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A B S T R A C T

The development of robust and efficient cell factories requires understanding of the metabolic changes triggered
by the production of the targeted compound. Here we aimed to study how production of p-coumaric acid, a
precursor of multiple secondary aromatic metabolites, influences the cellular metabolism of Saccharomyces
cerevisiae. We evaluated the growth and p-coumaric acid production in batch and chemostat cultivations and
analyzed the transcriptome and intracellular metabolome during steady state in low- and high-producers of p-
coumaric acid in two strain backgrounds, S288c or CEN.PK.

We found that the same genetic modifications resulted in higher production of p-coumaric acid in the CEN.PK
background than in the S288c background. Moreover, the CEN.PK strain was less affected by the genetic en-
gineering as was evident from fewer changes in the transcription profile and intracellular metabolites con-
centrations. Surprisingly, for both strains we found the largest transcriptional changes in genes involved in
transport of amino acids and sugars, which were downregulated. Additionally, in S288c amino acid and protein
biosynthesis processes were also affected.

We systematically overexpressed or deleted genes with significant transcriptional changes in CEN.PK low and
high-producing strains. The knockout of some of the downregulated transporters triggered a 20–50% im-
provement in the synthesis of p-CA in the CEN.PK high-producing strain. This study demonstrates the importance
of transporters in the engineering of cell factories for production of small molecules.

1. Introduction

Plants produce a wide range of secondary metabolites as a protec-
tive mechanism to stresses caused by bacterial or viral infections, ul-
traviolet radiation, wounds, and other biotic and abiotic factors. Nearly
15% of these metabolites are phenolic compounds derived from the
aromatic amino acids L-tyrosine, L-phenylalanine or L-tryptophan
(Wink, 2010). Numerous aromatic secondary metabolites are available
on the market as therapeutic agents, dyes, fragrances, and flavors. The
majority of these compounds are currently synthesized chemically or
isolated from plants (Bourgaud et al., 2001), however recently there
have been significant advances in engineering industrial microbes, e.g.,
Escherichia coli and S. cerevisiae, for production of aromatic secondary
metabolites by fermentation. A few biotech-derived aromatics are

already on the market, such as phenylalanine, resveratrol, vanillin,
steviol glucoside, and others. Additionally, many aromatic metabolites
have been produced in microbial cell factories at proof-of-concept le-
vels, but the strains, fermentation and downstream processes need
further development before the production becomes economically fea-
sible. These compounds include naringenin, genistein, kaempferol, fi-
setin, melatonin, and many others (Koopman et al., 2012; Trantas et al.,
2009; Santos et al., 2011; Leonard et al., 2009; Stahlhut et al., 2015;
Krivoruchko and Nielsen, 2015; Li et al., 2015; Germann et al., 2016).

An important step towards improved microbial cell factories is a
better understanding of how the engineered cells respond to production
of target compounds (Nielsen and Keasling, 2016). For this purpose,
omic-level characterization of the strains is useful since the organism
can be studied at different levels and the information can be assessed in
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the context of cellular metabolism (Kim et al., 2012; Curran and Alper,
2012). There are a few successful examples of applying systems biology
for guiding metabolic engineering strategies. Otero et al. (2013) ob-
tained a 30-fold improvement in succinic acid production in S. cerevisiae
based on the integrative analysis of physiology and transcriptome data.
Park et al. (2007) engineered an efficient L-valine-producing E. coli by
using transcriptomic analysis together with in silico models. A multi-
omic analysis of two different E. coli strains allowed Yoon et al. (2012)
to identify an optimal strain for production of recombinant proteins.
This study is one of the few that considered the differences between
strains of the same species, when selecting the suitable host organism.
In S. cerevisiae, a considerable number of differences have been found in
the genomes of two widely used strains, CEN.PK and S288c. These
differences are mainly related to the presence of 13,787 single nu-
cleotide polymorphisms, 939 of them related to 158 genes involved in
metabolic functions with enrichment in the galactose uptake and er-
gosterol biosynthetic pathways. Moreover, 83 genes, mainly located in
sub-telomeric regions of S288c, are absent in the CEN.PK strain (Otero
et al., 2010; Nijkamp et al., 2012).

The strain CEN.PK is widely used for industrial biotechnology re-
search and applications, whereas the strain S288c is widely used in
genetic studies. Recently the strain S288c has also been used for the
production of some metabolites, such as vanillin-β-glucoside, 2-phe-
nylethanol and methionol (Strucko et al., 2015; Yin et al., 2015a,
2015b). In the particular case of vanillin-β-glucoside, the engineered
S288c strain produced 10-fold more product than the CEN.PK strain
engineered in the same way and this effect was associated with several
single nucleotide polymorphisms in the shikimate pathway genes.

p-Coumaric acid (p-CA) is a precursor for biosynthesis of a number
of secondary metabolites, such as polyphenols, flavonoids, and some
polyketides. We recently reported the engineering of S. cerevisiae as a
cell factory for high-level production of p-CA with a titer of ~ 2 g/L
(Rodriguez et al., 2015). In this study, we aimed to investigate firstly
how the production of p-CA influences the host and secondly whether
these effects depend on the strain background. To answer these two
questions, we performed transcriptome and intracellular metabolome
analysis on S288c and CEN.PK strains, which either only expressed an
enzyme for making the product (low-producers) or were additionally
optimized towards production of aromatic products (high-producers).

2. Materials and methods

2.1. Plasmids and strains

E. coli DH5α was used for cloning procedures. The fragments used
for overexpression of genes were amplified by PCR using primers and
templates as described in the Tables S1 and S2. The fragments were
amplified from the genomic DNA of S. cerevisiae CEN.PK102-5B (MATa
ura3-52 his3Δ1 leu2-3/112 MAL2-8c SUC2) and E. coli NST 74. The
gene encoding tyrosine ammonia-lyase from Flavobacterium johnsoniae
(FjTAL) was as described in (Jendresen et al., 2015). The amplified
gene-encoding fragments were cloned together with strong constitutive
promoters into EasyClone integrative plasmids by USER cloning
(Jensen et al., 2014; Jessop-Fabre et al., 2016). The clones were tested
for correct insertion of gene/promoter fragments by colony PCR using
the primers summarized in the Table S1 and the resulting plasmids
were verified by sequencing. The list of the constructed vectors can be
found in Table 1.

