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Digital Predistortion for Multi-Antenna Transmitters

Affected by Antenna Crosstalk
Katharina Hausmair, Per N. Landin, Ulf Gustavsson, Christian Fager, Thomas Eriksson

Abstract—In this paper, a digital predistortion (DPD) tech-
nique for wideband multi-antenna transmitters is proposed. The
proposed DPD compensates for the combined effects of power
amplifier (PA) nonlinearity, antenna crosstalk and impedance
mismatch. The proposed technique consists of a linear crosstalk
and mismatch model block shared by all transmit paths, and a
dual-input DPD block in every transmit path. By avoiding the use
of multi-input DPD blocks in every transmit path, the complexity
of the proposed technique is kept low and scales more favorably
with the number of antennas than competing techniques. It is
shown that all blocks can be identified from measurements of the
PA output signals using least-squares estimation. Measurement
results of a four-path transmitter are presented and used to
evaluate the proposed DPD technique against existing techniques.
The results show that the performance of the proposed DPD
technique is similar to those of existing techniques, while the
complexity is lower.

Index Terms—MIMO transmitter, antenna crosstalk, power
amplifier linearization, digital predistortion

I. INTRODUCTION

Multi-antenna systems are an important part of modern and

future wireless telecommunication standards such as LTE, Wi-

Fi, and 5G [1]. In such systems, each transmit path has its

own power amplifier (PA) and antenna element, as shown

in Fig. 1. Large-scale multi-antenna systems like massive

MIMO comprise up to several hundreds of transmit paths [2].

Therefore, integrated system designs are used where expensive

and bulky components like isolators between PAs and antennas

are avoided to reduce system complexity and cost. However,

such systems are vulnerable to antenna crosstalk due to mutual

coupling and antenna mismatches [3]. As a consequence,

integrated multi-antenna transmitters typically suffer from

nonlinear distortion due to the mixing of the antenna crosstalk

and mismatch with the PA output, in addition to the nonlinear

distortion caused by the behavior of the PAs [4], [5]. To avoid
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Fig. 1. Multi-antenna transmitter system model with K transmit paths.
Each path consists of one PA connected to an antenna element. The antenna
elements form the antenna array.

violating spectrum regulations and communication standard

requirements, compensation techniques are needed to mitigate

this distortion at the transmitter.

Digital predistortion (DPD) has been widely used to lin-

earize PAs. Many algorithms have been proposed for single-

input DPDs, e.g. [6], [7], which are designed for systems with

only one transmit path. Single-input DPD can compensate for

PA nonlinearity, but not for the effects caused by antenna

crosstalk, and is therefore not suitable for multi-antenna sys-

tems [4], [5].

Several DPD techniques have been proposed to compensate

for different types of nonlinear distortion in multi-antenna

transmitters. The authors of [8], [9] and [10] propose a

DPD technique that has a structure specifically designed to

compensate for nonlinear distortion in systems where crosstalk

is introduced before the PA. A similar technique is used

in [11]. However, nonlinear effects of antenna crosstalk are

not considered and cannot be compensated for using these

DPD techniques. The crossover DPDs proposed in [12], [13]

are designed to compensate for crosstalk before and after

the PA. However, in those publications it is assumed that

only crosstalk before the PAs is causing nonlinear effects,

whereas the effects of crosstalk occurring after the PAs are

assumed to be linear. Since the techniques do not consider

necessary crossterms between signals of different transmit

paths, they are not suitable for linearization of multi-antenna

transmitters with antenna crosstalk. The authors of [14] include
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certain crossterms between different transmit paths in their

augmented crossover DPD. However, also their system model

does not consider mixing between the crosstalk and the PA

output signals. Despite that, their approach can be applied

to compensate for the combined effects of PA nonlinearity

and antenna crosstalk in cases where the crosstalk can be

considered small in power.

Also the authors of [15] use a system model without mixing

of antenna crosstalk and PA output for their behavioral models

and DPD of a two-path transmitter. Nevertheless, their DPD

includes the necessary terms to compensate for the effects

caused by any kind of antenna crosstalk. Another method

that could be used to combat the nonlinear effects due to

antenna crosstalk is presented in [16], where a method for joint

nonlinearity and in-phase and quadrature imbalance in multi-

antenna transmitters is proposed. However, these techniques do

not scale well for systems with larger numbers of antennas,

since they would require a multi-input DPD, i.e. a multi-variate

polynomial or Volterra series, in every path of the transmitter.

Due to complexity, such an approach is not feasible for

emerging transmitters with many antennas. To reduce the

complexity of such approaches, the authors of [17] propose a

sparse estimation technique which can reduce the complexity

but still requires the use of multi-input memory polynomial

models.

In this manuscript, we propose a multi-antenna transmitter

DPD technique that employs a completely different structure

than existing techniques in order to reduce complexity. The

basis for the proposed technique is a multi-antenna transmitter

model first presented in [4], where dual-input PA models are

combined with linear antenna array models. The proposed

DPD technique consists of two main blocks: one linear block

that models antenna crosstalk and mismatch and is shared

by all paths of the transmitter, and a nonlinear dual-input

DPD block in every transmit path, as shown in Fig. 2. Our

solution is suitable for multi-antenna transmitters with any

kind of crosstalk and mismatch at the PA outputs that can

be described as a linear function of all transmit path outputs.

The complexity of the antenna crosstalk and mismatch block

increases linearly with the number of transmit paths, while

the complexity of each dual-input DPD block is completely

independent of the number of transmit paths. Hence, for

transmitters with more than two paths, the complexity of the

proposed DPD is lower compared to existing solutions. Just

like existing solutions, the proposed DPD can be identified

from measurements of the individual PA output signals using

conventional linear least-squares estimation algorithms, and

requires no other prior knowledge of the characteristics of

the PAs or the antenna array. The proposed DPD technique

is evaluated and compared to existing techniques in measure-

ments of a four-path transmitter. To our knowledge, this is the

first time that measurement results of a transmitter with more

than two paths are presented for these kinds of DPDs.

The paper is organized as follows: In Section II we introduce

the system model of a multi-antenna transmitter. In Section III,

we present the proposed multi-antenna transmitter DPD in-

cluding an identification procedure. The proposed technique

is evaluated in measurements of a four-path transmitter. The

setup for the experiments is explained in Section IV, and

the results are presented in Section V. Finally, we draw our

conclusions in Section VI.

