Contributions to a computational theory of policy advice and avoidability

Downloaded from: https://research.chalmers.se, 2020-01-10 22:36 UTC

Citation for the original published paper (version of record):
Contributions to a computational theory of policy advice and avoidability
http://dx.doi.org/10.1017/S0956796817000156

N.B. When citing this work, cite the original published paper.
Contributions to a computational theory of policy advice and avoidability

NICOLA BOTTA
Potsdam Institute for Climate Impact Research, Germany
(e-mail: botta@pik-potsdam.de)

PATRIK JANSSON and CEZAR IONESCU
Chalmers University of Technology, Sweden
(e-mail: {patrikj,cezar}@chalmers.se)

Abstract
We present the starting elements of a mathematical theory of policy advice and avoidability. More specifically, we formalise a cluster of notions related to policy advice, such as policy, viability, reachability, and propose a novel approach for assisting decision making, based on the concept of avoidability. We formalise avoidability as a relation between current and future states, investigate under which conditions this relation is decidable and propose a generic procedure for assessing avoidability. The formalisation is constructive and makes extensive use of the correspondence between dependent types and logical propositions, decidable judgements are obtained through computations. Thus, we aim for a computational theory, and emphasise the role that computer science can play in global system science.

1 Introduction
This paper is a result of inter-disciplinary activities carried out in the framework of several EU-financed projects in the context of Global Systems Science (GSS). It shows that dependently-typed programming languages can be a useful vehicle for communication between computer scientists and scientists from other disciplines, for formalising computable theories, and, of course, for writing provably correct software. It hopefully also points to the fact that the main role of computer science is not confined to the execution of arithmetical operations or sending data over networks, but is rather to be found in the formulation of concepts, identification and resolution of ambiguities, and, above all, in making our ideas clear.

1.1 The need for a theory of policy advice
Scientists involved in fields related to GSS, such as the study of climate change impacts, global finance, epidemics, or international policy, are often faced with the requirement

of acting as advisors to policy makers. For example, they are asked to contribute to the
design of international emission reduction agreements ([Holtsmark and Sommervoll] [2012],
[Carbone et al.] [2009], [Holtsmark and Midttømme] [2013], [Heitzig] [2012]), to the introduction
of a financial transaction tax at EU level (EU-FTT), to programs for the eradication of con-
tagious diseases, ([Sandler and G. Arce M.] [2002]), or to efforts in combating international
terrorism ([Sandler and Enders] [2004]).

In all these application domains, policy making is in need of rigorous scientific advice.
At the moment, however, we are lacking an established theory of policy advice. More
specifically, we identify three major gaps:

1) The terms used to phrase specific, concrete decision problems – for example sustain-
ability, avoidability, policy – are devoid of precise, well established technical meanings.
They are used in an informal, vague manner or in a normative sense. The decision problems
themselves are often affected by different kinds of uncertainties and tackled with different
approaches.

2) There are no accountable contracts between advisors and decision makers. The lat-
er do not precisely know what kind of outcomes and guarantees they can expect from
implementing the advice received.

3) The proper content of policy advice is unclear. When can decision makers expect
to receive advice in the form of simple sequences of actions (“do this, then that, then
the other“)? When do they have to expect full fledged “action rules” (“if the situation
at time t satisfies conditions C_1 and C_2, then do action A_1, otherwise do action A_2“)?
These questions are essential, especially for problems in which the temporal scales of
the underlying decision process are not well separated from the typical times required
for implementing decisions (as in the case, for example, of designing policies for emission
reduction).

Our main contributions are towards filling the first gap. But the theory presented in
section 3 also provides some understanding of the theoretical and practical limitations of
policy advice and of the kind of guarantees that decision makers can expect from advisors.
And we do provide a tentative answer to the question of what the proper content of policy
advice can be.

1.2 Sequential decision problems and policy advice

The main contribution of this paper is the formalisation of a cluster of concepts required for
a theory of policy advice. The formalisation is rooted in optimal control theory, specifically
in the study of sequential decision problems and their solutions by dynamic programming.
Sequential decision problems and methods for computing optimal policy sequences are
at the core of many applications in economics, logistics and computing science and are,
in principle, well understood ([Bellman] [1957], [De Moor] [1995, 1999], [Gnesi et al.] [1981],
[Botta et al.] [2013a, 2017]). For example, sequential decision problems appear in integrated
assessment models ([Research Domain III, PIK] [2013], [Bauer et al.] [2011]) in models of
international environmental agreements ([Finus et al.] [2003], [Helm] [2003], [Bauer et al.] [2011],
[Heitzig] [2012]) and in agent-based models of economic systems ([Gintis] [2006, 2007], [Botta
et al.] [2013b], [Mandel et al.] [2009]).
The problems addressed by optimal control theory involve the control of a system evolving in time, in order to optimise a reward function over time. In sequential decision problems, time is discrete, and the controls are represented by decisions taken at each time step (hence “sequential”).

In the case in which the system to be controlled is deterministic and the initial state of the system can be measured exactly, the solution of a sequential decision problem can be represented in a particularly simple form as a list of successive controls.

Most cases relevant for decision making, however, are fraught with uncertainties, both regarding the transitions of the system and the initial state. In such cases, the solution consists not of a sequence of controls, but of policies.

Informally, a policy is a function from states to controls: it tells which control to select when in a given state. Thus, for selecting controls over \(n \) steps, a decision maker needs a sequence of \(n \) policies, one for each step. We will give a precise definition of policy sequences and of optimal policy sequences in section 3, but, conceptually, optimal policy sequences are sequences of policies which cannot be improved by associating different controls to current and future states.

Optimal policy sequences (or, perhaps almost optimal policy sequences) are, for a specific decision problem, the most tangible content that policy advice can deliver for decision making. Thus, it is important that advisors make sure that stakeholders fully understand the difference between controls and policies and, therefore, between control sequences and policy sequence. To illustrate this difference, advisors can turn to stylized SDPs (knapsack, production lines, traffic, etc.). Traffic problems are particularly useful in this respect (the sequence of controls, “first turn left, then right, stop ten seconds at traffic light, then turn right” is liable to lead to accidents) and to exemplify the notions of state and control space. Further, it is important that both advisors and decision makers understand that, in general, policy advice cannot (and should not try to) provide, optimal sequences of controls (“optimal action plans”, “optimal courses of action”, etc.), because no such optimal control sequence can be computed at the time decisions have to be taken and implemented.

What can be computed at the time decisions have to be taken and implemented, however, are optimal policy sequences. A provably optimal policy sequence for a specific problem provides the decision maker with a (usually time-dependent) rule for decision making and with a guarantee that, for that particular problem and at any given time, there is no better way of making decisions given what is known (at that time) about the current state and the future. Again, advisors can take advantage of variations of elementary SDPs (with randomly moving obstacles, random production line failures, etc.) to illustrate the differences between deterministic and non-deterministic sequential decision problems.

1.3 The notion of “avoidability”

For many of the SDP problems we cited above, the state and the control spaces can be defined fairly rigorously. Minimal models of international agreements on greenhouse
gas emissions, for instance, can be described in terms of a few state variables – such as greenhouse gas concentrations and certain gross domestic product measures – and of a few controls – e.g., greenhouse gas abatements and investments.

The transition function – the “dynamics” of the system underlying the decision process – can be affected by different kinds of uncertainty (e.g., about model parameters, empirical closures, etc.) and is often non-deterministic, stochastic or fuzzy. The framework presented in Botta et al. (2017) for monadic sequential decision problems allows one to treat all these (and other) cases seamlessly. Thus, at least conceptually, uncertainties are not a serious obstacle towards a rigorous control theoretical approach for decision making in climate impact research.

But reward functions (the functions that are to be optimised) are: in most practical cases, it is not obvious how they should be defined. This is a limitation to the applicability of both control and game-theoretical approaches to climate impact research.

A common way of defining reward functions is that of deriving some estimate of the costs and of the benefits associated with the particular decision process under consideration and define rewards on the basis of a cost-benefits analysis. But there are both pragmatically and ethical concerns towards this approach, see for instance Aldred (2009). These difficulties have led a number of authors to argue that, instead of basing decision making on cost-benefits analyses, it would be more sensible to focus on policies that try to avoid future possible states which are known to be potentially harmful. This is the approach exemplified in Raven et al. (2007) but also in Schellnhuber, 1998 where the notion of avoidability is implicit in the idea of “tolerable windows”.

Some idea of avoidability is also subsumed in the notions of mitigation (“A human intervention to reduce the sources or enhance the sinks of greenhouse gases”, (Allwood et al., 2014)) and adaptation (“The process of adjustment to actual or expected climate and its effects...to moderate harm or exploit beneficial opportunities”, (Allwood et al., 2014)) which are at the core of IPCC’s Working Group III research: avoidability of levels of greenhouse gases reckoned to be potentially harmful for a specific human system in the case of mitigation and avoidability (realizability) of the potential harm (opportunities) from climate in the case of adaptation.

But what does it precisely mean for possible future states to be avoidable? And under which conditions is it possible to decide whether a state is avoidable or not?

If we had well understood and widely accepted notions of avoidability and a decision procedure to discriminate between avoidable and non avoidable states, policies that avoid certain future states could be computed as optimal sequences of sequential decision problems with ad-hoc reward functions. For example, one could define rewards to be zero for states which should be avoided and one elsewhere and take advantage of the framework

3 Traditionally, control-theoretical approaches focus on the temporal dimension of decision processes from the perspective of an individual decision maker. They do not explicitly account for decision problems faced by multiple players, in particular in a competitive setup. These problems are in the focus of game-theoretical approaches. The border between game-theory, control-theory and evolutionary decision making is a subject of academic research. [Ellison, 1993, Peyton Young 1993, Ellison 1995, Peyton Young 2001].
Contributions to a computational theory of policy advice and avoidability

presented in (Botta et al, 2017) to compute policies that provably keep the system in a tolerable subset of the state space.

Moreover, unambiguous notions of avoidability could help clarifying the notions of mitigation and adaptation. And a computational theory of avoidability could be a first step towards a computational theory of mitigation and adaptation.

Further, a theory of avoidability and, in particular, a generic decision procedure for assessing avoidability, could be useful in many GSS-related fields. In financial markets, even after two decades of Financial Stability Reviews, for instance, unambiguous notions (let apart operational tests) of stability are still elusive (Goodhart, 2004). Here it seems sensible to take a complementary approach and start asking in which sense and whether certain future conditions which are considered or perceived to be potentially dangerous – for instance, where significant amounts of risk are pooled and transferred through long chains of contracts – are avoidable.

1.4 Outline

The paper is organized as follows: in section 2 we motivate and explain the basic notation adopted throughout this paper.

In section 3 we present our theory of SDPs and policy advice. We introduce decision processes and give examples of different kinds of uncertainty affecting decision processes and decision making. We derive the core theory and discuss the main results presented in (Botta et al., 2013a, 2017) from the perspective of policy advice. In particular, we introduce the notions of policy and policy sequence, we discuss which aspects of decision making under uncertainty need to be accounted for and how different principles of decision making – e.g., precautionary principles and expectation-based principles – can lead to different measures. In this section we also derive a generic procedure for computing provably optimal policy sequences under different kinds of uncertainty.

In section 4 we extend the theory of SDPs and policy advice to decision problems for which a reward function is not obviously available. Further, we explain how avoidability measures could be applied in climate impact research, e.g., to operationalize notions of levity (Otto and Levermann, 2011), mitigation and adaptation. In section 5 we draw some preliminary conclusions and in section 6 we outline future work.

2 Preliminaries

In this paper we assume the reader knows functional programming and has some familiarity with dependent types. We use Idris (Brady, 2013) as the implementation language and in this section (starting with Fig. 1) we provide a few examples of the syntax to get readers used to Agda or Coq up to speed. Idris provides a built in infix operator (**) for dependent pairs: (a ** b) : Sigma A B if a : A and b : B. The same operator is also overloaded so that (a : A ** B a) can be used instead of Sigma A B for the pair type.

In our development later, most functions will be polymorphic, using a combination of explicit and implicit type arguments. In addition to type parameters, we will also make our development generic in a number of function parameters (like step, reward, etc.). To avoid

\begin{figure}
\begin{center}
\begin{verbatim}
data N : Type where
 Z : N
 S : N \rightarrow N

data Vect : N \rightarrow Type \rightarrow Type where
 Nil : Vect Z a
 Cons : (x : a) \rightarrow (xs : Vect n a) \rightarrow Vect (S n) a

head : {n : N} \rightarrow {A : Type} \rightarrow Vect (S n) A \rightarrow A
 head (Cons x xs) = x

postulate A : Type
postulate Sorted : Vect n A \rightarrow Type
postulate sort : Vect n A \rightarrow Vect n A

SortSpec : Type -- a specificatation of sort
 SortSpec = (n : N) \rightarrow (xs : Vect n A) \rightarrow Sorted (sort xs)

sortLemma : SortSpec
 sortLemma = { a proof that sort satisfies the specification }

data Exists : {A : Type} \rightarrow (A \rightarrow Type) \rightarrow Type where
 Evidence : (wit : A) \rightarrow (pro : P wit) \rightarrow Exists P
\end{verbatim}
\end{center}
\caption{Idris syntax examples.}
\end{figure}

passing around the full set of parameters to all functions we will introduce these parameters as we go along and then collect them at the end.

\section{Equality and equational reasoning}

Idris has a built in heterogeneous equality type written \((a = b)\) where \(a : A\) and \(b : B\). The only constructor is \texttt{Refl} : \((a = a)\) and if we have in our hands a value \(r : (a = b)\) we know that \(a\) and \(b\) are equal (and therefore also that \(A\) and \(B\) are equal). Here are two examples of using the equality type to postulate some desired properties about multiplication:

\begin{verbatim}
postulate unitMult : (y : Double) \rightarrow 1 \ast y = y
postulate assocMult : (x,y,z : Double) \rightarrow (x \ast y) \ast z = x \ast (y \ast z)
\end{verbatim}

Idris has a special syntax for \textit{equational reasoning}: you can string together a chain of reasoning steps to a full proof. If \(p1\) shows that \(a1 = a2\) and \(p2\) shows that \(a2 = a3\) then \((a1 =\{ p1 \}= a2 =\{ p2 \}= a3 QED)\) is a proof of \(a1 = a3\).

As an example we show a lemma about exponentiation: \(x \uparrow m \ast x \uparrow n = x \uparrow (m + n)\).

