
Thesis for the degree of Doctor of Philosophy

Dependent Type Theory with
Parameterized First-Order Data Types

and Well-Founded Recursion

David Wahlstedt

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Göteborg, Sweden, 2007

Dependent Type Theory with Parameterized First-Order Data Types
and Well-Founded Recursion
David Wahlstedt

c© David Wahlstedt, 2007

ISBN 978-91-7291-979-2
ISSN 0346-718X

Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 2660

Technical report 34D
Department of Computer Science and Engineering
Research group: Programming Logic

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden

Telephone +46 (0)31-772 1000

Typeset by the author using LATEX, and Paul Taylor’s proof.sty
Printed at the Department of Computer Science and Engineering
Göteborg, 2007

iii

Abstract

We present a variation of Martin-Löf’s logical framework with βι-
equality, extended with first-order parameterized algebraic data types
and recursive pattern-matching definitions. Our contribution is a
proof of normalization for the proposed system, from which we ob-
tain decidable type-correctness. Our result holds under the assump-
tion that the call relation of the recursive definitions is well-founded.

Recursive definitions can be read as intuitive specifications, which
makes it easier to understand their intended meaning, compared
to definitions that use only pre-defined recursion operators, called
elimination rules in type theory. Pattern-matching definitions can be
seen as the underlying mechanism with which we describe elimina-
tion rules. The arguments used to justify recursively defined elim-
ination rules are essentially the same as those justifying pattern-
matching definitions. The use of pattern-matching takes the proof
system closer to the look and feel of a programming language like
Haskell (Peyton Jones, 2003) or ML (Milner et al., 1990; Leroy et al.,
2004).

We use the Size-Change Principle for Program Termination (C.S.
Lee, N.D. Jones, A. Ben-Amram 2001) to establish that the recur-
sive definitions have a well-founded call relation. The size-change
criterion subsumes many known characterizations of terminating re-
cursions, including primitive recursion and lexicographical ordering,
but it also deals transparently with permuted arguments and mu-
tual recursion. When instantiating the size-change relation for this
criterion to be constructor decomposition, it corresponds closely to
what we could call well-founded structural recursion.

Keywords: type theory, dependent types, lambda-calculus, logical
framework, new constants, stratification, type checking, decidabil-
ity, normalization, reducibility, well-founded recursion, size-change
termination, pattern-matching, term rewriting.

iv

Acknowledgments

First of all, I would like to thank my supervisor Thierry Coquand. His help
was essential for overcoming some of the most difficult technical problems in
this dissertation. I also want to thank Thierry for his open-mindedness and his
inspiring, thoughtful and curious mentality. Our discussions have been a great
source of inspiration and insight.

I want to thank my examiner, Bengt Nordström, who has been supporting
me constantly during these years. Discussions with Bengt also contributed to the
simplification of the type-checking relation presented here. I want to thank my
opponent Ralph Matthes for his effort, having conducted an extremely careful
reading of my dissertation. His comments have improved the quality of this work
substantially. For inspiration and discussions,1 I want to thank Per Martin-Löf
and Neil Jones. For fruitful technical discussions and feedback, I would like to
thank Ulf Norell, Andreas Abel and Michael Hedberg. For comments on the
language and writing in general, I want to thank Björn Bjurling, Andy Fugard,
Peter Gammie, Thomas Hallgren and David Sands.

I would like to thank the members of my PhD advisory committee, David
Sands and Aarne Ranta, and our vice-prefect Reiner Hähnle, who have both
encouraged me and helped me with feedback on my study plan during my years
as a PhD student. I want to thank my former office mates Josef Svenningsson,
Kristofer Johannisson, Nils Anders Danielsson and Fredrik Lindblad, for hav-
ing got to know you, as well as all the employees at Chalmers Department of
Computer Science and Engineering, for providing a stimulating atmosphere.

Many thanks to Agneta Flock, Per Carlsson, Ida Strindberg, Vera Strind-
berg, Karin H̊arding, Tero Herkönen, Aare Mällo and Ing-Marie Andrén for
their help with our children. I also want to thank Urban Wahlstedt, Ethel Till-
nert, Maggie Strindberg, Lina Persdotter, Ingrid Flock, May Wahlstedt, and
my friends, who have not been mentioned here, for their support.

I want to thank Anneli Pihlgren for all her sacrificed working time, support
and patience. I thank Jonatan Pihlgren and Ossian Wahlstedt, for being such
wonderful children.

1Even if only for a few occasions, this has been very important.

Contents

1 Introduction 1
1.1 Historical background . 2

1.1.1 Brief history of recursion schemes 2
1.1.2 Reasoning about inductively defined objects 4
1.1.3 Martin-Löf’s type theory 4

1.2 Technical background . 5
1.2.1 Types, elements and judgements 5
1.2.2 Ground types and computations 6
1.2.3 Introducing new sets . 7
1.2.4 Propositions as types . 9
1.2.5 Dependent function types 11

1.3 Adding new constants in type theory 13
1.3.1 Towards a general formulation 13
1.3.2 A method using elimination constants 14
1.3.3 Elimination constants versus pattern-matching 15

1.4 Related work . 17
1.4.1 Translation into elimination constants 17
1.4.2 Domain predicates . 17
1.4.3 Term based approaches 18
1.4.4 Type based termination 19

1.5 Methodology and contribution 19
1.5.1 Objective . 19
1.5.2 Decidable type-checking 20
1.5.3 Reducibility . 20
1.5.4 A semantic criterion for new constants 20
1.5.5 The size-change principle 22
1.5.6 Obtaining reducibility from well-founded recursion 23
1.5.7 Contribution . 24

2 Syntax 25
2.1 A language of raw terms . 25

2.1.1 Syntactical categories . 25
2.1.2 Context notations and operations 27
2.1.3 Function type notations 27

v

vi CONTENTS

2.1.4 Signature . 28
2.2 Substitution and reduction . 29

2.2.1 Substitution . 29
2.2.2 Reduction rules and equality 30
2.2.3 The Church-Rosser property 31
2.2.4 Notions of normal form and normalization 37

2.3 Type system . 38
2.3.1 Rules of inference . 38
2.3.2 Basic inversion properties 39
2.3.3 Typing and patterns . 40
2.3.4 Typing and the signature 41
2.3.5 Examples . 41

2.4 Properties of the type system . 43
2.4.1 Thinning and weakening 43
2.4.2 Well-typed substitution 46
2.4.3 From neighbourhoods to context maps 49
2.4.4 Generation lemma . 50
2.4.5 Iterated inversion properties 51
2.4.6 Inversion of neighbourhoods 53
2.4.7 Subject reduction . 55

2.5 Type checking . 58
2.5.1 A type checking relation 58
2.5.2 Soundness of type checking 59
2.5.3 Completeness of type checking 62

3 Semantics 67
3.1 Reducibility . 67

3.1.1 Neutrality . 67
3.1.2 Specification of reducibility 67
3.1.3 Examples . 69

3.2 The soundness of the reducibility predicates 70
3.2.1 A potential counter-example 70
3.2.2 Reducibility predicates as a hierarchy of sets 71

3.3 Normalization of reducible terms 73
3.4 Properties of reducibility . 74

3.4.1 Reducibility and vectors 74
3.4.2 Reducibility and sets . 75
3.4.3 Reducibility and the signature 76

3.5 Reducibility of well-typed terms 77
3.6 Reducibility of defined constants 80

3.6.1 Call relation . 80
3.6.2 Reducibility and neighbourhoods 80
3.6.3 Proof of reducibility for defined constants 82
3.6.4 Normalization of well-typed terms 86

CONTENTS vii

4 Well-founded recursion 87
4.1 The size-change principle . 87

4.1.1 Size-change graphs and call graph 87
4.1.2 Examples . 88

4.2 Well-founded call relation . 91

5 Main results 93
5.1 Decidable type correctness . 93

5.1.1 Checking type formation and inhabitation 93
5.1.2 Type-checking of patterns 96

5.2 Type-checking the signature . 98
5.2.1 Type-checking a sequence of extensions 98

5.3 Consistency . 104

6 Discussion 107
6.1 Conclusions . 107

6.1.1 Comparison with our Licentiate Thesis 108
6.1.2 Technical difficulties . 108
6.1.3 Comparison with CAC . 109

6.2 Future work . 109

viii CONTENTS

Chapter 1

Introduction

Constructive type theory combines two concepts: Firstly, it is a formalism in
which we can express mathematical notions, assert propositions and construct
proofs. Secondly, it can be seen as a dependently typed1 functional program-
ming language with a syntax similar to Haskell (Peyton Jones, 2003) and ML
(Milner et al., 1990; Leroy et al., 2004). In Haskell and ML, the strong static
typing helps to eliminate run-time errors of a kind that frequently occur in pro-
grams written by humans. This makes programs more reliable, and also saves
time from debugging. With dependent types we have also the ability, if we
desire, to express semantic properties about the programs. In type theory, one
can check mechanically if a program fulfills a given specification or not. From
the mathematical point of view, one can check the correctness of proofs.

A recent example of a type theoretic correctness proof of a complex piece
of software can be found in Leroy (2006) and Blazy et al. (2006), who proved
formally the correctness of an optimizing compiler for a C-like programming lan-
guage. The proof is based on the Coq (The Coq Development Team, 2006) proof
assistant. Another important result that shows the applicability of type theory
is the proof of the four colour theorem by Gonthier (2004). The problem was
conjectured in 1852 by Francis Guthrie, and many failed attempts were made
until it was proved by Appel & Haken (1976), assisted by computer. However,
the proof involves a billion case distinctions which each had to be verified. A
computer program written in assembly code checked the cases, but the program
itself was not formally verified. Moreover, thousands of cases also had to be
verified manually. Therefore the reliability of the proof have been questioned.
As opposed to Appel and Haken’s work, Gonthier’s proof has been completely
formalized in type theory, giving it a level of reliability far beyond what could
be obtained by human inspection. An interesting point was made concerning
their proof—the success was largely due to the fact that they, quoting Gonthier,
approached the Four Colour Theorem mainly as a programming problem, rather
than a formalization problem.

1The notion of dependent type is explained in the technical background, Section 1.2.5,
page 11.

1

2 CHAPTER 1. INTRODUCTION

In this dissertation we will present a system influenced by Martin-Löf’s type
theory (1972; 1984), where we emphasize the programming style using terminat-
ing recursive definitions by pattern-matching on algebraic data types to repre-
sent proofs by induction and computation. We give sufficient conditions for the
correctness and decidability of type-correctness in this system. This approach
makes the development of type theoretic definitions look and feel like functional
programming.

1.1 Historical background

We present a brief historical overview of the developments preceding construc-
tive type theory. We will do so focusing on a few, particularly important con-
cepts that we want to emphasize.

1.1.1 Brief history of recursion schemes

An early example of recursive computation can be found in The Sand Reckoner
by Archimedes c. 250 - 212 BC (Cf. Newman, 1956) who, before the notion of
exponentiation was established, showed the existence of a number bigger than
the number of sand grains that would be needed to fill the universe, as known
from that time, approximated as a sphere centered in the sun, spanning the
fixed stars. He calculated this number to be roughly 1064. To exceed this, he
constructed a notation system for numbers as a double recursion scheme:2

h0(x) = 1
hn+1(0) = hn(a)
hn+1(x + 1) = a · hn+1(x)

where a = 10.0002, or “a myriad myriads”, the largest named number at that
time. From the scheme he constructed the number ha(a), which equals 10(8·1016),
or ten to the power of eighty quadrillions !

Recursive functions were first systematically studied in modern mathematics
by Dedekind, Hilbert, Herbrand (1931) and others. Dedekind (1888), took an
important step towards today’s notion of primitive recursion. The following
theorem can be traced back to Dedekind’s result:3

Assume a0 ∈ A and F : N×A → A.
Then there is a unique H : N→ A such that

H(0) = a0

H(n + 1) = F (n,H(n)) for all n ∈ N
2In the original version a verbal presentation was given, whereas here we give a translation

into modern notation taken from Odifreddi (Fall 2006).
3This example is taken from Aczel & Rathjen (1997). Dedekind’s theorem, which was

rather an iteration theorem, was close to this one, but there F had only one parameter.

1.1. HISTORICAL BACKGROUND 3

The above system of equations is called a schema for primitive recursion. If
A is Nk, the schema characterizes the class of primitive recursive functions on
natural numbers. The theorem can be used to justify recursive definitions of
new functions—once the defining equations obey the schema, one can be sure
that there exists one and only one such function.

Hilbert (1925) defined functionals over natural numbers using primitive
recursion—functions that may take functions as arguments and may return a
function, what we call higher-order functions in functional programming today.
There he formulated the following examples defining the functionals4 ι and ϕ

ι(f, a, 1) = a
ι(f, a, n + 1) = f(a, ι(f, a, n))

ϕ1(a, b) = a + b
ϕn+1(a, b) = ι(ϕn, a, b)

as instances of the general schema

ρ(g, a, 0) = a
ρ(g, a, n + 1) = g(ρ(g, a, n), n)

The first functional, in its applied form ι(f, a, n), takes some function f and
iterates it n times on a. The second schema, defining ϕn(a, b), gives rise to a
sequence of functions of two variables ϕ1, ϕ2, ϕ3, . . ., where the first one is
addition, the second one multiplication, the third one exponentiation, the fourth
one is the so-called tower function, which is the b-fold exponentiation of a:

ϕ4(a, b) = a(a(a(a··
·a···)))

iterated b times. Ackermann (1928) proved that ϕa(a, a) could not be defined
with primitive recursion, by showing that it grows faster than any primitive
recursive function.

Herbrand (1931) presented schemata defining first-order recursive functions
as systems of first-order recursive equations. His formulation of recursive func-
tions did not restrict the functions to be primitive recursive. Herbrand’s version
of Hilbert’s and Ackermann’s function, was written as follows:

ϕ(n + 1, a, b) = ϕ(n, a, ϕ(n + 1, a, b− 1))
ϕ(n, a, 1) = a
ϕ(0, a, b) = a + b

In Herbrand’s scheme one could introduce any number of new functions
fi(x1, x2, . . . , xni), using functions already defined, and possible occurrences of
fi in the right-hand sides of the defining equations, provided, quoting Herbrand:

4The notation is taken from the translation of Hilbert’s article in van Heijenoort (1977).

4 CHAPTER 1. INTRODUCTION

they make the actual computation of the fi(x1, x2, . . . , xni
) possible for every

given set of numbers, and it is possible to prove intuitionistically that we obtain
a well-determined result.

Gödel (cf. Feferman, 1986) continued to study recursive functions, influenced
by Herbrand and Hilbert. In Gödel’s version of Herbrand’s equations, the re-
striction mentioned above about the obligation to prove intuitionistically the
totality of the function to be defined was dropped. An improvement of Her-
brand’s equations can be found in McCarthy (1963a), who imposed restrictions
to enforce a unique solution.

Kleene (1938) introduced the notion of partial functions. Church (1941)
introduced the lambda-calculus as a model for computations. The fact that the
Herbrand/Gödel recursive functions were extensionally equivalent to Church’s
lambda-calculus—what we now call general recursive functions—was discovered
later, but we will not use the notion of general recursive functions in our work.

1.1.2 Reasoning about inductively defined objects

McCarthy (1962) pioneered reasoning with programs as mathematical objects
and initiated the investigation of automatic proof-checking. Curry (Curry &
Feys, 1958) and McCarthy (1963b), introduced the notion of abstract syntax.
Landin (1964, 1966) suggested how to use inductive data types to represent
programming languages and computing machines. Burstall (1969), suggested
how to use structural induction to prove properties about syntactical objects,
and he also introduced the case-notation. Their proofs had the shape of recursive
programs, but proofs were not considered as objects in their formalism.

1.1.3 Martin-Löf’s type theory

Martin-Löf’s intuitionistic type theory (Martin-Löf, 1972, 1984) has brought
together the concepts we presented in the previous sections. Martin-Löf’s type
theory has been primarily intended for “mathematical logic as foundations (or
philosophy) of mathematics” (Martin-Löf, 1984). However, as described in
Nordström, Petersson and Smith (1990), Martin-Löf’s type theory also pro-
vides a formalism in which one can reason about programs and their specifi-
cations. One can state and prove properties about both recursive data types
and recursive functions, and in the system, proofs are objects represented in the
formalism.

Sets (also known as algebraic data types) are specified using construction
schemes, called introduction rules, together with computation rules, called elim-
ination rules, specified as structural primitive recursion schemes for the corre-
sponding data types. The structure of a proof in Martin-Löf’s type theory
follows that of Gentzen’s system of natural deduction (Prawitz, 1965; Gentzen,
1969), built up of introduction rules and elimination rules. The ideas of Brouwer,
Heyting and Kolmogorov (cf. Curry & Feys, 1958) and later Curry and Howard,
in 1969 (Howard, 1980) of how to interpret propositions as types and proofs as
programs have found their realization in Martin-Löf’s type theory. This was

1.2. TECHNICAL BACKGROUND 5

made possible through the use of a dependently typed lambda-calculus (as op-
posed to the simply typed lambda-calculus, which is sufficient for representing
propositional logic). Previous use of dependent types can be found in de Bruijn
(1968), in the AUTOMATH proof system. Dependent types also appeared in
Curry’s work already in 1956 (cf. Seldin, 2002).

1.2 Technical background

We will here give a short introduction to some basic concepts of what we could
call a formal system for Martin-Löf-style type theory, following the syntax of the
logical framework, which can be found in Nordström et al. (1990). Henceforth we
will refer to “type theory” as the system we present here, although a wide range
of type theories actually exists. Type theory has many similarities to strongly
statically typed functional programming languages, for instance Haskell (Peyton
Jones, 2003), and we will show how concepts in type theory correlate to concepts
in functional programming.5

1.2.1 Types, elements and judgements

The syntactical expressions of type theory are thought of as trees, rather than
strings of symbols. There are two categories of expressions: types and elements.
The notion of type in type theory plays the role of sets in set theory. A type is
a collection of objects–its elements. An important difference to set theory is in
the interpretation of functions. Instead of explaining a function f : A → B as
a set of pairs taken from A×B, one considers f as an algorithm that for every
object a in A, uniquely computes an object f a in B.6

Typing judgements

We can make judgements involving types and their elements. Judgements should
not be confused with propositions: we can make the judgement “A is a type”,
when we have the reason why A should qualify as a valid type expression. We
will write this as ` A. Having established that A is a type, we can make the
judgement “a is an element of A”, which will be written ` a : A. When we
introduce new types, we introduce simultaneously the rules of how to form their
objects. When we refer to objects, we also have to mention which types they
belong to.

5It is therefore an advantage if the reader is familiar to a similar language.
6Henceforth we will use juxtaposition notation (introduced by Schönfinkel (1924), and now

used in functional programming) for function application, writing f x instead of f(x), which
could be confused with the conception of f as an object having x as a free variable occurring
in it. However, if the argument itself would be an application g x, we will write f(g x), when
necessary. Ideally, brackets should only serve as a notation for grouping objects together.

6 CHAPTER 1. INTRODUCTION

Inference rules and derivations

There are inference rules governing what conclusions one may make from pre-
viously established judgements, presented in the form

J1 . . . Jn

J

where J1, . . . , Jn are the premises and J is the conclusion of the rule. If n = 0,
the list of premises is empty, and the rule is seen as an axiom. Inference rules
can be nested in each other to form derivations D, of the form

D1 . . . Dn

J

where a valid derivation must be built exclusively from the given inference rules,
eventually ending with axioms.

1.2.2 Ground types and computations

The basic types considered in type theory are called ground types (also called
sets, base types, small types or canonical types). They correspond to algebraic
data types in functional programming. Examples are booleans, natural numbers,
lists, pairs and sums.

Introduction rules

For a type expression A to qualify as a ground type, we must give an inductive
definition consisting of a set of rules called introduction rules, that specify how
the objects in the type A are built up syntactically.7 The introduction rules
correspond to the constructors of the corresponding data type in functional
programming.

Elimination rules

Having given the introduction rules of A, one must give a set of rules called
elimination rules of A, one for each of the given introduction rules. These
play a two-fold role: in the proof system point of view, they serve as induction
principles, prescribing how to prove properties about arbitrary objects in A, and
from the programming point of view, they serve as generic recursion operators,
similar to folds in functional programming.

To simplify the presentation, we will not explain the elimination rules until
later. We will assume that computation rules can be defined directly by giving
their recursion schemes. In Martin-Löf’s presentations of type theory, one has to
give the elimination rules first, and then one may introduce other computation
schemes, provided that they can be interpreted in terms of elimination rules.

7The construction of objects is similar to the description of data structures of Landin
(1964).

1.2. TECHNICAL BACKGROUND 7

Lambda terms

In addition to the elimination rules, there is a built-in notion of computation
based on substitution. The mechanisms to perform these computations are
based on the reduction rules of lambda-calculus. An abstraction is a term of
the form λx.t, sometimes written (x)t. It denotes a nameless function, corre-
sponding to the mathematical notation x 7→ t, mapping its argument x to the
term t, in which x may occur free. The actual value, u, that x is assigned to is
substituted for x in t, the result is written t[u/x]. For instance λx.x + x is the
function that doubles its argument, and so (λx.x+x) 5 reduces to (x+x)[5/x],
which is the same as 5 + 5, which is eventually computed to 10.

Canonical and non-canonical forms

For objects in ground types, we distinguish between their canonical and non-
canonical forms. A canonical object in A must have the shape as it appears in
the conclusion in one of the introduction rules of A. In functional programming
this corresponds to that the object is in head constructor form. A non-canonical
object may be a variable or an object that is not yet computed to canonical form.
For instance from the previous example, (λx.x + x) 5 is non-canonical, whereas
the result 10 is canonical.

From the computation rules we can also extract equality rules, prescribing
when two arbitrary objects in the given type are computed to the same canonical
form.

1.2.3 Introducing new sets

In the logical framework presentation of type theory, the type Set is the type of
ground types. That A is an object of Set is expressed by making the judgement
` A : Set. The objects A can be thought of as codes for ground types. Attached
with the type Set, there is also an operation El, that converts a set-code into a
type. This is expressed by the inference rule

` A : Set
` El A

We can think of Set as a universe of sets, restricted to the sets we have described
so far.

Booleans

Let us introduce the set of booleans, Bool. Having introduced Bool as a set-
constructor, we can infer that El Bool is a well-formed type:

` Bool : Set
` El Bool

8 CHAPTER 1. INTRODUCTION

Elements of this type have canonical forms ‘true’ and ‘false’, and so we give the
introduction rules:

` true : El Bool ` false : El Bool

We can define boolean functions, conjunction and negation, for instance,

and : El Bool → El Bool → El Bool
and true x = x
and false x = false

not : El Bool → El Bool
not true = false
not false = true

Using the inference rule

` f : A → B ` a : A

` f a : B

we can derive that, for instance, ’and true false’ is a boolean expression.

` and : El Bool → El Bool → El Bool ` true : El Bool
` and true : El Bool → El Bool ` false : El Bool

` and true false : El Bool

Notation 1.2.1. In the following examples we will drop applications of El, in
order to make the presentation lighter, since they can be inferred from their
context.

Natural numbers

Here follows an example of an inductively defined data type, the set of natural
numbers:

` Nat ` 0 : Nat ` s : Nat → Nat

In the second introduction rule, the constructor s : Nat → Nat can be seen as
a function, that given an object n in Nat returns a new object s n in Nat. We
can define addition, and introduce the constant (+).8

(+) : Nat → Nat → Nat
x + 0 = x
x + (s y) = s (x + y)

We can combine the sets we have introduced to define a boolean function on
natural numbers, for instance

odd : Nat → Bool
odd 0 = false
odd (s 0) = true
odd (s (s x)) = odd x

8We will use brackets in declarations of infix operators.

1.2. TECHNICAL BACKGROUND 9

Parameterized data types

Now consider an inductively defined parameterized data type, the set of lists of
a given set.

List : Set → Set
[] : List A
(::) : A → List A → List A

Note that the constructor is polymorphic in its type argument A, and this
is inferred from the context. We can infer that 1::2::3::[] belongs to the type
List Nat, and true::false::true::[] belongs to the type List Bool. We can imple-
ment the polymorphic length function on lists as follows:

length : (A : Set) → List A → Nat
length A [] = 0
length A (a::as) = s (length A as)

This is a simple example of a polymorphic function using type parameters.

1.2.4 Propositions as types

A key concept in Martin-Löf’s type theory is the propositions-as-types inter-
pretation, as we have mentioned previously. We identify a proposition with
the set of its proofs, so that an object in a set will correspond to a proof of a
proposition. The fact that A is a proposition, corresponds to the fact that the
ground type A is well-formed. To prove directly that A is a true proposition
corresponds to building a canonical object in the type A. An indirect proof of
A, corresponds to a non-canonical object in the type A.

A proposition A is represented by a type whose structure depends on the
form of A. For instance, the false proposition is represented by the empty type
⊥, the proposition with no proofs. A direct proof of a conjunction A ∧ B is a
pair (a, b) such that a is an object in the type representing A and b is an object
in the type representing B. A proof of an implication A ⊃ B is represented by a
function f : A → B, that given an object a of the type representing A produces
a proof f a that can be computed to an object in the type representing B.

The proof a of A is called a proof term. Each proof term can be computed
to a unique normal form, an expression that cannot be further computed. From
a normal term and a type it is possible to reconstruct the derivation. This
derivation corresponds to a natural deduction proof, as we will exemplify below.

Atomic propositions

As we mentioned above, since a proposition is interpreted as the set of its
proofs, consequently we interpret the false proposition as the empty set, without
introduction rules.

` ⊥

10 CHAPTER 1. INTRODUCTION

thus, there will be no way to give a canonical proof of the absurdity. We interpret
the trivially true proposition by the singleton type, with one introduction rule:

` > ` unit : >

The negation of A, written ¬A, is usually interpreted in type theory as a
shortcut of the function type A → ⊥, so that asserting A would give us a method
to prove the absurdity.

Logical connectives

Using parameterized data types we can encode parameterized propositions, or
in other words, connectives. For instance we can consider the type of pairs as
the type theoretic interpretation of conjunction:

` (×) : Set → Set → Set ` (,) : A → B → A×B

We define its projection functions (corresponding to elimination rules in Gentzen’s
natural deduction):

fst : (A : Set) → (B : Set) → A×B → A
fst A B (a, b) = a

snd : (A : Set) → (B : Set) → A×B → B
snd A B (a, b) = b

We will show a proof in Gentzen’s system of natural deduction of the propo-
sitional tautology A ∧ B → B ∧ A, and then show how this corresponds to the
type derivation of a proof term in type theory.

[A ∧B]
B

[A ∧B]
A

B ∧A
A ∧B → B ∧A

The corresponding derivation in type theory will look as follows:9

x : A×B ` x : A×B

x : A×B ` snd x : B

x : A×B ` x : A×B

x : A×B ` fst x : A

x : A×B ` (snd x, fst x) : B ×A

` λx.(snd x, fst x) : A×B → B ×A

In this example x : A × B occurred as an assumption to the left of the
turnstile, and this was discharged in leaves of the tree.