II. SYSTEM MODEL

In this section, the system model of the multi-antenna

transmitter in equivalent discrete-time lowpass description is

given. Note that, where applicable, the time dependency is

omitted for better legibility, such that for example aik(n) is

written as aik. A block diagram of a multi-antenna transmitter

with K transmit paths is shown in Fig. 1. Each transmit path

consists of an RF PA connected to an antenna element. The

antenna elements form the antenna array. All transmit paths

operate in the same frequency band. The signal a1k is the

input to the PA of the kth path, and the signal b2k is the

PA output signal. Due to antenna crosstalk and mismatch, a

signal a2k is incident to the output of the PA. Each PA of the

transmitter can be modeled as a dual-input system with one

output. The crosstalk and mismatch signal a2k is a function of

the PA output signals of all paths, and the relation between a2k
and the output signals b2k is determined by the characteristics

of the antenna array. The system model of the multi-antenna

transmitter can therefore be split in two parts: a crosstalk and

mismatch model (CTMM), and a dual-input PA model [4], [5].

A. Crosstalk and Mismatch Model

The CTMM describes the crosstalk and mismatch signals

a2k as a function of the PA outputs b2k. If the antennas

are wideband compared to the signal bandwidth, a2k can be

described as a linear combination of the PA output signals of

all transmit paths by [4], [5]

a2k =
K
∑

i=1

λkib2i = bT2 λk (1)

where b2 = [b21, . . . , b2K ]T , λki are complex coefficients

and λk = [λk1, . . . , λkK ]T . The antenna array scattering

parameters (S-parameters) can be used to describe the char-

acteristics of an antenna array. The S-parameters measured at

center frequency, i.e. the S-parameter matrix of the array, then

correspond to a matrix [λ1, . . . ,λK ].

B. Dual-Input PA Model

The PA output signal b2k of the kth PA is modeled as a

function of the signals a1k and a2k by [5], [18]

b2k =

(P−1)/2−1
∑

p=0

p
∑

v=0

p+1
∑

u=0

θkpvu a1k
p+1−ua∗1k

p−va2k
ua∗2k

v

=

(P−1)/2
∑

p=0

αkp a1k
p+1a∗1k

p







(2a)

+

(P−1)/2
∑

p=0

βkp a1k
pa∗1k

pa2k







(2b)

+

(P−1)/2
∑

p=1

γkp a1k
p+1a∗1k

p−1a∗2k







(2c)
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+

(P−1)/2
∑

p=1

p
∑

v=0

p+1
∑

u=0
u>1−v

δkpuv

× a1k
p+1−ua∗1k

p−va2k
ua∗2k

v



















(2d)

where θkpvu, αkp, βkp, γkp, δkpuv are complex coefficients. As

can be seen, there are four types of basis functions, which all

contain one more non-conjugate term than conjugate terms [7]:

basis functions that depend only on a1k in (2a), basis functions

that depend on a1k and linear terms of a2k in (2b), basis

functions that depend on a1k and linear terms of a∗2k in (2c),

and basis functions that depend on a1k and nonlinear terms of

a2k in (2d). If the crosstalk and mismatch signal a2k can be

considered relatively small in power, only linear terms of a2k
need to be considered in the dual-input PA model [19]. Then,

all basis functions in (2d) become negligible and can be set

to zero.

To make the dual-input PA model suitable for wideband

signals, dynamic effects need to be considered [6]. This is

done by introducing memory effects. In [15] and [18], several

strategies for introducing memory effects in dual-input PA

models are explained. Any of these strategies can be used in

the models presented here. While the concept of introducing

memory is rather simple, the equations become cumbersome

to read. We therefore describe the memoryless equations in

the main text here, and refer the reader to Appendix A, where

we present the equations including memory effects.

In matrix form, the dual-input PA model can be written as

b2k=
[

G
(0)(a1k) G

(1)(a1k, a2k) G
(2)(a1k, a2k)

G
(3)(a1k, a2k)

] [

αT
k βT

k γT
k δTk

]T

= G(a1k, a2k)θk (3)

where a1k, a2k and b2k are vectors containing all time

samples of the signals a1k, a2k and b2k, e.g., a1k =
[a1k(0), . . . , a1k(N−1)]T where N is the number of samples.

The vectors αk,βk,γk, δk and θk contain the complex coef-

ficients, e.g., αk = [αk0, . . . , αk((P−1)/2−1)]
T . Furthermore,

the matrix G
(0)(a1k) contains the basis functions in (2a),

G
(1)(a1k, a2k) the basis functions in (2b), G(2)(a1k, a2k) the

basis functions in (2c), G
(3)(a1k, a2k) the basis functions

in (2d), and G(a1k, a2k) combines all basis functions in (2).

III. MULTI-ANTENNA TRANSMITTER DPD

We propose a DPD that consists of two main blocks: one

linear CTMM block for the whole transmitter, and a dual-input

DPD block in every transmit path. A block diagram of the

proposed method is shown in Fig. 2. Each dual-input DPD is

the inverse function of the respective dual-input PA, while the

CTMM block emulates the behavior of the antenna array. One

input of the kth dual-input DPD is the signal bdk which is the

desired output signal of the kth PA, i.e. in a perfectly linearised

transmitter b2k = bdk. The second input to the kth dual-input

DPD is an estimate â2k of the crosstalk and mismatch signal.

The CTMM block creates the signals â2k from the signals bdk.

The output of the kth dual-input DPD, which is driving the

kth PA, is the signal a1k.

bd1
dual-input DPD

a11 = H(bd1, â21)ϕ1

a11
PA

bd2
dual-input DPD

a12 = H(bd2, â22)ϕ2

a12
PA

bdK
dual-input DPD

a1K=H(bdK , â2K)ϕK

a1K
PA

CTMM

â2k = b
T
d λ̂k

â21

â22

â2K

b21

b22

b2K

a
n
te
n
n
a
a
rr
ay

proposed multi-antenna TX DPD

Fig. 2. Block diagram of a multi-antenna transmitter with the proposed DPD
method. The method consists of two main blocks: one linear crosstalk and
mismatch model (CTMM) block for the whole transmitter, and a dual-input
DPD block in every transmit path.

The identification of the coefficients in the proposed tech-

nique is based on measurements of the individual PA output

signals, and requires no other prior knowledge of the PA

behavior or the characteristics of the antenna array. First,

using the signals bdk, which are known, the CTMM block

coefficients can be identified from measurements of the PA

output signals b2k. Then, with the signals bdk and the output of

the CTMM block â2k, the dual-input DPD coefficients can also

be identified from measurements of the PA output signals b2k.

Note that for the identification of both the dual-input DPD and

the CTMM coefficients, the input signals bdk to the different

transmit paths cannot be fully correlated. For the special case

of multi-antenna systems with fully correlated signals like,

e.g., beamforming systems, suitable training signals have to be

used for the identification, which requires the transmission of

user data to be interrupted. However, for applying the CTMM

and the DPD, no such restrictions apply.

