Feruloyl esterases, effects of glycosylation on activity, stability and immobilization

Cyrielle Bonzom¹, Sun-Li Chong¹, Silvia Hüttnert, Laura Iancu² and Lisbeth Olsson¹

¹ Industrial Biotechnology Division, Biology and Biotechnological Engineering Department, Chalmers University of Technology, Kemivägen 10, Göteborg SE 41296, Sweden
² DuPont Industrial Biosciences, Newue Kanaal 7S, 6709 PA, Wageningen, The Netherlands
cyrielle.bonzom@chalmers.se

BACKGROUND

Feruloyl esterases (FAE; EC 3.1.1.73) are a subclass of carboxylic ester hydrolases. They catalyze the hydrolysis of ester linkages in plant cell walls materials releasing ferulic acid and other hydroxy-cinnamic acids and therefore have been classified in the CAZY database [1] in the carbohydrate esterase (CE) family. Currently, all FAEs in the CAZY database belong to the CE1 family.

We studied the Fae1a from Mucilago polymorpha thermophila expressed in different host organisms and therefore having different glycosylation extent/ patterns. Our hypothesis was that glycosylation would influence the immobilization behavior of the studied FAE in mesoporous silica particles as well as its activity.

GLY COSYLATION

Depending on the production host of the enzyme, the glycosylation extent and/or pattern can vary from none in Escherichia coli to hyper-glycosylation in Pichia pastoris. M. thermophila was expected to have an intermediate glycosylation level.

The different glycosylation extents were confirmed by PNGase F digestion and SDS-Page gel analysis.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Before (kDa)</th>
<th>After (kDa)</th>
<th>Change (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PipMt</td>
<td>35</td>
<td>26</td>
<td>-9</td>
</tr>
<tr>
<td>B2Mt</td>
<td>27</td>
<td>24</td>
<td>-3</td>
</tr>
</tbody>
</table>

Glycosylation has been shown to alter activity and stability of enzymes [3]. It was therefore decided to investigate the behavior of the different forms of the same enzyme.

PROFILES

The three forms of the enzyme were tested for pH and temperature profiles.

Both glycosylated forms displayed similar behaviors with pH. The non-glycosylated enzyme was more tolerant to low pHs.

The original enzyme (B2Mt), having the intermediate glycosylation level, was the most tolerant to high temperatures. The non-glycosylated one (EcoMt) was the most robust at low temperatures.

<table>
<thead>
<tr>
<th>pH</th>
<th>Activity retained after 24h at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>PipMt 64% B2Mt 85%</td>
</tr>
<tr>
<td>6.0</td>
<td>PipMt 79% B2Mt 84%</td>
</tr>
<tr>
<td>7.0</td>
<td>PipMt 66% B2Mt 49%</td>
</tr>
</tbody>
</table>

Both glycosylated enzymes were relatively stable at 20°C for 24h.

At the determined preferred pH and temperature, the kinetic constants of the enzymes were evaluated.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Km (µM)</th>
<th>Vmax (µM/min)</th>
<th>kcat (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PipMt</td>
<td>51.3 ± 2.1</td>
<td>3.2 ± 3.10²</td>
<td>42.8 ± 0.4</td>
</tr>
<tr>
<td>B2Mt</td>
<td>52.9 ± 2.5</td>
<td>3.3 ± 3.90²</td>
<td>31.8 ± 0.4</td>
</tr>
</tbody>
</table>

Km, Vmax and kcat of the two glycosylated enzymes were evaluated.

KINETIC CONSTANTS

Km was the same for both glycosylated enzymes. Small differences were observed on kcat.

IMMobilization BACKGROUND

Immobilization is a powerful tool to allow enzyme reuse and therefore decrease their cost in the overall process. Mesoporous silica particles (MPS) are porous supports made of silica which pore size can be tuned from 2 to 50 nm depending on the synthesis conditions [2]. A pore size matching the enzyme size can greatly reduce leaching after immobilization. The pore system also provides a sheltering and more packed environment, mimicking the inside of a cell.

IMMobilization KINETIC

Immobilization on solid carriers can be achieved by different approaches, one of them is by physical adsorption. This technique relies mainly on the surface charges of the support and enzyme. Because they are negatively charged, mesoporous silica allow for rapid enzyme immobilization by physical adsorption. MPS of 10 nm pore size were used to immobilize enzymes estimated to be 4-5 nm in diameter.

Based on the obtained profiles, PipMt seems to have a higher pl. This is in agreement with the fact that glycosylation are known to alkalify the pl.

A different behavior is expected for the non-glycosylated enzyme which pl should be closer to the theoretical one calculated by expasy to be at 4.4.

CONCLUSIONS

- The different glycosylation extents were confirmed.
- All three forms of Fae1a display the same pH and temperature optima with some differences in the profiles.
- Both glycosylated forms have the same kinetic parameters Km and kcat.
- Different immobilization behaviors were observed which we hypothesized are linked to the enzyme’s pl.

Future work:
- Stability of the enzymes
- The non-glycosylated form: EcoMt