
Eichler-Shimura isomorphism for complex hyperbolic lattices

Downloaded from: https://research.chalmers.se, 2024-03-13 08:20 UTC

Citation for the original published paper (version of record):
Kim, I., Zhang, G. (2017). Eichler-Shimura isomorphism for complex hyperbolic lattices. Journal of
Geometry and Physics, 121: 452-460. http://dx.doi.org/10.1016/j.geomphys.2017.08.010

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Geometry and Physics 121 (2017) 452–460

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Eichler–Shimura isomorphism for complex hyperbolic lattices
Inkang Kim a,*, Genkai Zhang b

a School of Mathematics, KIAS, Heogiro 85, Dongdaemun-gu Seoul, 130-722, Republic of Korea
b Mathematical Sciences, Chalmers University of Technology and Mathematical Sciences, Göteborg University, SE-412 96 Göteborg,
Sweden

a r t i c l e i n f o

Article history:
Received 27 August 2015
Received in revised form 28 August 2017
Accepted 29 August 2017
Available online 4 September 2017

MSC:
22E46
20G05

Keywords:
Complex hyperbolic lattice
First cohomology
Eichler–Shimura isomorphism

a b s t r a c t

We consider the cohomology group H1(Γ , ρ) of a discrete subgroup Γ ⊂ G = SU(n, 1)
and the symmetric tensor representation ρ on Sm(Cn+1). We give an elementary proof of
the Eichler–Shimura isomorphism that harmonic formsH1(Γ \G/K , ρ) are (0, 1)-forms for
the automorphic holomorphic bundle induced by the representation Sm(Cn) of K .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let B be the unit ball in Cn considered as the Hermitian symmetric space B = G/K of G = SU(n, 1), n > 1. Let Γ

be a cocompact torsion free discrete subgroup of G and ρ a finite dimensional representation of G, and X = Γ \ B. The
representation ρ of G defines also one for Γ ⊂ G. The first cohomology H1(Γ , ρ) is of substantial interests and appears
naturally in the study of infinitesimal deformation of Γ in a bigger group G′

⊃ G; see [1–5]. It is a classical result of
Raghunathan [6] that the cohomology group H1(Γ , ρ) vanishes except when ρ = ρm is the symmetric tensor Sm(Cn+1)
(or ρ ′

m on Sm(Cn+1)′). In a recent work [1] it is proved that realizing H1(X, ρ) as harmonic forms, it consists of (0, 1)-forms
for the symmetric tensor of the holomorphic tangent bundle of X = Γ \ B. The proof in [1] uses a Hodge vanishing theorem
and the Koszul complex. In the present paper we shall give a rather elementary proof of the result. We will prove that any
harmonic form with values in Sm(Cn+1) is (0, 1)-form taking values in Sm(Cn). Let TX and T ′X be the holomorphic tangent
and cotangent bundles respectively. Let L−1 be the line bundle on X defined so that L−(n+1) is the canonical line bundle
K = KX . More precisely we shall prove the following, the notations being explained in Section 2,

Theorem 1.1. Let Γ be a torsion free cocompact lattice of G acting properly discontinuously on B.

(1) Let α ∈ A1(Γ , B, ρm) be a harmonic form. Then α is a (0, 1)-form on Γ \ B with values in the holomorphic vector bundle
SmTX ⊗ L−m.

(2) Let α ∈ A1(Γ , B, ρ ′
m) be a harmonic form. Then α is a (1, 0)-form on Γ \ B with values in the holomorphic vector bundle

SmT ′X ⊗ L−m and α is symmetric in all m + 1 variables. In particular α is naturally identified with a section of the bundle
Sm+1T ′X ⊗ Lm.
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Corollary 1.2. Let Γ be as above and assume that Γ \ B is compact then we have

H1(Γ , ρm) = H1(Γ \ B, SmTX ⊗ L−m), H1(Γ , ρ ′

m) = H0(Γ \ B, Sm+1T ′X ⊗ Lm),

where the cohomology on the right hand side are the Dolbeault cohomology of ∂̄-closed (0, 1)-forms of the holomorphic vector
bundles.

The case n = 1, namely a Riemann surface Γ \B, is slightly different. In that case the group cohomology H1(Γ , ρ2j) of the
2jth power of the defining representation of Γ ⊂ SU(1, 1) will have both holomorphic and antiholomorphic components,
H (1,0)(Γ , ρ2j), H (0,1)(Γ , ρ2j), the holomorphic part H (1,0)(Γ , ρ2j) corresponds to

H (1,0)(Γ , ρ2j) = H (1,0)(Γ \ B,Kj+1) = H0(Γ \ B,Kj+1)

of the tensor power of the canonical line bundle. This is known as the Eichler–Shimura correspondence; see [7, THÉORÈME 1]
where a concrete construction was given. We can also follow our proof and get an elementary proof of this result.