The CTMM block and dual-input DPD as well as the identi-

fication procedures are described below. Note that, without loss

of generality, we assume amplifiers with unity gain to simplify

the notation. When applying the proposed technique to PAs

with non-unity gain, any conventional gain normalization

concept can be used, e.g. [20], or [21].

A. Crosstalk and Mismatch Model

The CTMM produces the signals â2k by

â2k =bTd λ̂k (4)

where λ̂k is a vector with the CTMM coefficients of the

kth transmit path, which have to be identified. The vector

bd = [bd1, . . . , bdK ]T contains the input signals bdk to the

transmitter, which are known. Also known are the PA output

signals b2k, which are obtained by measurements. Because

no DPD is applied for the CTMM coefficient identification

procedure, a1k = bdk.
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INITIAL STEP: i = 0

known: bdk, a1k = bdk

measured: b2k

λ̂
(0)

k = 1

STEP 1: i = i+ 1

use â2k = b
T
d λ̂

(i−1)

k in (5)

to identify PA model

coefficients [α̂k, β̂k, γ̂k, δ̂k]
(i)

STEP 2:

use [α̂k, β̂k, γ̂k, δ̂k]
(i) in (6)

to identify CTMM

coefficients λ̂
(i)

k

accuracy?
not satisfying

satisfying

λ̂k found

Fig. 3. Flowchart for the identification of the CTMM coefficients of the kth
transmit path.

The CTMM coefficients λ̂k are identified for every transmit

path individually in a two-step procedure. First, the coeffi-

cients α̂k, β̂k, γ̂k, δ̂k of the dual-input PA model in (3) are

estimated. Then, using the estimated PA model coefficients,

the CTMM coefficients λ̂k are estimated. The two steps of

the procedure are performed for several iterations until the

result is satisfying. In the initial step, all CTMM coefficients

λ̂k are arbitrarily set to 1. A simple flowchart of the procedure

is shown in Fig. 3.

In step 1 of the procedure, using (3), least-squares estimates

α̂k, β̂k, γ̂k, δ̂k of the PA model coefficients are obtained with

[

α̂T
k β̂

T

k γ̂T
k δ̂

T

k

]T

= G(a1k, â2k)
+
b2k (5)

where the pseudoinverse G
+ = (GH

G)−1
G

H is used.

In step 2 of the procedure, which is fully derived in

Appendix B, an estimate of the CTMM coefficients λ̂k =
ℜ{λ̂k}+ jℑ{λ̂k} is found with

[

ℜ{λ̂k}

ℑ{λ̂k}

]

=

[

ℜ{F
(1)
k + F

(2)
k } ℑ{−F

(1)
k + F

(2)
k }

ℑ{F
(1)
k + F

(2)
k } ℜ{F

(1)
k − F

(2)
k }

]+

×

[

ℜ{b2k − f
(0)
k − f̂

(3)
k }

ℑ{b2k − f
(0)
k − f̂

(3)
k }

]

(6)

where ℜ{·} and ℑ{·} denote real part and imaginary part,

respectively, and

F
(1)
k = diag(f

(1)
k )B2 F

(2)
k = diag(f

(2)
k )B∗

2 (7)

where diag(f) denotes a diagonal matrix with the elements

of the vector f as diagonal entries and B2 = [b21, . . . ,b2K ].

The vectors f
(0)
k , f

(1)
k , f

(2)
k , which contain values for all time

samples, are obtained from

f
(0)
k =

(P−1)/2
∑

p=0

α̂kp a1k
p+1a∗1k

p

INITIAL STEP: i = 0

known: bdk, from CTMM: â2k

a
(0)
1k = bdk

measure b
(0)
2k

i = i+ 1

identify DPD coefficients:

ϕ
(i)
k = H(b

(i−1)
2k , â2k)

+
a
(i−1)
1k

run DPD:
a
(i)
1k = H(bdk, â2k)ϕ

(i)
k

measure b
(i)
2k

linearity?
not satisfying

satisfying

ϕk found

Fig. 4. Flowchart for the identification of the dual-input DPD coefficients of
the kth transmit path.

f
(1)
k =

(P−1)/2
∑

p=0

β̂kp a1k
pa∗1k

p

f
(2)
k =

(P−1)/2
∑

p=1

γ̂kp a1k
p+1a∗1k

p−1. (8)

Furthermore,

f
(3)
k (λ̂k) =

(P−1)/2
∑

p=1

p
∑

v=0

p+1
∑

u=0
u>1−v

δ̂kpuv a1k
p+1−ua∗1k

p−v

×
(

bT2 λ̂k

)u (

b∗T2 λ̂
∗

k

)v

. (9)

As can be seen, f
(3)
k (λ̂k) is nonlinear in the crosstalk coeffi-

cients λ̂k. However, it is not desirable to solve this nonlinear

problem due to computational requirements. There are two

alternatives to avoid this. The first alternative is to set λ̂k = 0
within f

(3)
k , such that f̂

(3)
k = f

(3)
k (0) = 0. The second option

is to use a previous estimate λ̂k. Note that for a dual-input PA

model using only linear terms of a2k, f
(3)
k (λ̂k) = 0 inherently.

For a system model with memory effects, the equations for

step 2 need be adapted. This is shown in Appendix C.

Note that another option of obtaining a set of coefficients for

the CTMM block is to use antenna S-parameter measurements.

We will show the results for both S-parameter measurements

and the identification procedure outlined above in the experi-

ment section.

B. Dual-Input DPD

Fig. 2 illustrates the proposed DPD method. The predis-

torted signal a1k, i.e. the output of the dual-input DPD of the

kth transmit path, is calculated for all time samples by

a1k = H(bdk, â2k)ϕk (10)

where ϕk are the dual-input DPD coefficients of the kth

transmit path, which have to be identified. The signals bdk
to the DPD are known. The second input signals â2k to
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Fig. 5. Block diagram of the measurement setup.

the DPD are produced by the CTMM block, as discussed in

Sec. III-A. The dual-input DPD matrix H(bdk, â2k) contains

basis functions of the same kind as the dual-input PA model

matrix G(a1k, a2k) in (3). The PA output signals b2k are

obtained by measurements.

Fig. 4 shows a flowchart for the identification of the dual-

input DPD coefficients ϕk. The least-squares estimate of the

dual-input DPD coefficients ϕk is found as

ϕk =H(b2k, â2k)
+
a1k. (11)

In the initial step of the dual-input DPD identification, a1k =
bdk. The dual-input DPD identification is iterated until the

resulting linearity is satisfying. This procedure is exactly

the same as a conventional indirect learning architecture

(ILA) [21], with the extension that there is a known second

input to the DPD.

