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Abstract 

A set-theoretical approach is presented for a multi-objective control design of the local ramp metering problem. Two control 
objectives are specified: first, the optimization of traffic performance, by the minimization of total time spent. Second, the emission 
factor of CO2 is minimized. The optimal state for traffic emission however lies in the unstable domain of the system. To resolve 
this inconsistency, the control problem is formalized in a set-theoretical context. For this purpose, the nonlinear METANET model 
is rewritten in a shifted coordinate frame in a parameter-varying, polytopic representation. Bounds on state-, input- and disturbance 
variables are expressed by convex polytopes. These sets are then used for the design of an interpolated H∞ controller that is capable 
of improving traffic conditions according to the prescribed multi-objective criteria. Different control allocation methods are 
compared with non-linear model predictive control stategy, in order to illustrate the proposed methodology. 
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1. Introduction 

The concept of sustainable development motivates to extend the control objectives of conventional, traffic-
performance optimizing control strategies. The ultimate goal is to maintain a process that is optimal both in terms of 
travel times and environmental aspects. The literature of traffic control offers a variety of control approaches 
optimizing solely traffic performance (see e.g. [Hegyi et al., 2005, Kan et al., 2016] and the references therein), or 
emission performance (e.g. [Liu et al., 2012], [Alsabaan et al., 2013], [Csikós et al., 2014]). Recently, numerous 
approaches have emerged addressing the multi-objective control problem. [Zegeye et al., 2009] and [Groot et al., 
2013] solve constrained optimization problems in a receding horizon manner. In [Ma, 2012] a genetic algorithm based 
optimization scheme is developed for the joint optimization of emission and flow level indicators.  

We emphasize two aspects of the underlying problem: system dynamics are nonlinear and the control input is 
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constrained. These characteristics generally imply nonlinear optimization techniques, which are purely numerical, 
hence do not provide insight of the solution. In addition, the lack of performance or robustness guarantees is another 
consequence of the applied online optimization.  

Partially motivated by these facts, the existing results restrict to the case where the optima of all control objectives 
remain in the stable domain of the system. Nevertheless, this assumption is not straightforward: while the optimization 
of traffic performance calls for the tracking of the capacity maximizing critical density, certain pollutants may reach 
their optimum at traffic speeds that postulate the exceeding of the critical density and thus destabilizing the system. 
Consequently, a trade-off is observed and must be addressed accordingly. Current paper aims at solving this 
compromise by suggesting a general multi-objective design approach that does not need a restriction on the optimal 
values of the performances.  

These problems have been recognized in systems and control theory and the need for a systematic framework for 
nonlinear systems gave birth to the Linear Parameter Varying methodology [Shamma et al., 1991], [Apkarian et al, 
1995]. System nonlinearities are captured by scheduling parameters and consequently a linear (parameter dependent) 
structure is obtained. Accordingly, tractable analysis and synthesis tools for linear systems can be extended for 
nonlinear dynamics. Still, hard constraint handling remains one of the open challenges of LPV systems [Péni et al., 
2009]. Among the possible approaches, a set-theory based solution is attractive due to its ability to involve physical 
considerations, as well as its compact numerical methods [Blanchini et al., 2008]. 

This paper suggests a control design for the local ramp metering problem. The work is motivated by the multi-
objective problem for minimizing the total time spent in the network and the total emission of CO2, the prescribed 
reference of which lies in the unstable domain of the system. In order to fulfil these goals the nonlinear traffic model 
is transformed into a polytopic system which serves as a basis for an interpolated H∞ controller. The performance of 
the proposed controller is demonstrated in a case study through a comparison to the nonlinear model predictive control 
(NMPC) approach. 

2. Preliminaries 

2.1. Macroscopic modeling of motorway traffic 

The traffic system is represented by a single motorway segment of length L containing λ lanes. Control is realized 
by a metered ramp allowing flow r to the main lane. Upstream flow qus, mean speed of the upstream traffic vus, ramp 
demand w, off-ramp flow s and downstream density ρds are considered disturbances. System dynamics are modeled 
by the second order continuum model METANET introduced by [Papageorgiou et al., 1990]. The model is widely 
used for analyzing traffic phenomena, for identifying macroscopic parameters as well as for designing model-based 
observers and controllers [Papageorgiou et al., 2002], [Hegyi et al., 2005]. 

