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Abstract

The paper gives a high level overview of the work performed in the EU-FP7 funded project SUCCESS (Scale-up of oxygen carrier 
for chemical looping combustion using environmentally sustainable materials). The project is the most recent one in a series of 
successful EU-funded research projects on the chemical looping combustion (CLC) technology. Its main objective is to perform 
the necessary research in order to demonstrate the CLC technology in the range of 10 MW fuel power input. The main focus is on 
scale-up of production of two different oxygen carrier materials using large scale equipment and industrially available raw 
materials. This will guarantee availability of oxygen carrier material at tonne scale. The scale-up of the two materials, a Cu and a 
Mn based, was successful and first tests with the Cu material have already been performed in four different pilot units up to 150 kW 
where the material showed excellent performance regarding fuel conversion. In addition to technology scale-up, extensive end-
user evaluation is performed. This evaluation includes investigations on health, security and environmental impacts (HSE), a life 
cycle analysis and a techno-economic analysis to compare the CLC technology for steam generation against the current state-of-
the-art technologies.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of GHGT-13.
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1. Introduction

1.1. Chemical looping combustion

Chemical looping combustion (CLC) is an innovative combustion technology with inherent CO2 capture and nearly 
no energy penalty [1]. This is achieved by avoiding the energy intense gas-separation step typical for CO2 capture 
technologies. Chemical looping combustion is thus seen as a potential break-through CO2 capture technology [2].

To avoid gas-separation, the combustion process is separated into two different reaction zones, air reactor (AR) and 
fuel reactor (FR) in a way that fuel and combustion air are never mixed. A solid oxygen carrier (OC), a metal oxide,
is circulating between AR and FR and transporting oxygen from combustion air to fuel (see Fig. 1). The oxygen carrier 
is oxidized in the AR by combustion air end reduced in the fuel reactor by the fuel. The process yields two different 
exhaust gas streams. AR exhaust gas contains N2 and excess O2, exhaust gas from the FR contains the combustion 
products CO2 and H2O. After condensation, a highly concentrated CO2 stream can be obtained. The total heat release 
in the two reactors is exactly the same as in normal combustion processes.

Nomenclature

AR Air reactor
CFB Circulating fluidized bed
CLC Chemical looping combustion
EU European Union
FR Fuel reactor
LCOE Levelized costs of energy
OC Oxygen carrier
TLV Occupational exposure limit values
XCH4 Methane conversion

CO2 CO2-yield

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of GHGT-13.
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Fig. 1. Concept of chemical looping combustion.

AR and FR are designed as interconnected circulating fluidized bed reactors and the oxygen carrier is the bed 
material circulating between these reactors. The process temperature for CLC is comparable to conventional 
combustion processes, i.e. 800-1 000 °C depending on fuel and oxygen carrier material. Thus, a CLC reactor system 
can be used in the same way as a conventional circulating fluidized bed reactor (CFB) in a steam cycle process (heat 
recovery steam generator plus steam turbine) to produce power, heat and/or process steam [3].

Early deployment is seen in natural gas steam generation, where gas-to-steam efficiency penalty with CLC is below 
1%-point compared to 15%-points with amine scrubbing and 8%-points with oxyfuel combustion, all for 95% capture 
rate. Reduction of the CO2 avoidance cost of 60% compared to amine scrubbing post combustion capture results from 
higher efficiency.

Research in CLC has to focus on two different aspects of the technology: the oxygen carrier material and the reactor 
system. However, it is of great importance that the reactor system meets the demands of the oxygen carrier and vice 
versa. For successful up-scaling of the technology both need to be accomplished in parallel. CLC of gaseous fuels is 
well understood being demonstrated at pilot scale 140 kW and in long term experiments (1 000 hours at 10 kW) using 
a nickel based oxygen carrier [4, 5]. Further, several promising nickel free oxygen carriers have been identified 
reaching full fuel conversion and being economic and environmentally attractive [6]. From a technology point of view, 
chemical looping combustion of gaseous fuels can be seen close to demonstration at next scale (10 MW).

1.2. Project objectives and concept

The main objective of the EU-FP7 funded project SUCCESS (Logo in Fig. 2) is to perform the necessary research 
to close the last gap between the state-of-the-art and demonstration of the CLC technology for gaseous fuels at the 
10 MW scale. This will include scale-up of OC production to the 100 tonne scale, as well as demonstration of the 
technology at 1 MW fuel power input. Industrially available raw materials are used to produce environmentally sound 
oxygen carriers based on two highly successful materials developed in previous EU funded projects [6]. This can be 
translated into the following project objectives:

1. Production of two large batches ( kg) of scale-up ready material using industrially available raw materials 
and large scale production techniques.