The proposed dual-input DPD can be used as the regional

model in a vector-switched DPD, which was proposed to

improve the results of PA linearization techniques in [22].

In this approach, several switching regions are defined, and

a separate DPD is calculated and applied for each region. The

switching regions for the dual-input DPD are based on the

signals bdk.

C. Non-Uniqueness of Coefficients

The solution for CTMM coefficients λ̂k and dual-input

DPD coefficients ϕk is not unique. Multiplying the CTMM

coefficients by an arbitrary scaling factor while reciprocally

scaling dual-input DPD coefficients will result in the same

DPD output signals, and therefore not change linearization

performance. There is also ambiguity in the kth element of

DC supplies

Agilent PXA N9030a

R&S RTO1044

Agilent M8190A

Agilent M8190A

antenna array

PA1

PA4

PA2

PA3

Fig. 6. Photo of the measurement setup in the lab showing measurement
instruments, PAs and antenna array. PA1 is connected to antenna 1 of the
array, PA2 to antenna 2 and so on.

each of the CTMM coefficient vector λ̂k, as can be seen

from (17) where b2k appears on both sides of the equation.

This can cause numerical problems or unidentifiability. One

way to prevent either CTMM coefficients or dual-input DPD

coefficients from becoming arbitrarily large or small, is to

keep the kth element of λ̂k to a fixed value, and to normalize

the other CTMM coefficients of the vector after each CTMM

identification step 2 to a suitable value by dividing all of

them by a scaling factor. For example, after each step 2 of

the CTMM identification, perform the normalization λ̂k/ρk,

where ρk = maxj,j 6=k(λ̂k(j)), and set λ̂k(k) = 1. By doing

so, CTMM coefficients with absolute values between zero and

one are obtained. This is the approach we have taken in our

studies.

IV. EXPERIMENTAL VALIDATION

In this section, the measurement setup of a four-element

transmitter is presented, which is used to validate the pro-

posed DPD technique and compare it to existing techniques.

Measurement settings and performance evaluation measures

are given as well. The results are presented in Section V.

A. Measurement Setup

A block diagram of the measurement setup of the four-

element transmitter is shown in Fig. 5, and a photo of the

setup is shown in Fig. 6.

The four driving signals for the PAs were created in

MATLAB. The signals were different and independent orthog-

onal frequency-division multiplexing (OFDM) signals with

5 MHz bandwidth, and peak-to-average power ratios of around

8.5 dB. Two synchronized high-speed dual-channel arbitrary

waveform generators (AWG, Agilent M8190A) were used to

synthesize the four driving signals. The four PAs were identical

GaAs PA evaluation boards from Skyworks (SKY66001-11),

supplied with 3.3 V and operated at a center frequency of

2.12 GHz. The instantaneous gain of one of the PAs is shown

in Fig 7. The PAs have integrated couplers at their outputs,

which were used to measure the individual PA output sig-

nals. The antenna array was a rectangular four-element array
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Fig. 8. Measured antenna array S-parameters vs. frequency. The char-
acteristics are only shown for antenna 1, since they are similar for all
antennas due to reciprocity. The figure shows the scattering parameters
for: reflection (S11), adjacent element (S14), opposite element (S12), and
diagonally opposite element (S13). The antenna array can be seen in the
photo of the measurements setup in Figure 6.

with microstrip patch elements. The highest coupling factor

between two elements of the array is around -12 dB. The mea-

sured array scattering parameters versus frequency are shown

in Fig. 8 for one antenna in the array. The other S-parameters

show similar behavior due to symmetry of the antenna array

design, which can be seen in Fig. 6. A single antenna element

of the same type as the transmitter elements was used as a

receiver. The four individual PA output signals were measured

with a four-channel 8-bit oscilloscope (OSC, Rohde&Schwarz

RTO1044). The noise floor of the oscilloscope was the limit for

the achievable linearization. The received signal, which is in

the far field of the four-element transmitter, was measured with

a vector signal analyzer (VSA, Agilent PXA N9030a). The

received signal is a linear combination of the four transmitted

signals including channel effects as well as the effect of

the receiver antenna. Since independent signals are feeding

the four antennas, the resulting relative distortion of the

received signal becomes independent of direction. Hence, the

nonlinear distortion observed at the receiver is independent

of the receiver location, which is why measurement results

are presented for only one position. Processing was done in

MATLAB at a baseband sampling frequency of 25 MHz.

Dynamic effects are characteristic for PAs in a wideband

scenario. A driving signal bandwidth of 5 MHz was chosen

since it was wide enough to cause dynamic effects in the

chosen PAs, while the antenna array characteristics were still

approximately the same for all frequencies within the signal

bandwidth.

B. Evaluated DPD Techniques and Performance Measures

The proposed DPD technique was tested and compared to

single-input DPD and multi-input DPD, as well as the case

where no DPD is used.

As mentioned, an alternative to identifying a set of CTMM

coefficients from measurements of the PA output signals is to

use measurements of the antenna array S-parameters at center

frequency. Results of the proposed technique are presented for

both these methods. A big disadvantage of using measured S-

parameters as CTMM coefficients is that a separate calibrated

setup is required to obtain the S-parameters. The S-parameter

measurements were performed with a two-port vector network

analyzer directly at the antenna ports. The measurements were

performed pairwise, with the other ports terminated in 50

Ohm. Results of the proposed technique where the CTMM

coefficients were identified from PA output measurements

are indicated with DI-CTMM DPD, and results using S-

parameters with DI-SParam DPD.

All multi-antenna DPD results, i.e., the proposed technique

as well as the multi-input DPDs, are shown for two system

models. The first system model, which is indicated by NLCT,

is a memory polynomial dual-input PA model that considers

nonlinear terms of the crosstalk signals a2k as given in (15).

The second system model, indicated by LCT, considers only

linear terms of the crosstalk signals a2k such that all terms

in (15d) become zero. The LCT model is suitable if the

crosstalk signals a2k are relatively small in power. Both

system models consider cross-products between PA output and

antenna crosstalk signals. The advantage of the LCT model is

that it leads to much lower complexity than the NLCT model.

For the CTMM identification with NLCT, a previous estimate

of the crosstalk coefficients λk was used in f (3) in (21).

Note that the LCT multi-input DPD is based on the tech-

nique in [14], and the NLCT multi-input DPD is based on

the technique in [15]. Both techniques have been extended to-

wards a four-path transmitter. For all DPDs, a vector-switched

memory-polynomial DPD structure [22] with four switching

regions based on the desired output signals bdk was used.