 For discrete sampling time T, state dynamics of the system is described by the following equations:   
    • The conservation equation is the basic dynamic equation describing the time evolution of traffic density:  

 ,)]()()()([)(=1)( kskrkqkq
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Tkk us 


  (1) 

 where ρ, v, q denote the traffic density, speed and flow of the modeled segment, respectively.  
    • The equilibrium speed function provides a static relationship between traffic density and traffic speed. This 

relationship holds in case of equilibrium flow.  
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 where vfree, a, ρcr are constant model parameters.  
    • The fundamental equation comprises the relationship among the traffic variables:  
 .)()(=)( kvkkq   (3) 

     • The dynamics of non-equilibrium flow can be modeled by using the momentum equation, describing the 
dynamics of traffic speed:  
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 where τ, η, δ, κ are constant model parameters. 
    • The dynamics of the ramp queue, denoted by l can be modeled in the following form:  
 .))()(()(=1)( krkwTklkl   (5) 
The presented model can be viewed as a nonlinear process x(k+1) = f(x(k),u(k),d(k)) with controlled input u = r, 

state variables x = [ρ v l]T and disturbances d = [qus vus ρds s w]T. 

2.2. Modeling of traffic emission 

 In the followings, the macroscopic description of traffic emission is summarized. For a detailed introduction of 
the concept, the reader is referred to [Csikós, 2015]. 

Assume that the vehicle composition is homogeneous and constant in time and its emission factor for pollutant p 
is represented by efp. Assuming that the average speed of traffic flow represents the speed of individual vehicles over 
the spatiotemporal sampling domain L×T in which the effect of acceleration can be neglected, the emission of vehicle 
individuals in each discrete sample can be given by average-speed emission models*. Then, the spatiotemporal 
distribution of traffic emission for pollutant p in the discrete framework is given by: 

 ),())((=)( kqkvefk pp  (6) 

whereas the total emission in the spatiotemporal rectangle LxT of the discrete measurement can be approximated as  
 .)())((=)( LTkqkvefkE pp  (7) 

Considering (3), the macroscopic emission function of traffic is thus stated as a bivariate function of traffic density 
and traffic mean speed.  

The exact modeling of ramp speed dynamics requires detailed information of the queue length and the flows both 
at the entrance and exit of the ramp (see Pasquale et al. 2015). Assuming that these measurements are not at disposal, 
a constant ramp speed vramp can be considered. The total emission of ramp traffic is thus given as 
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2.3. Control objectives 

In this section the control objectives of the considered multi-criteria control are formalized as cost functions. The 
control criteria are then interpreted as separate regulator problems for the state variables, the reference values of which 
are involved into the design of steady-states. 

For the traffic performance, the minimization of the total time spent (TTS) is aimed. The corresponding 
performance function is formalized as follows:  
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 where Nc denotes the time horizon of the analysis. As shown in [Papageorgiou and Kotsialos, 2002], TTS for the 
analyzed network, including ramp queues is minimized if ρopt=ρcr and lopt=0 are aimed. 

Regarding the emission performance, current work focuses on minimizing the aggregated emission of pollutants 
with global effects (i.e. CO2). Therefore, the control objective is the minimization of the following sum with 
arbitrarily long time horizon Nc:  
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* The emission factor function of the applied average-speed emission model COPERT [Ntziachristos et al., 2000] is given by the equation  
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   with the parameters αp, βp, γp, δp, εp of pollutant p=CO2 given in the Appendix in Table 2. 
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Assuming the independence of the main lane and ramp dynamics (following the modeling assumptions of 
METANET) and that the cost term of ramp queue can be neglected relative to the one of the main lane, the following 
regulator problems can be stated for minimizing emission. 

