λ′(DP ), i.e., λ(P ) specifies the isomorphism class of the divisor DP in the fiber
over P . Furthermore each of the affine threefolds we are going to study can be
described as follows: we can naturally embed X inside X̃ := C̃ × P

2 and denote
by p1 : X̃ → C̃ and p2 : X̃ → P2 the two projections. Then the fibration X → C
is uniquely determined by a line bundle μ ∈ Pic(C̃) and the choice of a divisor



FIBERED THREEFOLDS AND LANG-VOJTA’S CONJECTURE 8545

D ∈ |p∗1(μ)⊗ p∗2(OP2(4))|; see the diagram below:

(3.1) p∗1(μ)⊗ p∗2(OP2(4))

��
X

π

��

� � �� C̃ × P2

p1

��

p2 �� P2

C

σ

��

� � �� C̃
We stress that threefolds arising from this construction do not automatically belong
to the class (	) since not every divisor in the linear system gives rise to a fibration
where all the fibers D|π−1(P ) have three components. Conversely, for each such
threefold, one can obtain a description as the one given above for a suitable section
of OP2(4). This in particular implies that, if X belongs to (	), on every fiber the
divisor is determined, up to isomorphism, by the value of the function λ defined
above, i.e., over every point P ∈ C the fiber is uniquely specified by the value of λ′

on the singular points of DP . In other words if X → C is one of the threefolds we
are interested in, the datum of the map λ completely describes the geometry of X.

In the following section we will prove that every threefold in the class (	), charac-

terized by a non-constant rational map λ : C̃ ��� P1, has the property that images
of sections have bounded degree in terms of the Euler characteristic of the base
curve.

4. Sections of the fibered threefold

From now on we will work on an affine algebraic variety of dimension three
verifying condition (	). We will denote by DP the divisor defined on the fiber over
the point P (or simply D where the point will be clear) and its three irreducible

components will be indicated by D1 (the conic) and D2, D3 (the two lines). λ : C̃ →
P
1 will denote the morphism λ(P ) := λ′(DP ) and we will suppose that S contains

all its zeros and poles. We begin by proving the following.

Lemma 4.1. Let C̃, S as before and let π : X → C be an affine threefold verifying
the condition (	). Let σ : C → X be a section of π. Then, possibly after passing to
a cover of C of degree 2, there exist S-units u1, u2 ∈ O∗

S and an S-integer y ∈ OS

satisfying

(4.1) y2 = u2
1 + λu1 + u2 + 1,

and such that deg σ(C) ≤ HC̃(u1) +HC̃(y).

Proof. From condition (	) it follows that, at most after choosing homogeneous
coordinates, we can considered affine coordinates (x, y) in every fiber with respect
to the line D2 that will be the line at infinity x0 = 0. In this coordinate system
the line D3 has equation x = 0 and the conic D1 has equation y2 = x2 + λx + 1
(by Tsen’s theorem the equations of the two lines can always be chosen in the
desired way. However, it could happen that the conic cannot simultaneously be
taken to have the former form. In this case we consider a double cover of C̃ where
this holds and perform all the computation in the cover. This will affect only the
numerical constants involved in the computation by, at most, a factor of 2). Now
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we turn our attention to the section σ : C̃ \S → X. In our setting σ can be written
as

σ(P ) = (x(P ), y(P ), P ) ∈ π−1(P ) ∼= P
2 \DP .

Now it is a general fact that such a morphism has degree bounded by the height of
its components: indeed the degree of σ is the number of intersection points with a
generic hyperplane in a projective space where σ(C̃) is embedded and this number
is bounded by the sum of the heights of the components x and y. This proves that
deg σ(C) ≤ HC̃(u1) + HC̃(y) where u1 := x. The fact that the image σ(P ) avoids
the line D2 means that the function u1 := x ∈ O∗

S is a unit and y ∈ OS is a regular
function on the affine curve C. Moreover, the condition that the image of σ avoids
also the conic D1 in every fiber means that we can define another S-unit u2 where

u2 = y2 − u2
1 − λu1 − 1.

Hence the units u1, u2 and the S-integer y verify equation (4.1), concluding the
proof. �

We will now work with equation (4.1) in order to describe its solutions. Our goal
is to prove the following.