9We omit the type arguments A : Set and B : Set, and skip some derivation steps of
function application to make the derivations match. In Martin-Löf’s polymorphic type theory
the correspondence is more direct, cf. the first part of Nordström et al. (1990).

1.2. TECHNICAL BACKGROUND 11

1.2.5 Dependent function types

The concept of dependent types is a natural extension of simple types in order
to adapt the propositions-as-types correspondence in the presence of quantifiers.
That a type of a function is dependent, means that the result type of the func-
tion is determined by the value of its argument. The dependent function type is
often written (Π x ∈ A)B(x), analogous to the set theoretical notation Πx∈ABx

for the Cartesian product of a family of sets Bx indexed by elements x of A.
Alternatively it can be written with arrow notation (x : A) → B, or juxtaposi-
tion notation (x : A)B. The expression B denotes a type-valued function that
specifies how the range depends on the argument. For each a : A, the range is
obtained by computing B a.

To give a concrete example of a dependent type, we introduce the proposi-
tional function T, that assigns a proposition for a given boolean argument.

T : Bool → Set
T true = >
T false = ⊥

We can make assertions about boolean objects, for instance ‘T(odd 5)’ will be a
true proposition, since the boolean function will return ‘true’ in this case, and
the proof object will be ‘unit’. On the contrary, the assertion ‘T(odd 0)’ will be
a false proposition, with no proof.

Quantification

By analogy with Church’s higher-order logic (cf. Andrews, Fall 2006) which has
a polymorphic constant ∀ : (α → o) → o, one introduces in type theory a
constant

Π : (A : Set) → (A → Set) → Set

The type theoretical counterpart of ∀xP (x) is then interpreted as the dependent
function space Π A F , with A : Set and F : A → Set. A proof of such a
proposition is a function f : Π A F . The application f a for a : A corresponds to
“forall elimination” in Gentzen’s system, and F is interpreted as a propositional
function, so f a is a proof of the proposition F a.

A very simple example10 involving quantification over booleans is

Π Bool (λx.T (not (and x (not x))))

where the proof object is ‘λx.unit’. An arbitrary boolean will cause the expres-
sion T (not (and x (not x))) to evaluate to >.

Analogous to the interpretation of Cartesian product, for the set theoretical
notion of disjoint union of the family {B(x)}x∈A, written Σx : A.B(x), one
introduces the dependent sum using the constant

Σ : (A : Set) → (A → Set) → Set.
10Recall the previously given computation rules of boolean negation and conjunction,

Section1.2.3, page 8.

12 CHAPTER 1. INTRODUCTION

The type theoretical counterpart of ∃xP (x) is interpreted as the type denoted
by Σ A F of dependent pairs. A canonical proof of such a proposition is a pair
(a, b) : Σ A F , such that a : A and b : F a holds.

Another very simple example, claiming the existence of a non-odd number,

Σ Nat (λx.T (not (odd x)))

has a proof object (0, unit), because the expression ‘T (not (odd 0))’ evaluates
to ‘>’.

This is an instance of the important existence property of constructive math-
ematics, that from a proof of Σ Nat P , where P is a property of natural num-
bers, we can effectively compute a number n such that P n holds. This idea can
be traced back to the constructive interpretation of existence by Kolmogorov
(1932). We compute the proof object p : Σ Nat P to the canonical form (n, q)
giving us the so-called witness n and the proof q, of P n.

Here follows a more involved example, that strong existence implies weak
existence.

Σ A P → ¬(Π A (λx.¬(P x)))

The proof term in this case would be λh.λf.f(fst h)(snd h). Given the first
argument h : Σ A P , it expects the next argument f : Π A (λx.¬(P x)), and
then the task is to return an element in the empty type. This can be done
under the assumptions made about the given arguments. We can compute h to
canonical form of a pair (a, p), where a : A and p : P a will be obtained from
‘fst h’ and ‘snd h’ respectively. The function f is applied to a, yielding an
object g in ¬(P a). Then since g is a function in P a → ⊥, we can apply it to
p and obtain the desired element in the empty set, the contradiction.

Elimination rules

An elimination rule for type A, is a generic method, that given a set-valued func-
tion F , produces an object in F a for an arbitrary object a in A. In the special
case when F is a propositional function, the elimination rule serves as an in-
duction principle. By means of case distinction, constructor decomposition and
recursion, the computation scheme can exhaust all the possible constructions of
objects in the given type.

As a first minimal example, we give an elimination rule for Bool, by intro-
ducing the constant

boolElim : (F : Bool → Set) → F true → F false → (b : Bool) → F b

with the defining equations

boolElim F p1 p2 true = p1

boolElim F p1 p2 false = p2

This can be used to implement the usual “if-then-else” construction, but here
with dependent types, enabling the two branches to have different types if de-
sired.

1.3. ADDING NEW CONSTANTS IN TYPE THEORY 13

We give also an example of elimination constant for an inductive type, the
natural numbers:

natrec : (F : Nat → Set) →
(z : F 0) →
(f : (n : Nat) → F n → F (s n)) →
(n : Nat)
→ F n

natrec F z f 0 = z
natrec F z f (s m) = f m (natrec F z f m)

The base case is z, and the step function is f . We can use natrec to define
equality on numbers, as well as computations like addition and multiplication.
Addition by recursion on the second argument can be implemented by the fol-
lowing term:

add =def λx.λy.natrec (λk.Nat) x (λm.λn.s n) y

1.3 Adding new constants in type theory

1.3.1 Towards a general formulation

A concept often stressed in Martin-Löf’s type theory, is that the system is open,
that one may extend the theory gradually as new ideas evolve. New types and
constants can be added as long as they can be justified and understood in a
way that complies with the fundamental principles of type theory. A natural
direction of investigation is then to try formulating a scheme prescribing how to
introduce these extensions systematically, preserving the desired meta-theoretic
properties.

In Martin-Löf’s intuitionistic theory of iterated inductive definitions (1971),
a general formulation of inductive definitions was given. This system was a pre-
decessor of type theory, and did not have dependent types. In Martin-Löf (1971)
and in his later formulations, fixed theories have been given, along with state-
ments made that the system can be extended if desired. A scheme for inductive
definitions in extensional type theory was presented by Constable & Mendler
(1985). For intensional type theory, a general formulation of inductive types
for Coquand’s Calculus of Constructions (1985) has been given by Pfenning &
Paulin-Mohring (1990) using impredicative encodings. This formulation needed
no extra constants to be introduced, but a drawback was that the recursion op-
erators were computationally inefficient. In 1988 (Coquand & Paulin-Mohring,
1990) gave an extension formulated for the Calculus of Constructions with in-
ductive types, influenced by Martin-Löf’s type theory. General formulations of
predicative intensional Martin-Löf type theory were given implicitly by exam-
ples in Nordström et al. (1990), and there Martin-Löf’s logical framework was
also presented. It was shown how new constants could be declared in the frame-
work, along with derivations about them. Dybjer (1994, 2000) gave a general

14 CHAPTER 1. INTRODUCTION

formulation, of inductive-recursive definitions in Martin-Löf’s type theory, in-
fluenced by a general formulation of inductive definitions of Backhouse (1986);
Backhouse & Chisholm (1989). Dybjer’s notion of induction-recursion made
explicit the mutual dependency between induction and recursion in definitions,
that was inherent in Martin-Löf’s type theory.

Considering a computer based proof system for type theory with decidable
proof correctness, we need a systematic way of extending a theory. In Section
5.2 we will show a decision procedure to ensure valid extensions of our system.

1.3.2 A method using elimination constants

As we have mentioned, for each new ground type that we introduce, we also
introduce an elimination rule defined by primitive recursion on the given type.
Thus a new constant, the elimination constant, is obtained each time a new
type is given. Other constants are then defined in terms of already existing
elimination constants.

If we want to justify the addition of a constant f specified by recursive
pattern-matching equations f ~p1 = t1, . . . , f ~pn = tn, a methodology due to
Martin-Löf11 is to find an expression g defined in terms of elimination constants,
such that for each equation f ~pi = ti, the expressions g ~pi and ti[g/f] are equal
by convertibility.

For the previously given example with addition, the equalities to prove are

add x 0 = x (1.1)
add x (s y) = s (add x y) (1.2)

where equality is convertibility. This is easy to verify:
(1.1) holds because of the reduction sequence (reductions will be written Ã)

add x 0 Ã
(λx.λy.natrec (λk.Nat) x (λm.λn.s n) y) x 0 Ã
(λy.natrec (λk.Nat) x (λm.λn.s n) y) 0 Ã
natrec (λk.Nat) x (λm.λn.s n) 0 Ã
x

and (1.2) holds because of the reduction sequences

add x (s y) Ã
(λx.λy.natrec (λk.Nat) x (λm.λn.s n) y) x (s y) Ã
(λy.natrec (λk.Nat) x (λm.λn.s n) y) (s y) Ã
natrec (λk.Nat) x (λm.λn.s n) (s y) Ã
(λm.λn.s n) y (natrec (λk.Nat) x (λm.λn.s n) y) Ã
(λn.s n) (natrec (λk.Nat) x (λm.λn.s n) y) Ã
s (natrec (λk.Nat) x (λm.λn.s n) y)

11The author was not able to access literature that explicitly mentions or describes this
methodology. What we present here evolves from personal communication with Per Martin-
Löf, Johan Granström and Thierry Coquand.

1.3. ADDING NEW CONSTANTS IN TYPE THEORY 15

and
s (add x y) Ã
s ((λx.λy.natrec (λk.Nat) x (λm.λn.s n) y) x y) Ã
s ((λy.natrec (λk.Nat) x (λm.λn.s n) y) y) Ã
s (natrec (λk.Nat) x (λm.λn.s n) y)

First-order / higher-order recursion Certain functions, for instance the
minimum function specified by the equations

min : Nat → Nat → Nat
min 0 n = 0
min (s m) 0 = 0
min (s m) (s n) = s (min m n)

cannot be expressed as a first-order primitive recursive scheme (cf. Colson, 1989)
with the same computational behaviour as the original program. However,
it should be pointed out that one can still implement non-primitive recursive
functions using elimination constants of higher types. For this example, using
the elimination constant natrec for the natural numbers, we can define the
minimum function as follows:

min = natrec(λx.Nat → Nat, λn.0, λm.λh.natrec(λy.Nat, 0, λn.λu.s (h n)))

which is then primitive recursive, with higher-order parameters. This definition
satisfies the system of equations specifying ‘min’ above, in the same sense as
in the example for addition given above. Another example of a “truly” non-
primitive recursive program is the Ackermann function from Section 1.1.1 above,
which Hilbert gave as a higher-order primitive recursive scheme. Thus, the
exclusive use of primitive recursive schemes is not that limiting as one may
think, at first glance.

1.3.3 Elimination constants versus pattern-matching

Readability Programming using only elimination constants may be difficult,
and programs tend to be hard to understand and analyse by humans. For
instance, the pattern-matching version of the minimum function given above can
be thought of as an intuitive specification, and it is certainly easier to understand
than the version using elimination constants. If we only allow definitions of
constants to be given in terms of elimination rules, it might be hard to be
convinced that it has the intended meaning.

Foundations If we consider type theory as a system constructed to lay the
foundations of mathematics, we want our constructions to be built up by self-
evident principles. Primitive recursion is somehow the smallest mental leap
required to understand computations on arbitrary objects of inductive types,
such as natural numbers and lists. To justify more general schemes of recursive
equations is far more difficult, and in this sense it does not seem reasonable

16 CHAPTER 1. INTRODUCTION

to consider such schemes as primitive building blocks of computation. On the
other hand, the freedom letting us define computation by recursive equations
lets us abstract away from the termination proof. Once we have a justification
of termination, the definition in question can be trusted.

It should be noted that primitive recursive schemes also require subtle ar-
guments in order to be justified. For instance, Martin-Löf (1984), used well-
founded induction in the justification of the recursion operator12 for natural
numbers. Exactly the same justification applies to definitions like the addition
function that we showed previously in Section 1.3.2, page 14.

Non-sequential patterns If we consider an arbitrary system of recursive
equations, that we are convinced is a correct specification of some recursive func-
tion, it is not always the case that it can be interpreted in terms of elimination
constants, preserving the computational behaviour of the specified program.

As an example let us consider Berry’s majority function defined as follows:

maj : Bool → Bool → Bool → Bool
maj true true true = true
maj x true false = x
maj false y true = y
maj true false z = z
maj false false false = false

The function returns the boolean value that is the most frequent among the three
input values. Instead of exhausting all eight possible case distinctions, only five
equations are required. Intuitively, the three arguments have to be evaluated
in parallel. The algorithm is stable but not sequential (cf. Berry, 1978, 1979).
However, a program constructed exclusively by elimination constants is always
sequential, and will not behave like the above specification.

Pattern-matching definitions versus case expressions The above ex-
ample illustrates not only a limitation with elimination constants, but also a
potential disadvantage with pattern-matching. Specifying a program only by
pattern-matching equations leaves the order in which the arguments have to be
evaluated unspecified. In this sense elimination rules have no ambiguity. How-
ever, using case-notation instead of pattern-matching dissolves this ambiguity.
Using case notation will restrict us to sequential programs. The problem of how
to translate automatically between “sequentially valid” pattern-matching equa-
tions and case notation was investigated by Augustsson (1985). A disadvantage
with case-notation when it comes to type-checking is that equality becomes less
clear than it would be with pattern-matching. A reasonable compromise is to
consider sequential pattern-matching definitions.

12See the example ‘natrec‘ in end of section 1.2.5.

1.4. RELATED WORK 17

Permuted arguments A related question is to what extent equations that
involve permuted arguments can be interpreted using elimination constants. For
instance, let us give an alternative specification of the addition function:

addSwap : Nat → Nat → Nat
addSwap x 0 = 0
addSwap x (s y) = s (addSwap y x)

There is no doubt that this program is total, but it is likely to be difficult, if
at all possible to define this intensionally using the elimination constant natrec,
satisfying the given equations.

1.4 Related work

Several quite different approaches have been investigated to enable programs to
be specified by recursive equations in type theory. The core of the problem is
to ensure that the new extension preserves termination, and so decidability of
convertibility and type-correctness. We will give a rough guide to the different
methodologies that exist.

1.4.1 Translation into elimination constants

Smith (1983) showed how programs given by recursion equations could be trans-
lated into higher-order primitive recursive schemes. As an example, quick-sort
was shown to be derivable. Techniques to translate recursive equations into
elimination constants automatically have been developed by Cornes (1997), now
available in Coq (The Coq Development Team, 2006), and by McBride (2000)
for Epigram (cf. McBride & McKinna, 2004). This technique follows the ideas
presented in Section 1.3.2 above, and so it is faithful to the core concepts of
type theory.

1.4.2 Domain predicates

Bove (2002); Bove & Capretta (2005) presented a methodology for representing
partiality and general recursive functions within type theory. Given a recursive
definition of a constant13 f : A → B, one introduces an inductive family D :
A → Set that expresses for which values a : A the application f a is defined.
The formal definition of f has now the type (x : A) → D x → B. Intuitively, we
can see D as the domain of f . Establishing that f is total amounts to proving
that D a holds for each argument a : A. In the type-theoretic definition of f
an extra argument is added in the recursive equations, which is a proof object
inhabiting the inductive family in question. The so obtained program is then
structurally recursive on this extra argument.

A program obtained using this method has a strict semantics when it comes
to the recursive arguments and hence, may have a different behavior from the

13We simplify by considering only one argument.

18 CHAPTER 1. INTRODUCTION

“intended” program that was given as a set of recursive equations. In case one
wants to extract programs from proofs, and erase computationally irrelevant
parts, the extra argument may in some cases be safely removed from the pro-
gram. An advantage of this methodology is that it does not require external
tools, such as termination checkers.

1.4.3 Term based approaches

Pattern-matching with dependent types Coquand (1992) investigated
how to introduce definitions by pattern-matching in Martin-Löf’s logical frame-
work. Two sufficient conditions for correct definitions were identified: well-
founded recursive definitions and covering (exhaustiveness of pattern-matching).
Using this approach the usual elimination rules of type theory could be expressed
in this framework.

Giménez (1995) gave a schema for the definition of constants by primitive
recursion and case analysis, with a precise proof of normalization. This is now
a possible way to define constants in the Coq proof assistant (The Coq Devel-
opment Team, 2006).

Lexicographical orderings Abel (1999) and Abel & Altenkirch (2002), pre-
sented a combination of simply typed lambda-calculus, functional programs and
algebraic data-types. They analyze the call structure of the program, the call
graph, and for each recursive call a call matrix is constructed, that relates for-
mal parameters with actual parameters of the corresponding call. Then they
compute a closure of matrix multiplications for compatible matrices in the call
graph, and perform a search for lexicographical orderings of all the loops of the
program. Their analysis covers mutual recursion, but not permuted argument
positions.

Term rewriting Allowing recursive equations to be given as term rewriting
systems has many advantages in terms of both syntactic flexibility and com-
putational efficiency. Termination of untyped term rewriting systems has been
extensively studied, and an example of a tool that integrates a wide range of
known methods in this direction is the AProVE system, (Giesl et al., 2004).
In 1988, Breazu-Tannen proved confluence for a combination of simply typed
lambda-calculus and confluent rewrite-rules. Jouannaud & Okada (1997, 1991)
proved strong normalization for a combination of the simply typed lambda cal-
culus and first-order rewrite rules over algebraic data types, obeying a general-
ization of primitive recursion called the general schema. Blanqui (2005) proved
strong normalization for a system called the Calculus of Algebraic Construc-
tions: a combination of the general schema of Jouannaud and Okada with the
Calculus of Inductive Constructions (Coquand & Paulin-Mohring, 1990).

1.5. METHODOLOGY AND CONTRIBUTION 19

1.4.4 Type based termination

Another technique dealing with recursive equations in typed lambda calculi,
is the so-called type based termination. In Mendler (1987), a type system is
presented in which programs specified by recursion equations are well-typed only
if they are equivalent to constructions based on certain elimination constants.
More recent work with connection to this can be found in Matthes (1998) and
Uustalu & Vene (2002). Hughes et al. (1996), developed a type system in
which size constraints of expressions in a program could be expressed in the
type system, applicable for instance to obtain compile-time bounds for memory
allocation in embedded ML, a functional programming language for embedded
systems. See also Pareto (2000) and Björk (2000).

Giménez (1998) suggested an extension of the Calculus of Constructions
where recursive data structures have size information, that is used to ensure
size decrease in recursive calls. Their approach enables termination conditions
to be abstracted from details in the syntactic structure of programs, and it also
has the advantage that function types can express preservation of size bounds.
Abel (2004) and Blanqui (2004), have developed these ideas further, influenced
by Hughes, Pareto and Giménez. An algorithm has been developed to infer size-
annotations automatically by Barthe et al. (2006). Type based termination has
also been investigated for co-inductive types in Barthe et al. (2004) and Abel
(2006c,b). Using type based termination one can represent recursive functions
directly as systems of recursive equations as we suggested above. An advantage
with this approach is that even non-structurally terminating programs can be
justified. Quick-sort, for instance, is justified, but also highly non-trivial termi-
nation problems can be dealt with in an elegant way (Abel, 2006a,d). However,
the type system is modified, and the type theory so obtained is both different
from the original one and more complex. To our knowledge it is not clear if
this technique applies to programs with permuted arguments, though one could
speculate that it could be combined with the size-change principle (explained
below) by Lee, Jones, Ben-Amram (2001) to solve this problem.

1.5 Methodology and contribution

1.5.1 Objective

Our objective is to build a constructive type-theoretic formalism for proofs and
programs, in which one should be able to recognize mechanically when a given
argument is a proof or not. One should be able to add new constants to the
system using recursive pattern-matching definitions. This approach is close in
spirit to Herbrand’s, as discussed at page 3, letting us separate the obligation
to prove termination from the task of specifying the input/output relation.

20 CHAPTER 1. INTRODUCTION

1.5.2 Decidable type-checking

Due to the propositions-as-types property of type theory, we have that proof
checking can be reduced to type checking. To check decidability of type cor-
rectness, it is sufficient to have decidable convertibility of terms, which is the
case if our reduction rules are normalizing and all terms have a normal form
which is unique. However, since convertibility in general has to be checked under
assumptions, we have to establish normalization for open terms.

1.5.3 Reducibility

A well-known method for proving normalization is the reducibility method stem-
ming from Gödel 1941 (Feferman, 1986), Tait (1967), adapted for dependent
types in Girard (1971) and Martin-Löf (1971, 1972). A more recent presenta-
tion was given by C. Coquand (1998), which is close to the approach of Tait
(1975), which stresses the similarity between the reducibility method and the
realizability interpretation of Kleene (1945).

Reducibility is a semantic property of normalizing open terms, and resem-
bles Martin-Löf’s notion of meaning explanations (Martin-Löf, 1996). For sim-
ple types we may specify what it means to be a reducible term t in type A,
recursively on A as follows:

• when A is a ground type, then t reduces to a normal canonical form
prescribed by the introduction rules of A, or to an application x t1 . . . tn,
where ti are normal.

• when A is a function type B → C, for all b reducible in B, then t b is
reducible in C.

To prove normalization of well-typed terms, one proves that well-typed terms
are reducible in their respective types, and then that reducibility implies nor-
malization.

For dependent types, the notion of reducibility has to be modified, since
types in general depend on terms. Before we can establish that an object a is
reducible in type A, we must know what it means for A to be reducible. We
specify first what is a reducible set, and then for each reducible set, what is
a reducible element in such a set. When one specifies this for the Cartesian
product of a family of sets, the set predicate and the element predicate have
to be mutually defined, thus giving rise to an inductive-recursive definition
(cf. Dybjer, 1994, 2000). This inductive-recursive nature of the reducibility
predicates is present already in the normalisation proofs of Martin-Löf (1971,
1972) and Coquand (1998), as well as in Martin-Löf’s meaning explanations.

1.5.4 A semantic criterion for new constants

If we decide to give a general formal scheme prescribing how to extend our
system, what constants should then be allowed ? We suggest that reducibil-
ity is a good choice as a semantic property, as it is sufficient for decidable

1.5. METHODOLOGY AND CONTRIBUTION 21

type-correctness. Below we will give examples of reducible and non-reducible
constants.

Reduction of open terms

Assume we are about to add the constant zero function, using the predecessor
function as follows:

isZero : Nat → Bool
isZero 0 = true
isZero (s x) = false

pred : Nat → Nat
pred 0 = 0
pred (s x) = x

reduceToZero : Nat → Nat
reduceToZero x = if (isZero x) then 0 else reduceToZero (pred x)

This program has a normal form for all closed instances of x, but not for open
terms, for instance x itself. As implemented above, the constant ‘reduceToZero’
is not reducible. But we can use Vogel’s trick (cf. Vogel, 1976)14 to transform
this program into a reducible one, by replacing the if-then-else construction
with a call to an auxiliary definition, such that if the evaluation of the boolean
argument gets blocked, the whole computation will be blocked:

aux : Nat → Bool → Nat
aux x true = 0
aux x false = reduceToZero (pred x)

reduceToZero x = aux x (isZero x)

Now, when providing x as input, the computation will stop when trying to
evaluate the expression ‘aux x (isZero x)’.

A non-reducible looping program

A more intricate example is the following constant ‘mp’ to encode the witness
of Markov’s principle, stating that if an infinite boolean sequence f does not
have the value ‘false’ at every position, then there is a position n such that
f n = true, and moreover that we can find this position by searching through

14Cf. Berger (2005) for an application of this technique.

22 CHAPTER 1. INTRODUCTION

the positions until we find the desired index.

F : Bool → Set
F true = ⊥
F false = >

mp′ : (f : Nat → Bool) → (((n : Nat) → F (f n)) → ⊥) → Nat → Nat
mp′ f p k = if f k then k else mp′ f p (s k)

mp : (f : Nat → Bool) → (((n : Nat) → F (f n)) → ⊥) → Nat
mp f p = mp′ f p 0

If one accepts Markov’s principle, mp is total for closed arguments, but ‘mp f p’
has no normal form when f and p are variables. Let us try Vogel’s trick again,
redefining mp′ as follows:

aux f p k true = k
aux f p k false = mp′ f p (s k)

mp′ : (f : Nat → Bool) → (((n : Nat) → F (f n)) → ⊥) → Nat → Nat
mp′ f p k = aux f p k (f k)

Is the new definition reducible ? —The answer is no: we can find reducible
arguments for which the result is not reducible. Define

returnFalse : Nat → Bool
returnFalse x = false

The term ‘mp′ returnFalse y 0’ has no normal form, but we have ‘returnFalse’
reducible in Nat → Bool, and the variable y, the assumed “proof”, is reducible
in the type ((n : Nat) → F (returnFalse n)) → ⊥. For this reason, one might
suspect that Markov’s principle cannot be encoded by a reducible term.

1.5.5 The size-change principle

The solution investigated in this dissertation follows the approach presented
in Coquand (1992), that we mentioned in Section 1.4.3 above. We use here
the Size-change principle for program termination by Lee, Jones, Ben-Amram
(2001), for justifying our recursive equations. It covers many forms of recur-
sion,15 such as lexicographical argument ordering, permuted parameters and
mutual recursion. Their analysis has many similarities with Abel and Al-
tenkirch’s method, but the size-change analysis needs no special treatment to
find lexicographical argument orderings.

15The class of functions computable by first-order size-change terminating programs is the
same as the class of multiply recursive functions described by Rózsa Péter (1967), as shown
by Ben-Amram (2002).

1.5. METHODOLOGY AND CONTRIBUTION 23

While the general halting problem is undecidable, the size-change principle
provides a decision procedure for “structurally terminating” computation, if we
consider structural size-changes between left-hand sides and arguments in re-
cursive calls. Such a criterion is still close to the way elimination constants are
informally justified in type theory, based on the fact that constructor decompo-
sition is a well-founded relation.

As in Abel and Altenkirch’s work, the call graph is annotated by call matri-
ces (called size-change graphs), and the closure of multiplications (compositions
of size-change graphs) of adjacent matrices is calculated. The criterion is then
simple to formulate: every infinite path in the call graph contains an infinite
thread of non-increasing transitions containing infinitely many decreasing tran-
sitions. This makes an infinite execution path impossible due to the fact that
then some parameter value must decrease infinitely, which is impossible for a
well-founded object. What is surprising is that the size-change termination cri-
terion, with respect to a given call graph with its call matrices, is decidable.
Moreover, the decision procedure can be implemented by a small program (cf.
Wahlstedt, 2000).

1.5.6 Obtaining reducibility from well-founded recursion

To prove the reducibility of a recursively specified constant, we proceed in two
steps. We define a relation of instance of recursive call16, which we prove to
be well-founded. Having established this, we can prove that the constant in
question is reducible.