S. cerevisiae CEN.PK113-7D was obtained from Peter Kötter (Johann
Wolfgang Goethe-University Frankfurt, Germany). The strain BY4741, a
derivative of strain S288c, was obtained from EUROSCARF.
Transformation of yeast cells was performed using the lithium acetate
method (Gietz et al., 2002). The strains were selected on synthetic drop-
out medium (Sigma-Aldrich) and the genetic modifications were con-
firmed by colony PCR. The yeast strains used in this study are listed in
Table 2 and Table S3.

2.2. Media and cultivations.

We prepared a mineral medium for the batch fermentation ac-
cording to Verduyn et al. (1992). Glucose concentration in batch
medium was 40 g l−1. The feed medium for chemostats was prepared in
the same way, but the amount of glucose was reduced to 10 g l−1 and
the medium was supplemented with 0.2 ml L−1 of 2 M KOH and one
drop of antifoam 204 (Sigma A-8311) per 20 L of medium. The pre-
culture was done by inoculating a yeast colony into 50 ml of mineral
medium in a 250-ml baffled shake flask and incubating the culture with
shaking at 200 rpm at 30 °C for around 12 h. When the pre-culture
reached OD600 of ca. 2, it was used to inoculate a bioreactor to a
starting optical density of 0.05.

The fermentations were performed in DasGip 1-L stirrer-pro vessels
(Eppendorf, Jülich, Germany), using the working volume of 500 ml.
The temperature was 30 °C, agitation was at 600 rpm and aeration at
1 vvm. pH was monitored with a pH sensor (Mettler Toledo,
Switzerland) and pH was maintained at 5.0± 0.05 by automatic ad-
dition of 2 M KOH. Dissolved oxygen was above 30% throughout the
fermentation as measured by the polarographic oxygen sensor (Mettler
Toledo, Greifensee, Switzerland). The completion of the batch phase
was determined by monitoring CO2 in the exhaust gas, when the second
CO2 peak, corresponding to ethanol consumption phase, declined. We
then initiated constant feed to obtain glucose-limited steady-state with
dilution rate of 0.100±0.005 h−1. The volume was kept constant
using an overflow pump. The samples for transcriptome and metabo-
lome analysis were taken after 4 residence times of steady-state growth.
Four technical replicates were taken from each reactor for tran-
scriptome and metabolome analyses. Each strain was fermented twice
to obtain 2 biological replicates.

2.3. Analytical methods

For analysis of extracellular metabolites and the biomass, we
withdrew ca. 3-ml samples from the reactor. 1 ml of the sample was
centrifuged at 11,000g for 5 min and stored at −20 °C until HPLC
analysis for glucose and organic acids. For p-CA analysis in the opti-
mized strains (ST4288 and ST4353) we mixed 1 vol of sample with 9
volumes of 50% ethanol, whereas for the non-optimized strains
(ST4408 and ST4397) we mixed 1 vol of sample with 1 vol of 50%
ethanol. This was done to dissolve the p-CA that may have precipitated
from the broth due to poor solubility in water. These samples were also
centrifuged at 11,000×g for 5 min and stored at −20 °C until further
analysis.

The analysis of glucose, glycerol, ethanol, and organic acids was
performed on Dionex Ultimate 3000 high-performance liquid chroma-
tography (HPLC) system (Dionex Softron GmbH, Germany), with an
Aminex HPX-87H column (Bio-Rad) at 65 °C, using 5 mM H2SO4 as the
mobile phase with a flow rate of 0.6 ml/min.

Quantification of p-CA was performed as described in Rodriguez
et al. (2015) using a HPLC (Thermo Fisher Scientific), with a Discovery
HS F5 150 mm × 2.1 mm column (particle size 3 µm). The samples
were analyzed using a gradient method with two solvents: (A) 10 mM
ammonium formate pH 3.0 and (B) acetonitrile at 1.5 ml min1. The p-
CA was detected by absorbance at 277 nm and the retention time was
4.7 min. The area under the curve was integrated with Chromeleon
software 7. The quantification of p-CA was performed based on 5 points
calibration curve in the range of 0.1–1 mM. For the dry cell weight
measurement 5 ml of culture broth was filtered through a 0.45 µm filter
membrane, after that the membrane was dried at 95 °C for 24 h and
cooled down in a desiccator. The dry cell weight was calculated by
measuring the weight increment of the dried filter.

2.4. Transcriptome analysis

Samples for RNA extraction were taken after four retention times of
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steady-state fermentation by rapidly withdrawing 5 ml of culture and
injecting it into a 50 ml falcon tube with ca. 30 ml of crushed ice, the
samples were immediately centrifuged at 4000 rpm for 5 min at
−20 °C. The supernatant was discarded, the pellet was frozen in liquid
nitrogen and stored at −80 °C until further analysis. The RNA extrac-
tion was performed using the RNeasy Mini Kit (QIAGEN). The DNA was
removed from the sample using Turbo DNA-free Kit (Ambion). The
purified RNA samples were analyzed with a 2100 Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA) and stored at −80 °C until further
analysis.

The sequencing libraries were prepared in four replicates using a
TruSeq® Stranded mRNA sample preparation kit LT (Illumina Inc.). The
final concentration of each cDNA library was measured by Qubit® 2.0
Fluorimeter and Qubit dsDNA Broad Range assay (Life Technologies).
Average dsDNA library size was determined by using the Agilent DNA
1000 kit on an Agilent 2100 Bioanalyzer (Agilent Technologies).
Libraries were normalized and pooled in 10 mM Tris-Cl, pH 8.0, plus
0.05% Tween 20 to the final concentration of 10 nM. Denaturated in
0.2 N NaOH, 1.2 pm pool of 16 libraries in 1300 µl ice-cold HT1 buffer
was loaded into the flow cell provided in the NextSeq. 500/550 Mid
Output v2 Reagent kit (150 cycles, Illumina Inc.). Libraries were se-
quenced on the NextSeq (Illumina Inc.) platform with a paired end
protocol and read lengths of 75 nt. RNA-seq data have been deposited
in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/
arrayexpress) under accession number E-MTAB-6208.