Theorem 4.2. With the notation above, every solution (y, u1, u2) ∈ OS × (O∗
S)

2

of equation (4.1) satisfies one of the following conditions:

(i) a subsum on the right term of (4.1) vanishes;
(ii) u1, u2 verify a multiplicative dependence relation of the form ur

1 · us
2 = μ,

where μ ∈ κ∗ is a scalar and r, s, are integers, not both zero, such that
max{r, s} ≤ 5;

(iii) the following bound holds:

max{HC̃(u1), HC̃(u2)} ≤ 212
(
58χS(C̃) + 28HC̃(λ)

)
+ 16HC̃(λ).

Remark 4.3. Note that the first two conditions are necessary for the theorem to
hold. As in the constant case, the image of a section could be a Gm possessing a
non-trivial S-unit. Multiplication by such a unit gives rise to maps to the same Gm

with higher height, for which the bound (iii) does not hold.
Such an example could be made explicit in the following way: consider a plane

smooth conic C̃ and a lineD2 not tangent to the conic. Given a rational parametriza-
tion (X(t), Y (t)) of C̃ one can define a sheaf of lines through a point P in D2 \ C̃
parametrized by P

1 that associate to each t ∈ P
1 the line Dt passing through P

and (X(t), Y (t)). We can also assume to scale the parametrization such that the

points corresponding to 0 and ∞ are {Q1, Q2} = D2 ∩ C̃. This defines a quartic

bundle over C̃ ∼= P1 where the fibers over each point consist of the conic C̃, the
line D2 and the line Dt. With our choices, over all points different from 0 and ∞
the quartic has normal crossing singularities. In particular we can define an affine
threefold fibered over C̃ \{Q1, Q2} ∼= Gm as the complement of the total space of the

quartic bundle inside P2 × C̃. Such a threefold verifies condition (	). Now one can

consider a conic passing through Q1, Q2 and tangent to C̃ in those points. Given a
rational parametrization of such a conic one can define a section σ of the threefold
whose image is such a conic, in a way that σ(t) intersect the divisor Dt only over
the points t = 0 and t = ∞. Therefore its image is Gm. Now composing with a
non-trivial unit we can construct sections that do not verify the height bound (iii)
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Figure 3. Qualitative picture of Remark 4.3

of Theorem 4.2 but that will verify the relationship (ii). A qualitative picture of
such an example can be seen in Figure 3.

We will now follow the proof, given by Corvaja and Zannier, of the constant
case deepening the differences between our situation and the ideas of [CZ08]. First

we observe that we can define a differential form on C̃ such that we can speak of
derivatives of rational functions. In particular we have the following (this is Lemma
3.5 and Lemma 3.6 of [CZ08]).

Lemma 4.4. There exists a differential form ω ∈ C̃ and a finite set T ⊂ C̃ of
cardinality �T = max{0, 2g(C̃) − 2} such that for every u ∈ O∗

S there exists an
(S ∪ T )-integer θu ∈ OS∪T having only simple poles such that

(4.2)
d(u)

u
= θu · ω, HC̃(θu) ≤ χS(C̃).

Moreover if a ∈ OS, then there exists an a′ ∈ OS∪T such that

d(a) = a′ · ω, HC̃(a
′) ≤ HC̃(a) + χS(C̃).

For the proof of this lemma we refer again to [CZ08]; we just notice that Lemma
4.4 refers to the curve only, without any reference to the bundle, and hence can
be applied in all the cases under consideration. From now on the differential form
ω and the finite set T will be fixed and, for a rational function a ∈ κ(C̃) we will
denote by a′ the only rational function such that d(a) = a′ · ω.

We consider now the derivative of a polynomial A ∈ κ[X,Y ] calculated in a point
u1, u2 for some S-units u1, u2. One can prove that (see [CZ08, Lemma 3.7])

(A(u1, u2))
′ = B(u1, u2),

where

B(X,Y ) =
u′
1

u1
·X ∂A

∂X
(X,Y ) +

u′
2

u2
· Y ∂A

∂Y
(X,Y ).