We prove the lemma using induction over \(m\) which means we need to implement three definitions of the following types:

\begin{verbatim}
expLemma : (x : Double) \rightarrow (m : N) \rightarrow (n : N) \rightarrow (x \uparrow m \ast x \uparrow n = x \uparrow (m + n))
baseCase : (x : Double) \rightarrow (n : N) \rightarrow (x \uparrow Z \ast x \uparrow n = x \uparrow (Z + n))
stepCase : (x : Double) \rightarrow (m : N) \rightarrow (n : N) \rightarrow (ih : x \uparrow m \ast x \uparrow n = x \uparrow (m + n)) \rightarrow (x \uparrow (S m) \ast x \uparrow n = x \uparrow ((S m) + n))
\end{verbatim}
Contributions to a computational theory of policy advice and avoidability

Note that the last argument ih to the step case is the induction hypothesis. The main lemma just uses the base case for zero and the step case for successor and passes a recursive call to $expLemma$ as the induction hypothesis.

$$expLemma\; x\; Z\; n = baseCase\; x\; n$$

$$expLemma\; x\; (S\; m)\; n = stepCase\; x\; m\; n\; (expLemma\; x\; m\; n)$$

With this skeleton in place the proof of the base case is easy:

$$baseCase\; x\; n =
\begin{align*}
(x↑Z \ast x↑n) \\
= \{\text{Refl}\} \quad & \text{-- By definition of $(↑)$} \\
(1 \ast x↑n) \\
= \{\text{unitMult}\; (x↑n)\} \quad & \text{-- Use $1 \ast y = y$ for $y = x↑n$} \\
(x↑n) \\
= \{\text{Refl}\} \quad & \text{-- By definition of $(+)$} \\
(x↑(Z+n))
\end{align*}
$$

and the step case is only slightly longer:

$$stepCase\; x\; m\; n\; ih =
\begin{align*}
(x↑(S\; m) \ast x↑n) \\
= \{\text{Refl}\} \quad & \text{-- By definition of $(↑)$} \\
(x\ast x↑m) \ast x↑n) \\
= \{\text{assocMult}\; x\; (x↑m)\; (x↑n)\} \quad & \text{-- Associativity of multiplication} \\
(x\ast (x↑m) \ast x↑n)) \\
= \{\text{cong}\; ih\} \quad & \text{-- Use the ind. hyp.: $ih = expLemma\; x\; m\; n$} \\
(x\ast x↑(m+n)) \quad & \text{-- By definition of $(↑)$ (backwards)} \\
= \{\text{Refl}\} \quad & \text{-- By definition of $(+)$} \\
(x↑(S\; (m+n))) \\
= \{\text{Refl}\} \quad & \text{-- By definition of $(+)$} \\
(x↑(S\; m+n))
\end{align*}
$$

QED

Here we used $cong$ to apply the induction hypothesis “inside” the context $x\ast$.

For early examples of using the equality proof notation (in Idris’ sister language Agda), see (Mu et al., 2009).

2.2 Programs and proofs

We have seen that we can represent properties as types and in this view proofs are just values of these types. We sum up the correspondence between Idris and logic in Table 1.

We use logic-inspired notation \exists for the existential quantifier datatype.

The code from sections 3 and 4 is available on the source code-sharing site GitHub:
Botta, Jansson and Ionescu

Idris Logic

p : P	p is a proof of P
FALSE (empty type)	False
non-empty type	True
P → Q	P implies Q
∃ {A} P	there exists a wit such that P (wit) holds
(x : A) → P x	forall x of type A, P x holds

Table 1. Curry-Howard correspondence relating Idris and logic.

3 Monadic sequential decision problems and policy advice

3.1 Deterministic decision processes

In the introduction we have argued that, if a decision process is deterministic and the initial state can be measured exactly, solutions of the corresponding decision problem can be represented in a particularly simple form as lists of successive controls. In this section, we formalize the notion of deterministic decision processes.

States A deterministic decision process starts in an initial state x_0 at an initial discrete time t_0. Without loss of generality, we can take $t_0 : \mathbb{N}$.

The type of x_0 – the state space at t_0 or, in other words, the set of possible initial values – represents all information available to the decision maker at t_0. In a decision process like those underlying models of international environmental agreements, x_0 could just be a tuple of real numbers representing some estimate of the greenhouse gas (GHG) concentration in the atmosphere (and, perhaps, in other earth system components), some measure of the gross domestic product, and possibly other model variables.

In the example of figure 2, the state space at time t_0 is simply the set $X_0 = \{a, b, c, d, e\}$ and the starting state $x_0 = b$. In most decision processes, the state space depends on time. Again, in the example of figure 2, the state space at time $t \leq 2$, $t = 4$, $t = 5$ and $t \geq 7$ consists of X_0 – the five columns a to e. But at $t = 3$ the state space is just column e and at $t = 6$ only columns a, b and c constitute the state space. In general, a decision process is characterized by a function

$$X : (t : \mathbb{N}) \rightarrow Type$$

defining the (time dependent) state space and $X t$ represents the state space at time t. In the signature of X we see a first application of dependent types. In a language in which types were not allowed to be predicated on values, it would not be possible to express the obvious property that the state space – the type $X t$ – depends on the value t!

The notion of a state space is elementary, but identifying a suitable space for a particular application can require careful analysis and interactions between advisors and decision makers. Sometimes it is necessary to extend an initial characterization of the state space to encompass statistical data about the decision process itself. This allows decision makers to update the data while decisions are taken and to exploit the knowledge accumulated during previous decision steps.
Controls In a sequential decision process, the decision maker is required to select a control (action, option, choice, etc.) at each decision step. In many applications, controls represent some rate of consumption (of resources which might be limited), some production or investment rate or perhaps just different energy options.

In models of international environmental agreements of the kind discussed in (Finus et al., 2003), for instance, decision makers could select some rates of abatement of CO$_2$ emissions or, perhaps, emission caps. In the model presented in (Heitzig, 2012), controls could be requests for entering or exiting a coalition or a market.

In the example of figure 2, the controls are, for all but the first and the last column, L to move to the left of the current column, A to stay at the current column and R to move to the right of the current column. In the first column only A and R belong to the control space and in the last column the control space only consists of A and L.

In defining the control space for a particular decision process, it is important to carefully identify which options the decision makers have at their disposal. In general, the set of controls available to the decision maker at a given time depends both on that time and on the particular state of the process at that time. Thus, the control space can, in general, be described by a function

\[Y : (t : N) \rightarrow (x : X t) \rightarrow Type \]

In the signature of Y we see another application of dependent types. The control space – the type of controls available at time t in x, $Y t x$ – depends on the values t and x.

4 And, we should add, “want” to dispose of. It is easy to imagine decision problems – typical examples are steering problems or negotiations problems – in which decision makers consciously decide to exclude certain control options, e.g. to avoid potentially unmanageable states.
Botta, Jansson and Ionescu

Transition functions In deterministic decision processes, the current state and the control selected at the current state together determine the next state. Thus, a deterministic decision process is characterized by a function

\[
\text{step} : (t : \mathbb{N}) \rightarrow (x : X_t) \rightarrow (y : Y_{t x}) \rightarrow X(S_t)
\]

and \(\text{step} t x y\) is the state obtained by selecting control \(y\) in state \(x\) at time \(t\). Notice, again the type dependencies: the type of \(x\) depends on the value \(t\); the type of \(y\) depends on \(t\) and on \(x\). Finally, \(\text{step}\) returns a value in \(X(S_t)\) which is the state space at time \(S_t = 1 + t^5\).

Rewards We have mentioned in the introduction that, in SDPs, the decision maker seeks controls that maximize a reward function. This is expressed as a sum of rewards, one for each decision step\(^5\). The reward obtained in a single decision step depends, in general, on the current state, on the selected reward and on the next state. In models of international environmental agreements, for instance, rewards are computed on the basis of abatement costs and of avoided climate impact damages. Abatement costs certainly depend on the abatement level and, e.g., when the state space also represents available technologies, on the current state. Avoided damages might depend both on the current state and on the next state. In general, a decision process is characterized by a function

\[
\text{reward} : (t : \mathbb{N}) \rightarrow (x : X_t) \rightarrow (y : Y_{t x}) \rightarrow (x' : X(S_t)) \rightarrow \text{Double}
\]

The return type of \(\text{reward}\) does not actually need to be \text{Double}. As we will see later in this section, for our theory it is enough for the return type of \(\text{reward}\) to be an ordered monoid. On the other hand, the kind of generalization that can be achieved by a proper specification of the return type of \(\text{reward}\) is not our focus in this paper. For the rest of this article, we will trade generality for terseness of expressions and take the return type of \(\text{reward}\) to be \text{Double}. But we keep in mind that, here, a generalization is possible and, in fact, straightforward.

Before moving to the next section, let us summarize the results obtained so far for deterministic decision processes. We have seen that specifying one such processes requires defining four functions: \(X, Y, \text{step}\) and \(\text{reward}\). The first two functions define the types of the state and of the control spaces. The function \(\text{step}\) defines the “dynamics” of the process and \(\text{reward}\) its valuation.

Depending on the specific decision process, defining \(X, Y, \text{step}\) and \(\text{reward}\) might be trivial or challenging. We do not have enough experience in policy advice to discuss general methods for the specification of decision processes. In climate impact research, it is probably safe to assume that the specification of \(X\) and \(Y\) cannot be meaningfully delegated to decision makers and requires a close collaboration between these, domain experts and perhaps modelers.

\(^5\) More precisely, at step \(1 + t\). Throughout this paper, we use the term “time” to simply denote a number of steps, not any “physical” (or maybe “social”?) time. Thus, \(t_0, t_1, t_2, \text{etc.}\) are just the first, the second, the third, etc. number of decision steps. The intuition that justifies calling the number of steps “time” is that, as implicitly coded in the signature of \(\text{step}\), transitions can only increase this number.

\(^6\) The notion of “sum” should be understood in a broad sense: at it will turn out, every binary operator that satisfies a simple monotonicity condition is suitable for defining a reward function.
3.2 Non-deterministic decision processes

The difference between deterministic and non-deterministic decision processes is that, in the second case, selecting a control $y : Y t x$ when in a state $x : X t$ at time $t : \mathbb{N}$ does not yield a unique next state $x' : X (S t)$ but a whole set of possible next states. For instance, a non-deterministic process similar to the one sketched on the left of figure 2 could be one that, when selecting a control RR (move somewhere to the right) in b at the initial time, yields a move to c or to d or perhaps e.

Non-deterministic decision processes account for uncertainties in the decision process ("fat-finger" errors in trading games, uncertainty about the effectiveness of controls, etc.), in the transition function (uncertainties about modeling assumptions, empirical closures, observations, etc.) or in the reward function.

There are many ways to account for these and other kinds of uncertainty in the formalization of sequential decision processes but one that has turned out to be particularly simple and effective (Ionescu, 2009) is to have step return a list of values instead of a single value:

$$\text{step} : (t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y t x) \rightarrow \text{List} \ (X (S t))$$

Because List is a functor, we have a higher-order function fmap which propagates uncertainty on the outcome of step to rewards:

$$\text{rewards} : (t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y t x) \rightarrow \text{List} \ \text{Double}$$

$$\text{rewards} \ t \ x \ y = \text{fmap} \ (\text{reward} \ t \ x \ y) \ (\text{step} \ t \ x \ y)$$

In other words, for each possible next state we have, through $\text{reward} \ t \ x \ y$, a corresponding possible reward. Therefore, for every $t : \mathbb{N}, x : X t$ and $y : Y t x$, we have a unique list of possible rewards. Before further discussing the formalization of non-deterministic decision processes, let’s move to the stochastic case.

3.3 Stochastic decision processes

The difference between non-deterministic and stochastic decision processes is that, in the second case and for a given $t : \mathbb{N}, x : X t$ and $y : Y t x$ we do not only know the possible next states but also their probabilities. Building upon the non-deterministic case discussed above, we can easily formalize the stochastic case by replacing

$$\text{step} : (t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y t x) \rightarrow \text{List} \ (X (S t))$$

with

$$\text{step} : (t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y t x) \rightarrow \text{Prob} \ (X (S t))$$

Here $\text{Prob} A$ represents a probability distribution on A: a value of type $\text{Prob} A$ consists of a vector of elements of type A of arbitrary length, a vector of elements of type Double of the same length and a proof that the latter satisfies the norming condition for probability distributions:

$$\text{data} \ \text{Prob} : \ Type \rightarrow \ Type \ \text{where}$$

$$\text{MkProb} : \{A : \text{Type}\} \rightarrow (\text{as} : \text{Vect} \ n \ A) \rightarrow (\text{ps} : \text{Vect} \ n \ \text{Double}) \rightarrow$$

$$((i : \text{Fin} \ n) \rightarrow \text{So} \ (\text{index} \ i \ \text{ps} \geq \ 0.0)) \rightarrow (\text{sum} \ \text{ps} = 1.0) \rightarrow \text{Prob} A$$

Notice that, just like List, and $\text{Vect} \ n, \text{Prob}$ is a functor. Its fmap function
transforms a probability distribution on A into a probability distribution on B, by applying
a function that transforms elements of A into elements of B. It is easy to see that \textit{fmap}
preserves identity and function composition. As in the non-deterministic case, \textit{step} induces,
via \textit{fmap}, a probability distribution on rewards

$\text{rewards} : (t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y t x) \rightarrow \text{Prob Double}$

$\text{rewards} t x y = \text{fmap} (\text{reward} t x y) (\text{step} t x y)$

3.4 Monadic decision processes

In the previous two subsections, we have seen two representations of uncertainty:

- when we only know the possible results of a transition with values in A, we can
 represent this by a list of elements of A, i.e., an element of $\text{List} A$, and
- when we also have information about the probabilities of the results, we can repre-
 sent this by a simple probability distribution on A, i.e., an element of $\text{Prob} A$.

Other representations of uncertainty are possible. For example, we might want to describe
the quality of possible results of a transition, by using fuzzy sets (e.g., we might want to
talk about “big increases in global temperature”, “satisfactory economic growth”, and so
on). Or we might want to combine various representations of uncertainty: say, fuzziness in
one dimension with non-determinism in another.

In all these cases, we represent uncertainty of outcomes of type A by some structure of
type $M A$, that combines possible results with some information about the uncertainty. In
the case of non-determinism we have $M = \text{List}$ (no additional information), in the case of
stochastic uncertainty we have $M = \text{Prob}$ (elements with probabilities), and so on.

In all these cases, we can find a function \textit{fmap} which transforms representations of
uncertainty of outcomes of type A to representations of uncertainty of outcomes of type
B by using a function at the element level

$\text{fmap} : \{A, B : \text{Type}\} \rightarrow (A \rightarrow B) \rightarrow MA \rightarrow MB$

in a way which preserves identities and compositions. In other words, the structures with
which we represent uncertainty are \textit{functorial}.

Moreover, in all these cases, we have a way of expressing that an outcome is certain. In
the case of non-determinism, we do this by wrapping the outcome as a singleton list:

$\text{certain} : \{A : \text{Type}\} \rightarrow A \rightarrow \text{List} A$

$\text{certain} a = [a]$

In the case of stochastic uncertainty, we use a concentrated probability distribution, etc.

The transition functions we use to represent uncertain outcomes all have the form

$\text{step} : (t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y t x) \rightarrow M (X (S t))$

It is clear how to make a transition from a given x and y at a given t: the next state will be
$\text{step} t x y$. But, as opposed to the deterministic case, we now have a \textit{collection} of states, and
we cannot just apply \textit{step} to it again. Via \textit{fmap} we can apply \textit{step} to the elements \textit{inside} the
Contributions to a computational theory of policy advice and avoidability

structure, but then we end up with a “second-order” uncertainty: we obtain a structure of structures of states. We appear to have lost the basic operation of a discrete system, namely the ability to iterate the transition function in a uniform fashion.