2.5. Metabolomics analysis

Sampling, quenching and washing of the intracellular metabolites
was performed as described by Canelas et al. (2009). The analysis of
amino acids and other organic acids was performed according to
Khoomrung et al. (2015). The analysis of the derivatized metabolites
was performed using a Focus GC ISQ-LT single quadrupole GC-MS
(Thermo Fisher Scientific, USA). The column was a Zebron ZB-1701 GC
column (30 m 0.25 mm I.D., 0.25-mm film thickness, Phenomenex,
Macclesfield, UK). The metabolites were identified by comparing their
retention times and mass spectrum profiles with the authentic standards
or the mass spectra from the National Institute of Standards and

Technology (NIST), USA library. The data was processed using the
Quan browser function in the Xcalibur software version 2.2 (Thermo
Fisher Scientific).

2.6. Data analysis

The alignment of sequencing reads to the reference genome was
performed using TopHat, the assembly and quantification of the ex-
pression levels was developed with Cufflinks and a preliminary analysis
of the data was performed with CummeRbund, the methods were used
as described by Trapnell et al. (2012). Paired comparisons were per-
formed between optimized and non-optimized strains on each back-
ground: the strain ST4288 was compared with the strain ST4408 and
the strain ST4397 was compared with the strain ST4353.

The gene set analysis was performed using the R package Piano
(Väremo et al., 2013), a platform for integrative analysis of omics data.
The p-values and the fold changes were used as input data and two
types of analysis were performed with this program: first a gene-set
analysis with the reporter algorithm for gene ontology (GO) and second
a gene set analysis using the reporter metabolites. The gene-metabolite
network was obtained from the S. cerevisiae metabolic model iTO977
(Österlund et al., 2013). The gene sets and reporter metabolites with a
distinct directional p-value<0.05 were chosen for the analysis.

The network topology analysis was performed using Kiwi a tool for
visualization and interpretation of gene sets analysis (Väremo et al.,
2014). This tool allows integrating the results of the gene set analysis
with a gene set interaction network. The input for this analysis was a
gene set interaction network obtained from the S. cerevisiae metabolic
model iTO977 and the results from the gene set analysis using reporter
metabolites.

For the metabolomics data, we did a PCA analysis in MATLAB to
identify the differences between the four strains object of this research
and to establish the differences between the engineered and non-en-
gineered strain we did volcano plots based on the results of a t-test
comparison between optimized and non-optimized strains on each
background.

Table 1
Plasmids used in this study.

Integrative plasmids

Name Parent plasmid Properties Reference

pCfB257 X-3, loxP, KlLEU2 Jensen et al. (2014)
pCfB258 X-4, loxP, SpHIS5 Jensen et al. (2014)
pCfB390 XI-3-loxP-KlURA3 Jensen et al. (2014)
pCfB0826 pCfB258 X-4, loxP, SpHIS5, BB0361(ScARO7G141S< -), BB0010(< -PTEF1-PPGK1->), BB0364(ScARO4K229L->) Rodriguez et al. (2015)
pCfB03523 pCfB390 XI-3-loxP, KlURA3, BB0380(Fj_TAL<-), BB0008(PTEF1< -), This study
pCfB03524 pCfB390 XI-3-loxP, KlURA3, BB0380 (Fj_TAL< -), BB0010(< -PTEF1-PPGK1- >), BB0501(EcaroL->) This study

Table 2
Strains used in this study.

Strains

Strain ID Parent strain Genotype Plasmids Source

ST10 – CEN.PK102.5B MATa ura3-52his3 Δ 1leu2-3/112 MAL2-8c SUC2 Entian and Kötter (2007)
ST144 – S288c [BY4741 MATa his3Δ0 leu2Δ0 met15Δ0 ura3Δ0] Brachmann et al. (1998)
ST691 ST10 CEN.PK MATa aro10Δ pdc5Δ ura3-52his3 Δ 1leu2-3/112 MAL2-8c SUC2 Rodriguez et al. (2015)
ST4360 ST144 S288c MATa his3Δ0 leu2Δ0 ura3Δ0 This study
ST4195 ST144 S288c MATa aro10Δ pdc5Δ ura3Δ0 his3Δ0 leu2Δ0 This study
ST4408 ST10 PTEF1-> Fj_TAL pCfB257, pCfB258, p03523 This study
ST4288 ST691 PTEF1-> Fj_TAL, PPGK1-> Ec_aroL, PTEF1-> Sc_ARO7G141s, PPGK1-> Sc_ARO4K229L pCfB257, pCfB826, p03524 This study
ST4353 ST4360 PTEF1-> Fj_TAL, PPGK1-> Ec_aroL, PTEF1-> Sc_ARO7G141S, PPGK1-> Sc_ARO4K229L pCfB257, pCfB826, p03524 This study
ST4397 ST4195 PTEF1-> Fj_TAL pCfB257, pCfB258, p03523 This study
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3. Results

3.1. Physiological characterization of low and high producers of p-coumaric
acid

To understand the fundamental metabolic changes triggered by the
overproduction of p-CA, and the response of different background
strains to these changes, we constructed two strains in each of the ge-
netic backgrounds (CEN.PK and S288c). The “low-producers” were
generated by overexpressing tyrosine ammonia lyase from
Flavobacterium johnsoniae under control of the PTEF1 promoter. The
“high-producers” were created by additional overexpression of aroL
from Escherichia coli under control of the PTEF1 promoter, ARO7G141S

and ARO4K229L from S. cerevisiae under control of the promoters PTEF1
and PPGK1 respectively and deletion of ARO10 and PDC5. The resulting
4 strains were analyzed in batch and glucose-limited chemostat culti-
vations.

The concentrations of p-CA in batch and continuous cultivations
were higher in the CEN.PK strains in comparison to the S288c strains
with the same genetic modifications (Table 3). The glycerol yield was
higher in the S288c strains in comparison to the CEN.PK strains. In
batch fermentations, the optimized strains had lower biomass yield and
accumulated more acetate than the non-optimized ones.

3.2. Transcriptional response of the strains to the synthesis of p-coumaric
acid

For analysis of the differential gene expression, we did pairwise
comparisons between the optimized and non-optimized strains for p-CA
production: CEN.PK strains (ST4288 and ST4408) and the S288c strains
(ST4353 and ST4397).

Significantly up and down-regulated gene sets were identified
through a gene set analysis using GO terms (p adjusted value< 0.05).
The engineered high-producing CEN.PK strain did not have any gene
sets that were significantly upregulated in comparison to the low-pro-
ducing CEN.PK strain. For S288c strain, however, gene sets related to
DNA helicase activity, telomere maintenance and ribonuclease activity
were upregulated (Fig. 1). Among the down-regulated gene sets were
transport functions and iron metabolism, which was observed for both
strain backgrounds. Additionally, S288c strain had remarkable down-
regulations in gene sets related to the synthesis of amino acids and
proteins (Fig. 1).