2. Proof of performance of these materials in pilot plants up to 150 kW fuel power input
3. Demonstration of the CLC technology for gaseous fuels at 1 MW.
4. Presentation of an optimized system design for next scale (10 MW).
5. Quantification of the techno-economic potential of the CLC technology for gaseous fuels.

Air

MeOxMeO(x-1)

depleted
Air

CO2, H2OFuel

Air reactor

Fuel reactor
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Fig. 2. Logo of the SUCCESS project

To reach these goals, the following work is performed within the project:

1. Applying oxygen carrier production methods at industrially required scale and assuring the adequate performance.
2. Development of a standard for determination of mechanical stability of OC particles.
3. Operation in four smaller pilots up to 150 kW of significantly different design.
4. Operation with gaseous fuels in a 1 MW pilot plant, representing a scale up of the state of art by one order of 

magnitude.
5. Detailed studies of reaction mechanisms and fluid-dynamics.
6. Use of results in optimization of a previous design for a 10 MW demonstration plant and techno-economic study 

of full-scale plant.
7. Assessment of health, safety and environmental issues associated with OC handling including life cycle analysis.
8. Overall techno-economic evaluation of the CLC steam generation technology.

The project is structured in eight technical work packages, where six (WP1-WP6) are related to technology scale-
up and testing of OC material up to 1 MW and two (WP7 and WP8) are related to end-user evaluation of the 
technology. The structure is summarized in Fig. 3.

Fig. 3. Project structure
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1.3. Project consortium

Combined efforts of key European developers of the CLC technology assure the continued European leadership in 
this development and bring the technology a major step towards commercialization. The SUCCESS consortium 
consists of 16 partners from 9 countries including research institutions, technology providers and end-users. The 
project partners and their activities are summarized in Table 1.

     Table 1. The SUCCESS project partners.

Partner name Country Type Activities

Vienna University Technology Austria University Project coordination, pilot plant OC testing,
10 MW system design

Chalmers University of Technology Sweden University OC development, pilot plant OC testing,
attrition testing

CSIC Spain Research Institute OC development, OC testing, attrition 
testing, reactivity investigations, modelling, 
OC recycling investigation

IFP Energies Nouvelles France Research Institute Pilot plant OC testing, attrition testing, 
reactivity investigations

Institut National Politéchnique de 
Toulouse

France University 3D-Modelling

SINTEF Materials Norway Research Institute Reactivity investigations, attrition testing

SINTEF Energy Norway Research Institute Pilot plant OC testing

Darmstadt University of 
Technology

Germany University Pilot plant OC testing (1 MW)

VITO Belgium Research Institute OC development, life cycle analysis, health 
safety and environmental impact evaluation

Euro Support Advanced Materials Netherlands Material producer Large scale production of OC material

Johnson Matthey United 
Kingdom

Material producer Large scale production of OC material

Bertsch Energy Austria Boiler manufacturer Sizing and design of equipment for 
economic evaluation

Électricité de France (EDF) France Power Techno-economic evaluation

Shell Global Solutions Netherlands Oil&Gas Health safety and environmental impact 
evaluation

TOTAL Raffinage Chimie France Oil&Gas Pilot plant OC testing, attrition testing, 
techno-economic evaluation

University of Natural Resources 
and Life Sciences

Austria University Mass and energy balance calculations for 
techno-economic evaluation

2. Oxygen carrier development

Production of two different OC materials will scaled-up to multi tonne scale in SUCCESS. This scale-up does not 
only include scale-up of production equipment but also use of raw materials available in large quantities. The two 
materials have different active metal oxides (Mn and Cu) and are made by two different production methods, spray-
drying and impregnation where the recipes were developed in earlier research projects.
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2.1. Spray-dried CaMn particles

The spray-dried CaMn perovskite materials were developed within the EU-FP7 funded project INNOCUOUS [6-
8]. The material is a so-called CLOU material (Chemical Looping with Oxygen Uncoupling [9]) and able to release 
gaseous oxygen in the fuel reactor to improve fuel conversion. For the scale-up of material production, different Mn 
sources in the form of Mn ores and Mn oxides were examined and investigated. The key question here is, how the 
impurities (see Table 2) and the different parameters of the spray-drying process affect the final particle properties 
like reactivity and lifetime. In order to find the best raw materials and production methods, 24 small batches of 
materials have been spray-dried and evaluated in small batch reactors. More detailed information about the scale-up 
process and influence of raw materials can be found in Jacobs et al. [10]. A summary of the used Mn sources is listed 
in Table 2.