In fact, however, in all the cases we have seen so far we can reduce a “second-order” representation of uncertainty to a “first-order” one. For example, in the case of lists:

\[
\text{reduce : } \{A : \text{Type}\} \rightarrow \text{List} \left(\text{List } A\right) \rightarrow \text{List } A
\]

\[
\text{reduce } = \text{concat}
\]

Similarly, we reduce probabilities of probabilities on \(A\) to just probabilities on \(A\), fuzzy sets of fuzzy sets to just fuzzy sets, and so on. In all cases, the reduction satisfies some simple laws, such as, for all \(ma : M A\):

\[
\text{reduce } (\text{certain } ma) = ma
\]

This can be paraphrased as: certainty about an uncertain representation (denoted by \(ma\)) can be reduced to just the uncertain representation.

In all the cases we have seen so far, and in many others, uncertainty about outcomes of type \(A\) is represented by a structure of type \(M A\), where the type constructor \(M : \text{Type} \rightarrow \text{Type}\) satisfies:

\[
\begin{align*}
&\text{• it is a functor (i.e., we have a function } f\text{map lifting functions from elements to functions on } M\text{-structures)} \\
&\text{• we have a way of representing certain outcomes } (\text{certain } : A \rightarrow MA) \\
&\text{• we have a way of reducing “second-order” uncertainty } (\text{reduce } : M MA \rightarrow MA) \\
&\text{• these items are related by a small number of simple equations.}
\end{align*}
\]

In short, we can describe different kinds of uncertainty (possibly due to different causes) in a seamless way by introducing the notion of monadic sequential decision problem. Thus, \(\text{certain}\) and \(\text{reduce}\) are just domain-specific names for \text{return} and \text{join} and \text{bind}:

\[
\text{(} \gg= \text{) : } \{A,B : \text{Type}\} \rightarrow MA \rightarrow (A \rightarrow MB) \rightarrow MB
\]

\[
\text{ma} \gg= f = \text{join } (\text{fmap } f \text{ ma})
\]

is the combinator that allows us to iterate the transition function of our decision processes. A final remark: in decision problems, it is useful to recover certainty as a limiting case of uncertainty and deterministic systems as special instances of monadic systems. Our formalization handles that gracefully: for \(M = \text{Id}\) we have \(f\text{map } = \text{id}\), \(\text{certain } x = x\), \(\text{reduce } x = x\) and the \text{bind} combinator is, as expected, just function (flipped) application.

3.5 Decision problems

Consider again a non-deterministic decision process \((M = \text{List})\) starting in

\[
x_0 : X t_0
\]

at an initial time \(t_0 : N\). The set of controls available to the decision maker in \(x_0\) at time \(t_0\) is \(Y t_0 x_0\). The set of states that can follow after selecting \(y_0 : Y t_0 x_0\) is

\[
\text{step } t_0 x_0 y_0 : \text{List } (X (S t_0))
\]

Each of the states in \(\text{step } t_0 x_0 y_0\) represents a possible next state and for each of these states we have a corresponding possible reward:
If we are to take one single step, and if we have a means of measuring the value of the possible rewards obtained by selecting a specific control:

```
meas : List Double → Double
```

then, at least conceptually, the problem of making an optimal decision can be solved straightforwardly: for every control in Y_{t_0, x_0}, we measure the value of the possible rewards for that control and select the one that yields the highest value.7

But what if we are to take decisions for two or more steps? What does it mean for a decision in step 2 to be “optimal”?

The problem we face is that, even if we were able to select an optimal control y^*_0 at step 1 (whatever this means!) we would not be able to even precisely state which controls are available at step 2, let alone which ones are optimal! This is because, for each possible outcome in $step t_0 x_0 y^*_0$ we would have potentially different sets of controls and potentially different optimal choices.

The argument shows that, except for the deterministic case where a decision (optimal or not) at step 1 implies a unique next state, it does not make sense to ask for a specific decision (let alone an “optimal” decision) at step 2 without knowing the outcome of step 1: what is optimal at step 2 very much depends on which of the possible states actually occurs in a particular realization.

Decision making that takes into account the facts as they unfold during a particular realization of the decision process is not only much more flexible than decision making based on some fixed control plan. In general, taking advantage of the information that becomes available during a particular decision process allows one to achieve higher rewards. This is particularly obvious if one considers decision processes like those underlying activities such as driving, lecturing, playing a competitive game or negotiating a price. No one would seriously consider tackling such activities by blindly following some fixed, a-priori computed “action plan”. What is required here are, on one hand, the capability to recognize which situations or states actually occur and, on the other hand, rules that tell one which actions to take for every possible situation or state.

But, if policy advice cannot be about recommending static decision plans and delivering scenarios according to such plans what should then be the content of policy advice? The answer is both obvious and compelling: consider again, the two-step decision process outlined above. As we have seen, we cannot say which decision should be taken at step 2 without having performed step 1. But we certainly can compute (again, in principle and with the same caveats mentioned for the case of step 1) an optimal control for every possible outcome of step one. That is, we can compute a function that associates an optimal control for step 2 to every state in $X_{t_1} = X (S_{t_0})$ which can be obtained by selecting y^*_0 in step 1.

In fact, we can compute a function that associates to every $x_1 : X_{t_1}$ an optimal control $y^*_1 : Y_{t_1, x_1}$. In control theory such functions are called policies and we argue that the main

7 Clearly, this approach cannot, in general, be applied straightforwardly. But it surely works for finite Y_{t_0, x_0} and this is particularly relevant for applications.
content of policy advice – what advisors are to provide to decision makers – are policies, perhaps, in practice, policy “explanations” or narratives. More precisely, if a decision process unfolds over \(n \) steps what is required for decision making under uncertainty are \(n \) policies, one for each decision step. Formally:

\[
\text{Policy} : (t : \mathbb{N}) \to \text{Type} \\
\text{Policy} t = (x : X t) \to Y tx
\]

\[
data \text{PolicySeq} : (t : \mathbb{N}) \to (n : \mathbb{N}) \to \text{Type} \\
\text{Nil} : \text{PolicySeq} t Z \\
(_ : \text{Policy} t \to \text{PolicySeq} (S t) n \to \text{PolicySeq} (S n)
\]

Notice that a policy sequence is a dependent vector which is parameterized by two indexes. The first index \(t : \mathbb{N} \) represents the time at which the first decision has to be taken. The second index \(n : \mathbb{N} \) gives the length of the policy sequence or, equivalently, the number of policies of the sequence. Thus, a policy sequence of length \(n \) assists decision making over \(n \) steps.

These notions of policy and policy sequence are conceptually correct but, as we will see in the next sections, too simplistic. In order to derive a generic method for computing optimal policies, we will have to refine these notions. This is done in section 3.9. In the next two sections we formalize optimality and introduce two fundamental notions: reachability and viability. These will be the basis for the notion of avoidability presented in section 4.

We conclude this section with three remarks. The first one is that, if we have a policy sequence of length \(n \) and a measure \(\text{meas} \) for the value of the possible rewards, we can compute the value – in terms of the sum of measures of possible rewards – of making \(n \) decision steps according to that sequence. Therefore, the decision problem – maximizing the sum of the rewards obtained over \(n \) decision steps – can be phrased as the problem of finding a policy sequence of length \(n \) whose value is at least as good as the value of every other possible policy sequence.

The second remark follows directly from the first one: a particular decision problem is characterized, among others, by a monad \(M \) and by a measure \(\text{meas} : M \text{Double} \to \text{Double} \). The monad characterizes the kind of uncertainties inherent in the decision process. If there are no uncertainties, \(M \) is simply \(\text{Id} \), the identity monad. The measure \(\text{meas} \) characterizes how the decision maker values such uncertainties. In many textbooks on dynamic programming, it is implicitly assumed that \(M = \text{Prob} \) and \(\text{meas} \) is the expected value measure. Often, this is a sensible assumption. But other measures are possible. In decision problems in climate impact research, for instance, one might want to apply measures which are informed by other guidelines than the maximization of the expected value. Typical examples are max-min measures, or, in game-theoretical terms, “safety” strategies. Measures of possible rewards have to satisfy a monotonicity condition, see section 3.10. It is a responsibility of advisors to clarify the role of measures in non deterministic SDPs and to make sure that decision makers understand the implications of adopting different principles of measurement on the outcome of a decision process.

\[\text{Notice, however, that such computation is not completely straightforward: at the } m\text{-th decision step, the value of applying the } n-m \text{ policies left after } m \text{ decision steps has to be computed for every possible “next” state! This generates a } M\text{-structure of values which has to be measured with } \text{meas}. \text{ We discuss such computation in detail in sections 3.6 and 3.9.} \]
The third remark is that SDPs which are not deterministic cannot, in general, be reconducted to “equivalent” deterministic problems. Consider a specific decision process that is, assume that M, X, Y, and step are given. We can easily transform this process into a “deterministic” one

$$
\text{mstep} : (t : \mathbb{N}) \rightarrow (mx : MX t) \rightarrow (p : ((x : X t) \rightarrow Y t x)) \rightarrow MX (S t)
$$

by introducing an “equivalent” state space

$$
MX : (t : \mathbb{N}) \rightarrow \text{Type}
$$

This is possible because M is a monad and therefore has a join transformation. But notice that, in the new formulation, the third argument of mstep are values of type $(x : X t) \rightarrow Y t x$. Thus, the policies of the original problem play the role of controls in its deterministic formulation! This is not arbitrary or accidental: in order to apply the step function of the original problem to the states in mx, we have to compute a control (of the original process) for each such state. Therefore we need a policy. The transformation has not brought any practical advantage over the original formulation. Even worse, it has brought the obligation of answering two questions: what does it mean for mstep to be “equivalent” to step and how to introduce an “equivalent” decision problem by means of a suitable mreward function.

Fortunately, there is no need to reformulate monadic decision problems. As we will see in the next section, the notion of policy is strong enough to allow all monadic problems – deterministic, non-deterministic, stochastic, etc. – to be tackled with a uniform, seamless approach. This allows decision makers to select controls on the basis of whatever states will occur in actual realizations in a provably optimal way and according to a notion of optimality which is intuitively understandable and computationally compelling.

3.6 Optimal policies

What is the value – in terms of rewards – of making n decision steps from some initial state $x : X t$ by applying the policy sequence $ps : \text{PolicySeq} t n$? More formally: how do we compute $\text{val} : (x : X t) \rightarrow (ps : \text{PolicySeq} t n) \rightarrow \text{Double}$? If $n = 0$ that is, we take zero steps, then we will collect no rewards\(^9\) and the answer is simply zero:

$$
\text{val} \{ t \} \{ n = Z \} \times ps = 0
$$

What if n is greater than zero? In this case $n = S m$ for some $m : \mathbb{N}$ and the policy sequence consists of a first policy – say p – and of a possibly empty tail. We can make a first decision by applying the policy p to the initial value x. This yields a control $y : Y t x$ and an M-structure of possible next states $\text{step} t x y : M (X (S t))$. This is just a single next state for $M = \text{Id}$ (deterministic case), a list of states for $M = \text{List}$ (non-deterministic case) and a probability distribution on states for $M = \text{Prob}$ (stochastic case). In any case we know that M is a functor. Thus, we can compute, for every $x' : X (S t)$ in $\text{step} t x y$ the sum of

\(^9\) There is little else we can do except for applying step if the new process has to be, in some meaningful sense, “equivalent” to the original one.

\(^{10}\) In this case ps is an empty policy sequence that is, there is no policy to apply!
Contributions to a computational theory of policy advice and avoidability

\[\text{reward} \ t \ x \ y \ x' : \text{Double} \] and of the value of making \(m \) decision steps from \(x' \) by applying the rest of the policy sequence. This yield an \(M \)-structure of Doubles, one for every possible next state in \(\text{step} \ t \ x \ y \). As discussed in the previous section, the value of such a structure is measured by a function \(\text{meas} : M \text{Double} \rightarrow \text{Double} \):

\[
\begin{align*}
\text{val} \{ t \} \{ n = S \ m \} \ x \ (p :: ps) &= \text{meas} (\text{fmap} \ f \ m x') \quad \text{where} \\
y &\vdash Y t x \\
m x' &\vdash M (X (S t)) \\
m x' &\vdash \text{step} \ t \ x \ y \\
f &\vdash X (S t) \rightarrow \text{Double} \\
f x' &\vdash \text{reward} \ t \ x \ y \ x' + \text{val} \ x' \ ps
\end{align*}
\]

In the introduction, we argued that an optimal policy sequence is, informally, a policy sequence that cannot be further improved. We can now formalize this intuition. Consider a policy sequence \(ps \) for \(n \) decision steps, the first one at time \(t \). We say that \(ps \) is optimal iff for every \(ps' \) and for every \(x : X t \), applying \(ps' \) for \(n \) decision steps from \(x \) does not yield a better value than applying \(ps \):

\[
\begin{align*}
\text{OptPolicySeq} : \text{PolicySeq} t n &\rightarrow \text{Type} \\
\text{OptPolicySeq} \{ t \} \{ n \} \ ps = (ps' : \text{PolicySeq} t n) \rightarrow (x : X t) \rightarrow \text{So} (\text{val} \ x \ ps' \leq \text{val} \ x \ ps)
\end{align*}
\]

Notice that, since \(0 \leq 0 \), the empty policy sequence (there is only one) is optimal:

\[
\text{nilOptPolicySeq} : \text{OptPolicySeq Nil} \\
\text{nilOptPolicySeq} \ ps' x = \text{reflexiveDoubleLTE} \ 0
\]

This is a trivial but important observation. It is a consistency check for the notion of optimality introduced above and, as we will see in section 3.10, the base case for a generic form of backwards induction for computing optimal policy sequences.

3.7 Viability and reachability (deterministic case)

The notions of policy and policy sequence introduced in section 3.5 are conceptually correct but, for practical purposes, of little use.

Let’s consider again the decision problem sketched in figure 2. For concreteness, assume that the transition function \(\text{step} \) is deterministic and defined such that it simply effects the selected command: selecting \(L \) at time 0 in \(b \) yields \(a \), selecting \(A \) yields \(b \) and selecting \(R \) yields \(c \) and so on. Also, assume that states like \(a, b \) and \(c \) at time 2 and \(e \) at time 5 are truly “dead-ends” or, in other words, that there are no controls for these states (at time 2 and 5, respectively).

Consider the head of a policy sequence \(p :: ps \) of length \(n = S \ m \geq 3 \) for this problem. According to the notions of policy and policy sequence introduced in section 3.5 the types of \(p \) and \(ps \) are \(\text{Policy} \ 0 \) and \(\text{PolicySeq} 1 \ m \). Thus, \(p \) is a function that associates a control to each of the initial states \(a, b, c, d \) and \(e \). There is nothing preventing \(p \) to choose \(L \) in \(b \)

\[
p b = L
\]

But a policy which is the head of a sequence of policies for 3 or more steps cannot select a move to the left for the initial state \(b \) ! This would lead – for \(\text{step} \) defined as outlined above – to \(a \) at \(t = 1 \) and, from there, to a dead-end no matter what \(ps \) at step 2 prescribes. In other
words, such a policy sequence would not allow, in general, to take more than 2 steps. To avoid such situations, policies which are elements of policy sequences have to fulfill two additional constraints. The first constraint is that

Property 1
The \(m \)-th policy of a policy sequence of length \(n > m \) has to select controls that yield next states from which at least further \(n - S_m \) steps can be taken.