To elucidate the biological connections between the gene sets, we
did a network analysis of the gene sets using metabolite reporters (Patil
and Nielsen, 2005; Väremo et al., 2013), and used the network visua-
lization tool Kiwi for visualizing the results (Väremo et al., 2014). The
network analysis allows integrating the information from the gene set
analysis with metabolite interactions from a genome-scale metabolic
model of yeast provided via the PIANO toolbox (Väremo et al., 2013).

For the CEN.PK strain we observed significant downregulation of
genes correlated to eight amino acids, proton H(+) and galactose. All
the amino acids mapped in the network have in common upregulations
in AGP1 and GAP1 together with downregulations in BAP3 and BAP2
and TAT1, all of them are involved in the transport of amino acids
(Fig. 2A, Fig. S1).

One of the metabolites correlated to downregulated genes is L-tyr-
osine, the precursor of p-CA, the network analysis shows that besides
correlation to downregulation of transporters, this metabolite is related
to a strong upregulation in the aromatic aminotransferase II ARO9 in-
volved in the conversion of p-hydroxyphenylpyruvate into L-tyrosine,
i.e. the first step of tyrosine catabolism. Finally, proton H(+) is mainly
correlated to downregulations in genes involved in transport functions
(BAP2, TAT1, ALP1, TPO1, BIO5, VHT1) and D-galactose is mainly
correlated to downregulation of hexose transport (HXT10, HXT14).

The strain S288c had downregulated genes correlated to 5 amino
acids (L-methionine, L-tyrosine, L-tryptophan, L-glutamate and L-or-
nithine), three sugars (D-fructose, alpha-D-glucose and alpha-D-man-
nose), acetaldehyde and 2-oxoglutarate (Fig. 2B, Fig. S2).

The amino acids reported in the network analysis had in common
the downregulation of BAP2, TAT1 and the upregulation of AGP1.
These genes are correlated to amino acid transmembrane transporter
activity. We found two aromatic amino acids in the network L-tyrosine
and L-tryptophan, they share downregulations in genes related to amino
acids transport (BAP2 and TAT1), and they differ in the upregulations
when L-tyrosine has a strong upregulation in ARO9 and ALD3. L-tryp-
tophan has a strong upregulation in MSY1 (Fig. 2B, Fig. S2).

Finally, the metabolites 2-oxoglutarate, L-glutamate and L-ornithine
are correlated to downregulated genes involved in the synthesis and
transport of amino acids. L-glutamate has a central role in the metabolic
network and it is correlated to downregulation of ASN1, ADE4, CAR2
and TRP2, genes involved in the synthesis of amino acids. The three
sugars reported in the network are correlated to downregulations in
genes involved in the transport of sugars (HXT2 and HXT16).

Table 3
Physiological data of the strains grown in batch and chemostat cultivations.

Background strain CEN.PK S288c

Strain ID ST4408 ST4288 ST4397 ST4353

Optimized for p-CA production No Yes No Yes
Batch
Maximum specific growth rate µmax (h−1) 0.334±0.006 0.294± 0.006 0.292±0.005 0.271± 0.009
Final titer of p-CA (g L−1) 0.202±0.005 2.405± 0.054 0.081±0.005 2.018± 0.000
Biomass yield on glucose (g g−1) 0.477±0.044 0.268± 0.093 0.422±0.005 0.352± 0.053
p-CA yield on glucose (g g−1) 0.001 + 0.000 0.013 + 0.000 0.000±0.000 0.012± 0.000
Glycerol yield on glucose (g g−1) 0.019±0.001 0.018± 0.002 0.048±0.000 0.053± 0.001
Acetate yield on glucose (g g−1) 0.010±0.003 0.014± 0.002 0.006±0.002 0.011± 0.001
Ethanol yield on glucose (g g−1) 0.309±0.001 0.293± 0.004 0.289±0.013 0.297± 0.013
Final biomass dry weight (g DCW L−1) 13.198± 0.279 12.566± 0.056 11.481± 0.131 10.401±0.785
Chemostat (steady-state data)
Titer of p-CA (g L−1) 0.117±0.000 0.507± 0.013 0.081±0.005 0.410± 0.024
Biomass dry weight (g DCW L−1) 4.647±0.156 4.670± 0.181 4.625±0.165 4.620± 0.094
Glucose (g L−1) ND ND ND ND
Glycerol (g L−1) ND 0.021± 0.004 ND 0.013± 0.001
Acetate (g L−1) ND ND ND ND
Ethanol (g L−1) ND ND ND ND

ND – not detected.
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3.3. Changes of intracellular metabolome in response to the synthesis of p-
coumaric acid

To identify the differences in the metabolome caused by over-
production of p-CA and by different genetic backgrounds, we did a PCA
analysis. The first component of the PCA accounted for 82% of the
variability and showed significant differences between the background
strains CEN.PK and S288c, the metabolites with higher contributions to
this component are phosphoric acid, disilaheptane, L-ornithine, glu-
tamic acid, lysine and citrate, all of them related to higher concentra-
tion of the metabolites in the CEN.PK background whereas the strain
S288c is related to higher values of cis-9-hexadecanoic acid (Fig. 3).

The second component explains 8% of the variability and estab-
lishes the differences between optimized and non-optimized strains for
the two backgrounds tested, the metabolites with higher contributions
to this component are glutamine and L-tyrosine with higher con-
centrations for the engineered strains whereas the non-optimized
strains are related to higher concentrations of malic acid.

A t-test was performed comparing the non-optimized and optimized
strain of each background, aiming to identify which metabolites has
significant differences when the cells are producing p-CA. The sig-
nificant differences for both of the background strains tested are mainly
related to the low concentration of metabolites in the optimized strains.
For the CEN.PK strains, we found significant differences in four meta-
bolites: two amino acids (L-valine and L-threonine), malic and citric

Fig. 1. Gene sets with significant differences in the
optimized strains for p-CA production in comparison
to the non-optimized strains.

Fig. 2. Network topology analysis identified metabolites with significant differences in the optimized strains in comparison to the non-optimized strains. The nodes are resized according
to the gene-set significance, the colors reflect the direction of change of the gene-set, the edges between two metabolites symbolized how close they are in the metabolite-metabolite
network and the thickest edges link the metabolites that are in close proximity to each other. A. comparison between CEN.PK strains; B. Comparison between S288c strains.