We proceed by proving that the size-change criterion implies that the call-
instance relation is well-founded. In this way we get a reasonably large frag-
ment of structurally terminating programs that can be recognized automatically.
However, there are programs that are well-known to terminate, that have a sim-
ple formulation, but are not structurally terminating. Let us consider the naive
quick-sort program:

quickSort [] = []
quickSort (x : xs) =

quickSort (filter (< x) xs) ++ x : quickSort (filter (≥ x) xs)

where (++) is the list append operator, and the calls of ‘filter’ partition the
list into the strictly smaller elements and the larger elements respectively. The
constant ‘quickSort’ is reducible, and hence it can be added to our type theory.
We realize that the lists in the recursive calls must be smaller than the input
list, but not structurally. For this example our structural restriction of the
size-change principle is not enough for establishing a well-founded call-instance
relation. However, if we can prove this by other means, we can proceed from this
point and establish reducibility using the result we present in this dissertation.
Thus our approach is modular, and should allow further improvements to be
considered for termination detection.

16See Definition 3.6.3, page 80 in the proof text.

24 CHAPTER 1. INTRODUCTION

The work order is to design a system of dependent types as simple as possible,
with sufficient syntactic conditions to ensure decidable type correctness. Having
achieved this we may consider further extensions.

1.5.7 Contribution

Our contributions are the following:

• A type theoretic formal system.
We have given a general formulation of a predicative constructive inten-
sional Martin-Löf-style type theory, based on untyped lambda-calculus
and pattern-matching definitions of functional programs on first-order pa-
rameterized algebraic data types.

• Normalization.
We present a detailed proof of normalization for the proposed system. For
recursive definitions we assume a well-founded call relation. In this way
we are not restricted to a specific schema for the termination of recursive
definitions. This is the main contribution.

• A decision procedure for type-checking a theory.
Given a set of data type definitions and a sequence of blocks of mutually
recursive definitions having a well-founded call relation, we can check if
this corresponds to a valid stratification.

• Size-change termination.
We have shown that the call relation for the recursive definitions in our
system is well-founded, provided that it obeys the size-change principle of
Lee, Jones and Ben-Amram (2001).

Chapter 2

Syntax

In this chapter we present a language of raw terms, which is the untyped lambda-
calculus extended with constants. The structure, called signature, in which a
theory is built is then described. For this language we give rules of untyped
substitution and reduction, followed by a proof of the Church-Rosser property,
establishing uniqueness of normal form and that convertibility is an equivalence
relation. We give rules of inference, called typing rules, of how to form syntacti-
cally correct terms, and conditions for what is a syntactically correct signature.
We prove a number of properties about the type system, including the subject
reduction property, which states that typing is preserved under computation.
Then we define a relation of type correctness for β-normal terms, which is the
fragment of the language for which the typing relation is decidable. We show
this definition sound and complete with respect to the typing relation.

2.1 A language of raw terms

2.1.1 Syntactical categories

Rather than defining a few syntactical categories of general form such as the
bare lambda-calculus with constants, we give our language extensions in several
syntactical sub-categories. Instead of using explicit predicates on terms, we can
refer to our sub-categories in order to avoid lengthy conjunctions of predicates.

Instead of following the Barendregt-style notation with M, N for terms, we
follow the notation by Girard et al. (1989) using t, u, v for terms, and we reserve
upper case notations T, U, V , etc. for sets and types.

25

26 CHAPTER 2. SYNTAX

Definition 2.1.1 (Raw terms, types and contexts).
We define inductively the following syntactic categories:

x, y, z Variables
f, g Defined constants
c First-order element constructors
d First-order set constructors

t, u, v ::= a | λx.t | t u Terms
a ::= x | f | d | c Atoms - Names

| Π | fun | El | Set | Fun Atoms - Primitive constants

T, U, V ::= Set | El t | Fun T (λx.U) Types

Γ, ∆ ::= () | Γ, x : T Contexts

Notation 2.1.2 (Iterated application). Application associates to the left, and
thus the iterated application (. . . (t t1) . . .) tn is written t t1 . . . tn.

Definition 2.1.3 (Set Patterns). The syntactic sub-category of terms called
set patterns is inductively defined by the grammar:
e ::= x | d e1 . . . en

Definition 2.1.4 (Constructor Patterns). The syntactic sub-category of
terms called constructor patterns is inductively defined by the grammar:
p, q ::= x | c p1 . . . pn | fun x

In the latter production, ‘fun’ is the constructor of our only higher-order data
type former Π. An expression of the form Π U (λx.V) is a set-level counterpart
of the dependent function type Fun U (λx.V). See section 2.3 for its typing
rules.

Notation 2.1.5 (Vector notation).
Let ~t be a shorthand of the sequence t1, . . . , tn or the tuple (t1, . . . , tn).
We write t,~t for (t, t1, . . . , tn) and~t ,~u for (t1, . . . , tn, u1, . . . , um). We write
t ~t as a shorthand for the iterated application t t1 . . . tn. We write λ~x .t as
a shorthand for the iterated abstraction λx1.λx2 . . . λxn.t. The length of ~t is
denoted by |~t |.

Raw types

As shown in Definition 2.1.1 the syntactical category of types is a sub-category
of terms. Therefore general definitions involving terms will also apply to types.
For instance, the free variables of a type is just the free variables of a term that
represents the type in question. Accordingly, a closed type is a closed term.
When we later define reduction and substitution, these notions will automati-
cally apply to terms as well as types.

2.1. A LANGUAGE OF RAW TERMS 27

2.1.2 Context notations and operations

Definition 2.1.6 (Context lookup).
{

(Γ, x : T)(x) = T
(Γ, y : T)(x) = Γ(x), if y 6= x

Definition 2.1.7 (Context support). Let Γ = (x1 : T1, . . . , xn : Tn). The
support of Γ, written supp(Γ), and the support vector for Γ, written −−→supp(Γ)
are defined as follows:

{
supp(Γ) = {x1, . . . , xn}−−→supp(Γ) = (x1, . . . , xn)

Notation 2.1.8 (Disjoint context). The context (x1 : T1, . . . , xn : Tn) is disjoint
iff all of xi are distinct.
Notation 2.1.9 (Closed context). The context (x1 : T1, . . . , xn : Tn) is closed
if FV (Ti) ⊆ {x1, . . . , xi−1}
Notation 2.1.10 (Extended context). Let Γ = (x1 : T1, . . . , xn : Tn).
Let ∆ = (y1 : U1, . . . , ym : Um). Then Θ = Γ, ∆ is the context
(x1 : T1, . . . , xn : Tn, y1 : U1, . . . , ym : Um). We write that Θ extends Γ.

2.1.3 Function type notations

Notation 2.1.11 (Arrow notation). We may write (x : U) → V as a shorthand
for Fun U (λx.V). The arrow associates to the right.

Note that in some cases it is hard to translate from Fun-notation into arrow-
notation. For instance a type denoted by Fun U ((λx.V) γ) would be cumber-
some to translate into arrow notation, because it would involve constraints to
prevent name capturing of the bound variables. See Section 2.2.1 on substitution
properties.
Notation 2.1.12 (Telescope notation).
We will write (x1 : T1, . . . , xn : Tn) → T or even shorter Γ → T where
Γ = (x1 : T1, . . . , xn : Tn) as a shorthand for (x1 : T1) → . . . → (xn : Tn) → T .
Remark 2.1.13. If Γ → T is closed, then Γ is closed.1

Remark 2.1.14. The function types (x1 : T1, . . . , xn−1 : Tn−1, xn : Tn) → T
and (x1 : T1, . . . , xn−1 : Tn−1) → ((xn : Tn) → T) are the same.
Notation 2.1.15 (Independent function types). Function types
(x : U) → V with x 6∈ FV (V) are called independent, and we write U → V , both
in order to emphasize this fact and to get a lighter notation. Thus a function
type (x1 : T1, . . . , xk : Tk, . . . , xn : Tn) → T where (xk : Tk, . . . , xn : Tn) → T
is independent, can be written (x1 : T1, . . . , Tk, . . . , xn : Tn) → T to emphasize
the independence of xk.
Notation 2.1.16. We write Tn → U as a shorthand for (T1, . . . , Tn) → U with
all of Ti being syntactically equal.

1Recall that a closed type is just a closed term in the sub-category of types.

28 CHAPTER 2. SYNTAX

2.1.4 Signature

Definition 2.1.17 (Data type specification). A data type specification is
written (D, C). Each set constructor d has a uniquely associated type D(d) of
the form Setn → Set. Each value constructor c has a uniquely associated inde-
pendent function type C(c) of the form (El e1, . . . , El en) → El (d x1 . . . xk)
such that FV (ei) ⊆ {x1, . . . , xk} and D(d) = Setk → Set.2

Note that the types of our constructors are independent. For instance we
cannot encode the type of lists of a specified length directly as a data type.
Furthermore the target types of our constructors are restricted to El (d ~x) (see
above). However one can get around some of these limitations by defining set-
valued functions, as shown later in section 2.3.5, page 42.

Definition 2.1.18 (Typing specification of defined constants). F is a
collection of typing specifications of defined constants. When there is a type
associated in F for f , we write f ∈ F , and in that case we write F(f) for this
type. When f ∈ F then F(f) is a closed expression of the form S. The empty
typing specification is written ∅. The concatenation of F1 and F2 is written
F1F2, where F1 and F2 are assumed to be disjoint.

Definition 2.1.19 (Arity). If h is a constant, then h has a uniquely associated
natural number n (ranging from zero), called the arity of h, written ar(h). The
following properties hold:

• When f ∈ F and F(f) = (x1 : T1, . . . , xn : Tn) → T with T of the form
Set or El t, we have ar(f) = n.

• When C(c) = (El e1, . . . , El en) → El (d x1 . . . xk), we have ar(c) = n.

• When D(d) = Setn → Set, we have ar(d) = n.

• We have ar(Π) = 2 and ar(fun) = 1.

The following definition characterizes the terms allowed in bodies of de-
fined constants, β-normal3 terms. We require full applications of constants, a
technical restriction used in the proofs of Corollary 2.5.6 (soundness of type
inhabitation checking), page 64, and Lemma 3.6.6 (Key lemma), page 82. The
restriction does not limit the expressibility, since an incomplete application can
always be represented by an η-expanded term.

Definition 2.1.20 (β-normal terms, types and contexts). The syntactical
sub-categories s, S and Ξ are inductively defined by the grammar:
s ::= x s1 . . . sn | h s1 . . . sar(h) | λx.s β-normal terms
h ::= f | c | d | Π | fun heads
S ::= Set | El s | Fun S1 (λx.S2) β-normal types
Ξ ::= () | Ξ, x : S β-normal contexts

2Note that n and / or k may be zero.
3See Definition 2.2.35, page 37.

2.2. SUBSTITUTION AND REDUCTION 29

Definition 2.1.21 (Signature). A signature Σ is a quadruple (D, C,F ,R),
where (D, C) is a data type specification and F is a typing specification of
defined constants. R is a set of rules of the form f ~p = s, with FV (s) ⊆ FV (~p)
and |~p | = ar(f). The empty set of rules is written ∅. The union of R and R′ is
written RR′.

Note that the above definition allows that R have rules for constants that
are not given in F . This reflects the fact that our reduction system is a priori
untyped, and we may consider a rule without having to think about its type.

Restriction 2.1.22. From now on we assume a given signature Σ. All further
references to any of D, C,F ,R implicitly refers to Σ, unless otherwise stated,
and we consider only constants d, c, f with respect to Σ.

2.2 Substitution and reduction

2.2.1 Substitution

A substitution, denoted γ, δ, ρ, σ, is a function from variables to terms, used
with prefix notation γ(x), defined as follows:

Definition 2.2.1 (Parallel substitution on variables).

[](x) = x

[γ, u/x](y) =
{

u if x = y,
γ(y) otherwise.

Definition 2.2.2 (Fresh variable). A variable y is fresh for t, x, γ iff

y 6∈
⋃

z∈FV (t)−{x}
FV (γ(z))

Notation 2.2.3 (Substitution in terms). We use post fix notation t γ, denoting
the term obtained by simultaneously replacing all the free variables x in t by
γ(x).

Definition 2.2.4 (Substitution).

x γ = γ(x) (u v) γ = (u γ)(v γ)

(λx.t) γ = λy.(t[γ, y/x]), if y is fresh for t, x, γ

Remark 2.2.5 (α-equivalence). Terms that differ only in the names of their
bound variables are identified. Because of this, Definition 2.2.4 is deterministic,
up to α-conversion.

Definition 2.2.6 (Composition of substitutions).
The composition of γ and δ is written γδ, where (γδ)(x) is defined as (γ(x))δ.

30 CHAPTER 2. SYNTAX

Proposition 2.2.7 (Properties of substitution).

t(γδ) = (t γ)δ t[u/x]γ = t[γ, (u γ)/x]

t[γ, u/x] = t γ, if x 6∈ FV (t) t γ = t, if t is closed

(λx.t) γ = λx.(t γ), if x is fresh for t, x, γ and x = γ(x)

tγ[u γ/x] = t[u/x]γ if x is fresh for t, x, γ and x = γ(x)

Notation 2.2.8 (Substitution in vectors).
Let ~t γ be a shorthand for (t1γ, . . . , tnγ).

Notation 2.2.9 (Substitution in contexts).
Let Γ = (x1 : T1, . . . , xn : Tn).
Then Γ γ denotes (x1 : T1γ, . . . , xn : Tnγ).

Notation 2.2.10 (Substitution restricted by context4).
Let Γ = (x1 : T1, . . . , xn : Tn).
Then γ|Γ is the substitution [γ(x1)/x1, . . . , γ(xn)/xn].

Notation 2.2.11 (Short for multiple substitution). We may use [u1, . . . , un] or
even shorter [~u] as a shorthand for the substitution [u1/x1, . . . , un/xn], when
there is no confusion about xi.

2.2.2 Reduction rules and equality

Definition 2.2.12 (Reduction). The relations t Ãβ u, t Ãι u and t Ã u
are inductively defined as follows:

(λx.t) u Ãβ t[u/x] (f p1 . . . pn) γ Ãι (λ~x .s) γ

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

t Ã t′

λx.t Ã λx.t′
t Ã t′

t u Ã t′ u
u Ã u′

t u Ã t u′
t Ãβ t′

t Ã t′
t Ãι t′

t Ã t′

Notation 2.2.13 (Multi-step reduction). We write Ã∗ for the reflexive transitive
closure of Ã.

The choice of ι-rule The ι-rule given above is constructed so that the last
argument of a ι-redex cannot be a variable. This is a technical solution used in
the proof of Lemma 2.2.40. An alternative solution would be to forbid the last
argument of a pattern-matching rule being a variable, and when needed let the
right-hand sides start with additional abstractions, but then different clauses
would have different number of arguments. Such a system would complicate
Definition 3.6.2 (Formal call), connected to the size-change analysis in Section
4.1. Yet another solution would be to change the definition of reducibility,
(Definition 3.1.8) which would be less natural and involve more complications.

4To be used in Lemma 3.6.6 (Key lemma), page 82.

2.2. SUBSTITUTION AND REDUCTION 31

Proposition 2.2.14. ((λx.t)γ)u Ãβ t[γ, u/x]

Lemma 2.2.15. If f ~p = s ∈ R then f ~pγ Ã∗ s γ.

Proof. Since ~p is of the form ~q ,~y , we have f ~q γ,~y γ Ã ((λ~y .s) γ)(~y γ). Then
we proceed by iterating the application rule on the substituted expressions.

Definition 2.2.16 (Equality by convertibility).
The assertion t ./ u is defined as ∃v . t Ã∗ v ∧ u Ã∗ v.5

Proposition 2.2.17 (Reduction and equality closed under substitu-
tion).

t Ã∗ u ⇒ t γ Ã∗ u γ t ./ u ⇒ t γ ./ u γ

Proposition 2.2.18. t Ã∗ u ⇒ FV (u) ⊆ FV (t).

Raw types closed under reduction

An untyped term which is a non-type might reduce to a type, but a type will
always reduce to a type, which can be seen from the grammar of types in
Definition 2.1.1. The following properties will be used implicitly throughout
the document.

Remark 2.2.19. T Ã∗ Set ⇒ T = Set

Remark 2.2.20. T ./ El t ⇐⇒ ∃u . T = El u ∧ t ./ u

Remark 2.2.21. T ./ Fun U (λx.V) ⇐⇒
∃U ′, V ′ . T = Fun U ′ (λx.V ′) ∧ U ./ U ′ ∧ V ./ V ′

2.2.3 The Church-Rosser property

The property
t Ã∗ u ∧ t Ã∗ v ⇒ u ./ v

called the Church-Rosser property or confluence is known to hold for a number
of combinations of lambda-calculus with rewrite systems, including ours. In
our system we are considering a restricted rewrite system, namely functional
programs. We have non-overlapping left-linear patterns—also known as orthog-
onal rewriting—combined with β-reduction. Thus we do not need to consider
more complicated side conditions, such as so-called critical pairs, as necessary
in more general term rewriting systems. The confluence of our system should
follow from Müller (1992), but their result is stronger than what we actually
need here.

Although confluence of our system follows from known results, for being self-
contained, we will give a proof using the Martin-Löf–Tait method presented in
Martin-Löf (1971, 1972), based on a parallel reflexive reduction relation.

5The notation ./ is taken from Coquand (1998).

32 CHAPTER 2. SYNTAX

Disjoint and left linear pattern-matching

Definition 2.2.22 (Disjoint patterns).
The patterns (p1, . . . , pn) and (q1, . . . , qn) are disjoint if they are not unifiable
(as first-order terms).

Definition 2.2.23 (Linear patterns).
The pattern vector ~p is linear if each free variable in ~p occurs only once.

The following restriction will be used in the proof of confluent reduction,
Lemma 2.2.30, page 35, case 2a for disjointness and 2b for linearity.

Restriction 2.2.24 (Left-linear disjoint rules). We assume from now on, that for
all constants f , for any rule f ~p = s ∈ R we have ~p linear. For any two rules
f ~p = s1, f ~q = s2 ∈ R, ~p and ~q are disjoint.

The need of Left-linearity

Allowing non-linear patterns, we would not have a confluent system without
introducing further restrictions on our rules. The following example illustrates
this:

Example 2.2.25. Consider the constants f and ω:

f x x = 0
f x (s x) = 1 ω = s ω

Given the definitions of f and ω above, we can infer both f ω ω Ã∗ 1 and
f ω ω Ã∗ 0. As we can see, ω has no normal form, and one could argue that
this is not a “true” counter example, since the terms we will consider in the
end are only normalizing ones. However, when we prove confluence, we do not
want to depend on the normalisation property, since that is going to be shown
assuming the confluence property.

The need of the parallel reflexive reduction relation

The relation Ã does not have the diamond property, as opposed to its transitive
reflexive closure Ã∗, that will be proved below. As mentioned in Pollack (1995),
the following two examples illustrate the problem.

Example 2.2.26 (Counter example to one-step β diamond property).

1. β is not reflexive:
We have
(λx.y)((λx.x) z) Ã (λx.y) z Ã y and
(λx.y)((λx.x) z) Ã y,
but not y Ã y.

2. The one-step β-relation does not reduce sub-expressions in parallel:
We have (λx.x x)((λx.y) z) Ã ((λx.y) z) ((λx.y) z) and

2.2. SUBSTITUTION AND REDUCTION 33

(λx.x x)((λx.y) z) Ã (λx.x x) y Ã y y,
but not ((λx.y) z) ((λx.y) z) Ã y y,
since it would require two steps to obtain.

A similar argument as above can be repeated for the ι-rule, as follows:

Example 2.2.27 (Counter example to one-step ι diamond property).

1. ι is not reflexive:
Assume given the rule defining f as follows:

f x = 0

We have f(f x) Ã f 0 Ã 0,
and f(f x) Ã 0 but not 0 Ã 0,
since the one-step ι-relation is not reflexive either.

2. ι is not parallel:
Assume given the rules defining + and double as follows:

x + 0 = x
x + (s y) = s (x + y)

double x = x + x

We have double(x + 0) Ã double x Ã x + x,
and double(x + 0) Ã (x + 0) + (x + 0),
but not (x + 0) + (x + 0) Ã x + x,
since it would require two steps to obtain. Hence, the one-step ι-relation
is not parallel either.

We will follow the Martin-Löf/Tait method and define a parallel reflexive
one-step relation.

Definition 2.2.28 (Parallel reflexive reduction). The relation t À u is
inductively defined as follows:

1.
t À t′ u À u′

(λx.t) u À t′[u′/x]

2.
p1 γ À p1 γ′ . . . pn γ À pn γ′

f(p1 γ) . . . (pn γ) À (λ~x .s) γ′

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

3. a À a

4.
t À t′

λx.t À λx.t′

5.
t À t′ u À u′

t u À t′ u′

34 CHAPTER 2. SYNTAX

Recall from Definition 2.1.1 (Raw terms), page 26, the category a are atoms of
raw terms. Cases 3, 4 and 5 above make the definition reflexive for all terms.

Lemma 2.2.29 (Substitution property of parallel reduction).
t À t′ ∧ ∀x . γ(x) À γ′(x) ⇒ t γ À t′ γ′.

Proof. Assume t À t′ and ∀x . γ(x) À γ′(x). We prove t γ À t′ γ′ by
induction on the derivation of t À t′. We have the following cases:

1.
u À u′ v À v′

(λx.u) v À u′[v′/x]

By induction u γ À u′ γ′ and v γ À v′ γ′.
By definition (λx.u γ) (v γ) À (u′ γ′)[(v′ γ′)/x].
Assume w.l.o.g. (by Remark 2.2.5) that for all y where y 6= x,
x 6∈ FV (γ(y)), x 6∈ FV (γ′(y)), γ(x) = x and γ′(x) = x.
By substitution we have (λx.u γ) (v γ) = ((λx.u)v) γ and
u′ γ′[v′ γ′/x] = u′[v′/x] γ′.

2.
p1 δ À p1 δ′ . . . pn δ À pn δ′

f(p1 δ) . . . (pn δ) À (λ~x .s) δ′

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

By induction we have
(p1 δ) γ À (p1 δ′) γ′, . . . , (pn δ) γ À (pn δ′) γ′.

We define ρ(y) = δ(y) γ and ρ′(y) = δ′(y) γ′ for all y.

We have then (pi δ) γ = pi ρ and (pi δ′) γ′ = pi ρ′.
Therefore pi ρ À pi ρ′. By definition then f p1ρ . . . pnρ À (λ~x .s) ρ′.

We have (λ~x .s) ρ′ = ((λ~x .s) δ′) γ′.

Then (f(p1 δ) . . . (pn δ))γ À ((λ~x .s) δ′) γ′.

3. a À a

If a = x we have γ(x) À γ′(x) by assumption. Otherwise aγ = a = aγ′,
hence aγ À aγ′ in both cases.

4.
u À u′

λx.u À λx.u′

By induction u γ À u′ γ′. By definition λx.(u γ) À λx.(u′ γ′).

Assume w.l.o.g. (by Remark 2.2.5) that for all y ∈ FV (u)∪FV (u′) where
y 6= x, we have x 6∈ FV (γ(y)), x 6∈ FV (γ′(y)), γ(x) = x and γ′(x) = x.
By substitution λx.(u γ) = (λx.u) γ and λx.(u γ′) = (λx.u) γ′,
hence (λx.u) γ À (λx.u′) γ′.

5.
u À u′ v À v′

u v À u′ v′

By induction we have u γ À u′ γ′ and v γ À v′ γ′.
By definition we have (u γ) (v γ) À (u′ γ′) (v′ γ′).
By substitution we have (u v) γ À (u′ v′) γ′.

2.2. SUBSTITUTION AND REDUCTION 35

Lemma 2.2.30 (Diamond property of parallel reduction).
If t1 À t2 and t1 À t3, then there is t4 such that t2 À t4 and t3 À t4.

Proof. By induction on the sum of the lengths of the derivations of t1 À t2 and
t1 À t3. We enumerate the cases for t1 À t2, and if necessary, for t1 À t3:

1. When at least one of the reductions t1 À t2 or t1 À t3 is an instance of
rule 1 of Definition 2.2.28, then t1 is an expression of the form (λx.u1) v1,
and we get the following possible sub-cases:

(a)
u1 À u2 v1 À v2

(λx.u1) v1 À u2[v2/x]
u1 À u3 v1 À v3

(λx.u1) v1 À u3[v3/x]
By induction there is u4, v4 such that
u2 À u4 and u3 À u4 and v2 À v4 and v3 À v4.
By applying Lemma 2.2.29 twice we get u2[v2/x] À u4[v4/x] and
u3[v3/x] À u4[v4/x] respectively.

(b)
u1 À u2 v1 À v2

(λx.u1) v1 À u2[v2/x]
λx.u1 À λx.u3 v1 À v3

(λx.u1) v1 À (λx.u3) v3

By induction there is u4, v4 such that
u2 À u4 and u3 À u4 and v2 À v4 and v3 À v4.
By definition (λx.u3) v3 À u4[v4/x].
By Lemma 2.2.29 u2[v2/x] À u4[v4/x].

(c)
λx.u1 À λx.u2 v1 À v2

(λx.u1) v1 À (λx.u2) v2

u1 À u3 v1 À v3

(λx.u1) v1 À u3[v3/x]
Symmetric to the previous case.

2. When at least one of the reductions t1 À t2 or t1 À t3 is an instance of
rule 2 of Definition 2.2.28, then t1 is an expression of the form
f (p1 γ1) . . . (pn γ1), and we get the following possible sub-cases:

(a)

p1 γ1 À p1 γ2 . . . pn γ1 À pn γ2

f(p1 γ1) . . . (pn γ1) À (λ~x .s) γ2

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

p1 γ1 À p1 γ3 . . . pn γ1 À pn γ3

f(p1 γ1) . . . (pn γ1) À (λ~x .s) γ3

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

By Restriction 2.2.24 all the rules for f in R are mutually disjoint,
and the term f(p1 γ1) . . . (pn γ1) then uniquely determines the
matching rule f p1 . . . pn ~x = s ∈ R.
By induction there is γ4 such that pi γ2 À pi γ4 and pi γ3 À pi γ4.
By definition we have
f(p1 γ2) . . . (pn γ2) À (λ~x .s) γ4 and f(p1 γ3) . . . (pn γ3) À (λ~x .s) γ4.
We have γ2(x) À γ4(x) and γ3(x) À γ4(x) for all x ∈ FV (pi).
By using Lemma 2.2.29 twice, we have
(λ~x .s) γ2 À (λ~x .s) γ4 and (λ~x .s) γ3 À (λ~x .s) γ4 respectively.

36 CHAPTER 2. SYNTAX

(b)

p1 γ1 À p1 γ2 . . . pn γ1 À pn γ2

f(p1 γ1) . . . (pn γ1) À (λ~x .s) γ2

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

p1 γ1 À u1 . . . pn γ1 À un

f(p1 γ1) . . . (pn γ1) À f u1 . . . un

By Restriction 2.2.24 all the rules for f in R are left-linear, and then
ui are expressions of the form pi γ3, where γ1(x) À γ3(x) for all
x ∈ FV (p1, . . . , pn)
By induction there is γ4 such that pi γ2 À pi γ4 and pi γ3 À pi γ4.
By definition f(p1 γ3) . . . (pn γ3) À (λ~x .s) γ4.
We have γ2(x) À γ4(x) for all x ∈ FV (pi).
By Lemma 2.2.29 we have (λ~x .s) γ2 À (λ~x .s) γ4.