Our proof is a bit tricky but it is still very akin to the variation of Hodge structures; conceptually we are treating
explicitly the filtration of holomorphic bundles defined by the central action of K . It is stated in [1] that the results can
be derived from the work of Deligne and Zucker [8,9]. We note here that results of this type that (0, q)-forms in the group
cohomology Hq(Γ , B, ρ) are actually (0, q)-forms for a corresponding automorphic bundle have been obtained much earlier
by Matsushima andMurakami [10,11]. Such vanishing results are also at our disposal thanks to very general works of Vogan
and Zuckerman. And it seems that one can prove the above result by combining theworks of [10–13]. Thiswould certainly be
of interest as people in rigidity theory are not so familiar with Vogan–Zuckermav’s work. But our method is down-to-earth
hence we expect that it can be applied to various situations. For example we deal with n = 1 case, i.e., surface case in the
last section, which is not available in [1]. We will investigate further applications in the near future.

2. Preliminaries

Let V = Cn+1 be equipped with the Hermitian inner product ⟨Jv, v⟩ of signature (n, 1), where J is the diagonal matrix
J = diag(1, . . ., 1, −1) and ⟨v, w⟩ =

∑
v̄iwi the Euclidean form in Cn+1. We write V = V1 ⊕ Cen+1 with V1 being the

Euclidean space Cn with an orthonormal basis {ek, k = 1, . . . , n}. Let G = SU(n, 1) be the group of linear transformations on
V preserving the Hermitian form. The maximal compact subgroup of G is

K = {

[
A 0
0 eiθ

]
; A ∈ U(n), eiθ det A = 1} = U(n),

namely K = S(U(n) × U(1)) = U(n). The subgroup SU(n) ⊂ U(n) viewed as a subgroup in K will be denoted by SU(n) × e to
avoid confusion. The Lie algebra g = su(n, 1) consists of matrices X such that X∗J + JX = 0. The symmetric space G/K can be
realized as the unit ball B in V1 = Cn, B = G/K with x0 = 0 being the base point. Let g = k ⊕ p be the Cartan decomposition
of g and the subspace p = {ξv; v ∈ Cn

} with

ξv =

(
0 v

v̄ 0

)
.

The tangent space Tx0 (B) at x0 will be identified with p = Cn as real spaces.
We fix an element in the center of the maximal compact subalgebra k = u(n)

H0 = (n + 1)−1
√

−1diag(1, . . . , 1, −n),

which defines the complex structure on B, and we have

sl(n + 1) = sl(n) ⊕ CH0 ⊕ p+
⊕ p−.

Then the holomorphic and anti-holomorphic tangent space p± consists of upper triangular, respectively lower triangular
matrices. We denote

ξ+

v =
1
2
(ξv − iξiv) =

(
0 v

0 0

)
∈ p+, ξ−

v =
1
2
(ξv + iξiv) =

(
0 0
v̄ 0

)
∈ p−, (2.1)

the C- and C-linear components of ξv .
Let V1 = Cn be the defining representation and det(A) the determinant representation of U(n). We take the diagonal

elements as a Cartan algebra of gl(n,C) and the upper triangular matrices as positive root vectors. Denote ω1, . . . , ωn−1 the
fundamental representations of U(n), so thatω1 = V1 is the defining representation above andωn−1 the dual representation.
Note that ωi has the highest weight L1 + · · · + Li where Lj(diag(h1, . . . , hn)) = hj is a canonical dual element on the Cartan
algebra.

As complex representation of u(n) we have

p+
= ω1 ⊗ det = V1 ⊗ det, p−

= ωn−1 ⊗ det−1.



454 I. Kim, G. Zhang / Journal of Geometry and Physics 121 (2017) 452–460

This entails that, for A ∈ U(n),

A(ξ+

v1
∧ · · · ∧ ξ+

vn
) = (det A)nAξ+

v1
∧ · · · ∧ Aξ+

vn
= (det A)n+1(ξ+

v1
∧ · · · ∧ ξ+

vn
).

Hence

K−1
X = ∧

np+
= (det)n+1 (2.2)

and L = det.
We shall just identify p+ with V1, p+

= V1, when the center action of U(n) is irrelevant.
The defining representation V of G under u(n) is

V = V1 ⊕ det−1

We shall consider its symmetric representation (Sm(V ), ρm) of G and g. Note that we have

W = Sm(V ) = ⊕
m
k=0Wk = ⊕

m
k=0S

k(V1) ⊗ em−k
n+1 , (2.3)

and we make the identification of the spaces

Wk = Sk(V1) ⊗ em−k
n+1 = Sk(V1)

whenever the factor em−k
n+1 is irrelevant.