We will use this identity in order to deal with equation (4.1).
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Lemma 4.5. Let

A(X,Y ) = X2 + λX + Y + 1,

B(X,Y ) = 2
u′
1

u1
X2 + λ

(
u′
1

u1
+

λ′

λ

)
X +

u′
2

u2
Y(4.3)

be polynomials in OS∪T (C̃)[X,Y ], and let F (X) ∈ OS∪T [X], G(Y ) ∈ OS∪T [Y ] be
the resultants of A(X,Y ), B(X,Y ) with respect to Y and X, i.e., the polynomials

F (X) = ResY (A,B) = X2

(
2
u′
1

u1
− u′

2

u2

)
+X

(
u′
1

u1
− u′

2

u2
+

λ′

λ

)
λ− u′

2

u2
,

(4.4)

G(Y) = ResX(A,B) = Y2

(
2
u′
1

u1
− u′

2

u2

)2

+Y

[(
u′
1

u1

)2

(8− λ2) +
u′
1

u1

u′
2

u2
(λ2 − 4)

+ λ2λ
′

λ

(
λ′

λ
− u′

2

u2

)]
+

(
u′
1

u1

)2

(4− λ2) + λ2

(
λ′

λ

)2

.(4.5)

Then for every solution (y, u1, u2) ∈ OS × (O∗
S)

2 of (4.1) we have

y2 = A(u1, u2),

2yy′ = B(u1, u2).

Moreover the S-integer y divides both F (u1) and G(u2) in the ring OS∪T .

Proof. Obviously equation (4.1) is exactly y2 = A(u1, u2). Moreover A(u1, u2)
′ =

B(u1, u2) so we have 2yy′ = B(u1, u2) as wanted.
For the second fact we observe that, for the general theory of resultants, F and

G are linear combinations of A and B with coefficients that are polynomials in
OS∪T , concluding the proof. �

Our next step is to factor the polynomials F (X), G(Y ) in a suitable finite field

extension of κ(C̃); this extension will be a function field κ(D̃) for a cover D̃ → C̃.
Besides, we will estimate the Euler characteristic of the curve D̃. From now on we
will suppose that the leading and the constant term of the polynomial F (X), G(Y )
are both non-zero.

Lemma 4.6. Given F,G, C̃, S, T as before, there exists a cover D̃ → C̃, of degree
less or equal to four, such that the Euler characteristic of D̃ \ U verifies

(4.6) χU (D̃) ≤ 53χS(C̃) + 28HC̃(λ) + 5 ·max{0, 2g(C̃)− 2},
where U is the set formed by the preimages of the zeros of the leading and constant
coefficients of F and G and the preimages of S and T .

Proof. Our goal was to factor F (X) and G(X), so we define the cover p : D̃ → C̃ by

the property that κ(D̃) is the splitting field of F (X) · G(X) over κ(C̃). From this

definition it is straightforward that deg p is at most four, because κ(D̃) is generated

over p∗(κ(C̃)) by the square roots of the discriminants of the two polynomials (recall
that F (X) and G(X) both have degree 2).

We will now bound the Euler characteristic of D̃ \ U via the Riemann-Hurwitz
formula; for this goal we need an estimate of the ramification points of the cover p.
First we notice that the ramification points are all contained in the zeros and poles
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of the discriminants; moreover at any point the ramification index is at most two.
The poles are contained in S ∪ T and the number of zeros of the discriminants is
bounded by their heights. The discriminant of F (X) is
(4.7)

Discr(F (X)) =

(
u′
2

u2

)2

(λ2 − 4) +

(
u′
2

u2

)(
8
u′
1

u1
− 2

u′
1

u1
λ2 − 2λλ′

)
+

(
λ
u′
1

u1
+ λ′2

)2

,

so its height (which can be estimated counting its possible poles) is bounded by

HC̃(Discr(F (X))) ≤ 2HC̃

(
u′
2

u2

)
+ 2HC̃

(
u′
1

u1

)
+ 2HC̃(λ

′) + 2HC̃(λ)

≤ 6χS(C̃) + 4HC̃(λ).

Analogously, we can look at the discriminant of G(X),

Discr(G(X)) =

(
u′
2

u2

)2[(
u′
1

u1

)2

λ2(4− λ2) +
u′
1

u1
λλ′(8− 2λ2) + λ′2(λ2 − 4)

]

+ 2
u′
2

u2

[(
u′
1

u1

)3

λ2(4− λ2)

(
u′
1

u1

)2

λλ′(λ2 − 8) +
u′
1

u1
λ′2(4 + λ2)− λλ′

]

+

(
u′
1

u1

)4

λ2 − 2

(
u′
1

u1

)2

λ2λ′2 + λ′4,(4.8)

and bound its height in the same way, obtaining that HC̃(Discr(G(X))) is bounded
above by

2HC

(
u′
2

u2

)
+ 4HC̃

(
u′
1

u1

)
+ 4HC̃(λ

′) + 4HC̃(λ) ≤ 10χS(C̃) + 8HC̃(λ).