 The emission of the main lane (first term of (10)) for Nc→∞ is minimal if the emission factor function ef(v) is 
minimized. Thus, the control objective can be stated as a regulator problem for the traffic mean speed where 
the reference vopt is defined by 

 )(minarg= vefv pp
opt

 (11) 
Note, that a non-constant traffic composition entails the time-dependence of vp

opt. In that case, a tracking problem 
needs to be formalized which is not in the scope of the paper. 
  The second term of (10) represents the emission of the on-ramp, which can be minimized by lopt.  

3. LPV form of the model 

Constrained control of nonlinear systems are generally a challanging task from both theoretical and practical 
perspectives. In order to apply systematic linear tools for nonlinear dynamics, the Linear Parameter Varying (LPV) 
framework emerged, where the main idea is to mimic linearity through appropriately chosen transformations. This 
section discusses briefly the main steps of the LPV reformulation of the underlying traffic dynamics. A more detailed 
derivation can be found in [Luspay et al., 2012], [Luspay et al., 2016]. 

3.1. Steady-state analysis 

The first step of the derivation is the determination of the steady-state values for the nonlinear system (1)-(5). The 
discrete-time steady-state condition is:  

 .=)(=1)( *xkxkx   (12) 

 The above equation is satisfied by the triplet (x*,u*,d*), which can be found by substituting the steady-state 
condition (12) to system dynamics (1), (4), (5) and solving the obtained algebraic equations. Generally, this is an 
underdetermined problem, as the number of free variables exceeds the number of equations. It is obvious that the 
steady-state ramp dynamics can be determined independently, hence for the two dynamic equations, regarding the 
main lane dynamics, seven variables need to be chosen: ρ*, v*, l*, qus

*, vus
*, ρds

*, r*, s* and w*. Consequently, this 
represents a design freedom for the selection of these values. In the present application, the following considerations 
were made: i) the values for the uncontrolled boundary variables (qus, vus, ρds, s, w) are chosen to represent stable traffic 
dynamics, ii) the aim of the control problem is to minimize the bias from the optimal states (ρopt, vopt, lopt ). 

As for the first step, the boundary variables, that account for the flow conditions and can be independently chosen, 
are fixed – i.e. the downstream traffic density, and the variables describing ramp flows, specifically:   

    • for the downstream density, critical density is assumed: ρds
*=ρcr. 

    • zero off-ramp flow is considered, s*=0. 
    • ramp flow is chosen as to obtain symmetrical bounds around the steady-state: r*=(rmin+rmax)/2. 
Secondly, for the remaining variables ρ*, v*, qus

*, vus
*  an optimization problem is solved:   
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The steady-state condition (12) for the ramp queue dynamics imply w*=r*. Furthermore, for the steady-state value 
for the ramp queue, an arbitrary value can be chosen. Without the loss of generality and the sake of computation 
demands, a non-zero yet low l* is accepted as steady-state value of the ramp queue. The calculated steady-states are 
given in Table 3 in the Appendix. 

3.2. LPV form and set representations 

Once the steady-states are determined, we are in the position to transform the nonlinear dynamics through a 
coordinate-frame change. Given the generic nonlinear description and the corresponding steady-states, we have 
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x(k+1)=f(x(k),u(k),d(k)) and x*=f(x*,u*,d*) which imply: 
).,,())(),(),((=1)( **** duxfkdkukxfxkx   (14) 

 Next, we introduce the centered variables to represent the deviation from the steady-state as follows: 
*)(=)(~ xkxkx  , *)(=)(~ ukuku   and *)(=)(~ dkdkd  . Our aim is that (14) appears linear in the centered variables. 

Before we proceed, we introduce the set representations of the new variables. One of the natural consequence of 
the coordinate change is the admissible domain of x~ , u~  and d~  can be given by compact, convex polytopes, including 
the origin as an interior point. Formally:  

  xxxxx hxHxhH ~~~~~
~:~=),( P  (15) 

 and similarly ),( ~~~ uuu hHP  and ),( ~~~ ddd hHP . We refer to (15) as the half-plane representation.  
Some of these variables are already linear in eqs. (1)-(5), while others can be factorized from the nonlinearities 

through a simple integral formula, as described in [Luspay et al., 2012], [Luspay et al., 2016]. Consequently, the 
following form is obtained: 