Note that the Euclidean inner product on V induces one on W = Sm(V ) and the above decomposition is an orthogonal
decomposition. Note also that action of ρm(X) is Hermitian for X ∈ p and skew Hermitian for X ∈ k.

A representation of G on a finite dimensional real or complex vector space defines also a vector bundle over the quotient
spaceΓ \B andwe recall briefly its construction following the exposition [10,14] and also somenotations there. Let (W , ρ) be
a finite dimensional representation of G on a real (or complex) vector spaceW . Eventually we shall only considerW = Sm(V )
as above and its dual Sm(V ′). We fix on W a K -invariant positive definite inner (respectively Hermitian) product. Let Γ

be a torsion free discrete subgroup of G. The restriction of ρ on Γ will also be written as ρ. Suppose Γ acts properly
discontinuously on B. LetΓ ×K act on G×W by (γ , κ)(g, w) := (γ gκ−1, ρ(γ )w). Then Eρ = G×W/Γ ×K is a vector bundle
on Γ \ B. The de Rham operator d is well-defined on Eρ and we let ∆ρ = dd∗

+ d∗d be the corresponding Hodge Laplacian
operator on space of p-forms Ω(Γ \ B, Eρ). We choose its standard realizations as W -valued p-forms on G as follows. Let
Ap(Γ , B, ρ) be the space ofW -valued p-forms α on G satisfying

(a) α(γ g) = α(g), γ ∈ Γ .
(b) ρ(κ)α(gκ−1) = α(g), κ ∈ K .
(c) ι(Y )α = 0, Y ∈ k.

Here ι(Y ) is the pairing of Y ∈ g as left-invariant vector fields on G (by differentiation from right) with a p-form α on G,
ι(Y )α(Z1, . . . , Zp−1) = α(Y , Z1, . . . , Zp−1). Equivalently it can be realized as p-forms on Γ \ G satisfying (b) − (c) above and
Ap
0(Γ , B, ρ) denotes the space ofW -valued p-forms on Γ \G. With some abuse of notation we denote ∆ρ the corresponding

Hodge Laplacian on Ap
0(Γ , B, ρ).

We shall also need the automorphic bundle defined by representations of K , see [10]. So let (V , τ ) be a complex
representation of the complexification of KC and we fix as above a Hermitian inner product on V so that K acts unitarily. The
group Γ ×K acts on G×V by (γ , κ)(g, w) = (γ gκ−1, τ (κ)w). Then Eρ = Γ ×K \G×V defines a holomorphic vector bundle
over Γ \ B. The p-forms on the vector bundle can be realized as the space Ap(Γ , B, τ ) (again with some abuse of notation)
of p-forms on Γ \ G satisfying

(b’) τ (κ)α(gκ−1) = α(g), κ ∈ K .
(c’) ι(Y )α = 0, Y ∈ k.

When ρ is a complex representation of G and (τ , K ) is a sub-representation of ρ restricted to K , then discrete group
cohomology Hp+q(Γ , B, ρ) and automorphic cohomology H (p,q)(Γ , B, τ ) are related by the work of [10].

3. The Eichler–Shimura isomorphism

In general, a real linear map B on a complex vector space W decomposes into C-linear part B+ and C-linear part B− so
that B(w) = B+(w) + B−(w̄) for w ∈ W . For any real linear map A : p → EndR(W ) from p to any complex vector space W
we let

A+(ξv) =
1
2
(A(ξv) − iA(ξiv)), A−(ξv) =

1
2
(A(ξv) + iA(ξiv))

be the C-linear and respectively C-linear components. In particular for any complex representation (W , ρ) of G and g we
have

ρ±(ξv) = ρ(ξ±

v ),
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where ξ±
v are defined in (2.1). Let now ρ = ρm be the representation Sm(V ) and ρm the dual representation Sm(V ′) of g.

Note that ρ1 is a defining representation V . We start now with a few simple observations formulated only ρ = ρm; the
corresponding ones hold for ρm.

Denote by

Pk : W → Wk = Sk(V1) ⊗ em−k
n+1

the orthogonal projection onto the componentWk in (2.3), and write

α =

m∑
k=0

αk

the corresponding decomposition for α ∈ W =
∑m

k=0Wk.
Let {Xj} be an orthogonal basis of p viewed as tangent vectors on Γ \ G at a fixed point Γ g and {ej} be the corresponding

orthonormal basis of V1. Let T = Tρ and T ∗
= T ∗

ρ be the operator defined on A1(Γ , B, ρ) as follows.