Therefore the number of ramification points is at most

�(S ∪ T ) + 16χS(C̃) + 12HC̃(λ).

We can now apply the Riemann-Hurwitz formula

(4.9) 2g(D̃)− 2 = (deg p)(2g(C̃)− 2) +
∑
P∈D̃

(eP − 1).

Here e(P ) is the ramification index of p at P and thus (eP − 1) is either zero or
one. By the above estimate of the ramification points of p we obtain that

(4.10)
∑
P∈D̃

(eP − 1) ≤ �(S ∪ T ) + 16χS(C̃) + 12HC̃(λ).

Consider now the set U ⊂ D̃ introduced in the statement of the lemma. We have
that

�U ≤ [κ(D̃) : p�(κ(C̃))] · �p(U).
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From this inequality and from (4.9) and (4.10) the following holds:

2g(D̃)− 2 + �U ≤ (deg p)

(
2g(C̃)− 2 + �p(U)

)
+ �(S ∪ T ) + 16χS(C̃) + 12HC̃(λ)

= (deg p)

(
2g(C̃)− 2 + �(S ∪ T ) + �(p(U) \ (S ∪ T )

)

+ �(S ∪ T ) + 16χS(C̃) + 12HC̃(λ)

≤ 4χS∪T (C̃) + 4�(p(U) \ (S ∪ T )) + �(S ∪ T ) + 16χS(C̃) + 12HC̃(λ).

We have to bound the number �(p(U) \ (S ∪ T )), but the points in the image of U
that are not in S ∪ T are precisely the zeros of the leading and constant terms in
F (X) and G(X). Again we can estimate their number by looking at the height of
these terms. We obtain that

�(p(U) \ (S ∪ T )) ≤ HC̃

(
2
u′
1

u1
− u′

2

u2

)
+HC̃

(
u′
2

u2

)
+ 2HC̃

(
2
u′
1

u1
− u′

2

u2

)

+HC̃

((
u′
1

u1

)2

(4− λ2) + λ′2
)

≤ 4χS(C̃) +HC̃

((
u′
1

u1

)2

(4− λ2) + λ′2
)

≤ 8χS(C̃) + 4HC̃(λ).

Taking this into account we can return to the previous inequality to finish our proof:

χU (D̃) ≤ 4χS∪T (C̃) + 32χS(C̃) + 16HC̃(λ) + �S + �T + 16χS(C̃) + 12HC̃(λ)

≤ 52χS(C̃) + 28HC̃(λ) + 5�T + �S

≤ 53χS(C̃) + 28HC̃(λ) + 5max{0, 2g(C̃)− 2}. �

The next step in the proof of our main result is an application of a theorem
by Corvaja and Zannier concerning the “greatest common divisor” of two rational
functions on C̃ of the form a− 1 and b− 1 where a and b are units with respect to
some specified finite set (in our case the set will be U). This result is the function
field analogue of a theorem by the same authors obtained in the arithmetic case
(see [CZ08]) and it should be remarked that this result is linked to Lang-Vojta’s
conjecture as pointed out by Silverman in [Sil05]. We will need a corollary of this
deep theorem as stated in [CZ08, Corollary 2.3] which read as follows.

Theorem 4.7 (Corvaja and Zannier). Let a, b ∈ O∗
S not both constant, and let

H := max{H(a), H(b)}. Then

(i) If a, b are multiplicatively independent, we have

(4.11)
∑
v/∈S

min{v(1− a), v(1− b)} ≤ 3
3
√
2(H(a), H(b)χ(C)) 1

3 ≤ 3
3
√
2(H2χ(C)) 1

3 .

(ii) If a, b are multiplicatively dependent, let ar = μbs be a generating relation.
Then either μ �= 1 and

∑
v/∈S min{v(1− a), v(1− b)} = 0 or μ = 1 and

(4.12)
∑
v/∈S

min{v(1− a), v(1− b)} ≤ min

{
H(a)

|s| ,
H(b)

|r|

}
≤ H

max{|r|, |s|} .
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We are going to apply this theorem for a suitable choice of the units a and b:
these units will be chosen in such a way that their heights will be “close” to the
heights of u1, u2 and such that the sum appearing in the statement of Theorem 4.7
gives an upper bound for

∑
v∈D̃\U v(y). We begin by proving the following.