For the evaluation of results, the normalized mean square

error (NMSE) and the adjacent channel leakage ratio (ACLR)

are used. The NMSE is calculated by

NMSE =

∑N−1
n=0 |x(n) − x̂(n)|2
∑N−1

n=0 |x(n)|
2

(12)

where N is number of time samples, x(n) is the desired output

signal and x̂(n) is the measured output signal. The ACLR is

calculated as

ACLR = max
c=1,2

{∑

f(adj)c
|X(f)|2

∑

fch
|X(f)|2

}

(13)

where X(f) is the measured amplitude spectrum, fch denotes

inband frequencies and fadj frequencies in the adjacent chan-

nel.

V. RESULTS

In this section, we first evaluate the CTMM identification

procedure, since its reliability is integral for the proposed
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TABLE I
ACLR AND NMSE FOR DIFFERENT DPD TECHNIQUES.

DPD technique
ACLR (dB) NMSE (dB)

PA1 PA2 PA3 PA4 RX PA1 PA2 PA3 PA4

none -40.0 -36.0 -36.6 -38.2 -36.3 -21.8 -20.6 -23.4 -22.1

single-input -45.7 -44.2 -45.2 -44.2 -45.9 -22.2 -20.8 -25 -22.3

N
L

C
T

a proposed DI-CTMM -51.6 -50.5 -49.9 -52.4 -50.7 -41.2 -41.1 -39.7 -40.5

proposed DI-SParam -50.8 -51.0 -50.8 -52.6 -51.2 -33.7 -33.0 -34.1 -39.5

multi-input -50.1 -49.1 -49.0 -50.0 -47.2 -41.9 -40.8 -40.2 -41.1

L
C

T
b

proposed DI-CTMM -50.4 -51.6 -50.2 -52.2 -51.3 -40.9 -40.9 -40.0 -41.1

proposed DI-SParam -51.1 -51.3 -50.1 -52.9 -50.9 -34.8 -32.2 -33.5 -39.8

multi-input -51.1 -51.5 -50.5 -53.0 -51.7 -41.3 -41.4 -40.5 -41.8

a NLCT indicates DPDs based on models with linear and nonlinear crosstalk terms
b LCT indicates DPDs based on models with only linear crosstalk terms

DPD technique. Then, the results for the proposed DPD

technique are presented, evaluated and compared to existing

DPD techniques.

A. Evaluation of CTMM Identification

The CTMM coefficients are an essential part of the proposed

DPD technique. Therefore, it is important that the identifica-

tion procedure is reliable. The reliability of the CTMM identi-

fication method using PA output measurements as proposed in

Section III-A is evaluated by extracting CTMM coefficients for

different initial values and comparing the results. The initial

values were complex numbers with real and imaginary parts

that were randomly chosen according to a uniform distribution

with interval [−1, 1].
We have used the procedure suggested in Section III-C to

avoid numerical and identification problems. Using this pro-

cedure, the kth CTMM coefficient and the maximum CTMM

coefficient of the kth path assume the fixed value 1. The results

for identification of the remaining CTMM coefficients for all

paths are shown in Fig. 9(a) for LCT, and in Fig. 9(b) for

NLCT. Each blue dot represents an initial value, and the yellow

circles show the results after the first iteration. The black plus

signs show the results after the second iteration. As can be

seen, the results converge to the same value for all initial

values. After the second iteration, no difference between the

results for different initial values can be noticed. Furthermore,

the final results for LCT and NLCT agree.

The accuracy of the identified CTMM coefficients becomes

evident from the performance evaluation of the proposed DPD

technique, which is presented in the following subsection.

B. Performance of the DPDs

In Table I, the ACLRs for the received signal and each of

the individual PA output signals are given for different DPD

methods. For the case without any DPD the ACLR is between

-40 dB and -36 dB. Using single-input DPD improves the

ACLR to around -45 dB. The ACLR results for the proposed

DI-CTMM and DI-Sparam DPDs and the multi-input DPDs

are very similar, around -50 dB, for both NLCT and LCT.

The multi-input LCT DPD reaches the best result. As can

be seen, linearizing each transmit path via the measured PA
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Fig. 9. Results of the CTMM coefficient identification based on (a) LCT and
(b) NLCT. The figures show the initial values in blue dots, the results after
the first iteration in yellow circles, and the results after the second iteration
in black plus signs. As can be seen, the results converge such that after the
second iteration no difference can be seen. The results for LCT and NLCT
agree.

output signals, improves the ACLR of the received signal to

a similar degree as the ACLR of the individual PA output

signals.

The NMSEs for different DPD techniques are given in

Table I. Results are shown for each of the individual PA output

signals. Since we have no knowledge of the channel, it is

not relevant to evaluate the NMSE for the received signal.

Compared to the case without any DPD, the single-input DPD

does not significantly improve the NMSE. The proposed DI-

SParam DPD achieves an improvement of around 12 dB for

both NLCT and LCT. The proposed DI-CTMM DPD and the

multi-input DPD improve the NMSE by around 19 dB for both
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Fig. 10. Spectra of the PA output signals. The figure shows the results without DPD (blue △), with single-input DPD (SI DPD, red �), multi-input DPD
(MI LCT DPD, purple ◦) and the proposed DPD (DI-CTMM LCT, yellow ♦). The multi-input DPD and the proposed DPD are based on models using only
linear terms of the crosstalk signals.

NLCT and LCT. The NMSEs for the proposed DI-CTMM

DPDs and the multi-input DPDs are very similar, with the

multi-input LCT DPD achieving the lowest values.

The lowest values for ACLR and NMSE are achieved by

the multi-input LCT DPD and the proposed DI-CTMM LCT

DPD. In Fig. 10 the spectra of the individual PA outputs

are shown, and in Fig. 11 the normalized spectra of the

received signals are shown for these two DPD techniques.

Also shown for comparison are the results for single-input

DPD and for the case without any DPD. As can be seen, the

single-input DPD reduces the out-of-band distortion. However,

both DI-CTMM LCT DPD and multi-input LCT DPD reach a

much better result. The results for the received signal, which

is the far field of the transmitter, are equal to the results

of the PA output signals. Note that the performance of all

linearization techniques is limited by the noise floor of the

oscilloscope, which was used to measure the PA output signals.

The noisefloor is indicated in the figures.