(c)

p1 γ1 À u1 . . . pn γ1 À un

f(p1 γ1) . . . (pn γ1) À f u1 . . . un

p1 γ1 À p1 γ3 . . . pn γ1 À pn γ3

f(p1 γ1) . . . (pn γ1) À (λ~x .s) γ3

{
f p1 . . . pn ~x = s ∈ R
pn is not a variable

This case is symmetric to the previous one.

3. a À a

Then t4 is a.

4.
u1 À u2

λx.u1 À λx.u2

u1 À u3

λx.u1 À λx.u3

By induction there is u4 such that u2 À u4 and u3 À u4.
By definition λx.u2 À λx.u4 and λx.u3 À λx.u4 respectively.

5.
u1 À u2 v1 À v2

u1 v1 À u2 v2

u1 À u3 v1 À v3

u1 v1 À u3 v3

By induction there is u4, v4 such that
u2 À u4, u3 À u4 and v2 À v4, v3 À v4.
By definition u2 v2 À u4 v4 and u3 v3 À u4 v4.

Definition 2.2.31 (Multi-step parallel reduction).
The relation t Àn u is inductively defined as follows:

t À0 t
t Àm u u À v

t Àm+1 v

Proposition 2.2.32 (Confluence).
If t Ã∗ u and t Ã∗ v then t ./ u.

Proof. It is clear that t Ã∗ u if and only if t Àn u for some n.
Assume t Ã∗ u and t Ã∗ v. Then t Àm u for some m, and t Àn v for some
n. By repeatedly applying Lemma 2.2.30 we can find w such that u Àn w and
v Àm w. Hence u Ã∗ w and v Ã∗ w.

Corollary 2.2.33. The relation ./ is an equivalence relation.

2.2. SUBSTITUTION AND REDUCTION 37

2.2.4 Notions of normal form and normalization

Note that we consider reduction of open terms, and reduction is performed under
abstractions as well as constructors. Therefore every sub-term of a normal term
is normal. We will consider weak normalization, asserting the existence of a
reduction sequence leading to a normal form.

Definition 2.2.34 (Normal form and normalizability).

• NF(t) means that there is no t′ such that t Ã t′.

• WN(t) means that there exists t′ such that t Ã∗ t′, where NF(t′).

Definition 2.2.35 (β-normality). A term t is beta normal iff t contains no
sub-term of the form (λx.u) v.

Remark 2.2.36. The syntactical categories s, S and Ξ are β-normal.6

Notation 2.2.37. Let u ⇓ v be a shorthand for u Ã∗ v ∧ NF(v).

Notation 2.2.38.
Let (t1, . . . , tn) ⇓ (u1, . . . , un) be a shorthand for t1 ⇓ u1, . . . , tn ⇓ un.

Proposition 2.2.39 (Uniqueness of normal form).
If u ./ v and u ⇓ w then v ⇓ w.

Proof. By Proposition 2.2.32 (Confluence).

The following lemma will be used in the proof of Proposition 3.3.3.

Lemma 2.2.40 (Normalizable variable application).
WN(t x) ⇒ WN(t).

Proof. Assume WN(t x). Then there is a reduction sequence

t x Ã t1 Ã t2 Ã . . . Ã tn

such that tn is normal. We proceed by induction on n. If n = 0, then t x is
normal, hence t is normal. Otherwise t x contains a redex. By Definition 2.2.12
(Reduction), t x itself cannot be a ι-redex, and the first step t x Ã t1 must be
derived by one of the following rules:

1. (λy.u) x Ãβ u[x/y]

Since u[x/y] is normalizable, so is u[y/y], hence WN(t).

2.
t Ã u

t x Ã u x

We have u x = t1. Since t1 reduces to tn in n−1 steps, we have WN(u x).
By induction WN(u). We have t Ã u, hence WN(t).

6Their syntax are given in Definition 2.1.20, page 28.

38 CHAPTER 2. SYNTAX

2.3 Type system

2.3.1 Rules of inference

Definition 2.3.1 (Formation and inhabitation of types).
The relations ` Γ (context formation), Γ ` T (type formation) and Γ ` t : T
(type inhabitation) are mutually inductively defined as follows:

• Context formation

` ()
Γ ` T

` Γ, x : T
x 6∈ supp(Γ)

• Type formation

` Γ
Γ ` Set

Γ ` t : Set
Γ ` El t

Γ, x : U ` V

Γ ` (x : U) → V

• Type inhabitation

` Γ
Γ ` x : Γ(x)

Γ ` t : U Γ ` T

Γ ` t : T
U ./ T

Γ ` t : (x : U) → V Γ ` u : U

Γ ` t u : V [u/x]
Γ, x : U ` v : V

Γ ` λx.v : (x : U) → V

` Γ
Γ ` f : F(f)

` Γ
Γ ` d : D(d)

` Γ Γ ` u1 : Set . . . Γ ` uk : Set
Γ ` c : C(c)[u1, . . . , uk]

` Γ
Γ ` Π : (x : Set, El x → Set) → Set

Γ ` t : Set Γ ` u : El t → Set
Γ ` fun : ((x : El t) → El (u x)) → El (Π t u)

x 6∈ FV (u)

where
D(d) = Setn → Set
C(c) = (El e1, . . . , El en) → El (d x1 . . . xk)
with FV (ei) ⊆ {x1, . . . , xk}.
Note that in the constructor rule, the premise ` Γ is needed since k may
be 0.

Remark 2.3.2. The language, and so the set of defined constants f , can be seen
as fixed throughout the whole text. However, the typing specifications F may
be undefined for some constants, in the case where R have rules for constants
not declared in F . In Definition 2.3.17 below, we describe what is a type-correct
signature, and only for such signature we are sure that F will always have a
type for f .

2.3. TYPE SYSTEM 39

Definition 2.3.3 (Inhabitation of vectors).
We define the relation ∆ ` ~u : Θ, where ` Θ holds and Θ and ~u have the same
lengths n, by induction on n by the clauses:

() ` () : ()

∆ ` t : T ∆ ` ~t : Γ[t/x]

∆ ` t,~t : (x : T,Γ)

2.3.2 Basic inversion properties

Lemma 2.3.4 (Type-formation inversion).

1. Γ ` Set ⇒ ` Γ

2. Γ ` El t ⇒ Γ ` t : Set

3. Γ ` (x : U) → V ⇒ Γ, x : U ` V

Proof. Direct from Definition 2.3.1.

Lemma 2.3.5 (Iterated function type inversion).
If Γ ` (x1 : T1, . . . , xn : Tn) → T , then
Γ ` T1, Γ, x1 : T1 ` T2 through Γ, x1 : T1, . . . , xn−1 : Tn−1 ` Tn and
Γ, x1 : T1, . . . , xn : Tn ` T .

Proof. By iterated inversion of function type formation.

Lemma 2.3.6 (Context formation from typing). If D is a derivation of
Γ ` T or Γ ` t : T then D contains a sub-derivation D′ of ` Γ.

Proof. By induction on the derivations.

Corollary 2.3.7. If D is a derivation of Γ, x : U ` T or Γ, x : U ` t : T
then D contains a sub-derivation D′ of Γ ` U .

Lemma 2.3.8.

1. Γ ` T ⇒ FV (T) ⊆ supp(Γ).

2. Γ ` t : T ⇒ FV (t) ⊆ supp(Γ).

Proof. By induction on the derivations and Lemma 2.3.6.

Corollary 2.3.9. If ` t : T then t and T are closed.

40 CHAPTER 2. SYNTAX

2.3.3 Typing and patterns

Notation 2.3.10 (Pattern substitutions). Substitutions of the form [y/x], [fun y/x]
or [c ~y /x] will be denoted α, and compositions of substitutions of the form
α1 . . . αn will be denoted τ .

For the following definition, please recall Notation 2.2.9, page 30, for substitution
in contexts. The name neighbourhood in the definition below comes from Martin-
Löf’s terminology, as referred to from Coquand (1992).

Definition 2.3.11 (Atomic neighbourhood).
Given ` ∆ and ` Γ, the relation ∆ α−→ Γ is defined by the clauses

1. Γ1, y : T, Γ2[y/x]
[y/x]−→ Γ1, x : T, Γ2

2. Γ1, y : (z : El t) → El (u z),Γ2[fun y/x]
[fun y/x]−→ Γ1, x : T, Γ2

where T ./ El (Π t u), Γ1 ` El (Π t u) and z 6∈ FV (u).

3. Γ1,∆[~t /~z], Γ2[c ~y /x]
[c ~y /x]−→ Γ1, x : T, Γ2

where C(c) = ∆ → El (d ~z), ~y = −−→supp(∆),
T ./ El (d ~t) and Γ1 ` El (d ~t).

In the above definition we have assumed ` ∆ for technical reasons. Without
this assumption we would need subject reduction, which is proved only later
(Lemma 2.4.18, page 55 below). Once we have proved this, we can drop the
extra condition.

Remark 2.3.12. When Γ1, y1 : U1, . . . , ym : Um,Γ2α
α−→ Γ1, x : T, Γ2 holds, then

x 6∈ FV (T) ∪ FV (Ui), since ` ∆ holds.

Definition 2.3.13 (Compound neighbourhood). Given ` ∆ and ` Γ,
the relation ∆ τ−→ Γ, where τ is a composition of atomic neighbourhoods, is
inductively defined by the rules

Γ
[]−→ Γ

Θ τ−→ ∆ ∆ α−→ Γ
Θ α τ−→ Γ

Notation 2.3.14 (Neighbourhoods obtained from patterns). We write ∆
[~p /~x]−→ Γ,

where ~x = −−→supp(Γ), when we can write [~p/~x] as a neighbourhood τ such that
~x τ = ~p and ∆ τ−→ Γ holds. When there is no confusion about ~x , we may omit
it.

Note that ∆ τ−→ Γ may have infinitely many possible derivations, and also
that ∆ is not unique. The properties we are going to use about neighbourhoods
will not depend on particular derivations of neighbourhoods, but only on the
fact that such derivations exist. Moreover, as we will show in Section 5.1, we
can find the unique normal form ∆′ of ∆, satisfying ∆′ τ−→ Γ.

2.3. TYPE SYSTEM 41

2.3.4 Typing and the signature

Definition 2.3.15 (Typing conditions of D and C).
Let ` (D, C) be the property7

∀d . D(d) = Setk → Set ⇒
∀c . C(c) = (El e1, . . . , El en) → d x1 . . . xk ⇒

x1 : Set, . . . , xk : Set ` C(c)

Definition 2.3.16 (Typing conditions of F and R).
Let ` F be the property ∀f ∈ F . ` F(f). If ` F holds, then ` R holds iff
for all f such that F(f) = Γf → Tf , for all rules f ~p = s in R there exists

∆ such that ∆
[~p]−→ Γf and ∆ ` s : Tf [~p].

Definition 2.3.17 (Typing conditions of Σ).
Let ` Σ be the property ` (D, C) ∧ ` F ∧ ` R

Notation 2.3.18. We may write `Σ in a typing judgement to make explicit that it
is made with respect to a particular signature Σ. When omitting the subscript,
we mean the whole signature, as explained in Restriction 2.1.22. To be more
explicit in the above definition, we could have written `Σ D, C ∧ `Σ F ∧ `Σ R.

2.3.5 Examples

We give some examples to show how a definition is validated in our system.
These should also give an impression of what kinds of type-theoretic definitions
fit in the framework. Before reading further, it may be helpful to recall the
notational conventions discussed in Section 2.1.3, page 27.

Notation 2.3.19. In the examples we will allow ourselves to choose identifier
names differing from the notation given in Definition 2.1.1. We will use upper-
case names for set-valued identifiers and types, and lower case for other objects.

The Cartesian product of a family of sets

We have one built-in higher-order but non-recursive parameterized data type:

Π : (x : Set, El x → Set) → Set

with constructor

fun : ((x : El t) → El (u x)) → El (Π t u)

7Recall Definition 2.1.17 (Data type specification).

42 CHAPTER 2. SYNTAX

We can define the elimination rule formulated in Martin-Löf (1984) (see also
Nordström et al., 1990) in our framework as follows:

funsplit : (A : Set,
F : El A → Set,
G : El (Π A F) → Set,
(f : (a : El A) → El (F a)) → El (G(fun f)),
b : El (Π A F))
→ El (G b)

funsplit A F G g (fun f) = g f

To establish ` R in this case we have to find ∆ such that8

∆
[A,F,G,g,fun f]−→ (A : Set, F : El A → Set, G : El (Π A F) → Set,

g : (f : (a : El A) → El (F a)) → El (G(fun f)),

b : El (Π A F))

holds, and verify ∆ ` g f : El (G (fun f)). We have

∆ = (A : Set,
F : El A → Set,
G : El (Π A F) → Set,
g : (f : (a : El A) → El (F a)) → El (G(fun f)),
f : (x : El A) → El (F x))

and we see that g f has the correct type, by the application rule.

Set-valued functions

Following Smith (1989) we can define propositional functions as families of types.
In a programming point of view, these are rather set-valued functions. The
following examples illustrate how such functions can be used for programming.
We can define the type of vectors of length n as follows:9

Vec : (Set, Nat) → Set
Vec A 0 = >
Vec A (s n) = A×Vec A n

We can also define the set of finite sets of size n:

Fin : Nat → Set
Fin 0 = ⊥
Fin (s n) = Fin n +>

We can combine these to implement a safe indexing function for vectors.
Given a number n and m ≤ n + 1 and a non-empty vector v of length n + 1,
return v at position m.

8Recall Notation 2.3.14, page 40.
9Recall Notation 1.2.1, page 8, for the following examples.

2.4. PROPERTIES OF THE TYPE SYSTEM 43

index : (A : Set, n : Nat, Fin (s n), Vec A (s n)) → A
index A 0 m (a, v′) = a
index A (s n′) (inl m′) (a, v′) = index A n′ m′ v′

index A (s n′) (inr u) (a, v′) = a

Nested data-types

Nested data-types can be defined in our system. Here follows a flattening func-
tion for such a type.10 The ‘append’ constant is the usual list append function.
We are not investigating nested types here, but as they can be defined in our
system, we give this example. It shows how a set pattern11 e can be instantiated
in the scheme for constructor arguments.

Square : Set → Set
pair : A → A → Square A

Pow : Set → Set
zeroP : A → Pow A
succP : Pow(Square A) → Pow A

aux : (A : Set, B : Set, B → List A, Square B) → List A
aux A B f (pair x1 x2) = append A (f x1) (f x2)

flatP : (A : Set, B : Set, B → List A, Pow B) → List A
flatP A B f (zeroP a) = f a
flatP A B f (succP psa) = flatP A (Square B) (λx . aux A B f x) psa

flatPow : (A : Set, Pow A) → List A
flatPow A p = flatP A A (λx . x :: []) p

Later we will see that the results about normalization and decidable type-
correctness in sections 3.3 and 5.1 apply to the examples above as special cases.

2.4 Properties of the type system

2.4.1 Thinning and weakening

Lemma 2.4.1 (Thinning).

1. Γ, ∆ ` T ∧ ` Γ, y : W,∆ ⇒ Γ, y : W,∆ ` T

2. Γ, ∆ ` t : T ∧ ` Γ, y : W,∆ ⇒ Γ, y : W,∆ ` t : T

10Thanks to Ulf Norell.
11See Definition 2.1.3 (set patterns), page 26 and Definition 2.1.17 (data type), page 28.

44 CHAPTER 2. SYNTAX

Proof. We proceed by simultaneous induction on the derivations of Γ,∆ ` T
and Γ, ∆ ` t : T .

1. Assume ` Γ, y : W,∆ and Γ, ∆ ` T . We have the following cases:

(a)
` Γ, ∆

Γ, ∆ ` Set
In this case Γ, y : W,∆ ` Set follows by definition from ` Γ, y : W,∆.

(b)
Γ, ∆ ` u : Set
Γ, ∆ ` El u

By induction (2) we have Γ, y : W,∆ ` u : Set.
By definition then Γ, y : W,∆ ` El u holds.

(c)
Γ,∆, x : U ` V

Γ, ∆ ` (x : U) → V

By Corollary 2.3.7, we have Γ, ∆ ` U in a sub-derivation of
Γ, ∆, x : U ` V .
By assumption ` Γ, y : W,∆. Assume w.l.o.g. x 6∈ supp(Γ, y : W,∆).
Then ` Γ, y : W,∆, x : U .
By induction (1) we have Γ, y : W,∆, x : U ` V .
By definition then Γ, y : W,∆ ` (x : U) → V .

2. Assume ` Γ, y : W,∆ and Γ, ∆ ` t : T . We have the following cases:

(a)
` Γ, ∆

Γ, ∆ ` x : (Γ, ∆)(x)
By assumption ` Γ, y : W,∆. Then since Γ, y : W,∆ is disjoint, we
have y 6= x, and so (Γ, ∆)(x) = (Γ, y : W,∆)(x).
Hence Γ, y : W,∆ ` x : (Γ, ∆)(x).

(b)
Γ, ∆ ` t : U Γ, ∆ ` T

Γ,∆ ` t : T
U ./ T

By induction (2) we have Γ, y : W,∆ ` t : U .
By induction (1) we have Γ, y : W,∆ ` T .
By definition then Γ, y : W,∆ ` t : T .

(c)
Γ, ∆ ` u : (x : U) → V Γ, ∆ ` v : U

Γ, ∆ ` u v : V [v/x]
By induction (2) we have Γ, y : W,∆ ` u : (x : U) → V .
By induction (2) we have Γ, y : W,∆ ` v : U .
By definition then Γ, y : W,∆ ` u v : V [v/x].

2.4. PROPERTIES OF THE TYPE SYSTEM 45

(d)
Γ,∆, x : U ` v : V

Γ,∆ ` λx.v : (x : U) → V

By Corollary 2.3.7, we have Γ, ∆ ` U in a sub-derivation of
Γ,∆, x : U ` v : V .
By assumption ` Γ, y : W,∆. Assume w.l.o.g. x 6∈ supp(Γ, y : W,∆).
Then ` Γ, y : W,∆, x : U .
By induction (2) we have Γ, y : W,∆, x : U ` v : V .
By definition then Γ, y : W,∆ ` λx.v : (x : U) → V .

(e)
` Γ,∆

Γ,∆ ` f : F(f)
In this case Γ, y : W,∆ ` t : T follows by definition from ` Γ, y : W,∆.

(f)
` Γ, ∆

Γ,∆ ` d : D(d)
In this case Γ, y : W,∆ ` t : T follows by definition from ` Γ, y : W,∆.

(g)
` Γ, ∆ Γ, ∆ ` u1 : Set . . . Γ, ∆ ` uk : Set

Γ,∆ ` c : C(c)[u1, . . . , uk]

D(d) = Setk → Set
C(c) = (El e1, . . . , El en)

→ El (d x1 . . . xk)
FV (ei) ⊆ {x1, . . . , xk}

By induction (2) we have Γ, y : W,∆ ` ui : Set. Then by definition
Γ, y : W,∆ ` c : C(c)[u1, . . . , uk].

(h)
` Γ, ∆

Γ,∆ ` Π : (x : Set, El x → Set) → Set
In this case Γ, y : W,∆ ` t : T follows by definition from ` Γ, y : W,∆.

(i)
Γ,∆ ` u : Set Γ, ∆ ` v : El u → Set

Γ,∆ ` fun : ((x : El u) → El (v x)) → El (Π u v)
x 6∈ FV (v)

By induction (2) we have Γ, y : W,∆ ` u : Set and
Γ, y : W,∆ ` v : El u → Set.
By definition then Γ, y : W,∆ ` fun : ((x : El u) → El (v x)) → El (Π u v).

Corollary 2.4.2 (Weakening).

1. Γ ` T ∧ ` Γ, x : U ⇒ Γ, x : U ` T

2. Γ ` t : T ∧ ` Γ, x : U ⇒ Γ, x : U ` t : T

46 CHAPTER 2. SYNTAX

2.4.2 Well-typed substitution

Definition 2.4.3 (Context map).
We will write γ : ∆ → Γ, to denote ∀x ∈ supp(Γ) . ∆ ` γ(x) : Γ(x) γ

The notation12 γ : ∆ → Γ may be read as “ γ is a realization of Γ with respect
to ∆” or alternatively “ γ is a context map from ∆ to Γ” .

Lemma 2.4.4 (Substitution lemma).
If ` ∆ and γ : ∆ → Γ then

1. Γ ` T ⇒ ∆ ` T γ

2. Γ ` t : T ⇒ ∆ ` t γ : T γ

Proof. We proceed by simultaneous induction on the derivations of Γ ` T and
Γ ` t : T . We have the following cases:

1. Assume ` ∆, γ : ∆ → Γ and Γ ` T . We have the following cases:

(a)
` Γ

Γ ` Set
We have ` ∆ by assumption. Then ∆ ` Set holds by definition.

(b)
Γ ` u : Set
Γ ` El u

By induction (2) we have ∆ ` u γ : Set.
By definition then ∆ ` El u γ.

(c)
Γ, x : U ` V

Γ ` (x : U) → V

By Corollary 2.3.7 we have Γ ` U as a sub-derivation of the premise.
By induction (1) then ∆ ` U γ. Assume w.l.o.g. that x 6∈ supp(∆),
γ(x) = x and x is fresh for V, x, γ.
We verify first that γ : (∆, x : U γ) → (Γ, x : U) holds as follows: By
above we have ` ∆, x : U γ. By Definition 2.3.1 (Type inhabitation,
variable rule) we have ∆, x : U γ ` x : U γ. We have U γ = (Γ, x :
U γ)(x) and γ(x) = x, and then ∆, x : U γ ` γ(x) : (Γ, x : U)(x) γ
holds.
Then we verify that ∆, x : U γ ` γ(y) : (Γ, x : U)(y) γ holds for y
such that y 6= x and y ∈ supp(Γ) as follows: We have by assumption
that ∆ ` γ(y) : Γ(y) γ holds.
By Corollary 2.4.2 (Weakening) we have ∆, x : U γ ` γ(y) : Γ(y) γ.
But (Γ, x : U)(y) = Γ(y), and then ∆, x : U γ ` γ(y) : (Γ, x : U)(y) γ
holds.

12The notation can be found in Cartmell (1986) and Martin-Löf’s substitution calculus
(Martin-Löf, 1992).

2.4. PROPERTIES OF THE TYPE SYSTEM 47

Thus, ∀z ∈ supp(Γ, x : U) . ∆, x : U γ ` γ(z) : (Γ, x : U)(z) γ holds,
which means γ : (∆, x : U γ) → (Γ, x : U).
By induction (1) then ∆, x : U γ ` V γ.
By definition we get ∆ ` Fun (U γ) (λx.V γ).
By assumption x is fresh for V, x, γ and γ(x) = x.
By substitution we have λx.(V γ) = (λx.V) γ.
Then ∆ ` (Fun U (λx.V)) γ.

2. Assume ` ∆, γ : ∆ → Γ and Γ ` t : T . We have the following cases:

(a)
` Γ

Γ ` x : Γ(x)
We have γ : ∆ → Γ by assumption. By Definition 2.4.3 (Context
map) then ∆ ` γ(x) : Γ(x)γ.

(b)
Γ ` t : U Γ ` T

Γ ` t : T
U ./ T

By induction (2) we have ∆ ` t γ : U γ and ∆ ` T γ. From U ./ T
and Proposition 2.2.17 we have U γ ./ T γ. By definition then
∆ ` t γ : T γ.

(c)
Γ ` u : (x : U) → V Γ ` v : U

Γ ` u v : V [v/x]
By induction (2) we have
∆ ` u γ : ((x : U) → V) γ and ∆ ` v γ : U γ.
Assume w.l.o.g. x is fresh for V, x, γ and γ(x) = x.
Then (λx.V) γ = λx.(V γ). Then ∆ ` u γ : (x : U γ) → V γ.
By definition ∆ ` (u γ)(v γ) : V γ[v γ/x].
From the assumption about x we have V γ[v γ/x] = V [v/x] γ.
Then ∆ ` (u v) γ : V [v/x] γ.

(d)
Γ, x : U ` v : V

Γ ` λx.v : (x : U) → V

By Corollary 2.3.7 we have Γ ` U as a sub-derivation of the premise.
By induction (1) then ∆ ` U γ. Assume w.l.o.g. x 6∈ supp(∆), x is
fresh for v, x, γ, x is fresh for V, x, γ and γ(x) = x.
We verify first that γ : (∆, x : U γ) → (Γ, x : U) holds as follows: By
above we have ` ∆, x : U γ. By Definition 2.3.1 (Type inhabitation,
variable rule) we have ∆, x : U γ ` x : U γ. We have U γ = (Γ, x :
U γ)(x) and γ(x) = x, and then ∆, x : U γ ` γ(x) : (Γ, x : U)(x) γ
holds.
Then we verify that ∆, x : U γ ` γ(y) : (Γ, x : U)(y) γ holds for y
such that y 6= x and y ∈ supp(Γ). We have by assumption that
∆ ` γ(y) : Γ(y) γ holds.

48 CHAPTER 2. SYNTAX

By Corollary 2.4.2 (Weakening) we have ∆, x : U γ ` γ(y) : Γ(y) γ.
But (Γ, x : U)(y) = Γ(y), and then ∆, x : U γ ` γ(y) : (Γ, x : U)(y) γ
holds.
Thus, ∀z ∈ supp(Γ, x : U) . ∆, x : U γ ` γ(z) : (Γ, x : U)(z) γ holds,
which means γ : (∆, x : U γ) → (Γ, x : U).
By induction (2) then ∆, x : U γ ` v γ : V γ.
By definition we get ∆ ` λx.(v γ) : Fun (U γ) (λx.V γ).
By assumption x is fresh for v, x, γ, x is fresh for V, x, γ and
γ(x) = x. By substitution we have λx.(v γ) = (λx.v) γ and
λx.(V γ) = (λx.V) γ. Then ∆ ` (λx.v) γ : (Fun U (λx.V)) γ.

(e)
` Γ

Γ ` f : F(f)
From ` ∆, both t closed and T closed we have ∆ ` t γ : T γ by
Definition 2.3.1 (Type inhabitation).

(f)
` Γ

Γ ` d : D(d)
From ` ∆, both t closed and T closed we have ∆ ` t γ : T γ by
Definition 2.3.1 (Type inhabitation).

(g)
` Γ Γ ` u1 : Set . . . Γ ` uk : Set

Γ ` c : C(c)[u1, . . . , uk]

D(d) = Setk → Set
C(c) = (El e1, . . . , El en)

→ El (d x1 . . . xk)
FV (ei) ⊆ {x1, . . . , xk}

By induction (2) then ∆ ` ui γ : Set. By Definition 2.3.1 (Type in-
habitation, constructor rule) we have ∆ ` c γ : C(c)[u1γ, . . . , ukγ],
which is equivalent to ∆ ` c γ : C(c)[u1, . . . , uk]γ.