Fig. 3. Score and loading plot from the principal component analysis based on the me-
tabolome data of optimized and non-optimized strains in the S. cerevisiae backgrounds
CEN.PK and S288c.
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acid. For the S288c strain, we found significant differences in 5 amino
acids, phosphoric acid, malic acid, citric acid, and cis-9-hexadecanoic
acid (Fig. 4). There is bigger variation between the low and high-pro-
ducing S288c strains than CEN.PK strains.

3.4. Engineering of highly upregulated or downregulated genes

As the next step, we wanted to investigate how p-coumaric acid
production could be influenced by targeted deletion or upregulation of
the genes that showed significant changes in the transcriptome analysis.
We chose 24 genes that were significantly upregulated or down-
regulated. We carried out single knock-outs or overexpressions of these
genes in strains ST4964 and ST4965, which were generated from cor-
respondingly strains ST4288 and ST4408 by additional expression of a
cas9 gene to enable simplified genome editing (Stovicek et al., 2015).
Knock-outs of 9 genes could not be obtained. It may either be due to
inefficient guiding gRNA or due to conditional lethality of these genes.
The overexpression was realized by inserting an extra copy of the gene
under control of a strong constitutive promoter TEF1. All the resulting
strains were cultivated in feed-in-time medium and the optical densities
and titer of p-coumaric acid were measured. None of the over-
expressions resulted in significant change in the p-CA titer in either a
low-producing nor high-producing strains (Fig. S3). The deletions did
not influence p-CA titer in the low-producing strains, however, we
observed improvement of p-CA production for seven gene deletions in
the high-producer strain ST4964 background (Fig. S4, Table 4). All the
seven deletion targets that triggered higher amounts of p-CA were in-
volved in the transport of amino acids, polyamines, and sugar.

The highest improvement in p-CA synthesis was obtained by de-
leting TAT1, encoding a tyrosine and tryptophan amino acid trans-
porter. The knockout of this gene triggered a 50% increase of p-CA titer.
Strains with knockouts of polyamine transporter TPO1 and arginine
transporter ALP1 resulted in 40–45% higher titer. Finally, deletion of
amino acids transporters (BAP2, AGP3), acetate transporter ADY2 and
galactose transporter GAL2 gave 20–30% improvement (Table 4, Figs.
S4 and S5).

4. Discussion

In our study, engineered high-producer strain with CEN.PK back-
ground gave 20–25% higher p-CA titers in batch and continuous cul-
tivations in comparison with S288c strain engineered identically.
Moreover, the CEN.PK-producer had a higher maximum specific growth
rate μmax than S288c-producer. Transcriptome analysis showed that the
CEN.PK strain was less affected by engineering towards higher p-CA
production than the S288c strain, as the number of significantly up-/
down-regulated genes was correspondingly 652 and 1927 amongst
others, strain S288c had downregulations in gene sets involved in
amino acid and protein biosynthesis. This suggests that CEN.PK may be
a better platform strain for production of aromatic compounds than the
S288c strain.

The transcriptome analysis also revealed downregulations in
transport functions in the engineered strains of both backgrounds,
which could be a response to the stress triggered by production of p-CA.
Previous studies on plasma membrane integrity and ethanol stress in S.
cerevisiae have reported that yeast cells react to chemical stress by
downregulating the transport of some metabolites and by decreasing
gene expression in energy-demanding processes (Stanley et al., 2010,
Madeira et al., 2010; Leao and van Uden, 1984).

For the engineered S288c strain, metabolomics analysis revealed
lower concentrations of phosphoric acid, L-ornithine and glutamic acid,
which correlates with downregulation of the gene sets involved in the
synthesis of proteins and amino acids. Interestingly previous research
on S. cerevisiae stress responses to oxidative stress had shown diminu-
tion in the synthesis of proteins as a prevention mechanism under po-
tentially error-prone conditions (Shenton and Grant, 2003a).

We observed higher accumulation of glycerol by the engineered
strains than in non-optimized strains. Synthesis of glycerol is known as
an important factor in the control of osmoregulation and of redox
balance (Hohmann et al., 2007; Muzzey et al., 2009). Another inter-
esting metabolite is cis-9-hexadecanoic acid; this metabolite had higher
concentrations in the S288c strain in comparison to CEN.PK strain; we
propose that the stress originating from the production of p-CA may
trigger the synthesis of this fatty acid in the S288c strains. It had been
previously reported that genetically engineered strains with a higher
concentration of cis-9-hexadecanoic acid were more tolerant to tem-
perature and oxidative stress (Steels et al., 1994; Jamieson, 1998).

Overexpression or knock-outs of genes with changed transcriptional
profile did not affect p-CA production in low-producing strain back-
ground (ST4965). Most likely, in this strain the flux is primarily limited
by the biosynthesis of tyrosine precursor and hence modulating the
expression of primarily transport and stress-related genes could not
influence the production significantly. The situation was different for
the high-producing strain background (ST4964), where knock-outs of
seven transport-related genes improved p-CA titer by 20–50%.
Particularly, the deletion of the tyrosine and tryptophan transporter
TAT1 resulted in 50% improvement of p-CA titer. Possibly, the deletion
of TAT1 resulted in reduction of the leakage of tyrosine from the cells,

Fig. 4. Volcano plot based on the statistical significance of the t-test and fold change from
the comparison of the reporter metabolites between optimized and non-optimized strain
on each background. A. CEN.PK strains, B. S288c strains.

Table 4
Percentage of p-CA titer improvement resulting from deletion of downregulated genes.

Strain Name Name description % improvement of p-CA
titer

ST5935 TAT1 Tyrosine and tryptophan amino
acid transporter

48±21

ST5937 TPO1 Transporter of polyamines 45±13
ST5938 ALP1 Arginine transporter 39±11
ST5939 AGP3 High-affinity glutamine

permease
27±29

ST5940 ADY2 Acetate transporter 26±16
ST5942 GAL2 Galactose permease 23±10
ST5949 BAP2 Branched-chain amino acid

permease
22±25
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hence more could serve as substrate for p-CA production. Interestingly,
overexpression of the same genetic targets did not lead to any sig-
nificant changes in p-CA titer. The number of transporter proteins per
cell is one-two orders of magnitude lower than the cytosolic proteins
and overexpression of a transporter gene may not result in a significant
increase of transporter protein content simply due to the membrane
crowding.