C. Complexity

The issue of complexity has many aspects. There are

different types of complexity that should be considered [23]:

• Run-time complexity is the complexity to execute the

DPD on the input signals. It depends on the number

of calculations that are necessary for each input signal

sample to obtain the predistorted signal. Therefore, run-

time complexity also depends on signal and evaluation

bandwidth, i.e., the required sampling rate of the system.

• Identification complexity is the complexity required to

find the initial version of the predistorter. This is typically

done using least-squares techniques [30]. Identification
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Fig. 11. Normalized spectra of the received signals. The figure shows the
results without DPD (blue △), with single-input DPD (SI DPD, red �), multi-
input DPD (MI LCT DPD, purple ◦) and the proposed DPD (DI-CTMM LCT,
yellow ♦). The multi-input DPD and the proposed DPD are based on models
using only linear terms of the crosstalk signals.

complexity depends on the amount of parameters that

needs to be identified. The initial identification is only

performed once, usually in the lab or factory. After that,

adaptation is used to adjust the predistorter to changes in

the system. For this reason, identification complexity is

negligible and the focus is put on adaptation complexity.

• Adaptation complexity is the complexity to adjust the

identified predistorter to changes in system behavior

while the system is running. Adaptation is commonly

done using algorithms like least mean squares (LMS),

recursive least squares (RLS), or similar [26]. Using these

techniques, every coefficient of the predistorter is updated
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TABLE II
NUMBER OF DPD COEFFICIENTS PER TRANSMIT PATH PER SWITCHING

REGION AND NUMBER OF CTMM COEFFICIENTS PER PATH REQUIRED FOR

THE DIFFERENT DPD TECHNIQUES.

DPD technique DPD coeff. CTMM coeff.

4
-p

at
h

single-input 12 -

proposed LCT 21 4

proposed NLCT 30 4

multi-input LCT 39 -

multi-input NLCT 135 -

K
-p

at
h

single-input 12 -

proposed LCT 21 K

proposed NLCT 30 K

multi-input LCT 12 + 9(K − 1) -

multi-input NLCT 12 + (9 + 8K)(K − 1) -

individually at run-time. Adaptation complexity depends

on how much and how fast the systems changes over time

due to, e.g., temperature drift.

The exact complexity and related measures, such as power

consumption, cost, and space, always depend on a specific

implementation, i.e., implementation concept [24], [25], [26],

used hardware, necessity and frequency of adaptation, training

algorithm, adaptation algorithm, matrix inversion algorithm,

bandwidth requirements etc.

We have chosen to use the number of predistorter coef-

ficients as a basis for our complexity analysis. Comparing

the number of predistorter coefficients is a simple way of

comparing the complexity of the different DPDs. It can also

be used to investigate how complexity scales when increasing

the numbers of transmit paths, which serves as an indicator of

whether a DPD technique is feasible for larger multi-antanna

systems or not. For predistorters based on the Volterra series,

as the ones considered in this work, all types of complexity

depend on the number of predistorter coefficients [27]. There-

fore, when considering such DPD structures with similar types

of basis functions and the same requirements for evaluation

bandwidth, complexity comparison is commonly based on

comparing the number of DPD coefficients. Thus, reducing the

number of coefficients is often used as a technique to reduce

complexity [14], [17], [27], [28], [29].

For single-input DPD and the multi-input DPDs, all types

of complexity scale with the number of DPD coefficients.

For the proposed DPDs, run-time and adaptation complexity

scale with the total number of predistorter coefficients, which

includes the dual-input DPD coefficients and the CTMM

coefficients.

Table II compares the number of DPD coefficients per

transmit path per switching region and the number of CTMM

coefficients. Note that these numbers are specific to the multi-

antenna transmitter that is used in the measurements. The

proposed DI-CTMM and DI-SParam DPDs require fewer coef-

ficients than the multi-input DPDs. The number of coefficients

required for multi-input NLCT DPD is excessively higher

than for the other DPDs. Except for the single-input DPD,

the lowest number of coefficients is required for the proposed

DPD based on LCT. The table also shows how the number of
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Fig. 12. Illustration of how the number of coefficients per path would scale
with the number of transmit paths K . The figure shows the number of DPD
coefficients per switching region plus the number of CTMM coefficients.
Numbers are shown for: single-input DPD (SI DPD), the proposed DPD
(proposed LCT) and multi-input DPD (MI LCT DPD) based on models with
only linear crosstalk terms, the proposed DPD (proposed NLCT) and multi-
input DPD (MI NLCT DPD) based on models using linear and nonlinear
terms of the crosstalk signals.

coefficients would scale for a K-path transmitter with the same

type of components. This is also illustrated in Fig. 12, where

the number of DPD coefficients per switching region plus the

number of CTMM coefficients are plotted versus number of

transmit paths K . It is important to realize that for all multi-

input DPDs the number of coefficients increases rapidly with

the number of paths, while for the proposed DPDs only the

number of CTMM coefficients increases and the dual-input

DPD is not affected. For multi-antenna systems with many

antennas, the difference in total coefficient numbers becomes

huge, as as can be seen in Fig. 12. The major advantage of the

proposed technique is how it scales for increasing numbers of

transmit paths.

The numbers given in Table II and Fig. 12 are specific to

the multi-antenna transmitter used in the measurements and

can therefore not give an exact prediction of the number of

coefficients for other systems. However, due to its structure,

the proposed technique will inherently have lower run-time

complexity than the existing approaches for any transmitter

where antenna crosstalk from more than one transmit path

needs to be considered in the DPD.

D. Discussion

Analyzing the presented results, several things can be no-

ticed. It is obvious that single-input DPD is not suitable for a

multi-antenna transmitter. While the ACLR can be improved

with such a DPD, the NMSE is almost the same as when using

no DPD at all.

The ACLR results for the proposed DI-CTMM and DI-

SParam DPDs are very similar. However, the NMSE results are

worse for the DI-Sparam DPD. The reason is that the reference

plane for the measurements of the S-parameters is not exactly

the same as the reference plane for measurements of the PA

output signals. Observations at different reference planes can

have different phase shifts, gain shifts, and delays. Such issues

can lead to a degradation of performance, or even failure of
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the DPD to linearize the system. With careful calibration, the

phase, gain and delay offsets were kept very small, such that

a performance degradation when using DI-SParam DPDs is

only noticeable in terms of NMSE while the ACLR stays

unaffected. The CTMM coefficients estimated directly from

PA output signals allow for better DPD results since they are

obtained from measurements in the exact reference plane. In

addition to the worse NMSE results and the complicated cali-

bration, another disadvantage of using S-parameters as CTMM

coefficients is that a separate measurement setup is required.

In highly integrated transmitters these measurements might not

be feasible. Furthermore, for a system implementation, is not

possible to use adaptive algorithms to update the CTMM when

using the S-parameters instead of the proposed identification

method.