Tα(X1, X2) = ρ(X1)α(X2) − ρ(X2)α(X1)

T ∗α =

n∑
j=1

ρ(Xj)α(Xj).

We recall the following result [14, Corollary 7.50]

Proposition 3.1. Suppose α ∈ A1
0(Γ , B, ρ) is harmonic, ∆ρα = 0. Then Tρα = 0 and T ∗

ρ α = 0.

This can be restated as the following (which is also proved in [2] for S2(V ) by using matrix computations).

Corollary 3.2. Suppose α ∈ A1
0(Γ , B, ρ) satisfies Tρα = 0 and T ∗

ρ α = 0. Then theW-valuedR-bilinear form (X, Y ) ↦→ ρ(X)α(Y )
is symmetric

ρ(ξv)α(ξu) = ρ(ξu)α(ξv), (3.1)

and trace free∑
j

(ρ(ξej )α(ξej ) + ρ(ξiej )α(ξiej )) = 0. (3.2)

Our theoremwill be an easy consequence of the following proposition, whose proof is based on a few elementary lemmas.

Proposition 3.3.

(1) Suppose α ∈ HomR(p,W ) satisfies Tρα = T ∗
ρ α = 0. Then α is C-linear and takes value in Wm = SmV1, that is,

α = αm = α−
m ∈ HomC(p−,Wm).

(2) Suppose α ∈ HomR(p,W ′) satisfies Tρ′α = T ∗

ρ′α = 0. Then α isC-linear and takes value in Sm(V ′

1). Moreover as an element
in (p+)′ ⊗ Sm(V ′

1) = (V1)′ ⊗ Sm(V ′

1), it is symmetric in all variables, i.e., an element in Sm+1(V ′

1), the leading component in
(V1)′ ⊗ Sm(V ′

1).

Denote uivj−i the symmetric tensor power of u and v normalized by

(u + v)j = ⊗
j(u + v) =

j∑
i=0

(
j
i

)
uivj−i.

Note that the representation ρ = ρm is the symmetric tensor Sm(Cn+1) and ρ ′
= ρ ′

m its dual throughout the paper.

Lemma 3.4.

(1) Let 1 ≤ k ≤ m − 1. Then for any 0 ̸= ξv ∈ p,

ρ(ξv) : Wk → Wk+1 + Wk−1, ρ(ξ+

v ) : Wk → Wk+1, ρ(ξ−

v ) : Wk → Wk−1,

and on each space it is nonzero. Moreover if w ∈ Wk and ρ(ξ+
v )w = 0 or ρ(ξ−

v )w = 0 for all ξ±
v ∈ p± then w = 0.

(2) The restriction ρ(ξv)|Wm : Wm → Wm−1 on the top component Wm of W is C-linear in ξv , ρ(ξv)|Wm = ρ−(ξv)|Wm , and
ρ(ξv)W0 on the bottom component is C-linear in ξv , ρ(ξv)W0 = ρ+(ξv)W0 .

Proof. The defining representation ρ1 is just the matrix multiplication and we have

ρ1(ξv)u = ⟨v, u⟩en+1
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for u ∈ V1, and

ρ1(ξv)en+1 = v.

Thus

ρ1(ξ+

v )u = 0, ρ1(ξ−

v )u = ⟨v, u⟩en+1, ρ1(ξv)en+1 = v,

and

ρ1(ξ+

v )en+1 = v, ρ1(ξ−

v )en+1 = 0.

Taking the tensor power we find

ρ(ξ+

v )ekn+1 = kvek−1
n+1, ρ(ξ−

v )ekj = kvjen+1ek−1
j , 1 ≤ j ≤ n,

which are non-zero if vj ̸= 0. Then

ρ(ξ+

v )(Wk) = ρ(ξ+

v )(Sk(V1) ⊗ em−k
n+1 ) = (m − k)vem−(k+1)

n+1 ∈ Wk+1,

ρ(ξ−

v )(Wk) = ρ(ξ−

v )(Sk(V1) ⊗ em−k
n+1 ) ∈ Sk−1(V1) ⊗ em−(k−1)

n+1 ∈ Wk−1.

First note that

ρ(κ)ρ±(ξv)ρ(κ−1) = ρ±(ξκv), κ ∈ SU(n) × {e}, v ∈ V1.