Lemma 4.8. Let (u1, u2, y) be a solution of equation (4.1) (recall that we are
supposing that the leading and constant coefficients of F,G are both non-zero). Let

D̃, U be as before. Then there exist U-units a, b ∈ κ(D̃) such that

(4.13) |max{HD̃(a), HD̃(b)} −max{HD̃(u1), HD̃(u2)}| ≤ 32 · χS(C̃) + 8HC̃(λ)

and

(4.14)
∑

v∈D̃\U

min{v(1− a), v(1− b)} ≥ 1

4
·

∑
v∈D̃\U

v(y).

Moreover, a = u1α
−1, b = u2β

−1 for suitable α, β such that F (α) = G(β) = 0.

Proof. Since the field κ(D̃) defined as the splitting field for the polynomial F (X) ·
G(X), we can write the two polynomials as

F (X) =

(
2
u′
1

u1
− u′

2

u2

)
(X − α) · (X − ᾱ),

G(X) =

(
2
u′
1

u1
− u′

2

u2

)2

(X − β) · (X − β̄).

We claim that the roots α, ᾱ (resp. β, β̄) of F (resp. G) are U -units. This fol-
lows from the definition of U (see Lemma 4.6), because the leading and constant
coefficients of the two polynomials are U -units. We consider now the following

polynomials obtained from F and G dividing by αᾱ
(
2
u′
1

u1
− u′

2

u2

)
and ββ̄

(
2
u′
1

u1
− u′

2

u2

)2
,

respectively, i.e., the polynomials

F (X) := (Xα−1 − 1)(Xᾱ−1 − 1),

G(X) := (Xβ−1 − 1)(Xβ̄−1 − 1).

Now, by Lemma 4.5, the U -integer y divides both F (u1) and G(u2), and hence
it divides the polynomials F (u1) and G(u2) in the ring of U -integers. From this it
follows that∑
v∈D̃\U

min{v(u1α
−1−1)+v(u1ᾱ

−1−1), v(u2β̄
−1−1)+v(u2β̄

−1−1)} ≥
∑

v∈D̃\U

v(y).

We want to analyze the left-hand side term of the last inequality: observe that for
every fourple of rational functions W1,W2, Z1, Z2 one has (we omit the valuations)∑

v

min{W1 +W2, Z1 + Z2} ≤
∑

{i,j}∈{1,2}

∑
v

min{Wi, Zj} ≤ 4
∑
v

min{W̃ , Z̃},

for suitable W̃ ∈ {W1,W2} and Z̃ ∈ {Z1, Z2}. In our case we obtain that there
exist U -units a ∈ {u1α

−1, u1ᾱ
−1} and b ∈ {u2β

−1, u2β̄
−1} such that

4
∑

v∈D̃\U

min{v(a− 1), v(b− 1)} ≥
∑

v∈D̃\U

v(y),

proving (4.14). Next we want to prove that the heights of these U -units a, b are
“close” to the heights of u1, u2. We observe that the difference appearing in the
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left-hand side term of (4.13) is bounded by the maximum of the D̃-heights of the
roots of F and G. Again we bound these heights by estimating their possible poles.
It is then sufficient to observe that the poles of the roots α, ᾱ (resp. β, β̄) are either
zeros of the leading coefficient or poles of the constant term of the polynomial F
(resp. G). Hence

max{HD̃(α), HD̃(ᾱ)} ≤ HD̃

(
2
u′
1

u1
− u′

2

u2

)
+HD̃

(
u′
2

u2

)

≤ 4HC̃

(
2
u′
1

u1
− u′

2

u2

)
+ 4HC̃

(
u′
2

u2

)

≤ 8χs(C̃).

In the same way we get

max{HD̃(β), HD̃(β̄)} ≤ HD̃

(
2
u′
1

u1
− u′

2

u2

)2

+HD̃

[(
u′
1

u1

)2

(4− λ2) + λ′2
]

≤ 4HC̃

(
2
u′
1

u1
− u′

2

u2

)2

+ 4HC̃

[(
u′
1

u1

)2

(4− λ2) + λ′2
]

≤ 32χs(C̃) + 8HC̃(λ).

�

In order to apply Theorem 4.7 we need an upper bound for
∑

v∈D̃\U v(y) in terms

of the heights of u1, u2. This bound is obtained by an application of a theorem by
Zannier in [Zan93] which reads as follows.