 ).(~))(~()(~))(~()(~))(~(=1)(~ kdkxEkukxBkxkxAkx   (16) 

 Equivalency of the centered LPV dynamics of (17) with the original nonlinear system has been shown in [Luspay 
et al., 2012]. Note that ))(~( kxA , ))(~( kxB  and ))(~( kxE  are matrix functions with nonlinear dependency on the 
centered state variable )(~ kx . For numerical computation the LPV dynamics is transformed into a parameter varying 
polytopic form with the following algorithm: 

    1.  Construct a finite n×m grid over the given polytope of ),( ~~~ xxx hHP : )~,~( ji v , i=1,…,n, j=1,…,m. 
    2.  Evaluate the matrix functions over the discrete grid to obtain matrices Ai,j, Bi,j and Ei,j. 
    3.  Stack into a vector form the parameter-varying elements of the matrices and create a convex hull. 
    4.  Determine the vertices of the convex hull and the corresponding LTI vertex systems Af, Bf, Ef, f=1,…,F.  
 

It is clear by the above convex construction that the LPV dynamics can be obtained by suitable interpolation of 
the vertex systems through a parameter varying weighting functions. Consequently, the nonlinear dynamics is 
represented over the admissible operation domain by convex polytopes and LTI vertex systems. This representation 
forms the basis of the constrained control design, described in the following sequel. 

4. Set-theory based control design 

This section describes a set-theory based controller setup for the given traffic problem. In the previous section we 
derived the following representation:  
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With the additional information on the admissible domain of the variables Xx~ , Uu~  and Dd~ . 
First of all, we recall some of our previous results in [Luspay et al., 2016], the maximal robust controlled invariant 

set for LPV systems [Blanchini et al., 2008], [Péni et al., 2009].  
Definition 1 The set XS  is called robust controlled invariant set for system (17)-(19) if there exists a control 
Uu  such that for all S(0)~x  and for all allowable disturbance sequences Dd~ , the condition S)(kx  holds for 

all 0≤k. 
The maximal robust controlled invariant set describes the generic region of applicability of constrained controllers 

(under the given assumptions on the disturbance). It is important to emphasize, that it is control-independent: there is 
no information involved on the computation of the control signal. Computational algorithm, numerical details and 
discussion can be found in [Luspay et al., 2016]. In the present study we further develope this concept by designing 
ramp metering controllers in a systematic fashion and incorporating set-theoretic tools. 
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the reference vopt is defined by 

 )(minarg= vefv pp
opt

 (11) 
Note, that a non-constant traffic composition entails the time-dependence of vp

opt. In that case, a tracking problem 
needs to be formalized which is not in the scope of the paper. 
  The second term of (10) represents the emission of the on-ramp, which can be minimized by lopt.  

3. LPV form of the model 

Constrained control of nonlinear systems are generally a challanging task from both theoretical and practical 
perspectives. In order to apply systematic linear tools for nonlinear dynamics, the Linear Parameter Varying (LPV) 
framework emerged, where the main idea is to mimic linearity through appropriately chosen transformations. This 
section discusses briefly the main steps of the LPV reformulation of the underlying traffic dynamics. A more detailed 
derivation can be found in [Luspay et al., 2012], [Luspay et al., 2016]. 

3.1. Steady-state analysis 

The first step of the derivation is the determination of the steady-state values for the nonlinear system (1)-(5). The 
discrete-time steady-state condition is:  

 .=)(=1)( *xkxkx   (12) 

 The above equation is satisfied by the triplet (x*,u*,d*), which can be found by substituting the steady-state 
condition (12) to system dynamics (1), (4), (5) and solving the obtained algebraic equations. Generally, this is an 
underdetermined problem, as the number of free variables exceeds the number of equations. It is obvious that the 
steady-state ramp dynamics can be determined independently, hence for the two dynamic equations, regarding the 
main lane dynamics, seven variables need to be chosen: ρ*, v*, l*, qus

*, vus
*, ρds

*, r*, s* and w*. Consequently, this 
represents a design freedom for the selection of these values. In the present application, the following considerations 
were made: i) the values for the uncontrolled boundary variables (qus, vus, ρds, s, w) are chosen to represent stable traffic 
dynamics, ii) the aim of the control problem is to minimize the bias from the optimal states (ρopt, vopt, lopt ). 