If ρ(ξ±
v )w = 0 for all ξ±

v ∈ p± and for a fixed w ̸= 0, then

ρ(κ)ρ(ξ±

v )ρ(κ−1)w = ρ(ξ±

κv)w = 0

for all κ ∈ SU(n) × {e}. Here the action of K on W is via the given representation ρ from G. Hence it is zero for all ρ(κ−1)w,
and therefore zero for w = ekj , j = 1, . . . , n, contradicting the previous claim.

The second part (2) follows immediately from the above formulas for ρ(ξ±
v ) and fact thatWm+1 = 0 andW−1 = 0. □

The space HomC(p−,Wj) of C-linear forms β = β− on p− will be identified with the tensor product (p−)′ ⊗ Wj. Using
(p−)′ = V1 ⊗ det, the tensor product is decomposed under K as [15]

HomC(p
−,Wj) = (p−)′ ⊗ S j(V1) ⊗ em−j

n+1
≡ (S j+1(V1) ⊗ em−j

n+1) ⊕ (S j−1,1(V1) ⊗ em−j
n+1)

(3.3)

with the corresponding highest weights

ω1 ⊗ jω1 = (j + 1)ω1 + ((j − 1)ω1 + ω2).

Lemma 3.5. If ρ−(ξu)β−(ξv) = ρ−(ξv)β−(ξu) then β is in the first component S j+1(V1) in the above decomposition (3.3).

Proof. Note that the relation ρ−(ξu)β−(ξv) = ρ−(ξv)β−(ξu) is invariant under the K -action, since

ρ(κ)ρ±(ξv)ρ(κ−1) = ρ±(ξκv), κ ∈ K , v ∈ V1

and

ρ(κ)β(gκ−1) = β(g)

for all κ ∈ K (see Section 2), which results in

ρ(κ)ρ±(ξv)β(gκ−1) = ρ±(ξκv)β(g).

Thus if β− satisfies the relation so is its component in ((j − 1)ω1 + ω2). We prove that any element in ((j − 1)ω1 + ω2)
satisfying the relation must be zero. This space is an irreducible representation of K and we need only to check the relation
for its highest weight vector. The highest weight vector of ((j − 1)ω1 + ω2) in V1 ⊗ S j(V1) is

β = ϵ2 ⊗ ej1 − ϵ1 ⊗ (ej−1
1 e2)

where ϵi is a dual vector to ξ−
ei in p−. We check the relation

ρ(ξ−

e2 )β(ξ
−

e1 ) = ρ(ξ−

e1 )β(ξ
−

e2 ).

The left hand side is −ej−1
1 en+1 whereas the right hand side is jej−1

1 en+1, and the relation is not satisfied. Hence β should be
in the first component S j+1(V1). □

Note that {ek} is an orthogonal basis of V1. Observe that for any β ∈ HomC(p−,Wj) we have

ρ(ξ+

v )β ∈ HomC(p
−,Wj+1).
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Lemma 3.6. Suppose 1 ≤ j < m. The map

T : HomC(p
−,Wj) ≡ (j + 1)ω1 ⊕ ((j − 1)ω1 + ω2) → Wj+1, β ↦→

n∑
k=1

ρ(ξ+

ek )β(ξ
−

ek )

is up to non-zero constant an isometry on the space (j + 1)ω1 where ω′

is are fundamental representations of U(n) introduced in
Section 2.

Proof. It is clear that T is a K -intertwining map from HomC(p−, S j(V1)) into Wj+1. By Schur’s lemma it is either zero or an
isometry up to non-zero constant on the irreducible space (j+ 1)ω1. To find the constant we take β = ε1 ⊗ ej1e

m−j
n+1 where ε1

is the dual form of ξ−
e1 . It is indeed in the first component (j + 1)ω1 and is actually the highest weight vector. Then by direct

computation we find

Tβ = (m − j)ej+1
1 em−j−1

n+1 ,

which is nonzero. □

We consider the corresponding symmetry property for the dual representation ρ ′
= ρm.

Lemma 3.7. Suppose β = β+ is Sm(V ′

1)-valued C-linear form on p+. If ρ ′(ξ+
u )β(ξ+

v ) = ρ ′(ξ+
v )β(ξ+

u ) then β as an element in
(p+)′ ⊗ Sm(V ′

1) is symmetric in all m + 1 variables.

Proof. The statement is equivalent to thatβ(ξ+
v )(ξ+

u , ξ+
v1

, · · · , ξ+
vm−1

) is symmetric in allm+1 variables. However the equality
ρ ′(ξ+

u )β(ξ+
v ) = ρ ′(ξ+

v )β(ξ+
u ) implies that it is symmetric in the first two variables and thus is symmetric in allm+1 variables.