Theorem 4.9 (Zannier). Let D̃, U as before, m ≥ 2 an integer, θ1, . . . , θm U-units
such that no subsum of θ1 + · · · + θm vanishes. Then the U-integer θ1 + · · · + θm
satisfies

∑
v∈D̃\U

v(θ1 + · · ·+ θm) ≥ HD̃(θ1 : · · · : θm)−
(
m

2

)
χU (D̃).

We are going to apply this theorem to the U -integer

y = u2
1 + λu1 + u2 + 1,

using the fact that

HD̃(u
2
1 : λu1 : u2 : 1) ≥ max{2HD̃(u1), HD̃(u1) +HD̃(λ), HD̃(u2)}

≥ max{HD̃(u1), HD̃(u2)}.

In particular, assuming that no subsum of the right term of equation (4.1) vanishes,
we obtain the following.

Lemma 4.10. For every solution (y, u1, u2) of (4.1) such that no subsum of the
right term vanishes, one has

HD̃(y) ≥
∑

v∈D̃\U

v(y) ≥ max{HD̃(u1), HD̃(u2)} − 6χU (D̃).



FIBERED THREEFOLDS AND LANG-VOJTA’S CONJECTURE 8553

Now we put together this last inequality with the results of Lemma 4.13 and we
obtain that, for every solution of (4.1) there exist U -units a, b such that

∑
v∈D̃\U

min{v(a− 1), v(b− 1)}

≥ 1

4

(
max{HD̃(a), HD̃(b)} − 6χU (D̃)− 32χS(C̃)− 8HC̃(λ)

)
.

Using the fact that χS(C̃) ≤ χU (D̃) we obtain
(4.15)∑
v∈D̃\U

min{v(a− 1), v(b− 1)} ≥ 1

4

(
max{HD̃(a), HD̃(b)} − 38χS(C̃)− 8HC̃(λ)

)
.

We can now apply Theorem 4.7 to deduce the following.

Proposition 4.11. Let (y, u1, u2) ∈ OS × (O∗
S)

2 be a solution of equation (4.1)
such that no subsum of the right term vanishes, and the leading and constant term
of the polynomials F,G are not zero. Let D̃, U be as defined in Lemma 4.6 and
a, b ∈ O∗

U as defined in Lemma 4.8. Then either

(4.16) max{HC̃(u1), HC̃(u2)} ≤ 212
(
58χS(C̃) + 28HC̃(λ)

)
+ 16HC̃(λ)

or a, b verify a multiplicative dependence relation of the form

ar · bs = 1

for integers (r, s) ∈ Z2 \ {0} with

(4.17) max{|r|, |s|} ≤ 5.

Proof. We suppose that inequality (4.16) does not hold and we want to prove the
dependence relation for a, b. In order to apply Corvaja and Zannier Theorem 4.7
we are going to show that the left-hand side of (4.16) is greater than the right-hand
side of (4.11). Our starting point is

max{HC̃(u1), HC̃(u2)} > 212 ·
(
58 · χS(C̃) + 28HC̃(λ)

)
+ 16HC̃(λ).

From Lemma 4.6 we know that

χU (D̃) ≤ 58 · χS(C̃) + 28HC̃(λ)

and so we obtain that

max{HC̃(u1), HC̃(u2)} > 212χU (D̃) + 16HC̃(λ).

Remember that our aim is to apply Theorem 4.7 and so we need to work with the
maximum of the heights of a, b. For this reason we apply (4.13) which estimates
the closeness of H(ui) and H(a), H(b) and we get

max{HD̃(a), HD̃(b)} ≥ max{HD̃(u1), HD̃(u2)} − 32χS(C̃)− 8HC̃(λ)

≥ max{HD̃(u1), HD̃(u2)} − 32χU (D̃)− 8HC̃(λ).

From these last two inequalities and the fact that HC̃ ≤ HD̃, we obtain the lower
bound

(4.18) max{HD̃(a), HD̃(b)} ≥ (212 − 32)χU (D̃) + 8HC̃(λ).
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In order to simplify the notation we put H = max{HD̃(a), HD̃(b)} and χ = χU (D̃).
We claim that

(4.19)
∑

v∈D̃\U

min{v(a− 1), v(b− 1)} > 3 · 2 1
3H

2
3χ

1
3 .

To prove the claim we observe that, from (4.15), it is enough to show that

1

4

(
H − 38χ− 8HC̃(λ)

)
> 3 · 2 1

3H
2
3χ

1
3 .