As for the first step, the boundary variables, that account for the flow conditions and can be independently chosen, 
are fixed – i.e. the downstream traffic density, and the variables describing ramp flows, specifically:   

    • for the downstream density, critical density is assumed: ρds
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    • zero off-ramp flow is considered, s*=0. 
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The steady-state condition (12) for the ramp queue dynamics imply w*=r*. Furthermore, for the steady-state value 
for the ramp queue, an arbitrary value can be chosen. Without the loss of generality and the sake of computation 
demands, a non-zero yet low l* is accepted as steady-state value of the ramp queue. The calculated steady-states are 
given in Table 3 in the Appendix. 

3.2. LPV form and set representations 

Once the steady-states are determined, we are in the position to transform the nonlinear dynamics through a 
coordinate-frame change. Given the generic nonlinear description and the corresponding steady-states, we have 
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x(k+1)=f(x(k),u(k),d(k)) and x*=f(x*,u*,d*) which imply: 
).,,())(),(),((=1)( **** duxfkdkukxfxkx   (14) 

 Next, we introduce the centered variables to represent the deviation from the steady-state as follows: 
*)(=)(~ xkxkx  , *)(=)(~ ukuku   and *)(=)(~ dkdkd  . Our aim is that (14) appears linear in the centered variables. 

Before we proceed, we introduce the set representations of the new variables. One of the natural consequence of 
the coordinate change is the admissible domain of x~ , u~  and d~  can be given by compact, convex polytopes, including 
the origin as an interior point. Formally:  

  xxxxx hxHxhH ~~~~~
~:~=),( P  (15) 

 and similarly ),( ~~~ uuu hHP  and ),( ~~~ ddd hHP . We refer to (15) as the half-plane representation.  
Some of these variables are already linear in eqs. (1)-(5), while others can be factorized from the nonlinearities 

through a simple integral formula, as described in [Luspay et al., 2012], [Luspay et al., 2016]. Consequently, the 
following form is obtained: 
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 Equivalency of the centered LPV dynamics of (17) with the original nonlinear system has been shown in [Luspay 
et al., 2012]. Note that ))(~( kxA , ))(~( kxB  and ))(~( kxE  are matrix functions with nonlinear dependency on the 
centered state variable )(~ kx . For numerical computation the LPV dynamics is transformed into a parameter varying 
polytopic form with the following algorithm: 

    1.  Construct a finite n×m grid over the given polytope of ),( ~~~ xxx hHP : )~,~( ji v , i=1,…,n, j=1,…,m. 
    2.  Evaluate the matrix functions over the discrete grid to obtain matrices Ai,j, Bi,j and Ei,j. 
    3.  Stack into a vector form the parameter-varying elements of the matrices and create a convex hull. 
    4.  Determine the vertices of the convex hull and the corresponding LTI vertex systems Af, Bf, Ef, f=1,…,F.  
 

It is clear by the above convex construction that the LPV dynamics can be obtained by suitable interpolation of 
the vertex systems through a parameter varying weighting functions. Consequently, the nonlinear dynamics is 
represented over the admissible operation domain by convex polytopes and LTI vertex systems. This representation 
forms the basis of the constrained control design, described in the following sequel. 

4. Set-theory based control design 

This section describes a set-theory based controller setup for the given traffic problem. In the previous section we 
derived the following representation:  
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With the additional information on the admissible domain of the variables Xx~ , Uu~  and Dd~ . 
First of all, we recall some of our previous results in [Luspay et al., 2016], the maximal robust controlled invariant 

set for LPV systems [Blanchini et al., 2008], [Péni et al., 2009].  
Definition 1 The set XS  is called robust controlled invariant set for system (17)-(19) if there exists a control 
Uu  such that for all S(0)~x  and for all allowable disturbance sequences Dd~ , the condition S)(kx  holds for 

all 0≤k. 
The maximal robust controlled invariant set describes the generic region of applicability of constrained controllers 