     Table 2. Overview of different Mn sources ( data from [10]).

Material Supplier Mn oxide Mn content Main impurities BET [m2/g]

Hausmannite LM type Erachem-Comilog Mn3O4 68% 1-2% Fe, <1% Al 2.7

Elkem Colormax P Elkem, Norway Mn3O4 69 1% Al, 1% Fe 1.4

BassTech BassTech MnO >76-78 - 23.3

CDMA Erachem-Comilog MnO2 51 2-3% Fe, 1-2% Si, 
4% Al

28.3

Battery grade N60 Autlan MnO2 45 5-6% Fe, 5-6% Si, 
2-3% Al, 2-3% Ca

33.3

Based on the investigations, the best candidate was selected for production of up to 2 tons of material by Euro 
Support Advanced Materials using large scale equipment. This material will be tested in four different pilot units up 
to 150 kW fuel power input and also in the 1 MW unit at Darmstadt University of Technology.

2.2. Impregnated CuO particles

The recipe for the impregnated material, CuO on Al2O3, has also been developed before the start of the project by 
CSIC and was already tested before in different pilot units up to 120 kW [11-16]. The OC material has an active Cu 
content of 14 wt% and is impregnated on a -Al2O3 support material. The main task in scale-up of this material was 
identification of an industrially available support material and keep the excellent properties of the original benchmark 
material. Several smaller batches have been produced and tested in a continuous 500 W unit. The best and scaled-up 
OC material using industrially available support materials and relevant protocols was manufactured by Johnson 
Matthey using the incipient wet impregnation method. It is here referred to as Cu14 Al_Commercial.

The properties of fresh and used particles and the comparison to the original benchmark material are shown in 
Table 3.
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     Table 3. Properties of scaled up material (fresh and used) in comparison with benchmark material (data from [17, 18]).

Oxygen Carrier Cu14 Al_Commercial Benchmark 
Material

Fresh Used Fresh

Total CuO content [wt%] 13.8 10.1 69

Particle size [µm] 153 151

Porosity [%] 53.0 49.1

Mechanical strength [N] 1.2 1.2

AJI 3.1 2.6

XRD phases CuO, CuAl2O4,
-Al2O3

CuO, CuAl2O4,
CuAlO2, -Al2O3,

-Al2O3

CuO, CuAl2O4,
-Al2O3

The material has been extensively tested in a 500 W continuously operation unit (information about unit in [17])
where fuel conversion above 95% has been reached.

3. Oxygen carrier testing

The oxygen carrier material produced using large scale equipment is tested in four different pilot units up to 150 kW 
fuel power input with different designs to allow an unprecedented characterisation of the oxygen carrier material. 
Further, each unit has special features for very detailed investigation of parameters like solids circulation, solids 
inventory, long-term stability and sulphur tolerance.

Furthermore, the spray-dried perovskite material will be used to demonstrate the CLC technology at 1 MW fuel 
power input. The mechanical stability of the oxygen carrier materials is tested under hot and cold conditions in three 
different units.

3.1. Available pilot plants

Continuous pilot unit testing is performed in five pilot units up to 1 MW fuel power input. Each of these units
shows specific advantages and potential disadvantages regarding specific inventories, solid circulation rates and 
possible range of operating parameters. However, the differences in designs give great opportunity for extensive 
material testing and identification of important fuel conversion mechanisms. A summary of the different pilot units 
and their special features is shown in Table 4. Sketches and flow sheets of the pilot units are shown in Fig. 4- Fig. 6.

     Table 4. Pilot units up to 1 MW used in SUCCESS.

Operator Fuel 
power

Fuel Special feature

Chalmers University of 
Technology

10 kW Natural gas Overnight operation

High gas velocities for attrition testing

IFP Energies Nouvelles 10 kW CH4, CO, H2 L-valves for control of solid flow rate

Control of gas and solids residence time

3 reactors (2xAR, 1xFR)

Vienna University of 
Technology

120 kW Natural gas, CO, H2,
Hydrocarbons, H2S

High solids circulation rates

Operation with higher hydrocarbons and sulphur

SINTEF Energy 150 kW Natural gas Routing of particle flow

Internal recirculation of particles

Darmstadt University
of Technology

1 MW Natural gas Fully refractory lined reactors

Post combustion chamber using pure oxygen
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Fig. 5. SINTEF 150 kW unit.