We define the function

f(t) =
1

4

(
t− 8HC̃(λ)

)
− 3 · 2 1

3 t
2
3χ

1
3 − 38/4χ

and we notice that our claim is equivalent to f(H) > 0. Now the function f is
an increasing function for t ≥ 210χ + 8H(λ), therefore it is enough to prove it for
H = (212 − 32)χ > 210χ. Hence the claim is equivalent to

1

4
(212 − 32)χ− 3 · 2 1

3 (212 − 32)
2
3χ > 38/4χ.

With some algebraic manipulations one gets

1

4
(212 − 32)χ− 3 · 2 1

3 (212 − 32)
2
3χ

= 2
10
3 (27 − 1)

2
3

[
1

4
2

5
3 ((27 − 1)

1
3 − 3 · 2 1

3

]
χ

= 40 · 6 ·
[
2−

1
3 · 2 13

6 − 3 · 2 1
3

]
χ

= 40 · 6 ·
[
2

1
3 (2

5
3 − 3)

]
χ > 40χ,

which proves the claim. Now we can apply Theorem 4.7 which implies that a, b
verify a multiplicative dependence relation of the form arbs = 1 for some integers
r, s not both zero. The same theorem gives the bound (4.12) and hence, together
with (4.18) and (4.15), we obtain

H

max{|r|, |s|} >
1

4
H − 10χ >

1

5
H.

Therefore we get max{|r|, |s|} ≤ 5, as desired. �

The conclusion of Proposition 4.11 gives us a multiplicative relation of depen-
dence between a, b instead of u1, u2. However, this relation is guaranteed by Lemma
3.14 in [CZ08] which gives us the following result:

Lemma 4.12 ([CZ08]). In the previous notation, if a multiplicative relation of the
form ar · bs = μ holds for a constant μ ∈ κ, then either one between a and b is
constant or u1, u2 satisfy a multiplicative dependence relation of the same type.

Now we go back to Theorem 4.2. Here we should take care of the constant
term of the polynomial G in a different way as in the constant case. In detail the
vanishing of this term does not directly imply an explicit bound for the degree of
the images f(C) as in the split function field case; here we should apply again the
whole machinery in order to explicitly find the unit u1 and so reduce the problem
to equation y2 = μ + u2 + 1, which was already solved in the split case and gives
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the desired bound. For readability reasons we split the proof of Theorem 4.2 in two
cases: Lemma 4.13 for the case in which the constant coefficient of G is not zero,
and Lemma 4.14 for the other case. Clearly the two lemmas together give Theorem
4.2.

Lemma 4.13. Suppose that the constant term of the polynomial G does not vanish,
i.e., with the notation of Theorem 4.2, every solution (y, u1, u2) ∈ OS × (O∗

S)
2 of

equation (4.1)

y2 = u2
1 + λu1 + u2 + 1

also satisfies

(
u′
1

u1

)2

(4− λ2) + λ2

(
λ′

λ

)2

�= 0.(4.20)

Then one of the following conditions holds:

(i) a subsum on the right term of (4.1) vanishes;
(ii) u1, u2 verify a multiplicative dependence relation of the form ur

1 · us
2 = μ,

where μ ∈ κ is a scalar and r, s, are integers, not both zero, such that
max{r, s} ≤ 5;

(iii) the following bound holds:

max{HC̃(u1), HC̃(u2)} ≤ 212 ·
(
58 · χS(C̃) + 28HC̃(λ)

)
+ 16HC̃(λ).

Proof. We start by assuming that (i), (ii) and (iii) are not satisfied and we are
going to find a contradiction. First of all we note that, if (i) is not satisfied, no
subsum of (1.1) can vanish. Moreover the polynomials F and G defined in Lemma
4.5 could not be constant because the vanishing of their leading coefficients would
imply some multiplicative relation between u1 and u2 which is excluded by (ii). The
same is true for the constant coefficient of F (which is u′

2/u2); it cannot be zero
otherwise u2 would be constant. Moreover, by our assumptions, the same holds for
the constant coefficient of G. Hence both F and G are non-constant polynomials
whose constant coefficients are not zero.

Since we excluded the case where the leading and constant coefficients of F and G
vanish, we can apply (4.11) and obtain a multiplicative relation between a = u1α

−1

and b = u1β
−1; this follows from the fact that inequality (4.16) is excluded by (iii).