The above rule requires \(p \) (the 0-th policy of \(p :: ps \)) to select \(R \) in \(b \). But what shall \(p \) select in \(a \)? There is no control in \(a \) that leads to next states from which at least two more steps can be taken!

The point is simply that \(a \) cannot belong to the domain of \(p \). This leads us to the second constraint that policies which are elements of sequences supporting a given number of decision steps have to fulfill. This is a logical consequence of the first one: if the \(m \)-th policy of a policy sequence of length \(n \) has to select controls that yield next states from which further \(n - S_m \) steps can be taken, its domain has to consist of states from which at least \(n - m \) steps can be taken:

Property 2
The domain of the \(m \)-th policy of a policy sequence of length \(n > m \) has to consist of states from which at least \(n - m \) steps can be taken.

Viability
Can we formulate these two constraints generically that is, independently of the particular decision problem at stake? Maybe surprisingly, the answer is positive.

Let’s consider, first, the deterministic case \(M = Id \). Properties 1 and 2 express constraints for the co-domain and for the domain of policies. These constraints are specified in terms of particular subsets of the state space: in 1 we consider – at the \(S_m \)-th decision step at time \(t = m \) – next states at time \(t = S_m \) from which at least further \(n - S_m \) steps can be taken. In 2 we consider states at time \(t = m \) from which at least \(n - m \) steps can be taken. In both cases, we use a property of states – to allow a given number of further steps – to select certain subsets of the state space.

We call this property viability. We say that a state \(x : X_t \) is viable for \(k \) steps if it is possible – by selecting suitable controls – to take at least \(k \) further steps starting from \(x \).

In the middle of figure 2 we have represented states which are viable for less than three steps in gray. For instance, \(a \) at time 0 is viable for at most 2 steps. At time 1, \(a \) and \(b \) are viable for 1 step and, at time 2, \(a \), \(b \) and \(c \) are dead-ends: they are viable for 0 steps. A state which is viable for \(S_k \) steps is obviously viable for \(k \) steps: who can do more, can do less. Clearly, we can define the notion of viability recursively

Definition 1 (Viability)

11 And \(A \) or \(R \) in \(c \), \(L \), \(A \) or \(R \) in \(d \), etc.
12 That is, again, for arbitrary \(X \), \(Y \), step and reward of type \((t : \mathbb{N}) \rightarrow Type \), \((t : \mathbb{N}) \rightarrow (x : X t) \rightarrow Type \), \((t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y x) \rightarrow M (X (S t)) \) and \((t : \mathbb{N}) \rightarrow (x : X t) \rightarrow (y : Y x) \rightarrow (x' : X (S t)) \rightarrow Double \), respectively.
13 We will see that a generic formulation of these two constraints is crucial for deriving a generic theory of decision making but also for formalizing the notion of avoidability.
Every state is viable for zero steps. A state \(x : X t \) is viable \(S m \) steps iff there is a control \(y : Y t x \) such that \(\text{step} \ t \ x \ y \) is viable \(m \) steps.

A formalization of viability following this definition is straightforward:

\[
\begin{align*}
\text{Viable} : (n : \mathbb{N}) &\rightarrow X t \rightarrow \text{Type} \\
\text{Viable} \{ t \} \ Z &_ = () \\
\text{Viable} \{ t \} \ (S m) \ x = \exists (\lambda y \Rightarrow \text{Viable} m \ (\text{step} \ t \ x \ y))
\end{align*}
\]

Policies revisited With the notion of viability in place, we can refine the formalization of policy and policy sequence introduced in section 3.5 to account for the constraints expressed in [1] and [2].

\[
\begin{align*}
\text{Policy} : (t : \mathbb{N}) &\rightarrow (n : \mathbb{N}) \rightarrow \text{Type} \\
\text{Policy} \ t \ Z &_ = () \\
\text{Policy} \ t \ (S m) &_ = (x : X t) \rightarrow \text{Viable} (S m) \ x \rightarrow (y : Y t x \Rightarrow \text{Viable} m \ (\text{step} \ t \ x \ y))
\end{align*}
\]

data PolicySeq : (t : \mathbb{N}) \rightarrow (n : \mathbb{N}) \rightarrow \text{Type} where

\[
\text{Nil} : \text{PolicySeq} t Z
\]

A policy is now parameterized on two indexes: a time \(t \) and a number of steps \(n \). We read \(p : \text{Policy} \ t \ n \) as \(p \) is a policy to make a decision at time \(t \) that supports \(n \) decision steps.

On a policy for 0 steps we have no requirements: we can take \(\text{Policy} \ t \ Z \) to be the singleton type \([1]\). But we require a policy for making a decision at time \(t \) that supports \(m \) further decision steps to associate to every state \(x \) in \(X t \) which is viable for \(S m \) steps a control in \(Y t x \) such that \(\text{step} \ t \ x \ y \) is viable for \(m \) steps.

Notice that, in contrast to the notion of policy from section 3.5, we have now a constraint on the domain (the second argument taken by \(\text{Policy} \)) and one on the co-domain of policies. The first constraint formalizes [1] The latter formalizes [2] and is expressed by the second element of the dependent pair returned by a policy. This consists of a control and of a proof (a guarantee for the decision maker) that that control yields a next state from which a suitable number of further steps can be taken.

As we will see in section 4, the notion of viability is crucial not only for building a sound theory of decision making. When considering policies that avoid potentially harmful future states, one has to be careful not to trade serendipity for viability: from a sustainability perspective it make little sense to avoid certain future states if the alternative implies dead-ends.

Reachability In the beginning of this section, we have argued that the notions of policy and policy sequence introduced in section 3.5 were conceptually correct but that – in order to be useful – three problems had to be solved. We have formulated two of them through the constraints [1] and [2] for the deterministic case. We have seen that addressing these problems is mandatory to make sure that policies for \(n \) decision steps do not lead to dead-ends. We have solved these problems for the deterministic case and derived a notion of viability which, if decidable, allows advisors to make precise statements about the capability of

\[\text{In Idris the singleton type is denoted by ()}.\] It contains a single element, perhaps confusingly also denoted by ()..
Botta, Jansson and Ionescu

states (current or future) to sustain future decision steps. We now turn our attention to the third problem.

Consider, again, the decision process sketched in figure 2. On the right-hand side of the figure we have grayed those states which, under the assumptions made in discussing the notion of viability, are not reachable. Consider, for instance, c at time 4. This state is not reachable no matter which initial state we start from. This is because from e – the only state in X – we can only reach, at time 4, d (with a left move) but not a, b or c.

Computing policies for subsets of the state space that cannot be reached in a decision process can imply a significant waste of resources. Consider, for instance, the decision problem sketched in Fig. 3. The idea here is that all columns are valid and there are no dead-ends. But the set of controls available to the decision maker is more limited than in the example of figure 2. In a and e, the only control available to the decision maker is A. In b and d, the decision maker can only select L and R, respectively. The only state in which the decision maker truly faces a decision problem is c. Here, it can move to the left or to the right. In other words, the decision maker faces at time zero and in c a dilemma but has otherwise no choices.

The decision problem models a bifurcation: for $t > 1$, the system is either in a or in e no matter what the initial condition was. Thus, there is a wedge of states – marked in gray in figure 3 – that can never be reached. As the number of columns increases, the fraction of the state space that cannot be reached becomes bigger and bigger. Computing controls (optimal controls, in particular) for such states would be a waste of resources. The intuition is that (policy) advice should focus on future states which actually can happen, not on those which are unreachable. We can achieve this goal by putting forward another constraint on the domain of policies:

Property 3
The domain of the m-th policy of a policy sequence starting at time t has to consist of states in $X(t + m)$ which are reachable.

We can easily formalize reachability if we specify what it means for a state to be the successor (or, conversely, the predecessor) of another state. For the deterministic case, this is straightforward: for every time $t : \mathbb{N}$, $x : X(t)$ is a predecessor of $x' : X(S(t))$ iff there exists a control $y : Y$ such that step brings x to x':

\[
\text{Pred} : X(t) \rightarrow X(S(t)) \rightarrow \text{Type} \\
\text{Pred} \{ t \} x x' = \exists (\lambda y x y x y = \text{step } t x y)
\]

The notion of reachability is in a certain sense dual to the notion of viability: the intuition – again in the deterministic case – is that every state at the initial time is reachable and that a state $x' : S(t)$ is reachable iff it has a reachable predecessor and there exists a control that allows the decision maker to move from there to x':

\[
\text{Reachable} : X \rightarrow \text{Type} \\
\text{Reachable} \{ t = Z \} x = () \\
\text{Reachable} \{ t = S(t) \} x' = \exists (\lambda x (\text{Reachable } x, x ' \text{Pred'} x'))
\]
Policies revisited again We can now further refine our notion of policy by requiring it to take values in reachable subsets of the state space:

\[
\text{Policy } t (S m) = (x : X t) \rightarrow \text{Reachable } x \rightarrow \text{Viable } (S m) x \rightarrow (y : Y t x \Rightarrow \text{Viable } m (\text{step } t x y))
\]

We conclude this section by noting that, in the deterministic case, we have been able to express the notions of viability and reachability and the constraints 1, 2 and 3 generically.

An immediate consequence is that we can apply the framework presented in (Botta et al., 2017) to compute provably correct optimal policies for arbitrary decision problems.

In the next section we show how to extend the notions of reachability and viability (and the corresponding notions of policy and policy sequence) to the general, monadic case.

3.8 Viability and reachability: monadic case

Consider again the monads for the deterministic case, for the non-deterministic case and for the stochastic case: \(\text{Id, List and Prob} \). These are not just monads but container monads.

A monadic container \(M \) has, in addition to the monadic interface, a membership predicate \(\text{Elem} : \{ A : Type \} \rightarrow A \rightarrow M A \rightarrow Type \) and a “for all” predicate

\[
\text{All : } \{ A : Type \} \rightarrow \{ P : A \rightarrow Type \} \rightarrow M A \rightarrow Type
\]

A value of type \(a \text{'Elem'} ma \) represents a proof that \(a \) is contained in \(ma \). We require \(\text{Elem} \) to be consistent with the monadic interface of section 3.4 in the sense that

\[
\text{containerMonadSpec1 : a'Elem'(ret a)}
\]

\[
\text{containerMonadSpec2 : } \{ A : Type \} \rightarrow \{ a : A \rightarrow (ma : M A) \rightarrow (mma : M (M A)) \rightarrow a'Elem'ma \rightarrow ma'Elem'mma \rightarrow a'Elem'(join mma) \}
\]

\(\text{All} \) formalizes the idea that all element in the container fulfill a given property. In other words, \(\text{All } P ma \) implies \(P a \) for every \(a \text{'Elem'} ma \).

A key property of monadic containers is that if we map a function \(f : A \rightarrow B \) over a container \(ma \), \(f \) will only be used on values in the subset of \(A \) which are in \(ma \). We model the subset as \((a : A \Rightarrow a \text{'Elem'} ma) \) and we formalize the key property by requiring a function \(\text{tagElem} \) which takes any \(a : A \) in the container into the subset:

\[
\text{tagElem : } \{ A : Type \} \rightarrow (ma : M A) \rightarrow M (a : A \Rightarrow a \text{'Elem'} ma)
\]

\[
\text{tagElemSpec : } \{ A : Type \} \rightarrow (ma : M A) \rightarrow f\text{map outl}(\text{tagElem } ma) = ma
\]

The specification requires \(\text{tagElem} \) to be a tagged identity function. For the monads \(\text{Id, List and Prob, tagElem} \) and \(\text{tagElemSpec} \) are easily implemented.

Viability and reachability The notion of viability for the deterministic case expressed necessary and sufficient conditions for being able to perform a given number of steps from a given state. We extend this notion to the monadic case by defining a state \(x : X t \) to be viable \(S m \) steps iff there is a control in \(Y t x \) which allows the decision maker to take \(m \) further steps no matter which state will follow after selecting \(y \):
and value of policy sequences for the general, monadic case is almost straightforward: With viability and reachability in place, formalizing the notions of policy, policy sequence m for m in $S m$ viable for $S m$ steps if there is a control in $Y t x$ such that all states in $step t x y$ are viable for m steps”. With the notion of monadic container, it is straightforward to formalize the predecessor relation in the monadic case

$$\text{Pred} : X t \rightarrow X (S t) \rightarrow Type$$
$$\text{Pred} \{ t \} x x' = \exists (\lambda y. \text{Eq} \ (s' \cdot \text{Elem} \ step t x y))$$

With this definition, reachability is defined exactly as in the deterministic case.

3.9 Policies and policy sequences revisited

With viability and reachability in place, formalizing the notions of policy, policy sequence and value of policy sequences for the general, monadic case is almost straightforward:

$$\text{Policy} : (t : \mathbb{N}) \rightarrow (n : \mathbb{N}) \rightarrow Type$$
$$\text{Policy} t Z = (\)$$

$$\text{Policy} t (S m) = (x : X t) \rightarrow \text{Reachable} x \rightarrow \text{Viable} (S m) x \rightarrow (y : Y t x = \text{All} (\text{Viable} m) (step t x y))$$

```haskell
data PolicySeq : (t : \mathbb{N}) \rightarrow (n : \mathbb{N}) \rightarrow Type where
  Nil : PolicySeq t Z
  (:\) : Policy t (S n) \rightarrow PolicySeq (S t) n \rightarrow PolicySeq t (S n)
```

```haskell
val : (x : X t) \rightarrow \text{Reachable} x \rightarrow \text{Viable} n x \rightarrow PolicySeq t n \rightarrow \text{Double}
val \{ t \} \{ n = Z \} x r v ps = 0
val \{ t \} \{ n = S m \} x r v (p : ps) = \text{meas} (\text{fmap} f (\text{tagElem} mx'))
```

```haskell
y : Y t x
y = \text{out} (p x r v)
mx'' : M (X (S t))
mx'' = step t x y
av : \text{All} (\text{Viable} m) mx''
av = \text{out} (p x r v)
f : (x' : X (S t)) \rightarrow x' \cdot \text{Elem} \ mx'' \rightarrow \text{Double}
f = mkf x r v y av ps
```

As in section 3.6, we first apply the policy p and compute a control y and an M-structure of possible new states mx''. But here the application of p also yields a proof that all states in mx'' are viable m steps. As we will see, this proof is crucial for computing f, the function to be mapped on $\text{tagElem} mx'$. The computation of f is delegated to a function mkf:

```haskell
mkf : (x : X t) \rightarrow (r : \text{Reachable} x) \rightarrow (v : \text{Viable} (S m) x) \rightarrow (y : Y t x) \rightarrow (av : \text{All} (\text{Viable} m) (\text{step} t x y)) \rightarrow
(ps : PolicySeq (S t) m) \rightarrow (x' : X (S t)) \rightarrow x' \cdot \text{Elem} \ (\text{step} t x y) \rightarrow \text{Double}
mkf \{ t \} \{ m \} x r y av ps (x' \cdot x'') = \text{reward} t x y x' + \text{val} x' r' v' ps where
xpx' = x' \cdot \text{Pred} x'
xpx'' = \text{Evidence} x' x''
r' = \text{Reachable} x' r'
r' = \text{Evidence} x (r, xpx')
```
Contributions to a computational theory of policy advice and avoidability

\[v' : \text{Viable } m x' \]
\[v' = av x' x \text{estep} \]

As in section 3.6, \(f \) is a function that associates to states \(x' \) in \(mx' \) the sum of the reward of the transition from \(x \) to \(x' \) and of the value of making \(m \) further decision steps from \(x' \) according to the tail of the policy sequence \(p::ps \). But in order to compute these two values for a given \(x' \), we need to provide evidences that \(x' \) is reachable and viable \(m \) steps. These proofs are coded in \(r' \) and \(v' \). We prove that \(x' \) is reachable by providing two pieces of evidence: that \(x \) is reachable and that it is a predecessor of \(x' \).