All results obtained with the proposed DI-CTMM DPD are

almost the same as the results of the multi-input DPDs. For

both these techniques, the DPDs based on NLCT have much

higher complexity than the DPDs based on LCT. Therefore,

for the multi-antenna transmitter used in these measurements,

there is no advantage in using the NLCT based DPDs. Hence,

for a maximum coupling between antennas of -12 dB it is not

necessary to consider a dual-input PA model with nonlinear

crosstalk and mismatch terms. However, for systems with

higher coupling it can be expected that NLCT based DPDs

are more suitable [18].

Considering both NMSE, ACLR, and the complexity, the

best results are obtained by the proposed DI-CTMM LCT

DPD. Even though the DI-CTMM LCT DPD is narrowly

outperformed by the multi-input LCT DPD, the number of

DPD coefficients is reduced. For emerging multi-antenna

systems with large numbers of transmit paths, the complexity

of the proposed technique scales much better than for existing

solutions, as shown in Table II and Fig. 12. The presented

results also indicate that in cases where the coupling is so

high that NLCT based DPDs are required, existing solutions

will quickly reach the limits of what is feasible to implement,

while the complexity of the proposed technique still rises only

relatively slowly with the number of transmit paths. Hence, the

proposed DPD technique is an extremely attractive alternative

for the linearization of emerging multi-antenna transmitters.

VI. CONCLUSIONS

In this paper, we present a technique to jointly compensate

for the effects of PA nonlinearity, antenna crosstalk and

mismatch in wideband multi-antenna transmitters. Dual-input

DPDs in every transmit path are combined with a linear

model of the crosstalk and mismatch characteristics of the

antenna array that is shared by all transmit paths. By using this

structure, the use of multi-input DPDs is avoided. Therefore,

the complexity of the proposed technique scales very favorably

with the number of transmit paths: the CTMM block increases

linearly with the number of paths, while the complexity of

the dual-input DPDs is not affected by the number of paths.

This is a huge benefit of our technique compared to existing

approaches, especially considering the trend towards larger-

scale multi-antenna systems.

As we have shown, no prior knowledge of the system

components is required to identify the dual-input DPDs or

the CTMM. Similar to conventional DPD approaches, all nec-

essary information can be identified from measurements of the

PA output signals using least-squares estimation techniques. A

potential disadvantage of the proposed technique is that, for the

identification procedure, the input signals bdk to the different

transmit paths cannot be fully correlated, such that for systems

with fully correlated signals like, e.g., beamforming systems,

special training signals have to be used.

Results are shown for the linearization of a four-path trans-

mitter. When comparing the proposed technique to existing

approaches, it can be seen that the performances are similar,

while our technique has lower complexity. With the presented

measurements we show that our technique is suitable for the

linearization of wideband PAs. A topic for future work is to

include also dynamic antenna behavior in our algorithms. This

can be necessary for systems where the antenna characteristics

vary strongly within the input signal bandwidth.

APPENDIX

A. Dual-Input PA Models Including Memory Effects

To account for dynamic effects in PAs driven by wideband

signals, memory has to be considered in the dual-input PA

model. The most general form of a dual-input PA model with

memory effects is a dual-input model according to the Volterra

series [31]:

b2k(n) =

1
∑

q1=0

M
∑

m1=0

θk0q10m1

(

a1k(n−m1)
)1−q1

×
(

a2k(n−m1)
)q1

+

(P−1)/2
∑

p=1

p+1
∑

q1=0

p
∑

q2=0

M
∑

m1=0

· · ·
M
∑

mp+1−q1=mp−q1

M
∑

mp+2+q1=0

· · ·

M
∑

mp+1=mp

M
∑

mp+2=0

· · ·

M
∑

m2p+1−q2=m2p−q2

M
∑

m2p+2−q2=0

· · ·
M
∑

m2p+1=m2p

θkpq1q2m1m2...m2p+1

×

p+1−q1
∏

i=1

a1k(n−mi)

p+1
∏

l=p+2−q1

a2k(n−ml)

×

2p+1−q2
∏

s=p+2

a∗1k(n−ms)

2p+1
∏

r=2p+2−q2

a∗2k(n−mr).(14)

Because of the high model complexity, the full Volterra series

approach is usually infeasible. Therefore, many models with

reduced complexity have been proposed, such as the memory

polynomial [6] and the generalized memory polynomial [7].

For the evaluation of the proposed DPD in measurements,

we used the memory polynomial approach. The dual-input

memory polynomial PA model is given in the same structure
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as (2) by

b2k(n) =
M
∑

m1=0

(P−1)/2
∑

p=0

αkpm1a1k(n−m1)

×
∣

∣a1k(n−m1)
∣

∣

2p















(15a)

+

M
∑

m2=0

βk0m1a2k(n−m2)

+

M
∑

m1=0

M
∑

m2=0

(P−1)/2
∑

p=1

βkpm1m2

×a2k(n−m2)
∣

∣a1k(n−m1)
∣

∣

2p







































(15b)

+

M
∑

m1=0

M
∑

m2=0

(P−1)/2
∑

p=1

γkpm1m2a
∗
2k(n−m2)

×
(

a1k(n−m1)
)p+1(

a∗1k(n−m1)
)p−1















(15c)

+

M
∑

m1=0

M
∑

m2=0

(P−1)/2
∑

p=1

p
∑

v=0

p+1
∑

u=0
u>1−v

δkpuvm1m2

×
(

a1k(n−m1)
)p+1−u(

a∗1k(n−m1)
)p−v

×
(

a2k(n−m2)
)u(

a∗2k(n−m2)
)v
.































(15d)

The dual-input memory polynomial PA model can be written

in matrix form exactly as (3).

B. Derivation of CTMM Coefficient Identification

To find the equations for step 2 of the CTMM coefficient

identification, (1) is introduced into (2)

b2k =

(P−1)/2
∑

p=0

αkp a1k
p+1a∗1k

p

+

(P−1)/2
∑

p=0

βkp a1k
pa∗1k

pbT2 λ̂k

+

(P−1)/2
∑

p=1

γkp a1k
p+1a∗1k

p−1b∗T2 λ̂
∗

k

+

(P−1)/2
∑

p=1

p
∑

v=0

p+1
∑

u=0
u>1−v

δkpuv

× a1k
p+1−ua∗1k

p−v
(

bT2 λ̂k

)u (

b∗T2 λ̂
∗

k

)v

(16)

which is then rewritten as

b2k =f
(0)
k + f

(1)
k bT2 λ̂k + f

(2)
k b∗T2 λ̂

∗

k + f
(3)
k (λ̂k). (17)

Using (7), this is rearranged and expressed for all time samples

in matrix form as

b2k − f
(0)
k − f̂

(3)
k = F

(1)
k λk + F

(2)
k λ∗

k (18)

where f̂
(3)
k is f

(3)
k (λ̂k) with λ̂k either chosen equal to zero or

set to a value from a previous identification step as explained

in Section III-A. Finally, by splitting it into real and imaginary

parts, (18) can be solved for the CTMM coefficients as given

in (6).