More precisely, viewing ρ ′(ξ+
u )β(ξ+

v ) and ρ ′(ξ+
v )β(ξ+

u ) as elements in Sm(V ′),

ρ ′(ξ+

u )β(ξ+

v )(en+1, . . . , en+1) = β(ξ+

v )(ρ ′(ξ+

u )en+1, . . . , ρ
′(ξ+

u )en+1)

= ρ ′(ξ+

v )β(ξ+

u )(en+1, . . . , en+1) = β(ξ+

u )(ρ ′(ξ+

v )en+1, . . . , ρ
′(ξ+

v )en+1).

Hence from ρ ′(ξ+
u )en+1 = u and ρ ′(ξ+

v )en+1 = v and identifying p+
= V1, we get

β(ξ+

v )(ξ+

u , . . . , ξ+

u ) = β(ξ+

u )(ξ+

v , . . . , ξ+

v ). □

We prove now Proposition 3.3.

Proof. We shall prove by induction that all αj = 0 for k ≤ m − 1. Let 1 ≤ k ≤ m − 1. Taking the kth component of (3.1) we
get

ρ+(ξv)α+

k−1(ξu) = ρ+(ξu)α+

k−1(ξv), (3.4)

ρ−(ξu)α−

k+1(ξv) = ρ−(ξv)α−

k+1(ξu), (3.5)

ρ+(ξu)α−

k−1(ξv) = ρ−(ξv)α+

k+1(ξu). (3.6)

We prove first that α0 = 0. Consider the 1-component of the identity

T ∗

ρ α =

∑
j

(
ρ(ξej )α(ξej ) + ρ(ξiej )α(ξiej )

)
= 0 (3.7)

and write each term in terms of their C-linear and C-linear parts. Note that bilinear C-linear and bilinear C-linear terms
have their sum zero. Also on the componentW0 the action ρ(ξu) = ρ(ξ+

u ) is C-linear, by Lemma 3.4. Thus∑
j

(
ρ+(ξej )α

−

0 (ξej ) + ρ−(ξej )α
+

2 (ξej )
)

= 0.

But by the equality of (3.6) for k = 1 we have ρ(ξ−
ej )α

+

2 (ξej ) = ρ(ξ+
ej )α

−

0 (ξej ). Namely

2
∑

j

ρ(ξ+

ej )α
−

0 (ξej ) = 0. (3.8)

Taking inner product with e1em−1
n+1 ∈ W1, and using the fact that

⟨ρ(ξ+

e1 )α
−

0 (ξe1 ), e1e
m−1
n+1 ⟩ = ⟨α−

0 (ξe1 ), ρ(ξ
−

e1 )(e1e
m−1
n+1 )⟩ = ⟨α−

0 (ξe1 ), e
m
n+1⟩
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and

⟨ρ(ξ+

ej )α
−

0 (ξej ), e1e
m−1
n+1 ⟩ = ⟨α−

0 (ξej ), ρ(ξ
−

ej )(e1e
m−1
n+1 )⟩ = 0, j ̸= 1,

we see that ⟨α−

0 (ξe1 ), e
m
n+1⟩ = 0, namely α−

0 (ξe1 ) = 0 since it is a scalar multiple of emn+1. By the K -invariance of above
relation (3.8) we may replace e1 by any ej, and get α−

0 (ξej ) = 0, i.e., α−

0 = 0 and α0 is C-linear, α0 = α+

0 . NowW0 = Cemn+1 is
one-dimensional and α0 is thus of the form

α0(ξu) = α0(ξ+

u ) = ⟨u0, u⟩emn+1

for some u0 ∈ V1. The relation (3.4) implies that

⟨u0, u⟩vem−1
n+1 = ⟨u0, v⟩uem−1

n+1

for all u, v ∈ V1. This is impossible unless u0 = 0 since dim V1 > 1, i.e., α0 = 0.
Taking the 0th component of the equality ρ(ξu)α(ξv) = ρ(ξv)α(ξu) we get

ρ−(ξu)α1(ξv) = ρ−(ξv)α1(ξu).

Changing v to iv we find

ρ−(ξu)α1(ξiv) = −iρ−(ξv)α1(ξu).

Summing the two results we get

ρ−(ξu)(α1(ξiv) + iα1(ξv)) = 0.