(h)
` Γ

Γ ` Π : (x : Set, El x → Set) → Set
From ` ∆, both t closed and T closed we have ∆ ` t γ : T γ by
Definition 2.3.1 (Type inhabitation).

(i)
Γ ` u : Set Γ ` v : El u → Set

Γ ` fun : ((x : El u) → El (v x)) → El (Π u v)
x 6∈ FV (v)

By induction (2) then ∆ ` u γ : Set and ∆ ` v γ : El (u γ) → Set.
Assume w.l.o.g. x 6∈ FV (v γ), and γ(x) = x.
By Definition 2.3.1 (Type inhabitation) for ‘fun’, we have ∆ ` fun γ :
((x : El (u γ)) → El ((v γ) x)) → El (Π (u γ) (v γ)) which is equiv-
alent to ∆ ` fun γ : (((x : El u) → El (v x)) → El (Π u v)) γ

2.4. PROPERTIES OF THE TYPE SYSTEM 49

2.4.3 From neighbourhoods to context maps

Lemma 2.4.5 (Composition of context maps).
` Θ ∧ γ : Θ → ∆ ∧ δ : ∆ → Γ ⇒ δγ : Θ → Γ

Proof. Assume ` Θ, γ : Θ → ∆ and δ : ∆ → Γ. Assume given x ∈ supp(Γ).
From δ : ∆ → Γ we have ∆ ` δ(x) : Γ(x)δ. From ` Θ, γ : Θ → ∆ and Lemma
2.4.4 (Substitution lemma) we have Θ ` δ(x)γ : Γ(x)δγ.

Lemma 2.4.6. ∆ α−→ Γ ⇒ α : ∆ → Γ.

Proof. Assume ∆ α−→ Γ. By Definition 2.3.11 we have ` ∆ and ` Γ. We have
Γ of the form Γ1, xk : Tk, Γ2 and ∆ is Γ1, Γ′,Γ2α, α = [p/xk], where Γ′ depends
on α and Tk. We verify α : ∆ → Γ by verifying α : ∆ → Γ1, α : ∆ → xk : Tk

and α : ∆ → Γ2 in turn.
For Γ1 it is direct.
For xk : Tk, from ` ∆, and Definition 2.3.1 (Type inhabitation), when α(xk)

is a variable we use the variable rule, and when in constructor form, we use the
conversion rule to get ∆ ` α(xk) : Γ(xk)α for the corresponding forms of α.

For Γ2, from ` ∆, by the variable rule we get ∆ ` α(x) : Γ(x)α for all
x ∈ supp(Γ2), since these are actually the parts of ∆.

50 CHAPTER 2. SYNTAX

Lemma 2.4.7. ∆ τ−→ Γ ⇒ τ : ∆ → Γ.

Proof. By induction on the derivation of ∆ τ−→ Γ.

• Γ
[]−→ Γ.

Direct.

•
∆ τ ′−→ Γ′ Γ′ α−→ Γ

∆ α τ ′−→ Γ
By Lemma 2.4.6 we have α : Γ′→Γ. By induction from ∆ τ ′−→ Γ′ we have
τ ′ : ∆→Γ′. By Lemma 2.4.5 then ατ ′ : ∆→Γ.

2.4.4 Generation lemma

Lemma 2.4.8. If ` Σ and Γ ` t : T then Γ ` T .

Proof. By induction on the derivation and Definition 2.3.17, in the case of con-
stants. It also uses Corollary 2.4.2 (Weakening) and Lemma 2.4.4 (Substitution
lemma) for the application case.

Lemma 2.4.9 (Generation lemma).

1. Γ ` x : T ⇒ T ./ Γ(x)

2. Γ ` t u : T ⇒
∃U, V . Γ ` t : (x : U) → V ∧ Γ ` u : U ∧ T ./ V [u/x]

3. Γ ` λx.v : T ⇒ ∃U, V . T ./ (x : U) → V ∧ Γ, x : U ` v : V

4. Γ ` d : T ⇒ T = D(d)

5. Γ ` c : T ⇒ ` Γ ∧ T ./ C(c)[u1, . . . , uk] ∧ Γ ` ui : Set

6. Γ ` f : T ⇒ ` Γ ∧ T ./ F(f)

7. Γ ` Π : T ⇒ ` Γ ∧ T ./ (x : Set, El x → Set) → Set

8. Γ ` fun : T ⇒
T ./ ((x : El t) → El (u x)) → El (Π t u) ∧
x 6∈ FV (u) ∧ Γ ` t : Set ∧ Γ ` u : El t → Set

Proof. By induction on the derivations and conversion. Case 4 uses Remark
2.2.19.

2.4. PROPERTIES OF THE TYPE SYSTEM 51

Lemma 2.4.10 (Strong generation lemma). If Γ ` λx.v : T holds, then
T is of the form (x : U) → V where Γ, x : U ` v : V holds.

Proof. By induction on the derivation of Γ ` λx.v : T .
We have two possible cases:

•
Γ, x : U ` v : V

Γ ` λx.v : (x : U) → V

Here T = (x : U) → V and the premise give our goal directly.

•
Γ ` λx.v : T ′ Γ ` T

Γ ` λx.v : T
T ′ ./ T

By induction we have T ′ = (x : U ′) → V ′ and Γ, x : U ′ ` v : V ′.

By Remark 2.2.21 we have T of the form (x : U) → V , and then U ./ U ′

and V ./ V ′.

By Lemma 2.3.4 (Type-formation inversion) for the premise Γ ` T we
have Γ, x : U ` V , and from Lemma 2.3.6 we also have ` Γ, x : U . Now
suppose that [] : Γ, x : U → Γ, x : U ′ holds. Then by Lemma 2.4.4 we
have Γ, x : U ` v : V ′. By conversion from Γ, x : U ` V and V ./ V ′ we
get Γ, x : U ` v : V .

It remains to verify [] : Γ, x : U → Γ, x : U ′.

For y ∈ supp(Γ), y 6= x, we have Γ, x : U ` y : (Γ, x : U ′)(y), since
` Γ, x : U and (Γ, x : U ′)(y) = Γ(y) = (Γ, x : U)(y).

For x we show Γ, x : U ` x : (Γ, x : U ′)(x) as follows:

From previously we have Γ, x : U ′ ` v : V ′, and by Corollary 2.3.7 we have
Γ ` U ′. By Corollary 2.4.2 (Weakening) and ` Γ, x : U we have Γ, x : U `
U ′. From ` Γ, x : U we also have Γ, x : U ` x : U , and from U ./ U ′ and
the conversion rule we have Γ, x : U ` x : U ′.

2.4.5 Iterated inversion properties

Lemma 2.4.11 (Typing iterated application).
If Γ ` t : (x1 : T1, . . . , xn : Tn) → T , and

Γ ` t1 : T1, . . . , Γ ` tn : Tn[t1, . . . , tn−1]
then Γ ` t t1 . . . tn : T [t1, . . . , tn].

Proof. By Lemma 2.4.4 (Substitution lemma).

Lemma 2.4.12 (Generation for iterated application).
If ` Σ and Γ ` t t1 . . . tn : T then there is U,U1, . . . , Un such that
Γ ` t : (x1 : U1, . . . , xn : Un) → U , Γ ` ti : Ui[t1, . . . , ti−1] and
T ./ U [t1, . . . , tn].

52 CHAPTER 2. SYNTAX

Proof. Assume ` Σ and Γ ` t t1 . . . tn : T . We proceed by induction on n.
If n = 0 we are done, otherwise the derivation is of the form
Γ ` (t t1 . . . tn−1) tn : T , and by generation there are Vn, V such that

Γ ` t t1 . . . tn−1 : (xn : Vn) → V , Γ ` tn : Vn and T ./ V [tn/xn]. (2.1)

Assume13 w.l.o.g. that xn 6∈ FV (t1, . . . , tn−1).
By induction there are V1, . . . , Vn−1, V

′ such that

Γ ` t : (x1 : V1, . . . , xn−1 : Vn−1) → V ′ , (2.2)
Γ ` t1 : V1, . . . , Γ ` tn−1 : Vn−1[t1, . . . , tn−2] and (2.3)

(xn : Vn) → V ./ V ′[t1, . . . , tn−1]. (2.4)

From (2.4) there are V ′
n, V ′′ such that

V ′ = (xn : V ′
n) → V ′′. (2.5)

Then
Vn ./ V ′

n[t1, . . . , tn−1] and V ./ V ′′[t1, . . . , tn−1]. (2.6)

From (2.5) then

(x1 : V1, . . . , xn−1 : Vn−1) → V ′ =
(x1 : V1, . . . , xn−1 : Vn−1, xn : V ′

n) → V ′′. (2.7)

From (2.1) we have T ./ V [tn/xn], and from (2.6) we have
V ./ V ′′[t1, . . . , tn−1], then V [tn/xn] ./ V ′′[t1, . . . , tn−1][tn/xn].
By the assumption made at (2.1) we have xn 6∈ FV (t1, . . . , tn−1),
and we obtain T ./ V ′′[t1, . . . , tn]. From (2.7) and (2.2) we have

Γ ` t : (x1 : V1, . . . , xn−1 : Vn−1, xn : V ′
n) → V ′′. (2.8)

Recall from (2.3) we have

Γ ` t1 : V1, . . . , Γ ` tn−1 : Vn−1[t1, . . . , tn−2] (2.9)

Then

[t1/x1, . . . , tn−1/xn−1] : Γ → Γ, x1 : V1, . . . , xn−1 : Vn−1

From ` Σ, (2.8) and Lemma 2.4.8 we get

Γ ` (x1 : V1, . . . , xn−1 : Vn−1, xn : V ′
n) → V ′′

and then from Lemma 2.3.5 we get

Γ, x1 : V1, . . . , xn−1 : Vn−1 ` V ′
n

By Lemma 2.4.4 (Substitution lemma) we get Γ ` V ′
n[t1, . . . , tn−1]. From (2.1)

we have Γ ` tn : Vn and from (2.6) Vn ./ V ′
n[t1, . . . , tn−1]. By Definition 2.3.1

(Type inhabitation, conversion rule), we have Γ ` tn : V ′
n[t1, . . . , tn−1], which

completes the proof.

13Recall from Remark 2.2.5 (α-equivalence), page 29 that terms that differ only in the names
of their bound variables are identified.

2.4. PROPERTIES OF THE TYPE SYSTEM 53

Lemma 2.4.13. If ` Σ then

1. Γ ` c t1 . . . tn : El (d ~u) ⇒ Γ ` ti : El (ei[~u]),
where C(c) = (El e1, . . . , El en) → El (d ~z).

2. Γ ` El (d ~u) ⇒ Γ ` ui : Set.

Proof. By Lemma 2.4.12 and conversion.

Lemma 2.4.14.

1. Γ ` El (Π t u) ⇒ Γ ` (x : El t) → El (u x),
with x 6∈ FV (u).

2. Γ ` fun v : El (Π t u) ⇒ Γ ` v : (x : El t) → El (u x),
with x 6∈ FV (u).

Proof of 1. Assume Γ ` El (Π t u). By inversion Γ ` Π t u : Set. By iterated
inversion then Γ ` t : Set and Γ ` u : El t → Set is derivable. By inversion
Γ ` El t. Assume w.l.o.g. that x 6∈ supp(Γ), then we have ` Γ, x : El t. We have
then Γ, x : El t ` x : El t. By Corollary 2.4.2 (Weakening) we have Γ, x : El t `
u : El t → Set. We can derive

Γ, x : El t ` u : El t → Set Γ, x : El t ` x : El t

Γ, x : El t ` u x : Set
Γ, x : El t ` El (u x)

Γ ` (x : El t) → El (u x)

Proof of 2. Similar as above.

2.4.6 Inversion of neighbourhoods

Lemma 2.4.15 (Inversion of atomic neighbourhood).
` Σ ∧ ∆ α−→ Γ ∧ (αγ) : Θ → Γ ⇒ γ : Θ → ∆.

Proof. Assume ` Σ, ∆ α−→ Γ and (αγ) : Θ → Γ.
Let Γ = (x1 : T1, . . . , xn : Tn). We have

Θ ` (αγ)(x1) : T1(αγ), . . . , Θ ` (αγ)(xn) : Tn(αγ). (2.10)

We have to show ∀y ∈ supp(∆) . Θ ` γ(y) : ∆(y)γ. From ∆ α−→ Γ and Defi-
nition 2.3.11 (Atomic neighbourhood), we have Γ of the form (Γ1, xk : Tk, Γ2)
and ∆ given by (Γ1,Γ′, Γ2α), where Γ′ depends on α and Tk. Note that since Γ
is closed, we have for l ≤ k that xk 6∈ FV (Tl) holds, and then

Tl(αγ) = Tlγ. (2.11)

We verify our goal for Γ1, Γ′ and Γ2α separately:

54 CHAPTER 2. SYNTAX

1. For Γ1, and xi ∈ {x1, . . . , xk−1}:
From (2.11) we have Ti(αγ) = Tiγ. Since Γ is disjoint, xi 6= xk, so
α(xi) = xi, and then (αγ)(xi) = γ(xi). Then, from (2.10), we have
Θ ` γ(x1) : T1γ through Θ ` γ(xk−1) : Tk−1γ. By Definition 2.4.3 then

γ : Θ → Γ1. (2.12)

2. For Γ′:

(a) For α of the form [y/xk]:
We have [y/xk]γ : Θ → Γ. In this case Γ′ is (y : Tk), and we
have to show Θ ` γ(y) : Tkγ. From (2.10) we have Θ ` (αγ)(xk) :
Tk(αγ). From (2.11) we have Tk(αγ) = Tkγ. By substitution we
have (αγ)(xk) = γ(y). Hence Θ ` γ(y) : Tkγ holds.

(b) For α of the form [fun y/xk]:
We have Tk ./ El (Π t u) and Γ1 ` El (Π t u). In this case Γ′

is (y : (z : El t) → El (u z)) with z 6∈ FV (u). From (2.10) we
have Θ ` (αγ)(xk) : Tk(αγ). We have (αγ)(xk) = fun(γ(y)) and
from (2.11) we have Tk(αγ) = Tkγ, hence Θ ` fun(γ(y)) : Tkγ.
From Γ1 ` El (Π t u), ` Θ and (2.12), by Lemma 2.4.4 (Sub-
stitution lemma) we have Θ ` El (Π t u)γ. By substitution we
have Θ ` El (Π(tγ)(uγ)). From Tk ./ El (Π t u) we have Tkγ ./
El (Π (tγ)(uγ)). By Definition 2.3.1 (Type inhabitation, conversion
rule), then Θ ` fun(γ(y)) : El (Π (tγ) (uγ)). By Lemma 2.4.14 then
Θ ` γ(y) : (z : El (t γ)) → El ((u γ) z), with z 6∈ FV (u γ). Then we
have (z : El (t γ)) → El ((u γ) z) = ((z : El t) → El (u z)) γ, and so
Θ ` γ(y) : ((z : El t) → El (u z)) γ.

(c) For α of the form [c y1 . . . ym/xk]:
We have C(c) = (El e1, . . . , El em) → El (d ~z), Tk = El (d ~t), and
Γ1 ` El (d ~t). In this case Γ′ is (y1 : El e1[~t], . . . , ym : El em[~t]).
From (2.10) we have Θ ` (αγ)(xk) : Tk(αγ). We have (αγ)(xk) =
c y1γ . . . ymγ. From (2.11) we have Tk(αγ) = Tkγ, and then
Θ ` c y1γ . . . ymγ : Tkγ holds. From Γ1 ` El (d ~t), ` Θ and
(2.12), by Lemma 2.4.4 (Substitution lemma) we have Θ ` El (d ~t)γ.
From Tk ./ El (d ~t) we have Tkγ ./ El (d ~t)γ.
By Definition 2.3.1 (Type inhabitation, conversion rule) we have
Θ ` c y1γ . . . ynγ : El (d ~t)γ. By assumption we have ` Σ, and by
Lemma 2.4.13 we have
Θ ` γ(y1) : El (e1[~t])γ through Θ ` γ(ym) : El (em[~t])γ.

3. For Γ2α, and xi ∈ {xk+1, . . . , xn}:
Since Γ is disjoint, we have xi 6= xk, so α(xi) = xi, and then (αγ)(xi) =
γ(xi). We have Ti(αγ) = (Tiα)γ, and then from (2.10), we have
Θ ` γ(xk+1) : (Tk+1α)γ through Θ ` γ(xn) : (Tnα)γ.

2.4. PROPERTIES OF THE TYPE SYSTEM 55

Lemma 2.4.16 (Inversion of compound neighbourhood).
` Σ ∧ ∆ τ−→ Γ ∧ (τ γ) : Θ → Γ ⇒ γ : Θ → ∆.

Proof. Assume ` Σ, ∆ τ−→ Γ and (τ γ) : Θ → Γ.
We proceed by induction on the derivation of ∆ τ−→ Γ.

1. Γ
[]−→ Γ

In this case we have ∆ = Γ, and then γ : Θ → ∆.

2.

∆ τ ′−→ Γ′ Γ′ α−→ Γ

∆ α τ ′−→ Γ
We have (α τ ′)γ : Θ → Γ.

By associativity of substitution we have (α τ ′) γ equivalent to α (τ ′ γ),
and then α (τ ′ γ) : Θ → Γ. By assumption we have ` Σ, and from

Γ′ α−→ Γ and Lemma 2.4.15 then (τ ′ γ) : Θ → Γ′. Then, from ∆ τ ′−→ Γ′

and induction we have γ : Θ → ∆.

Lemma 2.4.17. If ∆
[~p ,~q /~x ,~y]−→ Γ1, Γ2, |~p | = |~x | and ~x = −−→supp(Γ1), then

there are ∆1 and ∆2 such that ∆ = ∆1, ∆2 where ∆1
[~p /~x]−→ Γ1.

Proof. By induction on the derivation of ∆
[~p ,~q /~x ,~y]−→ Γ.

2.4.7 Subject reduction

Lemma 2.4.18 (Subject reduction). If ` Σ then

1. If Γ ` T and T Ã U then Γ ` U .

2. If Γ ` t : T and t Ã u then Γ ` u : T .

Proof of 2. Assume ` Σ, Γ ` t : T and t Ã t′. We proceed by induction on
the derivation of t Ã t′.

1. (λx.v) u Ãβ v[u/x]

By Lemma 2.4.9 (Generation lemma) there is U and V such that Γ ` u : U ,
Γ ` λx.v : (x : U) → V , and T ./ V [u/x].

By Lemma 2.4.10 (Strong generation lemma), from Γ ` λx.v : (x : U) → V
we have Γ, x : U ` v : V . From Corollary 2.3.7 we have Γ ` U , and from
Lemma 2.3.6 we have ` Γ, x : U and x 6∈ supp(Γ). For xi ∈ supp(Γ) we
have Γ ` [u/x](xi) : (Γ, x : U)(xi), because [u/x](xi) = xi and (Γ, x :
U)(xi) = (Γ)(xi). For x we have Γ ` [u/x](x) : (Γ, x : U)(x), because
[u/x](x) = u and (Γ, x : U)(x) = U . Thus [u/x] : Γ → Γ, x : U .

From Γ, x : U ` v : V and Lemma 2.4.4 (Substitution lemma) we have
Γ ` v[u/x] : V [u/x].

56 CHAPTER 2. SYNTAX

From ` Σ, Γ ` t : T and Lemma 2.4.8 we have Γ ` T . By Definition 2.3.1
(Type inhabitation, conversion rule) we get Γ ` v[u/x] : T .

2. (f p1 . . . pn) γ Ãι (λ~y .s) γ

{
f p1 . . . pn ~y = s ∈ R
pn is not a variable

We have F(f) of the form Γ1,Γ2 → U , where Γ1 = (x1 : U1, . . . , xn : Un),
Γ2 = (xn+1 : Un+1, . . . , xn+m : Un+m) and ar(f) = n + m.

Let ~p = (p1, . . . , pn). Recall ~y = (y1, . . . , ym).

From ` Σ, Γ ` f (p1γ) . . . (pnγ) : T and Lemma 2.4.12, Lemma 2.4.9
(Generation lemma) and conversion we have

Γ ` f : F(f), (2.13)
Γ ` p1γ : U1, . . . , Γ ` pnγ : Un[p1γ, . . . , pn−1γ], and (2.14)

T ./ ((xn+1 : Un+1, . . . , xn+m : Un+m) → U)[p1γ, . . . , pnγ]. (2.15)

From ` Σ we have ` F and ` R, and then there is ∆ such that14

∆
[~p ,~y]−→ Γ1, Γ2 ∧ ∆ ` s : U [~p ,~y]. (2.16)

By Lemma 2.4.17 we have ∆ = ∆1, ∆2 where

∆1
[~p]−→ Γ1 (2.17)

From (2.16) and by applying type inhabitation, the abstraction rule |~y |
times we get

∆1 ` λ~y .s : ∆2 → U [~p ,~y]. (2.18)

From (2.14) we have
Γ ` ~pγ : Γ1 (2.19)

and then from (2.17), (2.19), and the assumption ` Σ, by Lemma 2.4.16
(Inversion of compound neighbourhood) we get

γ : Γ → ∆1 (2.20)

and then from (2.18) and Lemma 2.4.4 (Substitution lemma) we get

Γ ` (λ~y .s) γ : (∆2 → U [~p ,~y]) γ

But since
(∆2 → U [~p ,~y]) γ = ((xn+1 : Un+1, . . . , xn+m : Un+m) → U)[p1γ, . . . , pnγ],
we have from (2.15) that T ./ (∆2 → U [~p ,~y]) γ holds.

By conversion of typing we get

Γ ` (λ~y .s) γ : T

14Recall Notation 2.3.14, page 40.

2.4. PROPERTIES OF THE TYPE SYSTEM 57

3.
v Ã v′

λx.v Ã λx.v′

By Lemma 2.4.10 (Strong generation lemma), T is of the form (x : U) → V
where Γ, x : U ` v : V holds. From v Ã v′ and induction then Γ, x : U `
v′ : V . By Definition 2.3.1 (Type inhabitation, abstraction rule) we have
Γ ` λx.v′ : (x : U) → V .

4.
v Ã v′

v u Ã v′ u

By Lemma 2.4.9 (Generation lemma), there is U and V such that
Γ ` v : (x : U) → V , Γ ` u : U , and T ./ V [u/x]. From v Ã v′

and induction we have Γ ` v′ : (x : U) → V . By Definition 2.3.1 (Type
inhabitation, application rule) we have Γ ` v′ u : V [u/x]. From ` Σ,
Γ ` v u : T and Lemma 2.4.8 we have Γ ` T . From T ./ V [u/x] and
Definition 2.3.1 (Type inhabitation, conversion rule) we get Γ ` v′ u : T .

5.
u Ã u′

v u Ã v u′

By Lemma 2.4.9 (Generation lemma), there is U and V such that Γ ` v :
(x : U) → V , Γ ` u : U , and T ./ V [u/x].

From u Ã u′ and induction we have Γ ` u′ : U . By Definition 2.3.1 (Type
inhabitation, application rule) we have Γ ` v u′ : V [u′/x]. From u Ã u′

and T ./ V [u/x] we have T ./ V [u′/x].

From ` Σ, Γ ` v u : T and Lemma 2.4.8 we have Γ ` T .

From T ./ V [u′/x] and Definition 2.3.1 (Type inhabitation, conversion
rule) we get Γ ` v u′ : T .

Proof of 1. Assume ` Σ, Γ ` T and T Ã T ′. We proceed by induction on
the derivation of T Ã T ′.

1.
t Ã t′

El t Ã El t′

By Lemma 2.3.4 (Type-formation inversion), from Γ ` El t, we have
Γ ` t : Set. From t Ã t′, by Lemma 2.4.18 (2) (Subject reduction,
inhabitation) we have Γ ` t′ : Set. By Definition 2.3.1 (Type formation)
we have Γ ` El t′.

2.
U Ã U ′

(x : U) → V Ã (x : U ′) → V

By Lemma 2.3.4 (Type-formation inversion), from Γ ` (x : U) → V , we
have Γ, x : U ` V . By Lemma 2.3.6 we have ` Γ, x : U as a sub-derivation.
By Corollary 2.3.7 we have Γ ` U as a sub-derivation, and x 6∈ supp(Γ).
From U Ã U ′, by induction we have Γ ` U ′.

By Definition 2.3.1 (Context formation) we have ` Γ, x : U ′.

58 CHAPTER 2. SYNTAX

We will now verify that [] : Γ, x : U ′ → Γ, x : U holds.

First we show for xi ∈ supp(Γ) that Γ, x : U ′ ` xi : (Γ, x : U)(xi) holds.
We have ` Γ, x : U ′ and (Γ, x : U)(xi) = Γ(xi) = (Γ, x : U ′)(xi).

Secondly, we show for x that Γ, x : U ′ ` x : (Γ, x : U)(x) holds. We have
` Γ, x : U ′. Then Γ, x : U ′ ` x : U ′. From Γ ` U , ` Γ, x : U ′ and
Corollary 2.4.2 (Weakening) we have Γ, x : U ′ ` U . By U ′ ./ U and the
conversion rule we have Γ, x : U ′ ` x : U . We have (Γ, x : U)(x) = U , so
we have Γ, x : U ′ ` x : (Γ, x : U)(x).

From [] : Γ, x : U ′ → Γ, x : U , Γ, x : U ` V , by the Substitution Lemma
we obtain Γ, x : U ′ ` V .

By Definition 2.3.1 (Type formation) we have Γ ` (x : U ′) → V .

3.
V Ã V ′

(x : U) → V Ã (x : U) → V ′

By Lemma 2.3.4 (Type-formation inversion), from Γ ` (x : U) → V , we
have Γ, x : U ` V . From V Ã V ′ and induction we get Γ, x : U ` V ′. By
definition we get Γ ` (x : U) → V ′.

2.5 Type checking

2.5.1 A type checking relation

We will define a relation which can be shown equivalent to a fragment of Def-
inition 2.3.1 for β-normal terms. Since we have untyped abstractions, we have
decidable type correctness only for this fragment. Notice that normalization is
not required for this definition to be sound and complete with respect to Defini-
tion 2.3.1 (Typing), see below Lemma 2.5.2, page 59 and Corollary 2.5.6, page
64.

Instead of using this definition, one could have used Definition 2.3.1 (Typing)
for β-normal terms, and iterate typing of application and inversion properties.

In Section 5.1 we will show the decidability of this relation, which follows
from normalization. Convertibility is tested by normalizing the terms and com-
paring them syntactically.15

Two purposes Our type checking relation serves two purposes. The first is
the obvious one, to be a specification of how to type-check terms, being a basis
for an implementation of the system. The second purpose is of technical nature.
We are going to use it to connect well-typedness of defined constants with well-
founded recursion on the call instance relation in order to prove reducibility of
recursive constants. See Lemma 3.6.6, page 82.

15Recall this means up to α-convertibility.