C. CTMM Identification for Dual-Input Memory Polynomial

PA Model

Using the dual-input memory polynomial PA model for the

identification of the CTMM coefficients, the equation given

in (6) can be applied with the following adaptations: (7)

changes to

F
(1)
k =

M
∑

m=0

diag(f
(1)
km)B2(n−m)

F
(2)
k =

M
∑

m=0

diag(f
(2)
km)B∗

2(n−m) (19)

with B2(n − m) = [b21(n − m), . . . ,b2K(n − m)] where

b2k(n−m) = [b2k(0−m), . . . , b2k(N − 1−m)]T and

f
(1)
km =β̂k0m +

M
∑

m1=0

(P−1)/2
∑

p=1

β̂kpm1m

∣

∣a1k(n−m1)
∣

∣

2p

f
(2)
km =

M
∑

m1=0

(P−1)/2
∑

p=1

γ̂kpm1m

(

a1k(n−m1)
)p+1

×
(

a∗1k(n−m1)
)p−1

. (20)

Furthermore,

f
(0)
k =

M
∑

m1=0

(P−1)/2
∑

p=0

α̂kpm1a1k(n−m1)

×
∣

∣a1k(n−m1)
∣

∣

2p

f
(3)
k (λ̂k) =

M
∑

m1=0

M
∑

m2=0

(P−1)/2
∑

p=1

p
∑

v=0

p+1
∑

u=0
u>1−v

δ̂kpuvm1m2

×
(

a1k(n−m1)
)p+1−u(

a∗1k(n−m1)
)p−v

×
(

(

b2(n−m2)
)T

λ̂k

)u

×
(

(

b∗2(n−m2)
)T

λ̂
∗

k

)v

(21)

where b2(n−m) = [b21(n−m), . . . , b2K(n−m)]T .
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bating the dimensionality of nonlinear MIMO amplifier predistortion by
basis pursuit,” in European Microw. Conf., Oct 2014, pp. 833–836.

[18] H. Zargar, A. Banai, and J. Pedro, “A new double input-double output
complex envelope amplifier behavioral model taking into account source
and load mismatch effects,” IEEE Trans. Microw. Theory Tech., vol. 63,
no. 2, pp. 766–774, Feb 2015.

[19] G. Z. El Nashef, F. Torres, S. Mons, T. Reveyrand, T. Monediere,
E. N’Goya, and R. Quere, “Second order extension of power amplifiers
behavioral models for accuracy improvements,” in European Microw.

Conf., Sept 2010, pp. 1030–1033.

[20] A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M.
Asbeck, “Open-loop digital predistorter for RF power amplifiers using
dynamic deviation reduction-based volterra series,” IEEE Trans. Microw.

Theory Tech., vol. 56, no. 7, pp. 1524–1534, July 2008.

[21] J. Chani-Cahuana, C. Fager, and T. Eriksson, “A new variant of the
indirect learning architecture for the linearization of power amplifiers,”
in European Microw. Conf., Sept 2015, pp. 1295–1298.

[22] S. Afsardoost, T. Eriksson, and C. Fager, “Digital predistortion using
a vector-switched model,” IEEE Trans. Microw. Theory Tech., vol. 60,
no. 4, pp. 1166–1174, 2012.

[23] A. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, and
C. Fager, “A comparative analysis of the complexity/accuracy tradeoff in
power amplifier behavioral models,” IEEE Trans. Microw. Theory Tech.,
vol. 58, no. 6, pp. 1510–1520, June 2010.

[24] A. Zhu, J. Pedro, and T. Brazil, “Dynamic deviation reduction-based
volterra behavioral modeling of RF power amplifiers,” IEEE Trans.

Microw. Theory Tech., vol. 54, no. 12, pp. 4323–4332, Dec 2006.

[25] Y. Ma, Y. Yamao, Y. Akaiwa, and C. Yu, “FPGA implementation
of adaptive digital predistorter with fast convergence rate and low
complexity for multi-channel transmitters,” IEEE Trans. Microw. Theory

Tech., vol. 61, no. 11, pp. 3961–3973, Nov 2013.

[26] P. M. Suryasarman and A. Springer, “A comparative analysis of adaptive
digital predistortion algorithms for multiple antenna transmitters,” IEEE

Trans. Microw. Theory Tech., vol. 62, no. 5, pp. 1412–1420, May 2015.
[27] F. M. Ghannouchi and O. Hammi, “Behavioral modeling and predistor-

tion,” IEEE Microw. Mag., vol. 10, no. 7, pp. 52–64, Dec 2009.
[28] N. Kelly and A. Zhu, “Low-complexity stochastic optimization-based

model extraction for digital predistortion of RF power amplifiers,” IEEE
Trans. Microw. Theory Tech., vol. 64, no. 5, pp. 1373–1382, May 2016.

[29] Z. Wang, W. Chen, G. Su, F. M. Ghannouchi, Z. Feng, and Y. Liu, “Low
computational complexity digital predistortion based on direct learning
with covariance matrix,” IEEE Trans. Microw. Theory Tech., vol. PP,
no. 99, pp. 1–11, 2017.

[30] L. Guan and A. Zhu, “Optimized low-complexity implementation of
least squares based model extraction for digital predistortion of RF
power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3,
pp. 594–603, March 2012.

[31] M. Schetzen, The Volterra and Wiener theories of nonlinear systems,
2nd ed. Krieger Publishing Company, Malabar, Florida, 2006.


	Introduction
	System Model
	Crosstalk and Mismatch Model
	Dual-Input PA Model

	Multi-Antenna Transmitter DPD
	Crosstalk and Mismatch Model
	Dual-Input DPD
	Non-Uniqueness of Coefficients

	Experimental Validation
	Measurement Setup
	Evaluated DPD Techniques and Performance Measures

	Results
	Evaluation of CTMM Identification
	Performance of the DPDs
	Complexity
	Discussion

	Conclusions
	Dual-Input PA Models Including Memory Effects
	Derivation of CTMM Coefficient Identification
	CTMM Identification for Dual-Input Memory Polynomial PA Model

	References