Taking further the inner product with emn+1 ∈ W0 we have

0 = ⟨ρ−(ξu)α1(ξiv) + iα1(ξv), emn+1⟩ = ⟨α1(ξiv) + iα1(ξv), ρ+(ξu)emn+1⟩

= ⟨α1(ξiv) + iα1(ξv), uem−1
n+1 ⟩

for all u. Thus α1(ξiv) + iα1(ξv) = 0, namely α1 is C̄-linear, α1 = α−

1 . Furthermore it follows from Lemma 3.5 that α1 is an
element in the component S2(V1) in (p−)′ ⊗ S1(V1).

We take now the 2-component of the identity (3.7) using again the fact that α1 is C-linear, and find

0 =

∑
j

(
ρ+(ξej )α1(ξej ) + ρ+(ξiej )α1(ξiej )

)
= 2

∑
j

(
ρ+(ξej )α1(ξ−

ej )
)

.

But α1 is in the component 2ω1 = S2(V1) and Lemma 3.6 implies that α1 = 0.
Using the above procedure successively we prove then that αj = 0 for j ≤ m − 2. Consequently we have α+

m−1 = 0 and
αm−1 = α−

m−1. Taking the trace of (m− 2)th component of (3.2) we have again
∑

jρ
+(ξej )α

−

m−1(ξej ) = 0 and αm−1 = 0 by the
same arguments.

Finally we consider the (m − 1)th component of the equality ρ(ξu)α(ξv) = ρ(ξv)α(ξu). We have

ρ−(ξu)αm(ξv) = ρ−(ξv)αm(ξu).

Replacing u by iu gives

− iρ−(ξu)αm(ξv) = ρ−(ξv)αm(ξiu).

Thus

ρ−(ξv)α+

m (ξu) =
1
2
ρ−(ξv) (αm(ξu) − iαm(ξiu)) = 0.

This holds for all ξv ∈ p. Thus α+
m (ξu) = 0 by Lemma 3.4, and αm is C-linear.

The second part (2) of the Proposition on the dual representation can be proved similarly using the similar arguments
and Lemma 3.7. □

We prove now Theorem 1.1 and Corollary 1.2.

Proof. The statements in Theorem 1.1 follows from Proposition 3.3. Indeed if α ∈ A1(Γ , B, ρm) is a harmonic form, then it
will have values in Sm(Cn) by Proposition 3.3. By the relation Cn

= p+
⊗ det−1 we have

Sm(Cn) = (p+)m ⊗ (det)−m
= SmTX ⊗ L−m,

proving thatα is a (0, 1)-section of SmTX⊗L−m. The proof of the second one is similar. The claim thatα isC-linear is precisely
that α is a (0, 1)-form. This proves the first part, and the second part follows similarly from Proposition 3.3(2).

Let α be a harmonic form representing an element H1(Γ , ρ). Write α =
∑m

k=0αk according to the decomposition (2.3).
It follows then from above that αk = 0 for k < m, i.e. α = αm. The isomorphism of the cohomology H1(Γ , ρ) and
H1(Γ \ B, SmTX ⊗ L−m) is then a consequence of [10, Proposition 4.2 and Theorem 6.1]. The second isomorphism is proved
similarly. □
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4. The Eichler–Shimura isomorphism for Riemann surfaces and applications

We consider now the case n = 1. Keeping the previous notation we consider the group cohomology H1(Γ , ρm) of the
tensor power Sm(C2) of the representation of Γ ⊂ SU(1, 1). In this case H1(Γ , ρm) has a decomposition as H1(Γ , ρm) =

H (1,0)(Γ , ρm)+H (0,1)(Γ , ρm), and in contrast to the case n ≥ 2 the component H (1,0)(Γ , ρm) is not vanishing but it is dual to
H (0,1)(Γ , ρm). This Eichler–Shimura isomorphism further gives a correspondence betweenH (1,0)(Γ , ρm) andH0-cohomology
of a line bundle over theRiemann surfaceΣ := Γ \B.WedenoteKΣ = K theholomorphic cotangent bundle, i.e. the canonical
line bundle on Γ \ B.

Theorem 4.1. Realizing H1(Γ , ρm) as the space of harmonic forms on Γ \B we have H1(Γ , ρm) = H (1,0)(Γ , ρm)+H (0,1)(Γ , ρm)
and furthermore the two space are dual to each other,

H (1,0)(Γ , ρm) = H0(Σ,K
m
2 +1), H (0,1)(Γ , ρm) = H0(Σ,K

m
2 +1)∗.