Our study highlights the importance of transporters when en-
gineering cell factories for production of small molecules. Future stu-
dies are warranted on identifying the transporters responsible for the
efflux of p-CA and intermediates and on using this knowledge for fur-
ther strain improvement.

Acknowledgements

This work was financed by the Novo Nordisk Foundation. We thank
Anna Koza for performing the RNA sequencing, Leif Väremo for his
advice for the use of the packages PIANO and Kiwi, Eduard Kerkoven
for his suggestions on the transcriptome data analysis. Mark Bisschops
and Bettina Loranfty are acknowledged for their suggestions for the
chemostats set up, Jie Zhang, Vratislav Stovicek and Tadas Jakočiūnas
for their suggestions with the CRISPR/Cas9 yeast engineering methods.
Also, we thank Klara Bojanovic, Kanchana R Kildegaard and Arun
Rajkumar for their advice on RNA isolation.

Declaration of interest

The authors declare no competing interests.

Contributions

AR, IB and JN conceived and designed the study and analyzed the
results. AR, YC and SK did the experimental work. AR, YC, EO and SK
processed and analyzed the data. AR and IB drafted the manuscript and
all authors read, edited and approved the final manuscript.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.ymben.2017.10.013.

References

Bourgaud, F., Gravot, A., Milesi, S., Gontier, E., 2001. Production of plant secondary
metabolites: a historical perspective. Plant Sci. 161, 839–851. http://dx.doi.org/10.
1016/S0168-9452(01)00490-3.

Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., Boeke, J.D., 1998.
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set
of strains and plasmids for PCR-mediated gene disruption and other applications.
Yeast 14, 115–132 10.1002/(SICI) 1097-0061 (19980130) 14:2<115:AID-
YEA204>3.0. CO; 2-2).

Canelas, A.B., Ten Pierick, A., Ras, C., Seifar, R.M., Van Dam, J.C., Van Gulik, W.M.,
Heijnen, J.J., 2009. Quantitative evaluation of intracellular metabolite extraction
techniques for yeast metabolomics. Anal. Chem. 81, 7379–7389. http://dx.doi.org/
10.1021/ac900999t.

Curran, K.A., Alper, H.S., 2012. Expanding the chemical palate of cells by combining
systems biology and metabolic engineering. Metab. Eng. 14, 289–297. http://dx.doi.
org/10.1016/j.ymben.2012.04.006.

Entian, K.-D., Kötter, P., 2007. 25 yeast genetic strain and plasmid collections. Method
Microbiol. 36, 629–666.

Germann, S.M., Baallal Jacobsen, S.A., Schneider, K., Harrison, S.J., Jensen, N.B., Chen,
X., Stahlhut, S.G., Borodina, I., Luo, H., Zhu, J., Maury, J., Forster, J., 2016. Glucose-
based microbial production of the hormone melatonin in yeast Saccharomyces cere-
visiae. Biotechnol. J. http://dx.doi.org/10.1002/biot.201500143.

Gietz, B.R.D., Woods, R.A., Peg, D.N.A., 2002. Transformation of Yeast by Lithium
Acetate/Single-Stranded Carrier DNA/Polyethylene Glycol Method, 350, pp. 87–96.

Hohmann, S., Krantz, M., Nordlander, B., 2007. Yeast osmoregulation. Methods Enzymol.
http://dx.doi.org/10.1016/S0076-6879(07)28002-4.

Jamieson, D.J., 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae.
Yeast 14, 1511–1527. http://dx.doi.org/10.1002/(SICI)1097-0061(199812)
14:16<1511:AID-YEA356>3.0.CO;2-S.

Jendresen, C.B., Stahlhut, S.G., Li, M., Gaspar, P., Siedler, S., Förster, J., Maury, J.,

Borodina, I., Nielsen, A.T., 2015. Highly active and specific tyrosine ammonia-lyases
from diverse origins enable enhanced production of aromatic compounds in bacteria
and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81, 4458–4476. http://dx.
doi.org/10.1128/AEM.00405-15.

Jensen, N.B., Strucko, T., Kildegaard, K.R., David, F., Maury, J., Mortensen, U.H., Forster,
J., Nielsen, J., Borodina, I., 2014. EasyClone: method for iterative chromosomal in-
tegration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 238–248.
http://dx.doi.org/10.1111/1567-1364.12118.

Jessop-Fabre, M.M., Jakočiūnas, T., Stovicek, V., Dai, Z., Jensen, M.K., Keasling, J.D.,
Borodina, I., 2016. EasyClone-MarkerFree: a vector toolkit for marker-less integration
of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11,
1110–1117. http://dx.doi.org/10.1002/biot.201600147.

Khoomrung, S., Martinez, J.L., Tippmann, S., Jansa-Ard, S., Buffing, M.F., Nicastro, R.,
Nielsen, J., 2015. Expanded metabolite coverage of Saccharomyces cerevisiae extract
through improved chloroform/methanol extraction and tert-butyldimethylsilyl deri-
vatization. Anal. Chem. Res. 6, 9–16. http://dx.doi.org/10.1016/j.ancr.2015.10.001.

Kim, I.K., Roldão, A., Siewers, V., Nielsen, J., 2012. A systems-level approach for meta-
bolic engineering of yeast cell factories. FEMS Yeast Res. 12, 228–248. http://dx.doi.
org/10.1111/j.1567-1364.2011.00779.x.

Koopman, F., Beekwilder, J., Crimi, B., van Houwelingen, A., Hall, R.D., Bosch, D., van
Maris, A.J., Pronk, J.T., Daran, J.-M., 2012. De novo production of the flavonoid
naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 11, 155. http://
dx.doi.org/10.1186/1475-2859-11-155.

Krivoruchko, A., Nielsen, J., 2015. Production of natural products through metabolic
engineering of Saccharomyces cerevisiae. Curr. Opin. Biotechnol. 35, 7–15. http://dx.
doi.org/10.1016/j.copbio.2014.12.004.

Leao, Cn, van Uden, N., 1984. Effects of ethanol and other alkanols on the general amino
acid permease of Saccharomyces cerevisiae. Biotechnol. Bioeng. 26, 403–405.

Leonard, E., Runguphan, W., O’Connor, S., Prather, K.J., 2009. Opportunities in meta-
bolic engineering to facilitate scalable alkaloid production. Nat. Chem. Biol. 5,
292–300. http://dx.doi.org/10.1038/nchembio.160.

