A posteriori error estimates for streamline-diffusion and discontinuous Galerkin methods for the Vlasov--Maxwell system.
Artikel i vetenskaplig tidskrift, 2017

Abstract This paper concerns a posteriori error analysis for the streamline diffusion (SD) finite element method for the one and one-half dimensional relativistic Vlasov– Maxwell system. The SD scheme yields a weak formulation, that corresponds to an add of extra diffusion to, e.g. the system of equations having hyperbolic nature, or convection-dominated convection diffusion problems. The a posteriori error estimates rely on dual formulations and yield error controls based on the computable residuals. The convergence estimates are derived in negative norms, where the error is split into an iteration and an approximation error and the iteration procedure is assumed to converge.

Streamline diffusion · Vlasov–Maxwell · A posteriori error estimates · Stability · Convergence

Författare

Mohammad Asadzadeh

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Christoffer Standar

Chalmers, Matematiska vetenskaper

Göteborgs universitet

BIT Numerical Mathematics

0006-3835 (ISSN) 1572-9125 (eISSN)

22-

Ämneskategorier

Matematik

Fundament

Grundläggande vetenskaper