Proof. We prove the second isomorphism using the computation in Section 3. Let α be a (0, 1) form in H (0,1)(Γ , ρm).
Using z ∈ B near z = 0 as local coordinate as above, let α =

∑m
j=0αj be the decomposition of α in the decomposition

of Sm(C2) = ⊕
m
j=0Ce

j
1e

m−j
2 . The symmetry condition (3.6) implies that

ρ+(ξu)α(ξv) = ρ+(ξu)α−(ξv) = ρ−(ξv)α+(ξu) = 0

since α is C-linear, hence α = α− and α+(ξu) = 0. Thus

(ρ+(ξu)α(ξv))j = ρ+(ξu)α(ξv)j−1 = 0

for all j ≥ 1. But then since ρ+(ξe1 ) maps ej−1
1 em−j+1

2 to ej1e
m−j
2 for 1 ≤ j ≤ m, the component α(ξv)j−1 is vanishing for all

1 ≤ j ≤ m, and we have α = αm. Now from Eq. (2.2), K−1
Σ = det2. Hence SmV1 = SmTΣ ⊗ det−m

= K−m
⊗ K

m
2 = K−

m
2 and

we have thus α ∈ H1(Σ,K−
m
2 ) which is dual to H0(Σ,K

m
2 +1) by Serre duality. That this map is onto is a consequence of the

general results of [10,11], as in the proof of Corollary 1.2. □

We give now an application of the above result computing the tangent space of the Hitchin’s Teichmüller component
of representations of Γ in a semisimple Lie group G. We shall only treat the case G = SL(n,R) even though much
computations can be carried over to other cases. The result might be known to experts but it seems still to provide some
novel understanding for the geometry of the component.

We consider two representations of SL(2,R) = SU(1, 1) into the group SL(n,R) and compute the corresponding group
cohomologies of Γ ⊂ SL(2,R). We consider first the real representation of SL(2,R) on the symmetric tensor (Sm(R2), ρm) in
the group SL(m+1,R). Let τk, k ≤ m, be the representation ρk in SL(k+1,R) considered as a representation in SL(m+1,R).
We compute the corresponding cohomologies which can be viewed as the tangent space of the variety at the respective
points.

Theorem 4.2. Realizing the elements in the group cohomologies as harmonic forms we have that H1(Γ , ρm, sl(m + 1,R)) and
H1(Γ , τk, sl(m + 1,R)) are real forms in the space

m∑
j=1

H0(Σ,Kj+1) + H0(Σ,Kj+1)∗

and
k∑

j=1

H0(Σ,Kj+1) + H0(Σ,Kj+1)∗ + (H0(Σ,K
k
2 +1) + H0(Σ,K

k
2 +1)∗)2(m−k)

+ (H0(Σ,K) + H0(Σ,K)∗)(m−k)2 .

Proof. We consider the complexification sl(2,C) and its representation SkC2 in sl(m + 1,C). The real representation SkR2

of sl(2,R) in sl(m + 1,R) is the fixed point of the conjugation X → X̄ of sl(m + 1,C). Now the adjoint representation of
sl(2,C) under ρm in sl(m + 1,C) is decomposed as [16,17]

sl(m + 1,C) =

m∑
j=1

S2jC2

with the first component S2C2 being sl(2,C) itself. Now by Theorem 4.1 we have

H (1,0)(Γ , S2jC2) = H (1,0)(Σ,Kj) = H0(Σ,Kj+1),

H (0,1)(Γ , S2jC2) = H (0,1)(Σ,K−j) = H0(Σ,Kj+1)∗.
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The involution X ↦→ X̄ on the one-forms is now f (z)(dz)j ⊗ dz ↦→ f̄ (z)∂ j
z ⊗ dz̄. Thus the real cohomology H1(Γ , sl(m+ 1,R))

is a real form in the space stated. Now under the action τk we have

sl(m + 1,C) =

k∑
j=1

S2jC2
⊕ (SkC2)2(m−k)

⊕ C(m−k)2

the cohomology of Γ in the S2jC2 is computed as above. The cohomology in C is

H1(Γ ,C) = H0(Σ,K) + H0(Σ,K)∗

the space of abelian differentials. The rest of the claim follows immediately. □

The set

{ρm ◦ φ|φ : Γ → SL(2,R) discrete and faithful}/∼

constitutes the Fuchsian locus in the Hitchin component. The above theorem shows that the tangent space of Hitchin
component at Fuchsian locus consists of

∑m+1
j=2 H0(Σ, K j

Σ ). When m = 2, the Hitchin component is the set of convex real
projective structures on a surface. Furthermore it is known that the Hitchin component is a holomorphic vector bundle over
Teichmüller space with fibers cubic holomorphic forms [18,19]. In the forthcoming paper [20], we will analyze this case
in more details to show that the Hitchin component is a Kähler manifold, and we will elaborate more on local rigidity of
complex hyperbolic lattices [21].
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