Li, M., Kildegaard, K.R., Chen, Y., Rodriguez, A., Borodina, I., Nielsen, J., 2015. De novo
production of resveratrol from glucose or ethanol by engineered Saccharomyces cer-
evisiae. Metab. Eng 32, 1–11. http://dx.doi.org/10.1016/j.ymben.2015.08.007.

Madeira, A., Leitão, L., Soveral, G., Dias, P., Prista, C., Moura, T., Loureiro-Dias, M.C.,
2010. Effect of ethanol on fluxes of water and protons across the plasma membrane of
Saccharomyces cerevisiae. FEMS Yeast Res. 10, 252–258. http://dx.doi.org/10.1111/j.
1567-1364.2010.00607.x.

Muzzey, D., Gomez-Uribe, C.A., Mettetal, J.T., van Oudenaarden, A., 2009. A systems-
level analysis of perfect adaptation in yeast osmoregulation. Cell 138, 160–171.
http://dx.doi.org/10.1016/j.cell.2009.04.047.

Nielsen, J., Keasling, J.D., 2016. Engineering cellular metabolism. Cell 164, 1185–1197.
http://dx.doi.org/10.1016/j.cell.2016.02.004.

Nijkamp, J.F., van den Broek, M., Datema, E., de Kok, S., Bosman, L., Luttik, M.A., Daran-
Lapujade, P., Vongsangnak, W., Nielsen, J., Heijne, W.H.M., Klaassen, P., Paddon,
C.J., Platt, D., Kötter, P., van Ham, R.C., Reinders, M.J.T., Pronk, J.T., de Ridder, D.,
Daran, J.-M., 2012. De novo sequencing, assembly and analysis of the genome of the
laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern in-
dustrial biotechnology. Microb. Cell Fact. 11, 36. http://dx.doi.org/10.1186/1475-
2859-11-36.

Österlund, T., Nookaew, I., Bordel, S., Nielsen, J., 2013. Mapping condition-dependent
regulation of metabolism in yeast through genome-scale modeling. BMC Syst. Biol. 7,
36. http://dx.doi.org/10.1186/1752-0509-7-36.

Otero, J.M., Vongsangnak, W., Asadollahi, M.A., Olivares-Hernandes, R., Maury, J.,
Farinelli, L., Barlocher, L., Osterås, M., Schalk, M., Clark, A., Nielsen, J., 2010. Whole
genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for
improved metabolic engineering applications. BMC Genom. 11, 723. http://dx.doi.
org/10.1186/1471-2164-11-723.

Otero, J.M., Cimini, D., Patil, K.R., Poulsen, S.G., Olsson, L., Nielsen, J., 2013. Industrial
systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.
PLoS One 8, 1–10. http://dx.doi.org/10.1371/journal.pone.0054144.

Park, J.H., Lee, K.H., Kim, T.Y., Lee, S.Y., 2007. Metabolic engineering of Escherichia coli
for the production of L-valine based on transcriptome analysis and in silico gene
knockout simulation. Proc. Natl. Acad. Sci. USA 104, 7797–7802. http://dx.doi.org/
10.1073/pnas.0702609104.

Patil, K.R., Nielsen, J., 2005. Uncovering transcriptional regulation of metabolism by
using metabolic network topology. Proc. Natl. Acad. Sci. USA 102, 2685–2689.
http://dx.doi.org/10.1073/pnas.0406811102.

Rodriguez, A., Kildegaard, K.R., Li, M., Borodina, I., Nielsen, J., 2015. Establishment of a
yeast platform strain for production of p-coumaric acid through metabolic en-
gineering of aromatic amino acid biosynthesis. Metab. Eng. 31, 181–188. http://dx.
doi.org/10.1016/j.ymben.2015.08.003.

Santos, C.N.S., Koffas, M., Stephanopoulos, G., 2011. Optimization of a heterologous
pathway for the production of flavonoids from glucose. Metab. Eng. 13, 392–400.
http://dx.doi.org/10.1016/j.ymben.2011.02.002.

Shenton, D., Grant, C.M., 2003a. Protein S-thiolation targets glycolysis and protein
synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
Biochem. J. 374, 513–519. http://dx.doi.org/10.1042/BJ20030414.

Stahlhut, S.G., Siedler, S., Malla, S., Harrison, S.J., Maury, J., Neves, A.R., Forster, J.,
2015. Assembly of a novel biosynthetic pathway for production of the plant flavonoid
fisetin in Escherichia coli. Metab. Eng. 31, 84–93. http://dx.doi.org/10.1016/j.ymben.
2015.07.002.

Stanley, D., Bandara, A., Fraser, S., Chambers, P.J., Stanley, G.A., 2010. The ethanol stress
response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109,
13–24. http://dx.doi.org/10.1111/j.1365-2672.2009.04657.x.

Steels, E.L., Learmonth, R.P., Watson, K., 1994. Stress tolerance and membrane lipid