Fig. 6. Darmstadt 1 MW unit. Blue lines show adaptations for natural gas operations.
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3.2. First results from material testing

So far, the impregnated Cu14 Al_Commercial OC has been tested in pilot units up to 150 kW where it showed 
very good performance. The two most important performance parameters for comparison of different operating 
conditions are the methane conversion written as

FRCOFRCOFRCH

FRCH
CH yyy

y
X

,,2,4

,4
4 1 (1)

and the CO2-yield written as

FRCOFRCOFRCH

FRCO
CO yyy

y

,,2,4

,2
2 (2)

The material performed outstanding in all units reaching methane conversions XCH4>90% (for more detailed 
information see [19, 20]). When comparing these numbers, it has to be taken into account that the investigated particles
were not the design particles for these pilot units. Detailed results for the pilot units are shown in Fig. 7-Fig. 9.

Fig. 7. Results from testing in 10 kW IFP unit. CH4-conversion over operating time (data from [19]).
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a) b)

Fig. 4. Results from testing in Vienna 120 kW unit. a) Influence of solids inventory, b) influence of temperature.

Fig. 9. Results from testing in 150 kW SINTEF unit. Influence of solids inventory (data from [20]).

4. End-user technology potential evaluation

In addition to experimental process investigations and development, a lot of effort is put into end-user evaluation 
of the CLC technology for industrial steam generation. These investigations includ extensive health, security and 
environmental impact assessment of the two scaled-up oxygen carrier materials, a life cycle analysis and techno-
economic evaluation of different application scenarios.

The environmental impact assessment investigated potential risks related to humans and the environment in a three 
tier approach. Based on the results, detailed recommendations for required safety equipment and material handling 
can be made. Acute and chronic toxicity tests were performed on algae, waterflea, and zebrafish embryo to assess the 
human and environmental hazard of fresh and spent oxygen carriers. Acute risk on aquatic ecosystem is low except 
Al poisoning of algae is possible using the Cu-based OC material. For the exposure assessment a realistic exposure 
level for workers was established. The potential human exposure has been evaluated by simulation experiments 
(generating dust under controlled conditions). The risk evaluation is based on measured data (during dust generation, 
as worst case proxy for OC handling) and occupational exposure limit values (TLVs). It showed a potential risk for 
Mn exposure.
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Techno-economic evaluations were performed based on methods from the European Benchmarking Task Force 
(EBTF). To allow the comparison of CLC with other CO2 capture technologies, a techno-economic study will be 
performed. As basis for this study, a natural gas reference case with and without post combustion CO2 capture via 
mono-ethanol-amines was established for several capacities and steam parameters. In total, two different cases, one 
with high grade steam and one with low grade steam will be evaluated. The first case is preferable for power (high 
grade steam) whereas the second case is for oil and gas industry (low grade process steam). All necessary plant 
equipment is considered in both cases, state-of-the-art penalty demonstrated in real conditions as well as up-to-date 
thermal integration options are integrated for CO2 capture. In both cases the levelized cost of energy (LCOEE)
increases.

5. Conclusions and outlook

The objective of the EU-FP7 funded project SUCCESS is to close the gap between the state-of-the-art of chemical 
looping combustion for gaseous fuel and next scale demonstration in the size of 10 MW fuel power input. To achieve 
the goal, necessary research is performed in the fields of oxygen carrier production at large scale, extensive material 
testing in pilot units up to 1 MW and end-user evaluation regarding techno-economic and life-cycle performance. The 
production methods of two different oxygen carrier materials based on Mn and Cu have been successfully scaled-up 
to the tonne scale using industrially available raw materials. First tests of these materials in pilot units up to 150 kW 
show very good results regarding fuel conversion performance and particle lifetime.

Intensive investigations regarding health, safety and environmental impact assessment of the oxygen carrier 
materials give detailed instructions for material handling and necessary safety equipment. To evaluate the techno-
economic potential of the CLC technology for industrial steam generation, comparison between the new technology 
and a reference case is performed based on methods from the European Benchmarking Task Force. Here, two different 
cases, high grade and low grade steam, are investigated.
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