From this relation, applying (4.12), we get that either a or b is constant or u1 and
u2 verify a multiplicative relation of the same type. The former case would imply
that the height of u1 (or u2) would be the same as the height of α (resp. β) so

it would be less than or equal to 8χS(C̃) (resp. 32χS(C̃)); but this contradicts our
assumption that (iii) does not hold and hence it is excluded. The latter case is
precisely (ii) that was assumed to be false. In both cases we get a contradiction
and this concludes the proof. �

Lemma 4.14. Suppose that the constant term of the polynomial G vanishes, i.e.,
with the notation of Theorem 4.2, every solution (y, u1, u2) ∈ OS×(O∗

S)
2 of equation

(4.1) also satisfies

(
u′
1

u1

)2

(4− λ2) + λ2

(
λ′

λ

)2

= 0.(4.21)
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Then one of the following conditions holds:

(i) (y, u1, u2) satisfy an equation whose solutions verify conclusions of Theorem
4.2.

(ii) u1, u2 verify a multiplicative dependence relation of the form ur
1 · us

2 = μ,
where μ ∈ κ is a scalar and r, s, are integers, not both zero, such that
max{r, s} ≤ 5;

Proof. The first trivial case is the case in which λ is constant which is excluded
since we are assuming that the threefold defined by λ is not trivial. The second
case is the case in which λ is a non-constant S-unit. In this case we obtain, in the
ring OS , the following identity (here we can enlarge S so that it contains every
point for which λ = 2):

(4.22)

(
u′
1

u1

)2

= − λ2

4− λ2

(
λ′

λ

)2

.

Now we observe that, by Dirichlet Unit Theorem, the ringO∗
S is finitely generated

modulo constants, so every u1 ∈ O∗
S is of the form μ · va1

1 · · · vah

h for some μ ∈ κ
and v1, . . . , vh ∈ O∗

S . Therefore we have

u′
1

u1
=

h∑
i=1

ai
v′i
vi
.

Being λ ∈ O∗
S the right-hand side of equation (4.22) could also be expressed

in the vi and their derivatives; in particular (4.22) becomes an equation in the
unknown ai and this equation will have a unique (for given λ and S) solution in
the ai. Hence u1 will be uniquely determined up to a constant factor and therefore
its height will be a constant. So we can assume that u1 = af for a constant a ∈ κ
and a fixed S-unit f . This leads us to consider equation y2 = a2f2 + λaf + u2 +1.
We claim that this case gives (i). The claim follows from a repetition of all the
considerations done until now for equation (4.1): we obtain the same estimates

with different polynomials F̃ , G̃. Again we look at the vanishing of the constant
and leading coefficients and this time we found that the case in which the constant
coefficient of the new polynomial G̃ vanishes gives us either u1 = 0 or u1 = f where
a = 1. In both cases this reduces the problem to the equation y2 = μ + u2 + 1,
where μ is now fixed, which has already been treated in the split function field case
and gives (i). The case in which the constant term of G̃ is not zero is precisely one
of the cases of (i) and this concludes the proof of the claim. �

Finally we prove Theorem 1.6 using the previous theorem.

Proof of Theorem 1.6. As in Lemma 4.1, after possibly passing to a double cover
of C̃, a section

σ : C̃ \ S → X

will be of the form

σ : P �→ (u1(P ), y(P ), P ),

where the S-unit u1 and the S-integer y verify equation (4.1) for an S-unit u2. In
this setting we can apply Theorem 4.2 and conclude that one of (i), (ii), (iii) holds.
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Let us analyze every case.

• In the first case (i) we have that some subsum of u2
1 + λ(P )u1 + u2 + 1

will vanish. Hence σ(C) is either a line or a conic (recall that being λ
non-constant its height is at least one).

• In the second case (ii) we have a multiplicative relation between the two
S-units of the form ur

1 = us
2 · μ for a scalar μ ∈ κ and two integers r, s with

absolute value lesser or equal than 5. From this it follows that deg σ(C) ≤
HC̃(u1) +HC̃(y) ≤ 20.

• In the last case (iii) we have that max{HC̃(u1), HC̃(u2)} is bounded above

by 212 ·
(
58 · χS(C̃) + 28HC̃(λ)

)
+ 16HC̃(λ).

In both cases this implies that there exist constants C1 ≤ 214 · 58 and C2 ≤ 214 · 28
that verify the conclusion of the theorem. �
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