A. Rodriguez et al. Metabolic Engineering 44 (2017) 265–272

271

http://dx.doi.org/10.1016/j.ymben.2017.10.013
http://dx.doi.org/10.1016/S0168-9452(01)00490-3
http://dx.doi.org/10.1016/S0168-9452(01)00490-3
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref2
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref2
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref2
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref2
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref2
http://dx.doi.org/10.1021/ac900999t
http://dx.doi.org/10.1021/ac900999t
http://dx.doi.org/10.1016/j.ymben.2012.04.006
http://dx.doi.org/10.1016/j.ymben.2012.04.006
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref5
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref5
http://dx.doi.org/10.1002/biot.201500143
http://dx.doi.org/10.1016/S0076-6879(07)28002-4
http://dx.doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511:AID-YEA356>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511:AID-YEA356>3.0.CO;2-S
http://dx.doi.org/10.1128/AEM.00405-15
http://dx.doi.org/10.1128/AEM.00405-15
http://dx.doi.org/10.1111/1567-1364.12118
http://dx.doi.org/10.1002/biot.201600147
http://dx.doi.org/10.1016/j.ancr.2015.10.001
http://dx.doi.org/10.1111/j.1567-1364.2011.00779.x
http://dx.doi.org/10.1111/j.1567-1364.2011.00779.x
http://dx.doi.org/10.1186/1475-2859-11-155
http://dx.doi.org/10.1186/1475-2859-11-155
http://dx.doi.org/10.1016/j.copbio.2014.12.004
http://dx.doi.org/10.1016/j.copbio.2014.12.004
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref16
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref16
http://dx.doi.org/10.1038/nchembio.160
http://dx.doi.org/10.1016/j.ymben.2015.08.007
http://dx.doi.org/10.1111/j.1567-1364.2010.00607.x
http://dx.doi.org/10.1111/j.1567-1364.2010.00607.x
http://dx.doi.org/10.1016/j.cell.2009.04.047
http://dx.doi.org/10.1016/j.cell.2016.02.004
http://dx.doi.org/10.1186/1475-2859-11-36
http://dx.doi.org/10.1186/1475-2859-11-36
http://dx.doi.org/10.1186/1752-0509-7-36
http://dx.doi.org/10.1186/1471-2164-11-723
http://dx.doi.org/10.1186/1471-2164-11-723
http://dx.doi.org/10.1371/journal.pone.0054144
http://dx.doi.org/10.1073/pnas.0702609104
http://dx.doi.org/10.1073/pnas.0702609104
http://dx.doi.org/10.1073/pnas.0406811102
http://dx.doi.org/10.1016/j.ymben.2015.08.003
http://dx.doi.org/10.1016/j.ymben.2015.08.003
http://dx.doi.org/10.1016/j.ymben.2011.02.002
http://dx.doi.org/10.1042/BJ20030414
http://dx.doi.org/10.1016/j.ymben.2015.07.002
http://dx.doi.org/10.1016/j.ymben.2015.07.002
http://dx.doi.org/10.1111/j.1365-2672.2009.04657.x


unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically.
Microbiology 140 (Pt 3), 569–576. http://dx.doi.org/10.1099/00221287-140-3-569.

Stovicek, V., Borodina, I., Forster, J., 2015. CRISPR-Cas system enables fast and simple
genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun.
2, 13–22. http://dx.doi.org/10.1016/j.meteno.2015.03.001.

Strucko, T., Magdenoska, O., Mortensen, U.H., 2015. Benchmarking two commonly used
Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production.
Metab. Eng. Commun. 2, 99–108. http://dx.doi.org/10.1016/j.meteno.2015.09.001.

Trantas, E., Panopoulos, N., Ververidis, F., 2009. Metabolic engineering of the complete
pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in
Saccharomyces cerevisiae. Metab. Eng. 11, 355–366. http://dx.doi.org/10.1016/j.
ymben.2009.07.004.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg,
S.L., Rinn, J.L., Pachter, L., 2012. Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578. http://
dx.doi.org/10.1038/nprot.2012.016.

Väremo, L., Nielsen, J., Nookaew, I., 2013. Enriching the gene set analysis of genome-
wide data by incorporating directionality of gene expression and combining statis-
tical hypotheses and methods. Nucleic Acids Res. 41, 4378–4391. http://dx.doi.org/
10.1093/nar/gkt111.

Väremo, L., Gatto, F., Nielsen, J., Varemo, L., Gatto, F., Nielsen, J., 2014. Kiwi: a tool for
integration and visualization of network topology and gene-set analysis. BMC
Bioinform. 15, 408. http://dx.doi.org/10.1186/s12859-014-0408-9.

Verduyn, C., Postma, E., Scheffers, W.A., van Dijken, J.P., 1992. Effect of benzoic acid on
metabolic fluxes in Yeasts. Yeast 8, 501–517.

Wink, M., 2010. Annual Plant Reviews Volume 40, Biochemistry of Plant Secondary
Metabolites 40. 〈http://dx.doi.org/10.1002/9781444320503〉.

Yin, S., Lang, T., Xiao, X., Liu, L., Sun, B., Wang, C., 2015a. Significant enhancement of
methionol production by co-expression of the aminotransferase gene ARO8 and the
decarboxylase gene ARO10 in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 362,
1–7. http://dx.doi.org/10.1093/femsle/fnu043.

Yin, S., Zhou, H., Xiao, X., Lang, T., Liang, J., Wang, C., 2015b. Improving 2-pheny-
lethanol production via Ehrlich pathway using genetic engineered Saccharomyces
cerevisiae strains. Curr. Microbiol. 70, 762–767. http://dx.doi.org/10.1007/s00284-
015-0785-y.

Yoon, S.H., Han, M.-J., Jeong, H., Lee, C.H., Xia, X.-X., Lee, D.-H., Shim, J.H., Lee, S.Y.,
Oh, T.K., Kim, J.F., 2012. Comparative multi-omics systems analysis of Escherichia
coli strains B and K-12. Genome Biol. 13, R37. http://dx.doi.org/10.1186/gb-2012-
13-5-r37.

A. Rodriguez et al. Metabolic Engineering 44 (2017) 265–272

272

http://dx.doi.org/10.1099/00221287-140-3-569
http://dx.doi.org/10.1016/j.meteno.2015.03.001
http://dx.doi.org/10.1016/j.meteno.2015.09.001
http://dx.doi.org/10.1016/j.ymben.2009.07.004
http://dx.doi.org/10.1016/j.ymben.2009.07.004
http://dx.doi.org/10.1038/nprot.2012.016
http://dx.doi.org/10.1038/nprot.2012.016
http://dx.doi.org/10.1093/nar/gkt111
http://dx.doi.org/10.1093/nar/gkt111
http://dx.doi.org/10.1186/s12859-014-0408-9
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref40
http://refhub.elsevier.com/S1096-7176(17)30382-8/sbref40
http://dx.doi.org//10.1002/9781444320503
http://dx.doi.org/10.1093/femsle/fnu043
http://dx.doi.org/10.1007/s00284-015-0785-y
http://dx.doi.org/10.1007/s00284-015-0785-y
http://dx.doi.org/10.1186/gb-2012-13-5-r37
http://dx.doi.org/10.1186/gb-2012-13-5-r37

	Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains
	Introduction
	Materials and methods
	Plasmids and strains
	mk:H2_4
	Analytical methods
	Transcriptome analysis
	Metabolomics analysis
	Data analysis

	Results
	Physiological characterization of low and high producers of p-coumaric acid
	Transcriptional response of the strains to the synthesis of p-coumaric acid
	Changes of intracellular metabolome in response to the synthesis of p-coumaric acid
	Engineering of highly upregulated or downregulated genes

	Discussion
	Acknowledgements
	Declaration of interest
	Contributions
	Supporting information
	References