The first piece of evidence is for free: it is one of the arguments of \(\text{val} \) and the second argument of \(\text{mkf} \), \(r \). To construct the second piece of evidence, we need to know that \(x' \) is in \(\text{step } t x y \) and that all states in \(\text{step } t x y \) are viable \(m \) steps. We have an evidence of the latter in \(av \). And we compute proofs that all states in \(mx' \) are indeed in \(mx' \) by applying \(\text{tagElem} \) to \(mx' \). Here is where we exploit the assumption that \(M \) is not just a monad but a monadic container.

3.10 A framework for monadic sequential decision problems

In this section we introduce the computational core of our theory: first, we formalize the notion of optimality for policy sequences. Then we formulate Bellman’s original principle of optimality. Finally, we derive a generic method for computing optimal policy sequences and show that the method yields optimal policies for arbitrary sequential decision problems.

The section is a summary of the results derived in (Botta et al., 2013a, 2017). We refer to the appendix for technical details and focus on the main results from an applicational perspective.

Optimality of policy sequences In the previous section we have expressed \(a \text{ value} \) in terms of the sum of the \(\text{possible} \) rewards over \(n \) decision steps of taking decisions according to a policy sequence \(ps : \text{PolicySeq } t n \) through \(\text{val} \).

The emphasis here is on \(a \text{ value} \) and \(\text{possible} \). As explained at the end of section 3.5, in order to compute the value of \(ps \), the decision maker has to adopt \(a \text{ measure} \) for estimating the rewards associated to the \(\text{possible} \) outcomes of the decision steps. Decision makers who are measuring chances according to a precautionary principle might end up taking very different decisions from decision makers that measure chances according to their expected value.

The responsibility of adopting a measure is a crucial one and decision makers – be they single individuals, institutions or public stakeholders – cannot be freed from such responsibility. In turn, it is a responsibility of the policy advisors to make stakeholders aware of the importance of consciously adopting a measure, to provide alternatives, and to explain the consequences of adopting different criteria.

But, given a decision problem and a measure, \(\text{val } x r v ps \) gives the value – in terms of rewards – of taking \(n \) decisions starting from a state \(x : X t \) which is reachable and viable

\[\text{That is, given } M, X, Y, \text{step and reward of suitable types.} \]
for \(n \) steps and following the policy sequence \(ps : PolicySeq t n \). Under these premises, it is clear what it means for \(ps \) to be optimal:

\[
OptPolicySeq : PolicySeq t n \rightarrow Type \\
OptPolicySeq \{ t \} \{ n \} ps = (ps' : PolicySeq t n) \rightarrow (x : X t) \rightarrow (r : Reachable x) \rightarrow \\
(v : Viable n x) \rightarrow So (val x r v ps' \leq val x r v ps)
\]

We read this formalization of optimality for policy sequences as follows: "a policy sequence \(ps \) for making \(n \) decision steps starting from a state in \(X t \) is optimal iff for every policy sequence \(ps' \) (of the same type as \(ps \)) and for every state in \(X t \) which is reachable and viable for \(n \) steps, the value of \(ps \) is at least as high as the value of \(ps' \)". Just as for our simple-minded formalization of policy sequence from section 3.6, also here we can prove that the empty policy sequence is optimal:

\[
nilOptPolicySeq : \{ t : \emptyset \} \rightarrow OptPolicySeq \{ t = t \} \{ n = Z \} Nil \\
nilOptPolicySeq \{ t \} ps' x r v = reflexiveDoubleLTE 0
\]

Bellman’s optimality principle Bellman’s optimality principle ([Bellman 1957](#)) can be expressed through the notion of optimal extension. Being an optimal extension is a property of a policy. It is relative to a policy sequence. The idea is that a policy \(p \) for a decision step at time \(t \) is an optimal extension of a policy sequence \(ps \) for \(n \) further decision steps iff for every policy \(p' \), the value of \(p :: ps \) is at least as high as the value of \(p' :: ps \):

\[
OptExt : PolicySeq (S t) m \rightarrow Policy t (S m) \rightarrow Type \\
OptExt \{ t \} \{ m \} ps p = (p' : Policy t (S m)) \rightarrow (x : X t) \rightarrow (r : Reachable x) \rightarrow \\
(v : Viable (S m) x) \rightarrow So (val x r v (p' :: ps) \leq val x r v (p :: ps))
\]

In other words, if \(p \) is an optimal extension of \(ps \) we know (for sure, no matter whether the decision process is deterministic, non-deterministic, stochastic, etc.) that there is no better way of making a decision now than the one indicated by \(p \), given that we will make decisions in the future according to \(ps \). The last conditional is crucial for expressing Bellman’s principle. This can be stated as:

\[
Bellman : (ps : PolicySeq (S t) m) \rightarrow OptPolicySeq ps \rightarrow \\
(p : Policy t (S m)) \rightarrow OptExt ps p \rightarrow OptPolicySeq (p :: ps)
\]

We read Bellman’s principle as follows: for every policy sequence \(ps \) and policy \(p \), if \(ps \) is an optimal policy sequence and \(p \) an optimal extension of \(ps \), then \(p :: ps \) is optimal.

Bellman’s principle is particularly important because it embodies an obvious algorithm for constructing optimal policy sequences: start with the empty policy sequence – we have seen above that this is optimal – compute an optimal extension and proceed from there. This algorithm is called backwards induction and we derive a generic and provably correct implementation in the next section.

For the moment, it is important to understand that Bellman’s principle reduces the problem of computing optimal policy sequences for \(n \) steps to the problem of computing \(n \) optimal extensions. This is a crucial because of two reasons. The first one is that computing optimal extensions is, in principle, straightforward. We discuss this problem at the end of this section. The second reason is that Bellman’s principle suggests that – if we can compute optimal extensions with complexity independent of the length of the policy sequence to be extended – the complexity of computing optimal policy sequences is linear
Contributions to a computational theory of policy advice and avoidability

in the number of steps. This is important because it makes a rigorous approach towards policy advice applicable to real problems.

But does Bellman’s principle hold? The answer is positive and, in principle, known since 1957. Here, we implement a machine checkable proof. Proving that the policy sequence \((p :: ps)\) is optimal, given that \(ps\) is optimal and that \(p\) is an optimal extension of \(ps\), means implementing a function that, for every \(p' :: ps'\) (with \(p'\) and \(ps'\) of the same type as \(p\) and \(ps\), respectively) and for every \(x : X, t, r : \text{Reachable } x\) and \(v : \text{Viable } (S, m) x\), computes a value of type

\[
\text{So } (\text{val } x r v (p' :: ps')) \leq \text{val } x r v (p :: ps)
\]

The idea is to first prove that

\[
\text{val } x r v (p' :: ps') \leq \text{val } x r v (p :: ps)
\]

and then apply transitivity of \(\leq\) to deduce the result. A proof that \(p' :: ps\) is not better – in terms of \(\text{val}\) – than \(p :: ps\) can be immediately computed from the assumption that \(p\) is an optimal extension of \(ps\). A proof that \(p' :: ps'\) is not better than \(p' :: ps\) can be derived from optimality of \(ps\) and from the definition of \(\text{val}\). The definition of \(\text{val}\) implies that

\[
\text{val } x r v (p' :: ps') \leq \text{val } x r v (p' :: ps)
\]

follows from

\[
\text{meas } (\text{fmap } f' \text{ (tagElem } mx')) \leq \text{meas } (\text{fmap } f \text{ (tagElem } mx'))
\]

where \(f' : (x' : X (S t)) \times x' \rightarrow \text{Double and } mx' : M (X (S t))\) are

\[
\begin{align*}
 f' &= (\text{mkf } x r v y' \text{'av'}) \text{ ps'} \\
 f &= (\text{mkf } x r v y' \text{'av'}) \text{ ps} \\
 mx' &= \text{step } t x y
\end{align*}
\]

and \(\text{mkf}\) is the function defined in section 3.9.

In the above expressions, the control \(y\) and \(\text{prf}\) – a proof that all states in \(mx'\) are viable \(m\) steps – are obtained by applying the policy \(p'\) to \(x\), \(r\) and \(v\):

\[
\begin{align*}
 y &= \text{outl } (p x r v) \\
 \text{prf} &= \text{outr } (p x r v)
\end{align*}
\]

It is easy to see that \(f'\) is point-wise not greater than \(f\) that is \(f' z \leq f z\) for all \(z\). This follows from the definitions of \(f', f\), from the optimality of \(ps\), that is

\[
\text{val } x' r' v' ps' \leq \text{val } x' r' v' ps
\]

and from the fact that \(+\) is monotone on \(\text{Double}\) that is \(y \leq z \rightarrow x + y \leq x + z\) for all \(x, y, z : \text{Double}\). But in order to deduce

\[
\text{meas } (\text{fmap } f' \text{ (tagElem } mx')) \leq \text{meas } (\text{fmap } f \text{ (tagElem } mx'))
\]

from \(f' \leq f\), we have to assume that \(\text{meas}\) fulfills

\[
\begin{align*}
 \text{measMon} &: \{ \text{A : Type} \} \rightarrow \\
 & (f : \text{A } \rightarrow \text{Double}) \rightarrow (g : \text{A } \rightarrow \text{Double}) \rightarrow ((a : \text{A}) \rightarrow \text{So } (f a \leq g a)) \rightarrow \\
 & (\text{map} : \text{M } \text{A}) \rightarrow \text{So } (\text{meas } (\text{fmap } f \text{ ma}) \leq \text{meas } (\text{fmap } g \text{ ma}))
\end{align*}
\]
This monotonicity condition is a natural condition that all meaningful measures should satisfy. It is easy to see that the expected value measure and “worst case” measures satisfy this condition. As for other specifications of the monadic container interface already discussed, measMon is only required to hold for

\[A = (x' : X (S t) \Rightarrow x' \text{'Elem' } mx') \]

for Bellman to hold. In appendix A, we give a machine checkable proof of Bellman’s principle for a generic M, that is, independently of whether the decision problem is deterministic, stochastic, non-deterministic or something else.

Backwards induction Assume that we have a procedure for computing an optimal extension of a policy sequence:

\[
\text{optExt} : \text{PolicySeq} (S t) n \rightarrow \text{Policy} t (S n) \\
\text{postulate} \quad \text{optExtLemma} : (ps : \text{PolicySeq} (S t) n) \rightarrow \text{OptExt} ps (\text{optExt} ps)
\]

Then a generic backwards induction procedure for computing optimal policy sequences can be implemented as follows:

\[
\text{bi} : (t : \mathbb{N}) \rightarrow (n : \mathbb{N}) \rightarrow \text{PolicySeq} t n \\
\text{bi} t Z = \text{Nil} \\
\text{bi} t (S n) = (\text{optExt} ps :: ps) \text{ where} \\
ps : \text{PolicySeq} (S t) n \\
ps = \text{bi} (S t) n
\]

It is easy to see that \(\text{bi} t n\) yields optimal policy sequences for every time step \(t\) and number of decision steps \(n\). It surely does so for \(n\) equal to zero because, as seen above, the empty policy sequence is optimal. Assume \(ps : \text{PolicySeq} (S t) n\) is optimal. Bellman’s optimality principle shows that \((\text{optExt} ps :: ps) : \text{PolicySeq} t (S n)\) is also optimal. A machine checkable proof can be implemented easily:

\[
\text{biLemma} : (t : \mathbb{N}) \rightarrow (n : \mathbb{N}) \rightarrow \text{OptPolicySeq} (\text{bi} t n) \\
\text{biLemma} t Z = \text{nilOptPolicySeq} \{t\} \\
\text{biLemma} t (S n) = \text{Bellman} ps ops p oep \text{ where} \\
ps : \text{PolicySeq} (S t) n \\
ps = \text{bi} (S t) n \\
ops : \text{OptPolicySeq} ps \\
ops = \text{biLemma} (S t) n \\
p : \text{Policy} t (S n) \\
p = \text{optExt} ps \\
oep : \text{OptExt} ps p \\
oep = \text{optExtLemma} ps
\]

Notice how the induction hypothesis – optimality of \(ps\) – is obtained through a recursive call to \(\text{biLemma}\). The lemma shows that, in order to implement a provably correct, generic procedure for computing optimal policy sequences, two ingredients are crucial: Bellman’s optimality principle and the capability of computing optimal extensions of arbitrary policy

16 Originally introduced by C. Ionescu [Ionescu 2009] in a different context: that of formalizing the notion of “vulnerability” as a measure of possible future harm.
Contributions to a computational theory of policy advice and avoidability

sequences. We have given a machine checkable proof of Bellman’s principle in appendix A. In the next section we derive a generic procedure for computing optimal extensions.

Can we compute optimal extensions? Conceptually, computing an optimal extension \(p \) of a policy sequence \(ps \) is straightforward. We can define the policy \(p \) by computing, for every state \(x \) (which is reachable and viable for \(S \) steps), a “best” value in the co-domain of \(p \):

\[
\text{optExt} : \text{PolicySeq}(S \, t \, n) \rightarrow \text{Policy}(S \, n)
\]

\[
\text{optExt} \{ x \} \{ n \} \, ps \, = \, p \text{ where }
\]

\[
p \, x \, r \, v \, = \, \text{argmax} \, g \text{ where }
\]

\[
g : (y : Y \, t \, x \, \text{All} \, (\text{Viable} \, n) \, (\text{step} \, t \, x \, y)) \rightarrow \text{Double}
\]

\[
g \, (y \, \text{av}) \, = \, \text{meas} \, \left(\text{map} \, f \, \left(\text{tagElem} \, \left(\text{step} \, t \, x \, y \right) \right) \right)
\]

\[
f : (x' : X \, (S \, t)) \rightarrow \text{Double}
\]

\[
f \, = \, \text{mkf} \, x \, r \, v \, y \, \text{av} \, ps
\]

In the implementation above, a best “feasible control” – a value in the co-domain of \(p \), \((y : Y \, t \, x \, \text{All} \, (\text{Viable} \, n) \, (\text{step} \, t \, x \, y)) \) – is obtained by maximizing the function \(g \). For a feasible control \((y \, \text{av}) \), \(g \, (y \, \text{av}) \) yields the value (measured by \(\text{meas} \)) of making a single step with \(y \) and taking \(n \) further decision steps according to the policy sequence \(ps \).