2.5. TYPE CHECKING 59

Definition 2.5.1 (Type checking). The relations Γ ` s ↑ T and Γ ` S ↑ are
inductively defined as follows:16

1. Checking type inhabitation

(a)
Γ ` si ↑ Ti[s1, . . . , si−1]

Γ ` x s1 . . . sn ↑ U

{
Γ(x) = (x1 : T1, . . . , xn : Tn) → T
U ./ T [s1, . . . , sn]

(b)
Γ ` si ↑ Ti[s1, . . . , si−1]

Γ ` f s1 . . . sn ↑ U

{ F(f) = (x1 : T1, . . . , xn : Tn) → T
U ./ T [s1, . . . , sn]

(c)
Γ ` si ↑ Set

Γ ` d s1 . . . sn ↑ Set
D(d) = Setn → Set

(d)
Γ ` si ↑ El ei[u1, . . . , uk]

Γ ` c s1 . . . sn ↑ El u

C(c) = (El e1, . . . , El en)

→ El (d x1 . . . xk)
u Ã∗ d u1 . . . uk

(e)
Γ ` s1 ↑ Set Γ ` s2 ↑ El s1 → Set

Γ ` Π s1 s2 ↑ Set

(f)
Γ ` s ↑ (x : El t) → El (u x)

Γ ` fun s ↑ El v

{
v Ã∗ Π t u
x 6∈ FV (u)

(g)
Γ, x : U ` s ↑ V

Γ ` λx.s ↑ (x : U) → V
x 6∈ supp(Γ)

2. Checking type formation

(a) Γ ` Set ↑

(b)
Γ ` s ↑ Set
Γ ` El s ↑

(c)
Γ ` S1 ↑ Γ, x : S1 ` S2 ↑

Γ ` (x : S1) → S2 ↑
x 6∈ supp(Γ)

Note that in the side conditions of the cases 1d and 1f above, any number
of computation steps that gives the required form is accepted, so the result is
not necessarily the normal form. At this stage we do not need to know that the
reduction reaches normal form, and therefore we do not require it. However,
when proving decidability of type-correctness, we will need the normalization
property of well-typed terms to decide the existence of the desired forms.

2.5.2 Soundness of type checking

Lemma 2.5.2 (Soundness of type checking).
` Σ ∧ Γ ` T ∧ Γ ` s ↑ T ⇒ Γ ` s : T .

16Recall that S and s denotes the β-normal fragment of the language. See Definition 2.1.20,
page 28.

60 CHAPTER 2. SYNTAX

Proof. Assume ` Σ, Γ ` T and Γ ` s ↑ T . First note that from Γ ` T and
Lemma 2.3.6 we have

` Γ. (2.21)

We proceed by induction on s. The derivation of Γ ` s ↑ T gives the
following cases:

1.
Γ ` si ↑ Ui[s1, . . . , si−1]

Γ ` x s1 . . . sn ↑ T

{
Γ(x) = (y1 : U1, . . . , yn : Un) → U
T ./ U [s1, . . . , sn]

From (2.21) we get Γ ` Γ(x). From Lemma 2.3.5 we get
Γ ` U1, Γ, y1 : U1 ` U2 through Γ, y1 : U1, . . . , yn−1 : Un−1 ` Un,
and Γ, y1 : U1, . . . , yn : Un ` U .

From Γ ` U1 and induction we get Γ ` s1 : U1.

We have
[s1/y1] : Γ → Γ, y1 : U1

and by Lemma 2.4.4 (Substitution lemma) we have Γ ` U2[s1/y1]. By
induction for Γ ` s2 ↑ U2[s1/y1] we get Γ ` s2 : U2[s1/y1]. We proceed
similarly until we get

[s1/y1, . . . , sn−1/yn−1] : Γ → Γ, y1 : U1, . . . , yn−1 : Un−1

and by Lemma 2.4.4 (Substitution lemma) get Γ ` Un[s1, . . . , sn−1] and
by induction from Γ ` sn ↑ Un[s1, . . . , sn−1] obtain
Γ ` sn : Un[s1, . . . , sn−1].

By Lemma 2.4.11 we get Γ ` x s1 . . . sn : U [s1, . . . , sn]. By conversion
of typing we get Γ ` x s1 . . . sn : T .

2.
Γ ` si ↑ Ui[s1, . . . , si−1]

Γ ` f s1 . . . sn ↑ U

{ F(f) = (y1 : U1, . . . , yn : Un) → U
T ./ U [s1, . . . , sn]

From ` Σ we get ` F(f).

By iteration of Corollary 2.4.2 (Weakening) we get Γ ` F(f).

As in the last case we get by successively applying the substitution lemma
and induction

Γ ` s1 : U1 . . . Γ ` sn : Un[s1, . . . , sn−1]

By Lemma 2.4.11 and conversion we get Γ ` f s1 . . . sn : T .

3.
Γ ` si ↑ Set

Γ ` d s1 . . . sn ↑ Set
D(d) = Setn → Set

By assumption ` Γ, hence Γ ` Set and Γ ` d : Setn → Set.

By induction Γ ` si : Set.

By Lemma 2.4.11 we get Γ ` d s1 . . . sn : T .

2.5. TYPE CHECKING 61

4.
Γ ` si ↑ El ei[u1, . . . , uk]

Γ ` c s1 . . . sn ↑ El u

C(c) = (El e1, . . . , El en)

→ El (d y1 . . . yk)
u Ã∗ d u1 . . . uk

From Γ ` El u, u Ã∗ d u1 . . . uk and Lemma 2.4.18 (Subject reduction)
we have Γ ` El (d u1 . . . uk). By Lemma 2.4.12 then Γ ` ui : Set.

We have ` Γ, and by Definition 2.3.1 (Typing) we get
Γ ` c : C(c)[u1, . . . , uk]. By Lemma 2.3.5 we get Γ ` El ei[u1, . . . , uk].
By induction Γ ` si : El ei[u1, . . . , uk]. By Lemma 2.4.11 we get
Γ ` c s1 . . . sn : El (d u1 . . . uk), and by type inhabitation, conversion
rule we get Γ ` c s1 . . . sn : El u.

5.
Γ ` s1 ↑ Set Γ ` s2 ↑ El s1 → Set

Γ ` Π s1 s2 ↑ Set

From ` Γ we have Γ ` Set. By induction Γ ` s1 : Set. We have then
Γ ` El s1 → Set. By induction Γ ` s2 : El s1 → Set.

We have Γ ` Π : (x : Set, El x → Set) → Set.

By Lemma 2.4.11 we get Γ ` Π s1 s2 : Set

6.
Γ ` s1 ↑ (x : El t) → El (u x)

Γ ` fun s1 ↑ El v

{
v Ã∗ Π t u
x 6∈ FV (u)

From ` Γ we have Γ ` Π : (x : Set, El x → Set) → Set.

From Γ ` El v, v Ã∗ Π t u and Lemma 2.4.18 (Subject reduction) we
have Γ ` El (Π t u). By Lemma 2.4.14 we have Γ ` (x : El t) → El (u x).

By induction then Γ ` s1 : (x : El t) → El (u x). Since x 6∈ FV (u) we
have by definition Γ ` fun s1 : El (Π t u), and then by conversion we get
Γ ` fun s1 : El v.

7.
Γ, x : U ` s1 ↑ V

Γ ` λx.s1 ↑ (x : U) → V
x 6∈ supp(Γ)

From Γ ` (x : U) → V and Lemma 2.3.4 (Type-formation inversion) we
have Γ, x : U ` V .

By induction Γ, x : U ` s1 : V .

By Definition 2.3.1 (Typing) we get Γ ` λx.s1 : (x : U) → V .

62 CHAPTER 2. SYNTAX

Lemma 2.5.3 (Soundness of type formation checking).
` Σ ∧ ` Γ ∧ Γ ` S ↑ ⇒ Γ ` S

Proof. Assume ` Σ, ` Γ and Γ ` S ↑. We proceed by induction on S.
From Γ ` S ↑ we have the cases:

1. Γ ` Set ↑.
By assumption ` Γ, hence Γ ` Set.

2.
Γ ` s ↑ Set
Γ ` El s ↑ .

By assumption ` Γ, hence Γ ` Set. Then, by Lemma 2.5.2 we have
Γ ` s : Set. By definition then Γ ` El s.

3.
Γ ` S1 ↑ Γ, x : S1 ` S2 ↑

Γ ` (x : S1) → S2 ↑ x 6∈ supp(Γ)

By assumption ` Γ, and by induction then Γ ` S1. Since x 6∈ supp(Γ)
we have ` Γ, x : S1. By induction then Γ, x : S1 ` S2. By definition then
Γ ` (x : S1) → S2.

2.5.3 Completeness of type checking

Notation 2.5.4 (Equality for contexts). If −−→supp(Γ) = −−→supp(∆) then Γ ./ ∆
whenever Γ(x) ./ ∆(x) for all x ∈ supp(Γ).

Lemma 2.5.5 (Completeness of type checking with conversion).
If ` Σ then Γ ` s : T ∧ Γ ./ ∆ ∧ T ./ U ⇒ ∆ ` s ↑ U.

Proof. Assume ` Σ, Γ ` s : T , Γ ./ ∆ and T ./ U . We proceed by induction
on s, which may have the following forms:

• x s1 . . . sn.
By Lemma 2.4.12 there are V1, . . . , Vn and V such that
Γ ` x : (x1 : V1, . . . , xn : Vn) → V , Γ ` si : V [s1, . . . , si−1] and T ./
V [s1, . . . , sn]. By Lemma 2.4.9 (Generation lemma) then
(x1 : V1, . . . , xn : Vn) → V ./ Γ(x) holds.

Then Γ(x) is of the form x1 : V ′
1 , . . . , xn : V ′

n → V ′, with Vi ./ V ′
i and

V ./ V ′. From Γ ./ ∆ we have Γ(x) ./ ∆(x). Then ∆(x) is of the form
x1 : V ′′

1 , . . . , xn : V ′′
n → V ′′ with V ′

i ./ V ′′
i and V ′ ./ V ′′.

By transitivity of equality then Vi ./ V ′′
i and V ./ V ′′, and then

Vi[s1, . . . , si−1] ./ V ′′
i [s1, . . . , si−1] and

V [s1, . . . , sn] ./ V ′′[s1, . . . , sn] holds. From T ./ U and
T ./ V [s1, . . . , sn] we have U ./ V ′′[s1, . . . , sn].

By induction ∆ ` si ↑ V ′′
i [s1, . . . , si−1]. By Definition 2.5.1 (Type check-

ing) then ∆ ` x s1 . . . sn ↑ U .

2.5. TYPE CHECKING 63

• h s1 . . . sn, where n = ar(h).
By Lemma 2.4.12 there are V1, . . . , Vn and V such that
Γ ` h : (x1 : V1, . . . , xn : Vn) → V , Γ ` si : V [s1, . . . , si−1] and T ./
V [s1, . . . , sn]. We have the following forms of h:

– f .
By Lemma 2.4.9 (Generation lemma) then (x1 : V1, . . . , xn : Vn) →
V ./ F(f).
Then F(f) is of the form x1 : V ′

1 , . . . , xn : V ′
n → V ′ with Vi ./ V ′

i

and V ./ V ′.
Then Vi[s1, . . . , si−1] ./ V ′

i [s1, . . . , si−1] and
V [s1, . . . , sn] ./ V ′[s1, . . . , sn].
From T ./ U and
T ./ V [s1, . . . , sn] we have U ./ V ′[s1, . . . , sn].
By induction ∆ ` si ↑ V ′

i [s1, . . . , si−1]. By Definition 2.5.1 (Type
checking) then ∆ ` f s1 . . . sn ↑ U .

– d.
By Lemma 2.4.9 (Generation lemma) (x1 : V1, . . . , xn : Vn) → V =
D(d), with D(d) = Setn → Set. We have Vi[s1, . . . , si−1] = Set. By
induction ∆ ` si ↑ Set. Since T ./ U and T = Set we have U = Set.
By Definition 2.5.1 (Type checking) then ∆ ` d s1 . . . sn ↑ U .

– c.
From previously we know Γ ` c : (x1 : V1, . . . , xn : Vn) → V ,
Γ ` si : V [s1, . . . , si−1] and T ./ V [s1, . . . , sn].
C(c) is an independent function type of the form
(El e1, . . . , El en) → El (d y1 . . . yk).
By Lemma 2.4.9 (Generation lemma) for c we have
(x1 : V1, . . . , xn : Vn) → V ./
(x1 : El (e1[~u]), . . . , xn : El (en[~u])) → El (d ~u).
Then Vi ./ El (ei[~u]) and V ./ El (d ~u).
By the definition of equality there is ~v such that

Vi Ã∗ El (ei[~v]) and El (ei[~u]) Ã∗ El (ei[~v]),

V Ã∗ El (d ~v) and El (d ~u) Ã∗ El (d ~v).

Since C(c) is independent we have xi 6∈ FV (~v). We have
Vi[s1, . . . , si−1] Ã∗ El (ei[~v]) and V [s1, . . . , sn] Ã∗ El (d ~v).
From T ./ U and T ./ V [s1, . . . , sn] we have U ./ V [s1, . . . , sn].
From the definition of equality and that patterns are closed under
reduction there is ~w such that

U Ã∗ El (d ~w) and V [s1, . . . , sn] Ã∗ El (d ~w).

Then Vi[s1, . . . , si−1] ./ El (ei[~w]). We have U of the form El u
with u Ã∗ d ~w. By induction ∆ ` si ↑ El (ei[~w]). By Definition
2.5.1 (Type checking) then ∆ ` c s1 . . . sn ↑ U .

64 CHAPTER 2. SYNTAX

– Π.
By Lemma 2.4.9 (Generation lemma) T ./ (x1 : Set,El x1 → Set) →
Set. From Γ ` s1 : V1 and Γ ` s2 : V2[s1/x1] we know Γ ` s1 : Set
and Γ ` s2 : El s1 → Set.
By induction ∆ ` s1 ↑ Set and ∆ ` s2 ↑ El s1 → Set. Since U = Set
we have by definition that ∆ ` Π s1 s2 ↑ U .

– fun.
By Lemma 2.4.9 (Generation lemma) from Γ ` fun : (x1 : V1) → V
we have

(x1 : V1) → V ./ (x1 : (y : El t) → El (u y)) → El (Π t u)

with y 6∈ FV (u), Γ ` t : Set and Γ ` u : El t → Set.
We have V1 ./ (y : El t) → El (u y) and V ./ El (Π t u).
From U ./ T , T ./ V [s1/x1] and V ./ El (Π t u) we have U = El v
with t′, u′ such that v Ã∗ Π t′ u′ and Π t u Ã∗ Π t′ u′.
We have Γ ` s1 : V1 and V1 ./ (y : El t′) → El (u′ y). Since
y 6∈ FV (u) and u Ã∗ u′ we have y 6∈ FV (u′).
By induction ∆ ` s1 ↑ (y : El t′) → El (u′ y) and by definition then
∆ ` fun s1 ↑ El v.

• λx.s′.
By Lemma 2.4.10 (Strong generation lemma) we have T = (x : T1) → T2

and Γ, x : T1 ` s′ : T2. Since T ./ U we have U of the form (x : U1) → U2

where T1 ./ U1 and T2 ./ U2. Then Γ, x : T1 ./ ∆, x : U1. By induction
∆, x : U1 ` s′ ↑ U2. Assume w.l.o.g. that x 6∈ supp(Γ). By definition
∆ ` λx.s′ ↑ (x : U1) → U2.

Corollary 2.5.6 (Completeness of type checking).
` Σ ∧ Γ ` s : T ⇒ Γ ` s ↑ T

2.5. TYPE CHECKING 65

Lemma 2.5.7 (Completeness of type formation checking).
` Σ ∧ Γ ` S ⇒ Γ ` S ↑.
Proof. Assume ` Σ and Γ ` S. We proceed by induction on S. By inversion
of Definition 2.3.1 S is well-formed by the following derivations:

•
` Γ

Γ ` Set

By definition Γ ` Set ↑.

•
Γ ` s : Set
Γ ` El s

By Corollary 2.5.6 we have Γ ` s ↑ Set, and by definition Γ ` El s ↑.

•
Γ ` S1 Γ, x : S1 ` S2

Γ ` (x : S1) → S2

By induction we have Γ ` S1 ↑ and Γ, x : S1 ` S2 ↑. By definition then
Γ ` (x : S1) → S2 ↑.

66 CHAPTER 2. SYNTAX

Chapter 3

Semantics

In this chapter we introduce a semantic notion of reducibility1. We prove that
well-typed terms are reducible, if all defined constants are reducible. Then we
prove the latter condition provided that the call-instance relation (Definition
3.6.3) is well-founded.

3.1 Reducibility

3.1.1 Neutrality

Definition 3.1.1 (Neutral). Neutral terms are inductively defined by the
grammar

b ::= x t1 . . . tn where NF(ti)
| f t1 . . . tn where NF(f t1 . . . tn), n ≥ ar(f)

Notation 3.1.2. We write NEUTRAL(t) when t is neutral.

Remark 3.1.3. Neutral terms are normal. Note that the notion of neutrality, as
a consequence of its dependency of normality, is relative to the rules given in R.

Lemma 3.1.4. If NEUTRAL(t) and NF(u) then NEUTRAL(t u).

Proof. We consider Definition 3.1.1. If the head of t is a variable, we are done.
If it is a constant, this constant is at least fully applied, so we will not get a
redex by applying u.

3.1.2 Specification of reducibility

We postulate the existence of the semantic predicates having the forms RED(T)
and REDT (t). Later we will give an instantiation to show that the specification
is not vacuous.

1See the discussion in Section 1.5.3, page 20.

67

68 CHAPTER 3. SEMANTICS

Specification 3.1.5 (Reducible sets and elements). Given the data types
D, C and the rules R, we specify the predicate REDSet for sets, and a family of
predicates REDEl t indexed by terms t satisfying REDSet(t). We give clauses 1
and 2 mutually by induction-recursion.

1. REDSet(t) holds iff one the following conditions holds2

(a) ∃d, t1, . . . , tm .

t ⇓ d t1 . . . tm
D(d) = Setm → Set
REDSet(t1), . . . , REDSet(tm)

(b) ∃t1, t2 .

t ⇓ Π t1 t2
REDSet(t1)
∀v.RED(El t1)(v) ⇒ REDSet(t2 v)

(c) ∃b . t ⇓ b

2. If REDSet(t) holds, we specify for each of the possible cases, if:

(a) ∃d, t1, . . . , tm .

t ⇓ d t1 . . . tm
D(d) = Setm → Set
REDSet(t1), . . . , REDSet(tm)

then RED(El t)(u) holds iff one the following conditions holds3

i. ∃c, u1, . . . , un .

u ⇓ c u1 . . . un

C(c) = (El e1, . . . , El en) → El (d x1 . . . xm)
REDSet(ei[t1, . . . , tm]) ∧ RED(El ei[t1, ... ,tm])(ui)

ii. ∃b . u ⇓ b

(b) ∃t1, t2 .

t ⇓ Π t1 t2
REDSet(t1)
∀v.RED(El t1)(v) ⇒ REDSet(t2 v)

then RED(El t)(u) holds iff one the following conditions holds

i. ∃u′.{
u ⇓ fun u′

∀v.RED(El t1)(v) ⇒ RED(El (t2 v))(u′ v)
ii. ∃b . u ⇓ b

(c) ∃b . t ⇓ b,
then RED(El t)(u) holds whenever ∃b′ . u ⇓ b′.

2Recall from Notation 2.2.37 that t ⇓ u means “t normalizes to u”. Also recall that terms
of the form b are neutral, Definition 3.1.1, page 67.

3Recall that terms of the form e are first-order set patterns, Definition 2.1.3, page 26. See
also Definition 2.1.17 (Data type specification), page 28.

3.1. REDUCIBILITY 69

Definition 3.1.6 (Rank of raw types).
rank(Set) = 0
rank(El t) = 0

rank(Fun U (λx.V)) = 1 + max(rank(U), rank(V))

Remark 3.1.7. It is clear that the rank of a type is unaffected by reduction as
well as substitution.

Specification 3.1.8 (Reducibility).
We specify the predicate RED for types T by induction on rank(T), and for
each case for which RED(T) holds, we specify the predicate REDT .

1. RED(Set) holds,
and then REDSet(t) is given by Specification 3.1.5.

2. RED(El t) holds whenever REDSet(t) holds,
and then RED(El t)(u) is given by Specification 3.1.5.

3. RED(Fun U (λx.V)) holds whenever
RED(U) and ∀u.REDU (u) ⇒ RED(V [u/x]) holds,
and then RED(Fun U (λx.V))(t) holds whenever
∀u.REDU (u) ⇒ RED(V [u/x])(t u).

3.1.3 Examples

We illustrate by examples what it means to be a reducible set, and in such a
set, what it means to be a reducible element. Let us consider the example with
vectors of length n, from page 42. The expression Vec Bool (2 + 1) is reducible
in Set, which can be seen from its normalization sequence:

Vec Bool (2 + 1) Ã
Vec Bool 3 Ã
Bool×Vec Bool 2 Ã
Bool× (Bool×Vec Bool 1) Ã
Bool× (Bool× (Bool×Vec Bool 0)) Ã
Bool× (Bool× (Bool×>))

Informally we can infer

REDSet(Bool)
REDSet(Bool)

REDSet(Bool) REDSet(>)
REDSet(Bool×Vec Bool 0)

REDSet(Bool×Vec Bool 1)
REDSet(Bool×Vec Bool 2)

REDSet(Vec Bool 3)
REDSet(Vec Bool (2 + 1))

with the side conditions D(×) = Set2 → Set and D(Bool) = Set.

70 CHAPTER 3. SEMANTICS

We have RED(El (Vec Bool 3))(true, (and true false, ((λx.x) true, unit))) be-
cause (true, (and true false, ((λx.x) true, unit))) ⇓ (true, (false, (true, unit))) and
we can infer informally

RED(El Bool)(true)

RED(El Bool)(false)

RED(El Bool)(true) RED(El >)(unit)

RED(El (Vec Bool 1))(true,unit)

RED(El (Vec Bool 2))(false, (true, unit))

RED(El (Vec Bool 3))(true, (false, (true, unit)))

with the side conditions C(,) = (El x, El y) → El (x× y) , C(true) = El Bool ,
C(false) = El Bool and C(unit) = El >.

Neutrality The term ‘odd(s (s x))’ is reducible in El Bool, as seen from the
computation4

odd(s (s x)) Ã odd x

where ‘odd x’ is neutral. Another (yet simple) example involving lists, is the
term ‘length(5::3::y)’, which is reducible in El Nat, since it normalizes by the
sequence

length(5::3::y) Ã s(length(3::y)) Ã s(s(length y))

and the term ‘s (s (length y))’ is reducible in El Nat. The computation of
‘length y’ is blocked, and the function is fully applied, so it is neutral.

Weak normalization and reducibility Note that a reducible term may
have no type, and that it may contain sub-terms that have no normal form. For
instance we have RED(El Bool)(((λx.λy.y) ((λx.x x) (λx.x x))) true) because
((λx.λy.y) ((λx.x x) (λx.x x))) true ⇓ true, even if (λx.x x) (λx.x x) has no
normal form.

3.2 The soundness of the reducibility predicates

We give a sketch of how the reducibility predicate specifications of Specification
3.1.5 can be justified using a set-theoretical interpretation. The approach is
similar to Scott (1975) and Aczel (1980).

3.2.1 A potential counter-example

Assume that the following data type would be part of our system:

D : Set
abstr : (El D → El D) → El D

4For these examples, recall the computation rules we gave in the introduction, page 8 and
on.

3.2. THE SOUNDNESS OF THE REDUCIBILITY PREDICATES 71

and we have the constant

app : El D → El D → El D
app (abstr f) x = f x

One can add to the specification of reducibility the following clauses:

1. REDSet(D)

2. RED(El D)(u) iff
(∃u′.u ⇓ abstr u′ ∧

∀v.RED(El D)(v) ⇒ RED(El D)(u′ v)) ∨
∃b.u ⇓ b

One can show RED(El D→El D→El D)(app). We can construct the closed term

omega : El D
omega = app (abstr (λx.app x x)) (abstr (λx.app x x))

We would then show RED(El D)(omega). This term has no normal form, and
cannot be reduced to an expression in constructor form. What goes wrong is
that there is no predicate RED satisfying the conditions 1 and 2 above. Clearly,
there is a need to justify the reducibility predicate.

3.2.2 Reducibility predicates as a hierarchy of sets

We give below a motivation5 of the existence of the predicates REDSet(t) and
RED(El t)(u) given in Specification 3.1.5. Concerning the constructive validity
of this method, cf. Aczel (1980).

We are going to build a hierarchy of sets indexed by ordinal numbers. For
each level α, we build a set S(α) of set expressions, and for each t ∈ S(α), we
form the set E(α)

t of elements in t. At each level α, to construct S(α) we first
construct a set L(α). The set S(α) consists of first-order set constructor trees
with leaves taken from L(α). The following properties are essential:

Proposition 3.2.1.
If α < β then S(α) ⊆ S(β), and if t ∈ S(α) then E(α)

t = E(β)
t .

Definition 3.2.2 (Computational closure). For a given set of terms S(α),
by S(α)+, we mean

{
t

∣∣ t Ã∗ t′ ∧ t′ ∈ S(α)
}
. For all terms t, given E(α)

t , by
E(α)+

t , we mean
{
u

∣∣ u Ã∗ u′ ∧ t Ã∗ t′ ∧ u′ ∈ E(α)
t′

}
.

5The main ideas behind this motivation come from Thierry Coquand. It took its present
form through discussions with the author.

72 CHAPTER 3. SEMANTICS

Definition 3.2.3 (Set leaves, Sets and Elements).

1. At level 0:

(a) L(0) =
{
t

∣∣ NEUTRAL(t)
}

(b) S(0) =
{
e[t1, . . . , tn]

∣∣ t1 ∈ L(0), . . . , tn ∈ L(0)
}

(c) Given t ∈ S(0),
the relation u ∈ E(0)

t is specified by induction on u.

i. c u1 . . . un ∈ E(0)
t iff NF(ui),

C(c) = (El e1, . . . , El en) → El (d ~x), t = d ~t and ui ∈ E(0)

ei[~t]
.

ii. u ∈ E(0)
t if NEUTRAL(u).

2. At level α + 1:

(a) L(α+1) = L(α) ∪ {
Π t1 t2

∣∣ t1 ∈ S(α) ∧ ∀v.v ∈ E(α)
t1 ⇒ t2v ∈ S(α)+

}

(b) S(α+1) =
{
e[t1, . . . , tn]

∣∣ t1 ∈ L(α+1), . . . , tn ∈ L(α+1)
}

(c) Given t ∈ S(α+1),
the relation u ∈ E(α+1)

t is specified by induction on u.

i. c u1 . . . un ∈ E(α+1)
t iff NF(ui),

C(c) = (El e1, . . . , El en) → El (d ~x), t = d ~t and ui ∈ E(α+1)

ei[~t]
.

ii. fun u1 ∈ E(α+1)
t iff NF(u1), t ∈ L(α+1), t = Π t1 t2 and

∀w.w ∈ E(α)
t1 ⇒ u1 w ∈ E(α)+

t2w .

iii. u ∈ E(α+1)
t if NEUTRAL(u).