(under the given assumptions on the disturbance). It is important to emphasize, that it is control-independent: there is 
no information involved on the computation of the control signal. Computational algorithm, numerical details and 
discussion can be found in [Luspay et al., 2016]. In the present study we further develope this concept by designing 
ramp metering controllers in a systematic fashion and incorporating set-theoretic tools. 
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Our control objective is to steer the system to the origin, in the centered coordinate frame, regardless of the external 
disturbances. For this purpose we intend to design feedback gains: ,~=~ xKu where K is determined on the basis of the 
polytopic system. We apply standard H∞ type control design to minimize the effect of the disturbances on the specified 
performance channels z. Here, we simply set )(~=)( kxQkz , where Q expresses the relative importance of the state 
variables. This leads to the following Linear Matrix Inequality (LMI) optimization [Apkarian et al., 1995]: 
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This is a convex optimization problem, involving F+1 number of constraints, i.e.: each grid-point and the 
corresponding vertex system is involved and an additional LMI is included to enforce control limitations. Once the 
optimization is solved the resulting feedback gain is available through K=YP-1. The obtained γ value gives an upper 
bound on the closed-loop performance level, i.e. the worst case amplification from the external disturbance to the 
performance output [Apkarian et al., 1995]. 

The applicability of a specific controller K can be characterized by the maximal robust invariant set of the closed 
loop system [Blanchini et al., 2008]. Generally the following tradeoff can be observed here. A controller with good 
control performance (low value of γ) generates small disturbance invariant set: only over a limited domain of operation 
can we guarantee improved disturbance rejection. On the other hand, controllers with lower performance result slower 
closed-loop response and consequently generate larger invariant sets. In [Péni et al., 2009] an interpolation-based 
controller is proposed, which combines the advantageous properties of the two types of controllers. Let us assume that 
m  different controller had been designed: ),,(,),,(),,( 2211 mmKKK    with different performance level: 0 < γ1 < … 
< γm-1 < 1<∞. Note that, the last controller provides the worst performance, but generates the largest invariant set. 
Then, the following augmented system can be defined:  
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 The input-output equivalence between the extended system and the original one is shown and proved in [Péni et 
al., 2009]. Furthermore, it is shown that the interpolated control law: 
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knowledge of the extended state vector )(ˆ kx  of the augmented system (21), which is done by offline and online 
optimizations.   

 • First a suitable storage function is computed for the system, under the quadratic form of:  

 .ˆˆˆ=)ˆ(ˆ xPxxV T  (23) 

 • Offline computation of the maximal robust invariant set of the extended system, represented by: 
 hxHxhH ˆˆˆ:ˆ:)ˆ,ˆ(ˆ P . Although it is an m x nx dimensional problem, it is performed for the closed-loop (i.e. no control 

input involved) and hence computationally attractive. 
• Online optimization: the state of the extended system is determined on the basis of the robust invariant set. 
 xPxargkx

mnxTx
ˆˆˆmin=)(ˆ

ˆ R

,  subject to: .ˆ=)(~,ˆˆˆ xkxxxH   (24) 

 The last condition connects the available real-time information on the system with the augmented one through the 
projection  . 

The above formulation implies the regulation for the steady-state (x*,u*,d*) which is maintained if the initial state 
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lies in the control invariant set and disturbance constraints are satisfied. In case of initial or boundary conditions 
outside the set-defining bounds (e.g. low-density conditions), the controller will not necessarily reach the set point, 
however will aim to approach it. As a summary: the controller will act as a normal regulator, but garanteeing to 
reaching it from the control invariant set. 

5. Numerical results 

In the sequel, the previously proposed interpolated H∞ control policy is tested through a comparison to the 
nonlinear model predictive controller (NMPC, see [Grüne and Pannek, 2011], [Bellemans et al., 2006]). A major 
difference between the two controllers is that for the NMPC control the nonlinear system dynamics is used for dynamic 
recursion for a prediction horizon of Nc=5. The prediction horizon is chosen as suggested in [Hegyi et al., 2005]: 
during the horizon, the considered network is completed by the lowest considerable nominal speed of a vehicle. In our 
case, the lowest speed v=36 km/h is chosen). The NMPC is designed without considering the set-theoretic analysis, 
whereas for the interpolated H∞ is based on the LPV form and the set representations. 