Thus, the computation of an optimal extension always implies solving a maximization problem. The theories for solving such problems constitute an important sub-domain of numerical analysis, combinatorics and interval arithmetic. They go well beyond the scope of the theory presented here. We formalize the requirements needed for computing optimal extensions of arbitrary policy sequences in terms of the following specification:

\[
\text{max} : \{ A : \text{Type} \} \rightarrow (f : A \rightarrow \text{Double}) \rightarrow \text{Double}
\]

\[
\text{argmax} : \{ A : \text{Type} \} \rightarrow (f : A \rightarrow \text{Double}) \rightarrow A
\]

\[
\text{maxSpec} : \{ A : \text{Type} \} \rightarrow (f : A \rightarrow \text{Double}) \rightarrow (a : A) \rightarrow \text{So} (f \, a \leq \text{max} \, f)
\]

\[
\text{argmaxSpec} : \{ A : \text{Type} \} \rightarrow (f : A \rightarrow \text{Double}) \rightarrow \text{max} \, f \, = \, f \, (\text{argmax} \, f)
\]

As usual, for \(\text{optExt} \) to actually compute an optimal extension \(p \) of an arbitrary policy sequence \(ps \) that is, for \(\text{optExtLemma} \) to be implementable, we only need the above specification to hold for \(A \) equal to the co-domain of \(p \). Depending on the specific application, implementing \(\text{max}, \text{argmax}, \text{maxSpec} \) and \(\text{argmaxSpec} \) can be quite difficult or even impossible. It is certainly straightforward for the case in which the set of feasible controls is finite. We give a machine checkable proof of \(\text{optExtLemma} \) in appendix B.

3.11 Sequential decision problems and policy advice

In the previous section we have presented a theory for specifying and solving sequential decision problems under different kinds of uncertainty. In this theory, a decision problem is specified by giving five entities:

- A monadic container \(M \) specifying the kind of uncertainty affecting the decision problem. For problems with no uncertainties \(M = \text{Id} \).
- A function \(X : (t : \mathbb{N}) \rightarrow \text{Type} \) specifying the state space – what the decision maker can observe – for every time \(t : \mathbb{N} \).
• A function \(Y : (t : \mathbb{N}) \rightarrow (x : X_t) \rightarrow \text{Type} \) specifying the control space – the options available to the decision maker – for every time \(t : \mathbb{N} \) and for every state \(x : X_t \).

• A transition function \(\text{step} : (t : \mathbb{N}) \rightarrow (x : X_t) \rightarrow (y : Y_t x) \rightarrow M \left(X \left(S_t \right) \right) \) specifying the consequences of selecting a control in a given state and at a given time for every time \(t : \mathbb{N} \), for every state \(x : X_t \) and for every control \(y : Y_t x \).

• A reward function \(\text{reward} : (t : \mathbb{N}) \rightarrow (x : X_t) \rightarrow (y : Y_t x) \rightarrow (x' : X \left(S_t \right)) \rightarrow \text{Double} \) specifying the reward obtained by entering a new state upon selecting a control in a given state and at a given time, for every time \(t : \mathbb{N} \), for every state \(x : X_t \), for every control \(y : Y_t x \) and for every new state \(x' : X \left(S_t \right) \).

The theory only requires \(M \) to be a monadic container and does not impose any restriction (or implicit assumption) on \(X, Y, \text{step} \) and \(\text{reward} \) except for those implicit in their signature.

The theory supports a disciplined, accountable approach towards policy advice: First, it explains what decision makers and advisors have to specify for policy advice to be accountable. Second, it explains what it means for policy sequences to be optimal and which guarantees decision makers can expect from implementing optimal policies. Third, the theory provides a backwards induction procedure for computing provably optimal policies.

The last result holds under two additional assumptions: that decision makers and advisors agree on a monotone measure \(\text{meas} : M \text{Double} \rightarrow \text{Double} \) for estimating the value of uncertain rewards and that they provide \(\text{max} \) and \(\text{argmax} \) methods for solving local maximization problems that fulfill the \(\text{maxSpec} \) and \(\text{argmaxSpec} \) specification given in the last section\(^{17} \).

While backwards induction – since Bellman’s original contribution in 1957 – has been routinely implemented and applied to a vast number of decision problems in, among others, economics, bioinformatics and computing science, our theory is, to the best of our knowledge, the first one that entails a generic, machine checkable implementation. A new theory raises two obvious questions:

1. Can the theory deliver more given the specification of a decision problem?
2. Can the theory demand less for the specification of a decision problem?

The answer to the first question is positive: given a decision problem, we can provide more than optimal policy sequences. In particular, we can provide different notions of monadic trajectories and methods for computing the possible future evolutions resulting from selecting controls according to a given sequence of policies, optimal or not.

These notions are extremely useful for assisting decision making. They can be applied to refine – give precise meanings to – the idea of “scenario”. The related methods allow advisors to automatically generate consistent and provably complete samples of possible future evolutions. In decision problems with a limited number of options and severe uncertainties,

\(^{17}\) The latter is, in principle, a strong assumption. But it cannot be avoided and decision theories that do not explicitly mention this assumption, most likely sweep it under the rug. For example the finiteness assumption is introduced in many applications through a discretization of the control space.
optimal policy sequences can be expected not to be unique. For these problems, decision makers can take advantage from consistent and complete scenarios, e.g. to estimate the impact of different optimal policies according to criteria which are not captured by the notion of optimality characterizing the decision problem.\footnote{A decision maker might not be able (or allowed) to modify the notion of optimality underlying the decision process but still have preferences on optimal policy sequences. He could for instance prefer an optimal policy sequence in which the highest rewards come immediately after the first decision steps to an optimal policy sequence in which the highest rewards come towards the end of the decision procedure, e.g., to increase his chances at being re-elected.}

A comprehensive theory of trajectories and scenarios and computational methods for generating such trajectories and scenarios and for combining systems characterized by different kinds of uncertainty have been originally proposed by C. Ionescu and we refer the interested reader to (Ionescu, 2009).

Here, we just outline a generic procedure for computing an \(M\)-structure of (all) possible future evolutions under a given policy sequence. To this end, it is important to recognize that a policy sequence naturally generates an \(M\)-structure of state-control pairs. But what are sequences of state-control pairs? These can be introduced in a similar way as policy sequences:

\[
\begin{align*}
\text{data } & \text{StateCtrlSeq : } (t : \mathbb{N}) \to (n : \mathbb{N}) \to \text{Type where} \\
\text{Nil : } & (x : X t) \to \text{StateCtrlSeq t Z} \\
(::) : & (x : X t \leftrightarrow Y t x) \to \text{StateCtrlSeq} (S t) n \to \text{StateCtrlSeq t} (S n)
\end{align*}
\]

The idea is that, if we are given a sequence of policies \(ps\) for \(n\) steps and some initial state \(x\), we can construct an \(M\)-structure of possible state-control sequences of length \(n\). For example, for \(M = \text{Prob}\), we obtain a probability distribution of state-control sequences representing all possible evolutions of the system given the controls implied by \(ps\) and starting from \(x\):

\[
\begin{align*}
\text{stateCtrlTrj : } & (x : X t) \to (r : \text{Reachable } x) \to (v : \text{Viable } n x) \to \\
& (ps : \text{PolicySeq t } n) \to M \left(\text{StateCtrlSeq t } n \right)
\end{align*}
\]

We give an implementation of \textit{stateCtrlTrj} in appendix\footnote{The answer to the second question raised above – whether the theory can demand less for the specification of a decision problem – is also positive. The key idea lies in the notion of avoidability and is the subject of the second part of this work.} C. The answer to the second question raised above – whether the theory can demand less for the specification of a decision problem – is also positive. The key idea lies in the notion of avoidability and is the subject of the second part of this work.

\section*{4 Policy advice and avoidability}

The major weakness of the theory presented in the previous section is that it relies on a reward function:

\[
\begin{align*}
\text{reward : } & (t : \mathbb{N}) \to (x : X t) \to (y : Y t x) \to (x' : X (S t)) \to \text{Double}
\end{align*}
\]

In order to specify a decision problem, \textit{reward} has to be defined for every time \(t : \mathbb{N}\), for every state \(x : X t\), for every control \(y : Y t x\) and for every “possible” next state \(x' : X (S t)\). The idea is that \(\text{reward } t x y x'\) gives the value of selecting \(y\) in \(x\) at time \(t\) \textit{and} then entering state \(x'\).
We could try to be a little bit more precise and only require reward to be defined for states which are reachable and viable for a given number of steps. We could also try to constrain \(x' \) to take values in the support of \(\text{step} \ t \ x \ y \). But still, reward has to be defined for a decision problem to be specified.

In many application domains – in particular in climate impact research – it is not very difficult to specify the state spaces \(X \), the control spaces \(Y \) and the transition function \(\text{step} \) of a particular decision process. But the notion of rewards (payoffs, utility, etc.) is more problematic. We do not want to discuss here the reasons of such difficulties. As mentioned in the introduction, they can be practical, ethical or perhaps just operational.

Instead, we ask ourselves whether a theory of policy advice and decision making can be built without relying on the notion of rewards.

4.1 Policy advice and avoidability

Consider, for concreteness, the problem of designing abatement policies for GHG emissions. Here, the first and foremost concern is to envisage sequences of policies that avoid certain future states which are considered to be potentially harmful.

If we knew that a policy sequence provably avoids (or provably avoids with a probability above a given threshold) these potentially harmful states and if such a policy sequence was implementable at “low” costs, it would be foolish not to adopt it.

The argument suggests that, in many decision problems, avoidability is a relevant notion which could be fruitfully applied to inform policy advice.

But what does it mean for a future possible state to be avoidable? The question is crucial because, in absence of a clear understanding of what it means for a state to be avoidable, one very first concern of policy advice – namely that of avoiding potentially harmful future states – is void of meaning.

Before attempting a formalization of the notion of avoidability, it is useful to fix a few intuitions: First notice that – in contrast to the notions of reachability and viability put forward in the previous sections – the notion of avoidability is necessarily a relative one. Whether a future state, say a state that can possibly occur in 10 decision steps from now is avoidable or not certainly depends on the current state.

Thus, avoidability is a relation between states. More precisely, it is a relation between states at a given time and states at some later times. Another remark is that we are interested in the avoidability of “possible” future states. We do not care what it means for states that are not reachable to be avoidable. The other way round: we are interested in the avoidability of states which are reachable from a given (e.g., current) state. The latter notion of reachability is again a relative one.

A third remark is that the notion of avoidability entails the notion of an alternative. Consider again figure 2 for all initial states from which at least three steps can be made.

19 The \(x': X (S t) \) such that \(x' \in \text{Elem} \text{step} t x y \).
20 A way of re-formulating this question is to ask whether rewards could be defined in terms of something less questionable.
21 For instance, because – in these states – certain “climate” variables or certain “socio-economic” variables exceed critical thresholds.
Remember that we are formalizing a notion of reachability in the future, not in the past. Therefore which at the same time reachable from a state \(x \) is reachable from \(t \):

\[
\text{ReachableFrom} : X t' \to X t \to \text{Type}
\]

\[
\text{ReachableFrom} \set{t'' = Z} \set{t} \quad x'' = \set{t = Z, x = x''}
\]

\[
\text{ReachableFrom} \set{t'' = S t'} \set{t} \quad x'' = \lambda \exists (x' \text{ReachableFrom} x, x' \text{Pred} x'')
\]

The first case is one in which \(t'' \) is equal to zero. In this case \(t \) also has to be equal to zero and \(x \) has to be equal to \(x'' \). This formalizes the intuition that a state at a given time is reachable from a state at the same time if and only if the two states are equal, for time zero.

The second case explains what it means for \(x'' \) to be reachable from \(x \) for the case in which \(t'' \) is not zero. In this case, \(t'' \) is the successor of a time \(t' \) and we have two cases: either \(t = t'' \) and \(x = x'' \) or \(x'' \) has a predecessor which is reachable from \(x \).

It is easy to show that the above definition is consistent with our intuition that, if \(x'' : X t'' \) is reachable from \(x : X t \), then it is the case that \(t'' \geq t \):

\[
\text{reachableFromLemma} : (x'' : X t'') \to (x : X t) \to x'' \text{ReachableFrom} x \to t'' \text{GTE} t
\]

We prove \text{reachableFromLemma} in appendix D.

4.3 Avoidability

We are now ready to formalize the notion of avoidability discussed in section 4.1: a state \(x' : X t' \) which is reachable from a state \(x : X t \) and viable for \(n \) steps is avoidable from \(x \) if there exists an alternative state \(x'' : X t' \) which is also reachable from \(x \) and viable for \(n \) steps:

\[
\text{Alternative} : (x : X t) \to (m : \mathbb{N}) \to (x' : X t') \to (x'' : X t') \to \text{Type}
\]

\[
\text{Alternative} x m x' x'' = (x'' \text{ReachableFrom} x, \text{Viable} m x'', \text{Not} (x'' = x'))
\]

\[
\text{AvoidableFrom} : (x' : X t') \to (x : X t) \to x' \text{ReachableFrom} x \to \text{Viable} n x' \to \text{Type}
\]

\[
\text{AvoidableFrom} \set{t'} \set{n} x' x r v = \exists (\text{Alternative} x n x')
\]

22 Remember that we are formalizing a notion of reachability in the future, not in the past. Therefore \(t'' \) cannot be smaller than \(t \): \(t'' \geq t \). For \(t'' = Z \), \(t'' \geq t \) implies \(t = Z \).
The above formalization explains what it means for a state \(x' \) to be avoidable given a “current” state \(x \). It is a more or less word-by-word translation of the informal notion discussed in section 4.1. It requires, for \(x' \) to be avoidable, the existence of an alternative state \(x'' \) which is at least as good – in viability terms – as \(x' \).

The viability constraint in this notion of avoidability is essential, for instance for policy advice which has to be informed by sustainability principles. In developing the theory presented in this paper, we have consciously refrained from using, in the formal framework, terms which are prominently used in specific application domains, in particular in climate impact research. Thus, we have denoted the capability of a state to support a certain number of future evolution steps with “viability” and not with “sustainability”.

The rationale behind our approach is that it is in a domain specific theory that domain specific notions, for instance the notion of sustainability in climate impact decision problems, are to be given a meaning. This is done in terms of domain-independent notions (for instance, those proposed here) and the translation is usually referred to as a domain-specific language (DSL).

Our work has been inspired by climate impact research, but our main goal has been to provide a framework of domain-independent notions. It is a responsibility of the developers of a DSL for climate impact research – a team that necessarily has to include climate scientists and decision makers – to give meaning to notions like sustainability in a suitable DSL.

But we have to ask ourselves whether our domain-independent notions are flexible enough to support such a DSL. And since our main motivation comes from climate impact research, our notions should be at least able to support a DSL for this domain.

From this angle, the notion of avoidability outlined above is perhaps too narrow. Consider, again, the problem of designing abatement policies for GHG emissions. Here it seems natural for a decision maker to raise the question whether a future state \(x' \) which is considered to be particularly bad from the point of view of sustainability can be avoided. In this case the property of \(x' \) being unsustainable could be expressed – in a suitable DSL – by the property of \(x' \) being viable only for a limited number of steps. Perhaps \(x' \) is to be avoided because it is only viable for zero steps like for instance states \(a \), \(b \) and \(c \) at time 2 in figure 2. In this case the intuition is that a meaningful alternative to \(x' \) should be more viable than \(x' \). We can capture this idea by dropping the requirement that the alternative state has to be as viable as \(x' \):

\[

\text{AvoidableFrom} : (x : X t') \rightarrow (x : X t) \rightarrow x' \text{ReachableFrom} x \rightarrow (m : N) \rightarrow \text{Type}

\]

The generalization introduces a family of avoidability notions through the additional parameter \(m \). For \(m = n \) we recover the original notion. The parameter \(m \) allows one to

23 Obviously, the requirement does not prevent \(x'' \) to be better than \(x' \): a state which is viable for more than \(n \) steps is certainly viable for \(n \) steps.