3. At limit λ

(a) L(λ) =
⋃

α<λ L(α)

(b) S(λ) =
⋃

α<λ S(α)

(c) E(λ)
t =

⋃
α<λ E(α)

t

Proposition 3.2.4 (Existence of fixed point). There exists an ordinal num-
ber α0 < ω1 such that

1. S(α0)+ = S(α0+1)+

2. ∀t . t ∈ S(α0)+ ⇒ E(α0)+
t = E(α0+1)+

t

Motivation. We have an increasing sequence S(α)+ of subsets of a given count-
able set, hence there exists α0 < ω1 such that S(α0)+ = S(α0+1)+. The same
holds for each t ∈ S(α0)+ for E(α0)+

t .

We claim without proof the following equivalence between terms satisfying
the predicates of Specification 3.1.5 and Definition 3.2.3.

3.3. NORMALIZATION OF REDUCIBLE TERMS 73

Proposition 3.2.5 (Set interpretation of reducibility).

REDSet(t) ⇐⇒ t ∈ S(α0)+ RED(El t)(u) ⇐⇒ t ∈ S(α0)+ ∧ u ∈ E(α0)+
t

Example 3.2.6 (A lower bound). We do have α0 > ω. Consider the con-
stant6

F : (n : El Nat) → Set
F 0 = Nat
F (s n) = Π Nat (λ .F n)

There is no natural number m such that Π Nat (λn.F n) ∈ S(m)+ , but one can
show it belongs to S(ω+1)+. We have S(ω)+ 6= S(ω+1)+.

3.3 Normalization of reducible terms

Remark 3.3.1. From Specification 3.1.8 and the transitivity of ./ (Corollary
2.2.33) we have that T ./ T ′ and t ./ t′ implies RED(T) ⇔ RED(T ′) and
REDT (t) ⇔ REDT ′(t′).

Lemma 3.3.2.

1. RED(Fun U ((λx.V) γ)) ⇐⇒
RED(U) ∧ ∀u.REDU (u) ⇒ RED(V [γ, u/x]).

2. RED(Fun U ((λx.V) γ)) ∧ RED(Fun U ((λx.V) γ))(t) ⇐⇒
RED(U) ∧ ∀u.REDU (u) ⇒ RED(V [γ, u/x]) ∧ RED(V [γ,u/x])(t u).

Proof. By substitution properties 2.2.7 and Proposition 2.2.14.

Proposition 3.3.3.
For all T , t, if RED(T) then

1. REDT (t) ⇒ WN(t)

2. t ⇓ b ⇒ REDT (t)

Proof. Assume RED(T). We prove 1 and 2 by induction on rank(T).

1: Assume REDT (t).

– When T is Set or El u,
by Specification 3.1.5 we have WN(t) directly.

– When T is Fun U (λx.V),
we have from Specification 3.1.8, case 3, that RED(Fun U (λx.V))
holds by RED(U) and ∀u.REDU (u) ⇒ RED(V [u/x])). Then
RED(Fun U (λx.V))(t) holds whenever ∀u.REDU (u) ⇒ RED(V [u/x])(t u).
We have NEUTRAL(x). From RED(U) and induction (2) we have
REDU (x). Then RED(V [x/x]) and RED(V [x/x])(t x). From RED(V)
and induction (1) we have WN(t x). By Lemma 2.2.40 we have
WN(t).

6The symbol ’ ’ denotes some variable not free in F n.

74 CHAPTER 3. SEMANTICS

2: Assume t ⇓ b.

– When T is Set or El u, from RED(T) and Specification 3.1.5, in all
their sub-cases we have REDT (t) directly.

– When T is Fun U (λx.V),
we have from Specification 3.1.8, case 3, that RED(Fun U (λx.V))
holds by RED(U) and ∀u.REDU (u) ⇒ RED(V [u/x])).
We have to show ∀u.REDU (u) ⇒ RED(V [u/x])(t u).
Assume given u such that REDU (u).
Then we have RED(V [u/x]). From RED(U) and induction (1) there
exists u′ such that u ⇓ u′. By Lemma 3.1.4 we have NEUTRAL(b u′).
Then by induction (2) we get RED(V [u/x])(b u′).
By Remark 3.3.1 we have RED(V [u/x])(t u).

Corollary 3.3.4. RED(T) ⇒ WN(T).

Proof. Similar as above, by induction on rank(T).

3.4 Properties of reducibility

3.4.1 Reducibility and vectors

Definition 3.4.1 (Reducibility for Vectors).

RED()()

REDΓ(~t) RED(T [~t]) RED(T [~t])(t)

RED(Γ,x:T)(~t , t)

Definition 3.4.2.
RED(x1:T1, ... ,xn:Tn)(γ) holds whenever ∀i. RED(Tiγ) ∧ RED(Tiγ)(γ(xi)).

Lemma 3.4.3. If Γ is closed, REDΓ(γ), RED(T γ)(t), x 6∈ supp(Γ) and x 6∈
FV (T), then RED(Γ,x:T)([γ, t/x]).

Proof. Assume given γ, Γ, x, t, T . Assume Γ is closed, REDΓ(γ), RED(T γ)(t),
x 6∈ supp(Γ) and x 6∈ FV (T). Assume given (y : U) in (Γ, x : T).
We have two cases:

• x = y
Then T is U , and y[γ, t/x] = x[γ, t/x] = t, and T [γ, t/x] = T γ be-
cause x is not free in T . By assumption we have RED(T γ)(t), so we have
RED(T [γ,t/x])(y[γ, t/x]).

• x 6= y
Then y[γ, t/x] = y γ. From REDΓ(γ) we have RED(U γ)(y γ).

We have U γ = U [γ, t/x], since Γ is closed, x is not free in U ,
and so we have RED(U [γ,t/x])(y[γ, t/x]).

3.4. PROPERTIES OF REDUCIBILITY 75

Lemma 3.4.4. If Γ is closed and disjoint, then

REDΓ(~t) ⇐⇒ REDΓ([~t])

Proof. In both directions by induction on the length of Γ, using that Γ is closed
and disjoint.

Lemma 3.4.5.

1. RED(Γ → T) ⇐⇒ ∀~t .REDΓ(~t) ⇒ RED(T [~t]).

2. RED(Γ → T) ∧ RED(Γ→T)(t) ⇐⇒
∀~t .REDΓ(~t) ⇒ RED(T [~t]) ∧ RED(T [~t])(t ~t).

Proof. By iteration of Specification 3.1.8 (Reducibility).

3.4.2 Reducibility and sets

The Cartesian product of a family of sets

Lemma 3.4.6. If x 6∈ FV (u),
RED(Fun (El t) ((λx.El (u x))γ)) and RED(Fun (El t) ((λx.El (u x))γ))(v) then
RED(El Π t (u γ))(fun v).

Proof. Assume x 6∈ FV (u) and

RED(Fun (El t) ((λx.El (u x))γ)) (3.1)
RED(Fun (El t) ((λx.El (u x))γ))(v) (3.2)

From (3.1), (3.2) and Lemma 3.3.2 we have

RED(El t) and ∀w.RED(El t)(w) ⇒ RED(El (u x)[γ,w/x]) (3.3)

and
∀w.RED(El t)(w) ⇒ RED(El (u x)[γ,w/x])(v w) (3.4)

From (3.3) we have

REDSet(t) and ∀w.RED(El t)(w) ⇒ REDSet((u x)[γ, w/x]) (3.5)

Since x 6∈ FV (u), for any w we have

(u x)[γ,w/x] = (u γ) w (3.6)

hence from (3.5) we get

REDSet(t) and ∀w.RED(El t)(w) ⇒ REDSet((u γ) w)

76 CHAPTER 3. SEMANTICS

which, by Specification 3.1.8 gives

RED(El Π t (u γ)) (3.7)

Assume given w such that RED(El t)(w).
From (3.4) we have

RED(El (u x)[γ,w/x])(v w) (3.8)

From (3.2) and Proposition 3.3.3 there is v′ such that v ⇓ v′. From (3.8),
Remark 3.3.1 and (3.6) we get

∀w.RED(El t)(w) ⇒ RED(El (u γ) w)(v′ w) (3.9)

From (3.7) and (3.9), by Specification 3.1.8 gives RED(El Π t (u γ))(fun v).

Lemma 3.4.7.
RED(El (Π t u)) ∧ RED(El (Π t u))(fun v) ⇒ RED((x : El t) → El (u x)) ∧
RED((x:El t)→El (u x))(v)
where x 6∈ FV (u).

Proof. By unfolding Specification 3.1.8.

Parameterized data types

Lemma 3.4.8. If FV (e) ⊆ {x1, . . . , xn} and REDSet(t1), . . . , REDSet(tn),
then REDSet(e[t1, . . . , tn]).

Proof. By induction on e.

Lemma 3.4.9.
RED(El (d ~t)) ∧ RED(El (d ~t))(c ~u) ⇒ RED(El (ei[~t])) ∧ RED(El (ei[~t]))(ui)
where C(c) = (El e1, . . . , El en) → El (d ~x).

Proof. By Lemma 3.4.8.

3.4.3 Reducibility and the signature

When we refer to reducibility, this is done relative to a given signature. When
we refer to the reducibility of a certain part of the signature itself, we will
assume given a data type specification D, C, where all constructor types are
already known to be reducible. What may change according to what part of the
signature we consider, is the typing specifications F for defined constants, and
the set of rules R, that the notion of reducibility depends of.

Definition 3.4.10 (Reducibility conditions for F).
Let RED(F) be the property ∀f.RED(F(f)).

Notation 3.4.11. When we want to make explicit what reduction rules we refer
to in an assertion of the form RED(F), RED(T) or REDT (t) we write REDR(F),
REDR(T) and REDRT (t) respectively.

3.5. REDUCIBILITY OF WELL-TYPED TERMS 77

Definition 3.4.12 (Reducible signature). Let Σ = (D, C,F ,R).
RED(Σ) holds iff REDR(F) and for all f such that f ∈ F , we have REDR(F(f))(f).

Note that the latter definition allows the presence of rules in R, that have
no type given in F . We will exploit this freedom in the proofs of Lemma 3.6.6
(Key lemma), page 82, and Theorem 5.2.2 (A procedure for type-checking the
signature), page 98.

Lemma 3.4.13. If RED(F(f)) holds, and f has no rule in R, then RED(F(f))(f).

Proof. Given f ∈ F , let F(f) = Γf → Tf . Assume f has no rule in R.
Assume given ~t such that REDΓf

(~t). By RED(F(f)) and Lemma 3.4.5 we have
RED(Tf [~t]). By Proposition 3.3.3 (1) then ~t ⇓ ~u for some ~u . Since f has no
rule in R, we have then NEUTRAL(f ~u) (Definition 3.1.1). By Proposition 3.3.3
(2) then REDTf [~u](f ~u). By Remark 3.3.1 then REDTf [~t](f ~t).

3.5 Reducibility of well-typed terms

Lemma 3.5.1 (Reducibility of well-typed terms).
If ∀f ∈ F .REDR(F(f)) ∧ REDR(F(f))(f) then

1. Γ ` T ⇒ ∀γ . REDΓ(γ) ⇒ RED(T γ).

2. Γ ` t : T ⇒ ∀γ . REDΓ(γ) ⇒ RED(T γ) ∧ RED(T γ)(t γ).

Proof. We prove 1 and 2 simultaneously by induction on the typing derivations.

1. Assume Γ ` T . Assume given γ such that REDΓ(γ).
We have the following cases:

(a)
` Γ

Γ ` Set
We have RED(Set) directly.

(b)
Γ ` t : Set
Γ ` El t

By induction (2) we have REDSet(t γ). By Specification 3.1.8, case 2
we have RED(El t γ).

(c)
Γ, x : U ` V

Γ ` (x : U) → V

By Corollary 2.3.7, the derivation of Γ, x : U ` V contains a sub-
derivation of Γ ` U . By induction (1) we have RED(U γ).
Assume given u such that RED(U γ)(u).
From Lemma 2.3.6 and Γ, x : U ` V we have ` Γ, x : U and then
x 6∈ FV (U). By Lemma 3.4.3 we have RED(Γ,x:U)([γ, u/x]).
By induction (1) then RED(V [γ, u/x]).
By Lemma 3.3.2 we have RED(Fun (U γ) ((λx.V)γ)), which is equiv-
alent to RED((Fun U (λx.V)) γ).

78 CHAPTER 3. SEMANTICS

2. Assume Γ ` t : T . Assume given γ such that REDΓ(γ).
We have the following cases:

(a)
` Γ

Γ ` x : Γ(x)
RED(x1:T1, ... ,xn:Tn)(γ) implies
RED(Tk[x1, . . . , xk−1]γ) and RED(Tk[x1, ... ,xk−1]γ)(γ(xk)),
with x = xk in supp(Γ), which is equivalent to
RED(Γ(x)γ) and RED(Γ(x)γ)(γ(x)).

(b)
Γ ` t : U Γ ` T

Γ ` t : T
U ./ T

By induction (2) we have RED(U γ) and RED(U γ)(t γ). From U ./ T
we have Uγ ./ Tγ, by Remark 3.3.1 we have RED(T γ)(t γ).

(c)
Γ ` t : (x : U) → V Γ ` u : U

Γ ` t u : V [u/x]
By induction (2) we have RED(((x : U) → V)γ) and
RED(((x:U)→V)γ)(t γ). By Lemma 3.3.2 we have RED(U γ) and
∀v.RED(U γ)(v) ⇒ RED(V [γ, v/x]) ∧ RED(V [γ,v/x])((t γ) v).
By induction (2) we have RED(U γ)(u γ). From above then
RED(V [γ, (u γ)/x]) and RED(V [γ,(u γ)/x])((t γ) (u γ)).
By the substitution laws we have RED(V [u/x]γ) and
RED(V [u/x]γ)((t u)γ).

(d)
Γ, x : U ` v : V

Γ ` λx.v : (x : U) → V

By Corollary 2.3.7, Γ, x : U ` V contains a sub-derivation of Γ ` U .
By induction (1) we have RED(U γ). Assume given u such that
RED(U γ)(u). From Γ, x : U ` v : V and Lemma 2.3.6 we have
` Γ, x : U , hence x 6∈ FV (U). By Lemma 3.4.3 we have
RED(Γ,x:U)([γ, u/x]). By induction (2) then RED(V [γ, u/x]) and
RED(V [γ,u/x])(v[γ, u/x])).
By Proposition 2.2.14, ((λx.v)γ) u Ãβ v[γ, u/x] and by Remark 3.3.1
we have RED(V [γ,u/x])(((λx.v)γ) u).
By Lemma 3.3.2 we have RED(Fun (U γ) ((λx.V)γ))((λx.v) γ), which is
equivalent to RED((Fun U (λx.V)) γ)((λx.v) γ).

(e)
` Γ

Γ ` f : F(f)
By assumption we have RED(F(f)) and RED(F(f))(f). Since F(f) is
closed we have RED(F(f) γ) and RED(F(f) γ)(f γ).

3.5. REDUCIBILITY OF WELL-TYPED TERMS 79

(f)
` Γ

Γ ` d : D(d)
The type D(d) is of the form Setn → Set. Assume given ~t such
that REDSet(ti). By Specification 3.1.5, case 1, we have WN(ti). By
Specification 3.1.5, case 1 we have REDSet(d t1 . . . tn). Iterating
Specification 3.1.8, case 3 n times, then RED(Setn→Set)(d), and so
RED((Setn→Set) γ)(d γ).

(g)
` Γ Γ ` u1 : Set . . . Γ ` uk : Set

Γ ` c : C(c)[u1, . . . , uk]
By induction (2) we have REDSet(ui γ).
C(c)[u1, . . . , uk]γ is an independent function type of the form
(El e1[u1, . . . , uk]γ, . . . , El en[u1, . . . , uk]γ) → El ((d u1 . . . uk) γ).
From REDSet(uiγ) and Lemma 3.4.8 we have RED(El ej [u1, . . . , uk]γ).
From REDSet(uiγ) and Specification 3.1.5, case 1a we have
REDSet((d u1 . . . uk)γ).
By Specification 3.1.5, case 1a we have (d u1 . . . uk)γ ⇓ d v1 . . . vk

where REDSet(vj) holds.
By Specification 3.1.5, case 2 we have RED((El d u1 . . . uk)γ).
Assume given t1, . . . , tn such that RED(El ei[u1, ... ,uk]γ)(ti). By
Proposition 3.3.3 (1), we have WN(ti), hence c t1 . . . tn ⇓ c t′1 . . . t′n.
By Remark 3.3.1 we have RED(El ei[u1, ... ,uk]γ)(t′i).
We have satisfied case 2(a)i of Specification 3.1.5, and then
RED(El (d u1 ... uk)γ)(c t1 . . . tn). By applying case 3 of Specification
3.1.8 n times we get RED(C(c)[u1, ... ,uk]γ)(c γ).

(h)
` Γ

Γ ` Π : (x : Set, El x → Set) → Set
Assume given t such that REDSet(t).
It is straight-forward to see that RED((x : El t) → Set) holds.
Assume given u such that RED((x:El t)→Set)(u) holds.
By Proposition 3.3.3 (1), we have WN(t) and WN(u).
By Specification 3.1.8, case 1b we get REDSet(Π t u).
We conclude RED((x : Set, El x → Set) → Set) and
RED((x:Set, El x→Set)→Set)(Π). Since these terms are closed, we have
RED(((x : Set, El x → Set) → Set)γ) and
RED(((x:Set, El x→Set)→Set)γ)(Π γ).

(i)
Γ ` t : Set Γ ` u : El t → Set

Γ ` fun : ((x : El t) → El (u x)) → El (Π t u)
x 6∈ FV (u)

The type in the conclusion is an independent function type with its
domain being a dependent type. With the domain written in Fun-

80 CHAPTER 3. SEMANTICS

notation our goal becomes

RED(((Fun (El t) (λx.El (u x))) → El (Π t u)) γ)
RED(((Fun (El t) (λx.El (u x)))→El (Π t u)) γ)(fun γ).

Substituting γ into the sub-expressions we get the goal

RED((Fun (El t γ) ((λx.El (u x))γ)) → El (Π (t γ)(u γ))) (3.10)
RED((Fun (El t γ) ((λx.El (u x))γ))→El (Π (t γ)(u γ)))(fun). (3.11)

By induction (2) for Γ ` t : Set we have REDSet(t γ).
By induction (2) for Γ ` u : El t → Set we have RED(El tγ → Set)
and RED(El tγ→Set)(u γ) . By Specification 3.1.8, and x 6∈ FV (u)
then
RED(Fun (El t γ) ((λx.El (u x))γ)) holds. Assume given v such that
RED(Fun (El t γ) ((λx.El (u x))γ))(v) holds. From x 6∈ FV (u) and Lemma
3.4.6 we have RED(El (Π (t γ)(u γ)))(fun v), then (3.10) and (3.11) fol-
lows.

3.6 Reducibility of defined constants

3.6.1 Call relation

Notation 3.6.1 (Sub-term).
We will write u E v for u being a sub-term of v or u = v.

Definition 3.6.2 (Formal call).
(f, (p1, . . . , pm)) Â (g, (u1, . . . , un)) holds whenever there is a rule
f p1 . . . pn = s ∈ R, ar(f) = m, ar(g) = n, and g u1 . . . un E s.

Note that in the definition above, ui may contain free variables other than
those in ~p , since s is not necessarily first-order.

Definition 3.6.3 (Call instance).
(f, (t1, . . . , tm))

∼Â (g, (u1γ, ..., unγ)) holds whenever
t1 Ã∗ p1 γ, . . . , tm Ã∗ pm γ, WN(ti) and (f, (p1, . . . , pm)) Â (g, (u1, . . . , un)).

3.6.2 Reducibility and neighbourhoods

Lemma 3.6.4. REDΓ(αγ) ∧ ∆ α−→ Γ ⇒ RED∆(γ)

Proof. Assume ∆ α−→ Γ and REDΓ(αγ). Let Γ = (x1 : T1, . . . , xn : Tn). For
i ∈ {1, . . . , n} we have RED(Tiαγ) and RED(Tiαγ)(αγ(xi)). We have α of the
form [y/x], [fun y/xk] or [c y1 . . . ym/xk] for some k ∈ {1, . . . , n}. We have Γ
of the form (Γ1, xk : Tk, Γ2), and ∆ = (Γ1,Θ, Γ2α), where Θ depends on α and
Tk. We verify RED∆(γ) for each of the three parts of which ∆ is constructed.

3.6. REDUCIBILITY OF DEFINED CONSTANTS 81

1. For x1, . . . , xk−1, to show RED(Tiγ) and RED(Tiγ)(γ(xi)):

Since Γ is closed we have FV (Ti) ⊆ {x1, . . . , xi−1}, and then Tiαγ = Tiγ.
We have (αγ)(xi) = γ(xi), and the goal then follows from RED(Tiαγ) and
RED(Tiαγ)((αγ)(xi)), known by assumption.

2. For Θ, dependent on α and Tk, α being of the form

(a) [y/xk].
Direct from Specification 3.1.8 (Reducibility).

(b) [fun y/xk], and Tk ./ El (Π t u),
with Θ = (y : (z : El t) → El (u z)), z 6∈ FV (u), to show
RED(((z : El t) → El (u z))γ) and RED(((z:El t)→El (u z))γ)(γ(y)):
We have (αγ)(xk) = fun(γ(y)).
By assumption we have RED(Tkαγ) and RED(Tkαγ)((αγ)(xk)).
By Remark 2.3.12 we have xk 6∈ FV (Tk) ∪ FV (Π t u), and we have
Tkαγ = Tkγ and then (Π t u)αγ = (Π t u)γ. From Tk ./ El (Π t u)
then Tkαγ ./ El (Π t u)γ. By Remark 3.3.1 we get RED(El (Π t u)γ)
and RED(El (Π t u)γ)(fun(γ(y))).
We have z 6∈ FV (u) and then by Lemma 3.4.7 we have
RED(((z : El t) → El (u z))γ) and RED(((z:El t)→El (u z))γ)(γ(y)).

(c) [c y1 . . . ym/xk], and Tk ./ El (d ~u),
with C(c) = (El e1, . . . , El em) → d ~z and
Θ = (y1 : El e1[~u], . . . , ym : El em[~u]),
for y1, . . . , ym, to show RED(El (ej [~u]γ)) and RED(El (ej [~u]γ))(γ(yj)):
By assumption we have RED(Tkαγ) and RED(Tkαγ)((αγ)(xk)).
We have (αγ)(xk) = [c y1 . . . ym/xk]γ(xk) = c γ(y1), . . . , γ(ym).
From Tk ./ El (d ~u) and from xk 6∈ FV (Tk)∪FV (El (d ~u)) we have
El (d ~uαγ) = El (d ~uγ), and then Tkαγ ./ El (d ~uγ). By Remark
3.3.1 then RED(El (d ~uγ)) and RED(El (d ~u γ))(c γ(y1), . . . , γ(ym))
holds. By Lemma 3.4.9 then RED(El (ej [~u]γ)) and
RED(El (ej [~u]γ))(γ(yj)).

3. For xk+1, . . . , xn, to show RED((Tiα)γ) and RED((Tiα)γ)(γ(xi)):

We have (αγ)(xi) = γ(xi), and the goal then follows from RED(Tiαγ) and
RED(Tiαγ)((αγ)(xi)), known by assumption.

Lemma 3.6.5. REDΓ(τγ) ∧ ∆ τ−→ Γ ⇒ RED∆(γ)

Proof. By induction on the derivation of ∆ τ−→ Γ and Lemma 3.6.4.

82 CHAPTER 3. SEMANTICS

3.6.3 Proof of reducibility for defined constants

Lemma 3.6.6 (Key lemma). If
∼Â is well-founded, RED(F) and ` Σ,

then ∀f.RED(F(f))(f).

Proof. Assume
∼Â is well-founded, RED(F) and ` Σ.

Note that since RED(F) holds, for any F(f) = Γf → Tf we have
RED(Γf → Tf). Then by Lemma 3.4.5 we have RED(Tf [~t]) for any ~t such that
REDΓf

(~t). Let Φ(f,~t) be the property REDΓf
(~t) ⇒ RED(Tf [~t])(f ~t).

We will show

∀f.∀~t .(∀g.∀~u .(f,~t)
∼Â (g,~u) ⇒ Φ(g,~u)) ⇒ Φ(f,~t) (3.12)

which, by the principle of well-founded induction implies ∀f.∀~t . Φ(f,~t).
By Lemma 3.4.5, then ∀f.RED(F(f))(f) follows.

Proof of (3.12):
Assume given f , ~t with |~t | = ar(f) and F(f) = Γf → Tf .
Assume

∀g.∀~u .(f,~t)
∼Â (g,~u) ⇒ Φ(g,~u) (3.13)

From RED(F) we have RED(Γf → Tf). Assume REDΓf
(~t).

By Lemma 3.4.5 we have RED(Tf [~t]).
From REDΓf

(~t) and Proposition 3.3.3 (1) there exists ~u such that ~t ⇓ ~u .
If f ~u is normal, then since ar(f) = |~u |, by Definition 3.1.1, f ~u is neutral,
and from Proposition 3.3.3 (2) we have RED(Tf [~t])(f ~u), which, by Remark
3.3.1 implies RED(Tf [~t])(f ~t).
Otherwise, since ~u is normal, by Definition 2.2.12, f ~u is a ι-redex of the form
f ~pγ where, by Lemma 2.2.15 we get

~u = ~pγ, f ~p = s0 ∈ R and f ~pγ Ã∗ s0 γ (3.14)

In this case, by Remark 3.3.1, RED(Tf [~t])(f ~t) follows from RED(Tf [~t])(s0 γ),
that we will prove below. From the two cases above we can conclude Φ(f,~t).

Proof of RED(Tf [~t])(s0 γ):

From ` Σ we have

∆0
[~p]−→ Γf (3.15)

and
∆0 ` s0 : Tf [~p]. (3.16)

From (3.16) and Corollary 2.5.6 (Completeness) we have

∆0 ` s0 ↑ Tf [~p]. (3.17)

3.6. REDUCIBILITY OF DEFINED CONSTANTS 83

We will show the following property7 about the sub-terms s of s0, by
induction on s.