 The objective for both controllers is the joint minimization of the total time spent and the total emission of CO2 
under unstable traffic conditions by tracking the state triplet (ρ*, v*, l*). 

In the case study a 1000s long rush hour scenario is analysed with changing demands both upstream and 
downstream of the controlled segment. Initial values are chosen as the steady-state triplet (ρ(0),v(0),l(0) = (ρ,* v,* l*). 
For the boundary conditions, two types of patterns are used:   

    • sinusoid excitation is given for the upstream demands: qus(t)=qus
*+200sin(50t); vus(t)=vus

*+2sin(50t+π);  
w(t)=w*+100sin(100t),  
    • a step-function is given for the downstream density to represent a temporary bottleneck situation  
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The simulation results are plotted in Fig. 1. In case of no control, the network starts to get congested around 300s, 
and by 450s the traffic speed reaches its minimum at 10km/h. By 500s the flow conditions become so weak that the 
main lane cannot accept vehicles from the ramp and a ramp queue begins to build up. 

Both controllers are capable of suppressing the effect of the bottleneck and avoiding congestion. The two input 
signals along the simulation horizon show a similar shape, the NMPC having a faster response to the forming 
congestion. However, the interpolated H∞ approach provides superior reference tracking. Regarding the aggregated 
performances (see Table 1), the proposed controller leads to better results both in terms of total time spent (10) and 
total emission of CO2 (11). 

According to the numerical studies, the following conclusions can be drawn. The set-theoretic approach offers 
systematic method for designing constrained controllers for nonlinear traffic systems. The resulting controller is more 
simple than the nonlinear optimization based solutions. Consequently, lower CPU times are obtained (see Table 1.). 

 
Figure  1: Dynamic demand - states and control input 

     Table 1. Aggregated performances 

Performance Uncontrolled NMPC Interpolated H∞ 
Total time spent [veh h] 65.27 25.01 24.72 
Total emission of CO2 [veh g] 243007.89 173490.50 172804.08 
CPU time/sample step [s] - 0.2445 0.0112 

6. Summary 

A novel control design approach of the local ramp metering problem is proposed. The motivation of the research 
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This is a convex optimization problem, involving F+1 number of constraints, i.e.: each grid-point and the 
corresponding vertex system is involved and an additional LMI is included to enforce control limitations. Once the 
optimization is solved the resulting feedback gain is available through K=YP-1. The obtained γ value gives an upper 
bound on the closed-loop performance level, i.e. the worst case amplification from the external disturbance to the 
performance output [Apkarian et al., 1995]. 

The applicability of a specific controller K can be characterized by the maximal robust invariant set of the closed 
loop system [Blanchini et al., 2008]. Generally the following tradeoff can be observed here. A controller with good 
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closed-loop response and consequently generate larger invariant sets. In [Péni et al., 2009] an interpolation-based 
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is the need for a multi-objective control design framework, in which such control objectives can be optimized that 
have an optimum in undesirable state regions (e.g. the optimum of certain pollutant emissions at low speeds). 

For an effective solution of the control problem, the dynamic model is rewritten in a shifted coordinate frame with 
a parameter-varying, polytopic representation. The LMI based control design is computationally attractive, as it only 
solves a standard quadratic optimization in real-time. Note also, that information related to traffic variables and 
dynamics are compressed in the disturbance invariant set, appearing as linear constraint in the optimization (24). 
Simulation results prove that the proposed algorithm provides a robust controller with good performance. 

Appendix A. Model parameters and steady states 

Table 2. METANET model parameters 

a vfree ρcr τ η κ δ L λ rmin, rmax T vramp 
2.44 116.34 24.26 0.0036 24.29 10.85 0.7 1 2 [360, 2000] 0.0028 50 

Table 3. COPERT model paramers and steady state values 

αCO2 β CO2 γ CO2 δ CO2 ε CO2 ρ* v* l* qus
* vus

* ρds
* r*=w* s* 

401 0 -8.21 0 0.07 30.15 61.53 10 2567.52 75.56 24.26 1180 0 
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