24 The most obvious exception to this rule has probably been the usage of the term “policy” which is widely used in a number of application domains. We feel that its usage here is justified: policy is a standard notion in control theory and our notion of policy – though refined – is consistent with that usage.

25 Given a (factual or hypothetical) “current” state \(x \), given that \(x' \) is reachable from \(x \), etc.
strengthen or to weaken the viability requirements the alternative state has to fulfill. This gives advisors more flexibility to adapt the notion of avoidability to the specific decision problem. For a given decision problem, it allows stakeholders to investigate the consequences of weaker and stronger notions of avoidability.

4.4 Decidability of avoidability

Beside formalizing notions of avoidability, an avoidability theory has to answer the question of whether such notions are decidable. This is crucial for applications.

Knowing what it means for future states to be avoidable is essential to give content to notions that built upon avoidability. In climate impact research, for instance, mitigation and adaptation [Allwood et al., 2014] depend on the notion of avoidability. They take on different meanings as the underlying notion of avoidability changes. Another notion that depends on that of avoidability is levity [Otto and Levermann, 2011]. In a nutshell, the idea is that a future state that is potentially very harmful and easily avoidable (perhaps because there are many alternative states) has a high levity. The rationale behind this notion is normative: policies should try to avoid states with high levity values. Obviously, different notions of avoidability imply different notions of levity.

For applications, however, it is often important to be able to assess whether a given future state x' is avoidable or not. In other words, it is important to have a decision procedure which allows one to discriminate between states which are avoidable and states which are not avoidable.

Decidability does not, in general, come for free. A typical example is that of equality. We have a very clear notion of what it means for two functions to be equal: they have to have the same value at every point. But, in general, we do not have a decision procedure for equality of functions. For functions on real numbers, for instance, we do not have a decision procedure even if we restrict ourselves to equality on a closed interval.

The example makes clear that, if we do not introduce additional requirements, there is little hope for avoidability to be decidable: nothing so far prevents X from being functions of real variables! A minimal requirement is that equality on states is decidable

$$\text{decEqX} : (x : X t) \rightarrow (x' : X t') \rightarrow \text{Dec } (x = x')$$

and we expect most practical applications to fulfill this requirement: if states cannot be distinguished from each other, decision makers will have a very hard time implementing no matter which policy! In the specification above, Dec is simply

\begin{verbatim}
data Dec : Type -> Type where
 Yes : {P : Type} -> (prf : P) -> Dec P
 No : {P : Type} -> (contra : P -> Void) -> Dec P
\end{verbatim}

The idea is that if a predicate $p : A \rightarrow Type$ is decidable, then we have, for every $a : A$ either an evidence for $p a$ – this is just a value of type $p a$ wrapped by Yes – or a demonstration that an evidence for $p a$ yields a contradiction. This is a function of type $p a \rightarrow \text{Void}$ wrapped by No.

\[26\] Again, given a current state x, etc.
Thus, our notion of avoidability is decidable if we can implement a function that returns a value of type \(\text{Dec} (\text{AvoidableFrom} x' x r m) \) for every \(x', x, r, \) and \(m \) of the appropriate types. This is – because of our definition of avoidability – a value of type
\[
\text{Dec} (\exists (\text{Alternative} x m x'))
\]
In the next section we discuss under which conditions we can implement such a function and provide an implementation. We conclude this section with two remarks.

An important consequence of decidability is that one can implement a Boolean test. Thus, if avoidability is decidable, decision makers could rely on a test that provably returns \(\text{True} \) if a state \(x' \) is avoidable from \(x \) and \(\text{False} \) if \(x' \) is not avoidable. This could be very useful, for instance in negotiations.

A second implication of avoidability being decidable is that one could easily derive avoidability orderings and use these to compute provably optimal precautionary policies. For instance, one could say that a state \(x \) is more avoidable than \(y \) if \(x \) has a richer set of alternative states. Such orderings could be combined with measures of possible harm to construct specific reward function, e.g., ones that assign low rewards to states which are highly avoidable and are possibly very harmful. This would support a more disciplined and more transparent approach towards policy advice, in particular for decision problems in which realistic estimates of costs and benefits are lacking or for whatever reason questionable.

In a nutshell, decidability could allow scientific advisors to apply in an accountable fashion principles (of levity, avoidance, safety) that – for instance in climate impact research – are considered to be relevant but that, to the best of our knowledge, have not so far been operationalized.

4.5 Finite types and decidability

Consider again the notion of avoidability introduced in the last section:
\[
\text{AvoidableFrom} : \langle x' : X t' \rangle \rightarrow \langle x : X t \rangle \rightarrow x' \text{ReachableFrom} x \rightarrow (m : \mathbb{N}) \rightarrow \text{Type}
\]
\[
\text{AvoidableFrom} \{ t' \} x' x r m = \exists (\text{Alternative} x m x')
\]
This notion explains \(x' : X t' \) to be avoidable from \(x : X t \) if there exists a state \(x'' : X t' \) such that \(\text{Alternative} x m x' x'' \). Thus, a decision procedure for avoidability has to provide, for every \(x', x, r \) and \(m \) either a value of type \(\exists (\text{Alternative} x m x') \) or a contradiction.\(^\text{27}\) A value of type \(\exists (\text{Alternative} x m x') \) is just a state \(x'' \) in \(X t' \) together with a proof that \(x'' \) is an alternative to \(x' \). This is a value of type \(\text{Alternative} x m x' x'' \). Thus, a minimal condition for avoidability to be decidable is that \(\text{Alternative} x m x' x'' \) is decidable.\(^\text{28}\) The intuition is that decidability of \(\text{Alternative} x m x' x'' \) is also sufficient if \(X t' \) is finite.

This intuition is correct and certainly does not depend on anything specific to \(X \). We can afford to be a little bit more general and formulate
\[
\text{finiteDecLemma} : \{ A : \text{Type} \} \rightarrow \{ P : A \rightarrow \text{Type} \} \rightarrow \text{Finite} A \rightarrow \text{Dec} P \rightarrow \text{Dec} (\exists P)
\]
\(^\text{27}\) A function that, give one such values, produces a value of type \(\text{Void} \).
\(^\text{28}\) For every \(x, m, \) etc.
Contributions to a computational theory of policy advice and avoidability

We read the lemma as follows: if A is a finite type and $P : A \to \text{Type}$ is decidable, then $\exists P$ is decidable. We have to explain what it means for a type A to be finite. The idea is that A is finite if there exists a natural number n such that A is isomorphic to $\text{Fin } n$

$$\text{Finite} : \text{Type} \to \text{Type}$$

$$\text{Finite } A = \exists (\lambda n \Rightarrow \text{Iso } A (\text{Fin } n))$$

We do not detail here the notions of an isomorphism and of Fin. These would introduce technicalities that add little to the theory proposed here. In the same spirit, we do not provide a formal proof of finiteDecLemma here but the idea is obvious: a finite type A of cardinality n can be represented by a value of type $\text{Vect } n A$ and the question of whether there exists a value in A which fulfills a decidable predicate can be answered by linear search on a vector representation of A.

4.6 Decidability of avoidability, continued

In the last section we have shown that, if $\text{Alternative } x m x' x''$ is decidable for every $x'' : X t'$ and $X t'$ is finite, then avoidability of x' is decidable.

The next and last step is to discuss under which conditions $\text{Alternative } x m x' x''$ is decidable. This is pretty straightforward: $\text{Alternative } x m x' x''$ is just a synonym for three conditions:

$$\text{Alternative } x m x' x'' = (x'' \cdot \text{ReachableFrom } x, \text{Viable } m x'', \text{Not } (x'' = x'))$$

Thus, we have to understand under which conditions $x'' \cdot \text{ReachableFrom } x$, $\text{Viable } m x''$ and $\text{Not } (x'' = x')$ are decidable.

A necessary and sufficient condition for $\text{Not } (x'' = x')$ to be decidable is that equality in $X t'$ (both x'' and x' are states in $X t'$) is decidable. As already mentioned, this is a very natural assumption, posited via decEqX. What about reachability and viability? Let’s look at viability first. We have introduced Viable in section 3.8:

$$\text{Viable} : (n : \mathbb{N}) \to X t \to \text{Type}$$

$$\text{Viable } t Z = ()$$

$$\text{Viable } t \{ S m \} x = \exists (\lambda y \Rightarrow \text{All } (\text{Viable } m) (\text{step } t x y))$$

Thus, a decision procedure for $\text{Viable } n x$ is a function that computes a value of type $\text{Dec } (\text{Viable } n x)$ for every $n : \mathbb{N}$, $t : \mathbb{N}$ and $x : X t$:

$$\text{decViable} : (n : \mathbb{N}) \to (x : X t) \to \text{Dec } (\text{Viable } n x)$$

Can we implement such a function? The case n equal to zero is trivial: by definition, every state is viable for zero steps:

$$\text{decViable } Z x = \text{Yes } ()$$

For $n = S m$ we have decidability of an existential type. Provided $Y t x$ is finite and we have a decision procedure for $\text{All } P$ as for an arbitrary M-structure as and for a decidable predicate P:

$$\text{decAll} : \{ A : \text{Type} \} \to (P : A \to \text{Type}) \to \text{Dec } (\text{All } P) \to (as : M A) \to \text{Dec } (\text{All } P as)$$

$$\text{finY} : (t : \mathbb{N}) \to (x : X t) \to \text{Finite } (Y t x)$$

we can complete the implementation and obtain decidability of Viable.
\[\text{decViable} \{ t \} (S m) x = \text{finiteDecLemma} fY \text{dAll} \text{ where } \]

\[fY : \text{Finite} (Y t x) \]
\[fY = \text{finY} t x \]
\[\text{dAll} : \text{Dec1} (\lambda y \Rightarrow \text{All} (\text{Viable} m) (\text{step} t x y)) \]
\[\text{dAll} y = \text{decAll} (\text{Viable} m) (\text{decViable} m) (\text{step} t x y) \]

A similar argument shows that, if, again, \(Y t x \) is finite and we have a decision procedure for \(a \mathrel{\text{`Elem`}} \) as for arbitrary \(a \) and \(x \)

\[\text{decElem} : \{ A : \text{Type} \} \to (a : A) \to (as : M A) \to \text{Dec} (a \mathrel{\text{`Elem`}} as) \]

then \(\text{Pred} \) is decidable:

\[\text{decPred} : (x : X t) \to (x' : X (S t)) \to \text{Dec} (x \mathrel{\text{`Pred`}} x') \]
\[\text{decPred} \{ t \} x x' = \text{finiteDecLemma} fY \text{dElem} \text{ where } \]

\[fY : \text{Finite} (Y t x) \]
\[fY = \text{finY} t x \]
\[\text{dElem} : \text{Dec1} (\lambda y \Rightarrow x' \mathrel{\text{`Elem`}} (\text{step} t x y)) \]
\[\text{dElem} y = \text{decElem} x' (\text{step} t x y) \]

From here and using decidability of conjunctions and disjunctions

\[\text{decPair} : \{ P, Q : \text{Type} \} \to \text{Dec} P \to \text{Dec} Q \to \text{Dec} (P \mathrel{\text{&}} Q) \]
\[\text{decEither} : \{ P, Q : \text{Type} \} \to \text{Dec} P \to \text{Dec} Q \to \text{Dec} (\text{Either} P Q) \]

it is easy to see that \(\text{ReachableFrom} \) is decidable, too:

\[\text{decReachableFrom} : (x'' : X t') \to (x : X t) \to \text{Dec} (x'' \mathrel{\text{`ReachableFrom`}} x) \]
\[\text{decReachableFrom} \{ t'' = S t' \} \{ t \} x'' x = \text{decPair} dp dq \text{ where } \]

\[dp : \text{Dec} (t = Z) \]
\[dp = \text{decEqNat} t Z \]
\[dq : \text{Dec} (x = x'') \]
\[dq = \text{decEqX} x x'' \]
\[\text{decReachableFrom} \{ t'' = S t' \} \{ t \} x'' x = \text{decEither} dp dq \text{ where } \]

\[dp : \text{Dec} (t = S t', x = x'') \]
\[dp = \text{decPair} (\text{decEqNat} t (S t')) (\text{decEqX} x x'') \]
\[dq : \text{Dec} (\exists (\lambda x' \Rightarrow (x' \mathrel{\text{`ReachableFrom`}} x, x' \mathrel{\text{`Pred`}} x''))) \]
\[dq = \text{finiteDecLemma} fX \text{dRP} \text{ where } \]

\[fX : \text{Finite} (X t') \]
\[fX = \text{finX} t' \]
\[\text{dRP} : \text{Dec1} (\lambda x' \Rightarrow (x' \mathrel{\text{`ReachableFrom`}} x, x' \mathrel{\text{`Pred`}} x'')) \]
\[\text{dRP} x' = \text{decPair} drf dpred \text{ where } \]

\[drf : \text{Dec} (x' \mathrel{\text{`ReachableFrom`}} x) \]
\[drf = \text{decReachableFrom} x x' \]
\[dpred : \text{Dec} (x' \mathrel{\text{`Pred`}} x'') \]
\[dpred = \text{decPred} x' x'' \]

We can summarize the results of this section in the following result: for finite state and control spaces, if equality on states and the monadic container queries \(\text{Elem} \) and \(\text{All} \) are decidable, then \(\text{Viable}, \text{Pred}, \text{ReachableFrom} \) are decidable and therefore avoidability is decidable.
5 Conclusions

In the first part of this paper, we have outlined a theory of decision making for sequential decision problems.

The theory is motivated by decision problems in climate impact research but can obviously be applied to other domains. It supports a disciplined, accountable approach towards policy advice and a rigorous treatment of decision problems under different kinds of uncertainty. These encompass – but are not limited to – deterministic (no uncertainty), non-deterministic and stochastic uncertainty.

The theory requires decision problems to be specified in terms of four entities: a state space, a decision space, a transition function and a reward function. It gives precise meaning(s) to notions which, in informal approaches towards policy advice and decision making are often unclear. In particular, the theory explains the notions of decision process, decision problem, policy, policy sequence and optimality of policy sequences. It also provides decision makers with a generic procedure for computing provably optimal policy sequences. Thus, the theory makes an accountable approach toward policy advice possible.

In the second part of our paper, we have worked towards extending our theory to decision problems for which a reward function is not obviously available or for which notions of optimality based on costs-benefits analyses are questionable. The extension is based on the idea of avoidability. We have proposed a family of avoidability notions and a tentative formalization of sustainability. In the last section, we have discussed under which conditions avoidability is decidable. We have also sketched how decidable notions of avoidability could be used to derive avoidability measures.

Avoidability measures could be applied in climate impact research, e.g., to operationalize notions of levity, mitigation and adaptation. These notions are considered to be crucial in policy advice but, to the best of our knowledge, have not so far been formalized. We consider our theory as a first step in this direction.

6 Future work

In section 3.1 we noted that “In climate impact research, it is probably safe to assume that the specification of X and Y cannot be meaningfully delegated to decision makers and requires a close collaboration between these, domain experts and perhaps modelers”. As future work we would like to develop a Domain Specific Language to support the specification of Sequential Decision Problems (SDPs). The aim would be to A) make it easier for domain experts to describe a problem in a way that fits the theory developed here and B) develop a collection of simple examples and reusable combinators to build more complex SDPs.

Our algorithms for solving SDPs are based on computable policies. In section 3.5 we wrote “In control theory such functions are called policies and we argue that the main content of policy advice – what advisors are to provide to decision makers – are policies,

29 Be this because such analyses are considered to be too simplistic or because of methodological reasons.
is almost straightforward:
For completeness this section describes the proof elided from section 3.10. Proving Bellman
is almost straightforward:

Bellman : \((p : PolicySeq (S t) m) \rightarrow OptPolicySeq ps \rightarrow (p : Policy t (S m)) \rightarrow OptExt ps p \rightarrow OptPolicySeq (p :: ps) \)

Bellman \{ t \} \{ m \} p s o e p = opps where
opps : OptPolicySeq (p :: ps)
opps (p' :: p) x r v = transitiveDoubleLTE s5 x r v where
 y' = Y t x
 y' = outl (p' x r v)
nx' = M (X (S t))
nx' = step t x y'
 av' = All \((Viable m) mx'\)
 av' = outl (p' x r v)
 f' = mkf x r v' \(\av' \) ps
 f' = mkf x r v' \(\av' \) ps
 f = mkf x r v' \(\av' \) ps
 f = mkf x r v' \(\av' \) ps
 s1 x' r' v' = ops ps' x' r' v'

 s2 (x' :: x' emx') = monotoneDoublePlusLTE (reward t x y' x') \(s1 x' r' v'\) where
 xpx' = x' pred' x
 xpx' = Evidence \((x' :: x' emx')\)
 r' = x' reachable x'
 r' = Evidence \((x, xpx')\)
 v' = Viable m x'
 v' = av' x' x' emx'
 s3 = So (meas (fmap f' (tagElem mx'))) \(\leq\) meas (fmap f (tagElem mx'))
 s3 = measMon f' f s2 (tagElem mx')
 s4 = So (val x r v (p' :: ps)) \(\leq\) val x r v (p' :: ps)
 s4 = s3
 s5 = So (val x r v (p' :: ps)) \(\leq\) val x r v (p :: ps)
 s5 = oep p' x r v

In the above implementation we construct a function opps that returns a value of type

\[\text{So} \ (\text{val} \ x \ r \ v \ (p' :: ps)) \leq \text{val} \ x \ r \ v \ (p :: ps)\]

for arbitrary \(p' :: ps', x, r \) and \(v\). This is finally done by applying transitivity of \(\leq\) to \(s4\)
and \(s5\). The computation of \(s5\) is trivial and follows directly from the fourth argument of
Bellman, oep. This is a proof that \(p\) is an optimal extension of \(ps\).
In order to compute \(s4\), we proceed as outlined in section 3.9; we first apply optimality of
\(ps\) to deduce that

\[\text{So} \ (\text{val} \ x' r' v' ps') \leq \text{val} \ x' r' v' ps)\]
Contributions to a computational theory of policy advice and avoidability

for arbitrary \(x' : X (S t) \) which are reachable and viable \(m \) steps. This is done in \(s1 \). Then we show that \(f' \) is point-wise smaller than \(f \) by applying monotonicity of \(+ \) w.r.t. \(\leq \). This is encoded in \(s2 \). Finally we apply the monotonicity of \(\text{meas} \) to compute \(s3 \) which is equal to \(s4 \) by definition of \(\text{val} \). Notice that, in the implementation of \(\text{Bellman}, \mkf \) is the function defined as in section \[3.9\]

B Optimal extensions

In order to give an implementation of \(\text{optExtLemma} \), it is useful to slightly rewrite the implementation of \(\text{optExt} \) given in section \[3.10\]. In particular, it is useful to rewrite the local definition of \(g \) in

\[
\text{optExt} : \text{PolicySeq} (S t) n \to \text{Policy} t (S n)
\]

\[
\text{optExt} \{t\} \{n\} ps = p \text{ where}
\]

\[
p x r v = \text{argmax} g \text{ where }
\]

\[
g : (y : Y t x \Rightarrow \text{All} (\text{Viable} n) (\text{step} t x y)) \to \text{Double}
\]

\[
g (y \Rightarrow \text{av}) = \text{meas} (\text{mapf} (\text{tagElem} (\text{step} t x y))) \text{ where }
\]

\[
f : (x' : X (S t) \Rightarrow x' \text{Elem} (\text{step} t x y)) \to \text{Double}
\]

\[
f = \mkf x r v y \text{ av} \text{ ps}
\]

through a call to an auxiliary global function \(\mkf \):

\[
\mkf : (x : X t) \to (r : \text{Reachable} x) \to (v : \text{Viable} (S n) x) \to
\]

\[
(\text{ps} : \text{PolicySeq} (S t) n) \to (y : Y t x \Rightarrow \text{All} (\text{Viable} n) (\text{step} t x y)) \to \text{Double}
\]

\[
\mkf \{t\} \{n\} x r v \text{ ps yav} = \text{meas} (\text{mapf} (\text{tagElem} (\text{step} t x (\text{outl yav})))) \text{ where }
\]

\[
f : (x' : X (S t) \Rightarrow x' \text{Elem} (\text{step} t x (\text{outl yav}))) \to \text{Double}
\]

\[
f = \mkf x r v (\text{outl yav}) (\text{outl yav}) \text{ ps}
\]

where, in the definition of \(\mkf \), we have again used the definition of \(\mkf \) introduced in section \[3.9\]. With \(\mkf \), the implementation of \(\text{optExt} \) becomes:

\[
\text{optExt} : \text{PolicySeq} (S t) n \to \text{Policy} t (S n)
\]

\[
\text{optExt} \{t\} \{n\} ps = p \text{ where}
\]

\[
p x r v = \text{argmax} g \text{ where }
\]

\[
g : (y : Y t x \Rightarrow \text{All} (\text{Viable} n) (\text{step} t x y)) \to \text{Double}
\]

\[
g = \mkf x r v \text{ ps}
\]

Proving \(\text{optExtLemma} \) is now almost trivial. We have to show that, for every policy sequence \(ps : \text{PolicySeq} (S t) n \), the policy \(p = \text{optExt} ps : \text{Policy} t (S n) \) is an optimal extension of \(ps \). This means showing that, for every \(p' : \text{Policy} t (S n), x : X t, r : \text{Reachable} x \) and \(v : \text{Viable} (S n) x \), one has

\[
\text{val} x r v (p' :: ps) \leq \text{val} x r v (p :: ps)
\]

This immediately follows from the definition of \(\text{optExt} \) and from the specification of \(\text{max} \) and \(\text{argmax} \). From \(\text{maxSpec} \), we know that, for every feasible control \(yav, g yav \leq \text{max} g \).

This holds, in particular, for \(yav = p' x r v \):

\[
g (p' x r v) \leq \text{max} g
\]

From \(\text{argmaxSpec} \), we know that \(\text{max} g = g (\text{argmax} g) \). Therefore
\(g(p' x r v) \leq g(\text{argmax } g)\)

But, by definition of optExt, argmax g is just \(p x r v\). Therefore

\(g(p' x r v) \leq g(p x r v)\)

The result follows from the definition of \(g\). In the implementation of optExtLemma, s3 to s6 are trivial consequences of s2. They are written explicitly here to improve understandability but we could as well define optExtLemma \(\{t\} \{n\} \text{ps p'} x r v\) to be equal to s2 and erase the last 8 lines of the program:

\[
\text{optExtLemma} : (\text{ps : PolicySeq } (S \ t) \ n) \rightarrow \text{OptExt } \text{ps } (\text{optExt } \text{ps})
\]

\[
\text{optExtLemma} \{t\} \{n\} \text{ps p'} x r v = s2 \text{ where}
\]

\[
p : \text{Policy t } (S \ n)
\]

\[
p = \text{optExt } \text{ps}
\]

\[
yav : \{y : Y \ t x \Rightarrow \text{All } (\text{Viable } n) \ (\text{step } t x y)\}
\]

\[
yav = p x r v
\]

\[
y : Y t x
\]

\[
y = \text{outl } yav
\]

\[
av : \text{All } (\text{Viable } n) \ (\text{step } t x y)
\]

\[
av = \text{outr } yav
\]

\[
yav' : \{y : Y \ t x \Rightarrow \text{All } (\text{Viable } n) \ (\text{step } t x y)\}
\]

\[
yav' = p' x r v
\]

\[
y' : Y t x
\]

\[
y' = \text{outl } yav'
\]

\[
av' : \text{All } (\text{Viable } n) \ (\text{step } t x y')
\]

\[
av' = \text{outr } yav'
\]

\[
g : \{y : Y \ t x \Rightarrow \text{All } (\text{Viable } n) \ (\text{step } t x y)\} \rightarrow \text{Double}
\]

\[
g = \text{mkg } x r v \text{ ps}
\]

\[
f : \{x' : X (S \ t) \Rightarrow x' \ '\text{Elem}' \ (\text{step } t x y)\} \rightarrow \text{Double}
\]

\[
f = \text{mkf } x r v y \text{ av ps}
\]

\[
f' : \{x' : X (S \ t) \Rightarrow x' \ '\text{Elem}' \ (\text{step } t x y')\} \rightarrow \text{Double}
\]

\[
f' = \text{mkf } x r v y' \text{ av' ps}
\]

\[
s1 : \text{So } (g yav' \leq \text{max } g)
\]

\[
s1 = \text{maxSpec } g yav'
\]

\[
s2 : \text{So } (g yav' \leq g (\text{argmax } g))
\]

\[
s2 = \text{replace } \{P = \lambda z \Rightarrow \text{So } (g yav' \leq z)\} (\text{argmaxSpec } g) s1
\]

\[
s3 : \text{So } (g yav' \leq g yav)
\]

\[
s3 = s2
\]

\[
s4 : \text{So } (\text{meas } (\text{fmap } f' (\text{tagElem } (\text{step } t x y')))) \leq \text{meas } (\text{fmap } f (\text{tagElem } (\text{step } t x y))))
\]

\[
s5 = s4
\]

\[
s6 : \text{So } (\text{val } x r v (p' :: \text{ps}) \leq \text{val } x r v (p :: \text{ps}))
\]

\[
s6 = s5
\]

C State-control trajectories

This section describes the implementation of stateCtrlTrj elided from section 3.10.

\[
\text{stateCtrlTrj} : (x : X t) \rightarrow (r : \text{Reachable } x) \rightarrow (v : \text{Viable } n x) \rightarrow (ps : \text{PolicySeq } t n) \rightarrow M (\text{StateCtrlSeq } t n)
\]

\[
\text{stateCtrlTrj} \{t\} \{n = Z\} \ x r v \text{ Nil } = \text{ret } \text{Nil } x
\]
stateCtrlTrj \{ t \{ n = S m \} \ x r v \ (p :: ps') \} = \
\text{fmap} \ g \ (\text{bind} \ \langle \text{tagElem} \ mx' \rangle \ f) \ \text{where}
\begin{align*}
 y & : Y t x \\
 y &= \text{outl} \ (p x r v) \\
 mx' & : M \ (X (S t)) \\
 mx' &= \text{step} \ t x y \\
 av &= \text{All} \ (\text{Viable} \ m) \ mx' \\
 av &= \text{outr} \ (p x r v) \\
 g &= \{ (x ++ y) :: \} \\
 f & : (x' : X (S t) \Rightarrow x' \ 'Elem' \ mx') \rightarrow M \ (\text{StateCtrlSeq} \ (S t) \ m) \\
 f \ (x' ++ \text{testep}) &= \text{stateCtrlTrj} \{ n = m \} \ x' \ r' \ v' \ ps' \ \text{where}
\end{align*}
\begin{align*}
 xpx' & : x' \ 'Pred' \ x' \\
 xpx' &= \text{Evidence} \ y \ x' \ \text{estep} \\
 r' & : \text{Reachable} \ x' \\
 r' &= \text{Evidence} \ x \ (r, xpx') \\
 v' & : \text{Viable} \ mx' \\
 v' &= \text{av} \ x' \ x' \ \text{estep}
\end{align*}

D Reachability from a given state

Finally we define the \text{reachableFromLemma} from section[4.2]
\begin{align*}
 \text{reachableFromLemma} & : (x'' : X t'' \rightarrow (x : X t) \rightarrow x'' \ '\text{ReachableFrom} \ 'x \rightarrow t'' \ '\text{GTE} \ ' t) \\
 \text{reachableFromLemma} \ \{ t'' = Z \} \ \{ t = Z \} \ x'' \ x \ \text{prf} &= \ \text{LTEZero} \\
 \text{reachableFromLemma} \ \{ t'' = S t'' \} \ \{ t = Z \} \ x'' \ x \ \text{prf} &= \ \text{LTEZero} \\
 \text{reachableFromLemma} \ \{ t'' = Z \} \ \{ t = S m \} \ x'' \ x \ (\text{prf1}, \text{prf2}) &= \ \text{void} \ (\text{inhabited} \ (\text{sym} \ \text{prf1})) \\
 \text{reachableFromLemma} \ \{ t'' = S t'' \} \ \{ t = S t' \} \ x'' \ x \ (\text{Left} \ (\text{Ref1}, \text{prf2})) &= \ \text{eqInLTE} \ (S t') \ (S t' \ \text{Ref1}) \\
 \text{reachableFromLemma} \ \{ t'' = S t'' \} \ \{ t = t \} \ x'' \ x \ (\text{Right} \ (\text{Evidence} \ x' \ (\text{prf1}, \text{prf2}))) &= s2 \ \text{where}
\end{align*}
\begin{align*}
s1 & : t' \ '\text{GTE} \ ' t \\
s1 &= \text{reachableFromLemma} \ x' \ x \ \text{prf1} \\
s2 & : S t' \ '\text{GTE} \ ' t \\
s2 &= \text{idSuccPreservesLTE} \ t' \ t' \ s1
\end{align*}

Acknowledgements

The work presented in this paper heavily relies on free software, among others on Idris, Agda, GHC, git, vi, Emacs, \LaTeX and on the FreeBSD and Debian GNU/Linux operating systems. It is our pleasure to thank all developers of these excellent products.

This work was partially supported by the projects GRACEFUL (grant agreement No 640954) and CoeGSS (grant agreement No 676547), which have received funding from the European Unions Horizon 2020 research and innovation programme.

Bibliography

J. Aldred. Ethics and climate change cost-benefit analysis: Stern and after, 2009. URL
https://ideas.repec.org/p/lnd/wpaper/442009.html#cites
Botta, Jansson and Ionescu

Contributions to a computational theory of policy advice and avoidability

Research Domain III, PIK. ReMIND-R. ReMIND-R is a global multi-regional model incorporating the economy, the climate system and a detailed representation of the energy sector. http://www.pik-potsdam.de/research/sustainable-solutions/models/remind 2013.