(∀Θ)(∀U)(∀σ) .(
s E s0 ∧ Θ extends ∆0 ∧ Θ ` s ↑ U ∧
σ|∆0 = γ|∆0 ∧ REDΘ(σ) ∧ RED(Uσ)

) ⇒
RED(Uσ)(s σ)

(3.18)

Once (3.18) is proved, we can finish our argument as follows:
Recall from previously that we have REDΓf

(~t) and RED(Tf [~t]).
From ~t ⇓ ~pγ and Remark 3.3.1 then REDΓf

([~pγ]) and RED(Tf [~pγ]).
Since F(f) is closed we have for Γf = (x1 : T1, . . . , xn : Tn) that
Ti[p1γ, . . . , pi−1γ] = Ti[p1, . . . , pi−1]γ and
Tf [p1γ, . . . , pnγ] = Tf [p1, . . . , pn]γ.
We have then REDΓf

([~p]γ) and RED(Tf [~p]γ).
From (3.15) and Lemma 3.6.5, we get RED∆0(γ).
We have s0 E s0, ∆0 extends ∆0, and from (3.17) we have ∆0 ` s0 ↑ T [~p].
We have also γ|∆0 = γ|∆0 . The preconditions for (3.18) are then fulfilled, and
we get RED(Tf [~p]γ)(s0 γ). From Tf [~pγ] = Tf [~p]γ, ~t ⇓ ~pγ and Remark 3.3.1 we
have RED(Tf [~t])(s0 γ).

Proof of (3.18):
Assume given s, Θ, U, σ such that s E s0, Θ extends ∆0, Θ ` s ↑ U ,
σ|∆0 = γ|∆0 , and REDΘ(σ). Assume RED(Uσ).
We proceed by induction on s, and we analyze the cases of last step of the
derivation of Θ ` s ↑ U .

1.
Θ ` si ↑ Ti[s1, . . . , si−1]

Θ ` x s1 . . . sn ↑ U

{
Θ(x) = (x1 : T1, . . . , xn : Tn) → T
U ./ T [s1, . . . , sn]

Let V0 = (x1 : T1, . . . , xn : Tn) → T .
We can write V0 in the form Fun T1 (λx1.V1), with V1 = Fun T2 (λx2.V2),
V2 = Fun T3 (λx3.V3), . . . , Vn−1 = Fun Tn (λxn.T), and Vn = T .

We have RED((Fun T1 (λx1.V1)) σ). From Specification 3.1.8 and Lemma
3.3.2 we obtain RED(T1σ) and ∀u.RED(T1σ)(u) ⇒ RED(V1[σ, u/x1]).

We have Θ ` s1 ↑ T1. By induction we get RED(T1σ)(s1σ).

Choose k ∈ {1, . . . , n− 1}. Assume RED(Vk[s1, . . . , sk]σ).

From Specification 3.1.8 and Lemma 3.3.2 we obtain

RED(Tk+1[s1, . . . , sk]σ) (3.19)
∀u.RED(Tk+1[s1, ... ,sk]σ)(u) ⇒ RED(Vk+1[s1, . . . , sk][σ, u/xk+1]) (3.20)

From Θ ` sk+1 ↑ Tk+1[s1, . . . , sk] and (3.19), by induction we get

RED(Tk+1[s1, ... ,sk]σ)(sk+1σ) (3.21)

7Recall the notations 2.1.10, page 27 (Extended context) and 2.2.10, page 30 (Substitution
restricted by context).

84 CHAPTER 3. SEMANTICS

By (3.20) and (3.21) we get RED(Vk+1[s1, . . . , sk][σ, sk+1σ/xk+1]).

By the substitution laws we have RED(Vk+1[s1, . . . , sk+1]σ).

For k assuming values 1, . . . , n− 1 we finally obtain
RED(T [s1, . . . , sn]σ) and RED(x1:T1σ, ... ,xn:Tnσ)(s1σ, . . . , snσ).

By Lemma 3.4.5 we get RED(T [s1, ... ,sn]σ)((x σ)(s1σ) . . . (snσ)),
which is equivalent to RED(T [s1, ... ,sn]σ)((x s1 . . . sn)σ).

Since T [s1, . . . , sn] ./ U , we have RED(U σ)((x s1 . . . sn)σ).

2.
Θ ` si ↑ Ti[s1, . . . , si−1]

Θ ` g s1 . . . sn ↑ U

{ F(g) = (x1 : T1, . . . , xn : Tn) → T
U ./ T [s1, . . . , sn]

From RED(F) we have RED(F(g)). Since F(g) is closed we have F(g) =
F(g) σ, hence RED(F(g) σ). As in the previous case, by successive induc-
tion and substitution, we obtain

RED(T1σ)(s1σ), . . . , RED(Tn[s1, ... ,sn−1]σ)(snσ).

Since g s1 . . . sn E s0 and ar(g) = n we have (f,~p) Â (g, (s1, . . . , sn)).

By (3.14) we have ~t Ã∗ ~pγ. From REDΘ(σ) and σ|∆0 = γ|∆0 we have
~pγ = ~pσ, then we have ~t Ã∗ ~pσ. By Proposition 3.3.3 (1), we have
WN(~t). We have fulfilled the requirements of Definition 3.6.3, (Call in-
stance) and we get (f,~t)

∼Â (g, (s1σ, . . . , snσ)).

From RED(x1:T1, ... ,xn:Tn)(s1σ, . . . , snσ) and Assumption (3.13) we have
Φ(g, (s1σ, . . . , snσ)), hence REDT [s1σ, ... ,snσ]((g s1 . . . sn) σ).
Since F(g) is closed we have T [s1σ, . . . , snσ] = T [s1, . . . , sn]σ, hence
REDT [s1, ... ,sn]σ((g s1 . . . sn) σ). Since T [s1, . . . , sn] ./ U , we have
RED(U σ)((g s1 . . . sn)σ).

3.
Θ ` si ↑ Set

Θ ` d s1 . . . sn ↑ Set
D(d) = Setn → Set

By induction we have REDSet(si σ). By Proposition 3.3.3 (1), there are ti
such that si σ ⇓ ti, and by Remark 3.3.1 we have REDSet(ti).

By Specification 3.1.8 we have REDSet(d s1σ . . . snσ).

4.
Θ ` si ↑ El ei[u1, . . . , uk]

Θ ` c s1 . . . sn ↑ El u

C(c) = (El e1, . . . , El en)

→ El (d x1 . . . xk)
u Ã∗ d u1 . . . uk

From RED(El u σ) and Remark 3.3.1 we have RED(El (d u1σ . . . ukσ)).
By Specification 3.1.8 we have REDSet(d u1σ . . . ukσ), and furthermore
we have REDSet(u1 σ), . . . , REDSet(uk σ).

From Lemma 3.4.8 it follows that REDSet(ei[u1σ, . . . , ukσ]) holds.

3.6. REDUCIBILITY OF DEFINED CONSTANTS 85

Since FV (ei) ⊆ {x1, . . . , xk}, we have ei[u1σ, . . . , ukσ] =
ei[u1, . . . , uk]σ. It follows that REDSet(ei[u1, . . . , uk]σ) holds, hence
RED(El ei[u1, . . . , uk]σ).
From Θ ` si ↑ El ei[u1, . . . , uk] and induction we get
RED(El ei[u1, ... ,uk]σ)(si σ).

By above equality we also have RED(El ei[u1σ, ... ,ukσ])(si σ).

By Specification 3.1.8 we can obtain RED(El (d u1σ ... ukσ))(c s1σ . . . snσ),
and from what we know above we can conclude RED(El u σ)((c s1 . . . sn) σ).

5.
Θ ` s1 ↑ Set Θ ` s2 ↑ El s1 → Set

Θ ` Π s1 s2 ↑ Set

We have RED(Set σ), and by induction for Θ ` s1 ↑ Set we get REDSet(s1σ).

By Specification 3.1.8 the latter is equivalent to RED(El s1 σ). We have
RED(Set ρ) for all ρ, then in particular RED(Fun (El s1σ) ((λx.Set) σ)).

By induction for Θ ` s2 ↑ El s1 → Set, we get

RED(Fun (El s1σ) (λx.Set σ))(s2σ). By Specification 3.1.8 then

∀t.RED(El s1σ)(t) ⇒ REDSet σ((s2σ) t), and we have satisfied
REDSet((Π s1 s2) σ).

6.
Θ ` s1 ↑ (x : El t) → El (u x)

Θ ` fun s1 ↑ El v

{
v Ã∗ Π t u
x 6∈ FV (u)

From RED(El v σ) and v Ã∗ Π t u and Specification 3.1.8 we get
REDSet(Π (t σ) (u σ)). Unfolding Specification 3.1.8 we get

REDSet(t σ) and ∀w.RED(El tσ)(w) ⇒ REDSet((u σ) w) (3.22)

To use the induction hypothesis on s1 we must first show
RED(((x : El t) → El (u x)) σ).

That is to prove RED(Fun (El t σ) ((λx.El (u x)) σ)), which is, knowing
RED(El t σ), by Lemma 3.3.2, and (3.22), to prove
∀w.RED(El tσ)(w) ⇒ RED(El (u x)[σ,w/x]).
By the side condition x 6∈ FV (u). Then for any w, (u x)[σ,w/x] = (u σ) w,
and by unfolding Specification 3.1.8 we can state the goal by
∀w.RED(El tσ)(w) ⇒ REDSet((u σ) w), which is known from (3.22) above.

We can use the induction hypothesis for Θ ` s1 ↑ (x : El t) → El (u x)
and obtain RED(Fun (El t σ) ((λx.El (u x)) σ))(s1σ). By Lemma 3.4.6, we get
RED(El (Π (t σ) (u σ)))(fun s1 σ), or equivalently RED(El (Π t u) σ)(fun s1 σ).
From v Ã∗ Π t u we get v σ Ã∗ (Π t u) σ, and by Remark 3.3.1 we get
RED(El v σ)(fun s1 σ).

86 CHAPTER 3. SEMANTICS

7.
Θ, x : T ` s1 ↑ V

Θ ` λx.s1 ↑ (x : T) → V
x 6∈ supp(Θ)

Assume w.l.o.g. x 6∈ FV (T).8 From RED(Uσ) we have RED(Tσ). Assume
given t such that RED(Tσ)(t). Since REDΘ(σ) holds and x 6∈ supp(Θ), and
by Lemma 3.4.3 then RED(Θ,x:T)[σ, t/x] holds.

Since Θ extends ∆0, x 6∈ FV (T) and x 6∈ supp(Θ), then Θ, x : T extends
∆0. We also have [σ, t/x]|∆0

= γ|∆0 .

We know RED((Fun T (λx.V))σ). By Lemma 3.3.2 we have RED(Tσ) and
∀u.RED(Tσ)(u) ⇒ RED(V [σ, u/x]).

We have RED(V [σ, t/x]), and by induction then RED(V [σ,t/x])(s1[σ, t/x]).

By Proposition 2.2.14, we have ((λx.s1)σ) t Ãβ s1[σ, t/x].
Since t was arbitrary we have ∀t.RED(Tσ)(t) ⇒ RED(V [σ,t/x])(((λx.s1)σ) t).

By Lemma 3.3.2 then RED((Fun T (λx.V))σ)((λx.s1)σ).

3.6.4 Normalization of well-typed terms

We can summarize what we have shown so far with the following corollary. As
we will see in Section 5.2, its preconditions will be fulfilled after having type-
checked the signature sucessfully.

Corollary 3.6.7. If
∼Â is well-founded, RED(F) and ` Σ, then

1. ` T ⇒ WN(T)

2. ` t : T ⇒ WN(t)

Proof. Assume
∼Â is well-founded, RED(F) and ` Σ. By Lemma 3.6.6 we

have ∀f.RED(F(f))(f). Assume ` T and ` t : T respectively. Since the
empty substitution is reducible, WN(T) and WN(t) follow from Lemma 3.5.1,
Corollary 3.3.4 and Proposition 3.3.3 respectively.

8We are free to choose names of bound variables, but in this case we could also use sound-
ness of the premise, and from there we have Θ, x : T well-formed, and so x 6∈ FV (T).

Chapter 4

Well-founded recursion

In this chapter we give a syntactic criterion for well-founded recursion, called the
Size-change principle for program termination, of Lee, Jones and Ben-Amram
(2001), and prove that is is sufficient.

4.1 The size-change principle

4.1.1 Size-change graphs and call graph

Definition 4.1.1 (Component relation for constructors). The relation
t > u is inductively defined as follows:

t > tk
t Ã∗ c t1 . . . tn

t > u u > v
t > v

Lemma 4.1.2. If t > u and there is t′ such that t ⇓ t′, then there is u′ such
that u ⇓ u′ and u′ is a proper sub-term of t′.

Proof. by Definition 4.1.1 and Proposition 2.2.32 (Confluence).

Definition 4.1.3 (Size-Change Graph).
A size-change graph G = ({1, . . . , n}, {1, . . . , m}, E) is a directed labeled
bipartite graph. The arcs in E(G) are of the form i

=→ j or i
>→ j where i ∈

{1, . . . , n} and j ∈ {1, . . . , m}.
Definition 4.1.4 (Call Graph). A call graph G = (V,E) is a directed labeled
graph whose vertexes V are the function constants in R. The arcs in E(G) are
of the form (f, g, Gc). Let n,m be the number of parameters for f, g. For every
formal call c = (f, (p1, . . . , pn)) Â (g, (t1, . . . , tm)) there is an arc (f, g, Gc) in
E(G). Gc is the size-change graph determined as follows:

• k
=→ l is an arc in Gc if and only if pk = tl.

• k
>→ l is an arc in Gc if and only if pk > tl .

87

88 CHAPTER 4. WELL-FOUNDED RECURSION

Definition 4.1.5 (Path). A path P in G is a sequence of adjacent arcs of E(G)
of the form (f1, f2, G1), (f2, f3, G2), . . .

Definition 4.1.6 (Thread). If P is a path (f1, f2, G1), (f2, f3, G2) . . . of G, a
thread ν of P is a sequence

ik
Rk→ ik+1

Rk+1→ ik+2 . . .

such that il
Rl→ il+1 is an arc of Gl, for l ≥ k.

Definition 4.1.7 (Size-Change Termination - SCT). We have SCT(G) if:
for all infinite paths P in G, P has an infinite thread with infinitely many
>→ -transitions.

Theorem 4.1.8. SCT is a decidable property, if G is given.

The proof is shown in the paper of Lee et al. (2001).

4.1.2 Examples

Maybe the most notable feature of the size-change criterion is that it may accept
functions defined with permuted arguments in the recursive calls.

Example 4.1.9 (Permuted and possibly discarded arguments). Here
follows a translation into our system from an example (Example 5) presented
in Lee, Jones, Ben-Amram (2001). It shows a definition that involves permuted
and possibly discarded parameters. We label the calls with prefix superscript.

f : Nat → Nat → Nat
f x 0 = x
f 0 (s y) = 1f (s y) y
f (s x) (s y) = 2f (s y) x

This definition is accepted by the size-change criterion, but there is no lexico-
graphical ordering. We illustrate the corresponding size-change graphs of calls 1
and 2, labelling the >→ -transitions with headed arrows, and the =→ -transitions
with edges, as follows:

r

r

r

r

f f
1

2

1

2

Call 1

r

r

r

r

f f
1

2

1

2

Call 2

In addition to these, the following graphs can be obtained by iterating compo-
sition of graphs 1 and 2, sequences of indexes indicated below:

4.1. THE SIZE-CHANGE PRINCIPLE 89

r

r

r

r

f f
1

2

1

2

Calls: 1,1

r

r

r

r

f f
1

2

1

2

Calls: 2,1

r

r

r

r

f f
1

2

1

2

Calls: 2,2

r

r

r

r

f f
1

2

1

2

Calls: 2,2,2

Now, any sequence of calls has an associated sequence of size-change graphs.
Consider an arbitrary infinite sequence in the call graph. It can be sectioned
into an infinite number of finite sections. For each section the size-change graph
obtained by composing the size-change graphs of that section, will be one of the
graphs given above. Of these, the first three 1–1, 2–1 and 2–2 are idempotent.
They all contain a transition i

>→ i, for i = 1 or i = 2. This implies that an
infinite path in the call graph must contain an infinitely decreasing thread, and
so the criterion is fulfilled.

Example 4.1.10 (Non well-founded loops). The following mutually recur-
sive program is not size-change terminating:

f : (Nat, Nat) → Nat
f 0 y = 0
f (s x) 0 = 0
f (s x) (s y) = 1h (2g x (s y)) (3f (s (s (s x))) y)

g : (Nat, Nat) → Nat
g 0 y = 0
g (s x) 0 = 0
g (s x) (s y) = 4h (5f (s x) (s y)) (6g x (s (s y)))

h : (Nat, Nat) → Nat
h 0 0 = 0
h 0 (s y) = 7h 0 y
h (s x) y = 8h x y

There are eight recursive calls, with the corresponding size-change graphs given
below:

r

r

r

r

f h
1

2

1

2

Call 1

r

r

r

r

f g
1

2

1

2

Call 2

r

r

r

r

f f
1

2

1

2

Call 3

r

r

r

r

g h
1

2

1

2

Call 4

90 CHAPTER 4. WELL-FOUNDED RECURSION

r

r

r

r

g f
1

2

1

2

Call 5

r

r

r

r

g g
1

2

1

2

Call 6

r

r

r

r

h h
1

2

1

2

Call 7

r

r

r

r

h h
1

2

1

2

Call 8

We can find compositions of these that have no decreasing arc:

r

r

r

r

f f
1

2

1

2

Calls: 2,6,5,3

r

r

r

r

g g
1

2

1

2

Calls: 5,3,2,6

This shows that the program is not structurally recursive, and we have found
two cycles for which an infinite repetition corresponds to an infinite path in the
call graph without any infinitely decreasing thread.

Contra-variance and permuted arguments

One motivation for permuted arguments is that it allows us to represent defini-
tions involving contra-variance in a direct way. This happens for instance with
sub-typing of function types. Assume we have defined a set to encode two base
types and a function type former:

Typ : Set
Big : Typ
Small : Typ
=⇒ : (Typ, Typ) → Typ

We define a sub-typing predicate

≤ : (Typ,Typ) → Set

Small ≤ Small = >
Small ≤ Big = >
Small ≤ (s2 =⇒ t2) = ⊥

Big ≤ Small = ⊥
Big ≤ Big = >
Big ≤ (s2 =⇒ t2) = ⊥

(s1 =⇒ t1) ≤ Small = ⊥
(s1 =⇒ t1) ≤ Big = ⊥
(s1 =⇒ t1) ≤ (s2 =⇒ t2) = (s2 ≤ s1)× (t1 ≤ t2)

It is an intuitive definition, and in this case it is easier to see that it terminates
than in the previous example, since all the parameters are decreasing in the

4.2. WELL-FOUNDED CALL RELATION 91

recursive call. We can define another predicate having a type that refers to
the previous predicate. Let us assume we want to prove that the sub-typing
predicate is transitive. We define the constant

subTrans : (x : Typ, y : Typ, z : Typ,
h1 : (x ≤ y),
h2 : (y ≤ z),
) → (x ≤ z)

and the recursive case is defined as follows:

subTrans (x1 =⇒ x2) (y1 =⇒ y2) (z1 =⇒ z2) (h1L, h1R) (h2L, h2R) =
(subTrans z1 y1 x1 h2L h1L, subTrans x2 y2 z2 h1R h2R)

4.2 Well-founded call relation

Theorem 4.2.1. If SCT(G) then
∼Â is well-founded.

Proof. Assume SCT(G). Then
∼Â is well-founded if the existence of an infinite

chain in
∼Â implies a contradiction. Assume there is an infinite chain

χ = (f1,~t1)
∼Â (f2,~t2)

∼Â . . .

For arbitrary (fi,~ti)
∼Â (fi+1,~ti+1) in χ, by Definition 3.6.3 (Call instance) we

have

WN(~ti) ~ti Ã∗ ~piγi (fi,~pi) Â (fi+1, ~ui) ~ti+1 = ~uiγi (4.1)

and by Definition 4.1.4 (Call graph) there is an infinite path P in G with adjacent
arcs (fi, fi+1, Gi) such that

k
=→ l ∈ Gi whenever ~pi(k) = ~ui(l)

k
>→ l ∈ Gi whenever ~pi(k) > ~ui(l)

(4.2)

By assumption SCT(G) holds, and then P has an infinitely decreasing thread ν,
starting at some (fm, fm+1, Gm) in G.
Let ~vj =~tm+j , ~qj = ~pm+j , δj = γm+j and Hj = Gm+j .
We have

ν = k1
R1→ k2 ∈ H1, k2

R2→ k3 ∈ H2, . . .

with infinitely many >→ transitions. From (4.1) and (4.2) then

~v1(k1) Ã∗ ~q1δ1(k1) and ~q1δ1(k1) R1 ~v2(k2),
~v2(k2) Ã∗ ~q2δ2(k2) and ~q2δ2(k2) R2 ~v3(k3),
. . .

But from (4.1) we have WN(~v1(k1)). If R1 is >, by Lemma 4.1.2, the normal
form of ~v2(k2) is a proper sub-term of the normal form of ~q1δ1(k1). Otherwise,
By Proposition 2.2.39, the normal forms are the same. The same holds for the
whole sequence ~vi(ki). Thus the infinite decrease in >, starting with ~v1(k1)
leads to a contradiction.

92 CHAPTER 4. WELL-FOUNDED RECURSION

Chapter 5

Main results

In this chapter we apply the results from previous chapters. We prove decid-
ability of type-correctness and show how to extend a theory in a sequence of
steps that can be mechanically verified. We also prove logical consistency.

5.1 Decidable type correctness

5.1.1 Checking type formation and inhabitation

Theorem 5.1.1 (Decidable type correctness).
If RED(Σ) and ` Σ then1

1. given ` Γ, the problem Γ ` S ↑ is decidable.

2. given Γ ` T , the problem Γ ` s ↑ T is decidable.

Proof of 2. Assume ` Σ, and Γ ` T . First note that from Γ ` T and Lemma
2.3.6 we have

` Γ. (5.1)

We prove that the problem Γ ` s ↑ T is decidable by induction on s. In each
production we have to decide the premises and the side conditions. If any of the
latter tests fail, the conclusion in the corresponding rule cannot be type correct,
by completeness. We have the following cases:

1.
Γ ` si ↑ Ui[s1, . . . , si−1]

Γ ` x s1 . . . sn ↑ T

{
Γ(x) = (y1 : U1, . . . , yn : Un) → U
T ./ U [s1, . . . , sn]

First check that x ∈ supp(Γ). From (5.1) we get Γ ` Γ(x). From Lemma
2.3.5 we get
Γ ` U1, Γ, y1 : U1 ` U2 through Γ, y1 : U1, . . . , yn−1 : Un−1 ` Un,
and Γ, y1 : U1, . . . , yn : Un ` U .

1Recall that S and s denotes the β-normal fragment of the language. See Definition 2.1.20,
page 28.

93

94 CHAPTER 5. MAIN RESULTS

From Γ ` U1 and induction we get Γ ` s1 ↑ U1 decidable. By soundness
we get Γ ` s1 : U1. Then we have

[s1/y1] : Γ → Γ, y1 : U1

and by Lemma 2.4.4 (Substitution lemma) we have Γ ` U2[s1/y1]. By
induction for s2 we get Γ ` s2 ↑ U2[s1/y1] decidable, and on success, by
soundness we have Γ ` s2 : U2[s1/y1]. We proceed similarly until we get

[s1/y1, . . . , sn−1/yn−1] : Γ → Γ, y1 : U1, . . . , yn−1 : Un−1

and by Lemma 2.4.4 (Substitution lemma) get Γ ` Un[s1, . . . , sn−1] and
by induction we get Γ ` sn ↑ Un[s1, . . . , sn−1] decidable and on success
obtain Γ ` sn : Un[s1, . . . , sn−1] from soundness. By the substitution
lemma and

[s1/y1, . . . , sn/yn] : Γ → Γ, y1 : U1, . . . , yn : Un

we get Γ ` U [s1, . . . , sn].

By Lemma 2.4.11 we get Γ ` x s1 . . . sn : U [s1, . . . , sn].

It remains to check T ./ U [s1, . . . , sn]. From previously we know Γ `
T and Γ ` U [s1, . . . , sn], and by Lemma 3.5.1 we have RED(T) and
RED(U [s1, . . . , sn]). By Corollary 3.3.4 there are T ′ and U ′ such that
T ⇓ T ′ and U [s1, . . . , sn] ⇓ U ′. By the uniqueness of normal form
T ./ U [s1, . . . , sn] if and only if T ′ = U ′.

2.
Γ ` si ↑ Ui[s1, . . . , si−1]

Γ ` f s1 . . . sn ↑ U

{ F(f) = (y1 : U1, . . . , yn : Un) → U
T ./ U [s1, . . . , sn]

First check that f ∈ F . From ` Σ we get ` F(f).

By iteration of Corollary 2.4.2 (Weakening) we get Γ ` F(f).

As in the last case we get by successively applying the substitution lemma
and induction that Γ ` si ↑ Ui[s1, . . . , si−1] are decidable, together with
Γ ` si : Ui[s1, . . . , si−1] upon success. By the same argument as in the
previous case we can check T ./ U [s1, . . . , sn].

3.
Γ ` si ↑ Set

Γ ` d s1 . . . sn ↑ Set
D(d) = Setn → Set

First check that D(d) = Setn → Set. By assumption ` Γ, hence Γ ` Set.

By induction Γ ` si ↑ Set are decidable.

4.
Γ ` si ↑ El ei[u1, . . . , uk]

Γ ` c s1 . . . sn ↑ El u

C(c) = (El e1, . . . , El en)

→ El (d y1 . . . yk)
u Ã∗ d u1 . . . uk

5.1. DECIDABLE TYPE CORRECTNESS 95

First look up C(c) = (El e1, . . . , El en) → El (d y1 . . . yk).
From Γ ` El u, Lemma 3.5.1 and Specification 3.1.8, there are d′, v1, . . . , vm

such that u ⇓ d′ v1 . . . vm where D(d′) = Setm → Set.

Check that d = d′ and k = m.

Whenever u Ã∗ d u1 . . . uk we have ui ./ vi, and by Lemma 2.5.5 we
have Γ ` si ↑ El ei[v1, . . . , vk] iff Γ ` si ↑ El ei[u1, . . . , uk].

By Lemma 2.4.18 (Subject reduction) we have Γ ` El (d u1 . . . uk). By
Lemma 2.4.9 (Generation lemma) then Γ ` ui : Set.

From ` Γ and Definition 2.3.1 (Typing) we get Γ ` c : C(c)[u1, . . . , uk].
By Lemma 2.4.8 we have Γ ` C(c)[u1, . . . , uk]. By Lemma 2.3.5 (Iter-
ated function type inversion) we get Γ ` El ei[u1, . . . , uk]. By induction
Γ ` si ↑ El ei[u1, . . . , uk] are decidable.

5.
Γ ` s1 ↑ Set Γ ` s2 ↑ El s1 → Set

Γ ` Π s1 s2 ↑ Set

From ` Γ we have Γ ` Set. By induction Γ ` s1 ↑ Set is decidable. Upon
success, we have then Γ ` El s1 → Set. By induction Γ ` s2 ↑ El s1 → Set
is decidable.

6.
Γ ` s1 ↑ (x : El t) → El (u x)

Γ ` fun s1 ↑ El v

{
v Ã∗ Π t u
x 6∈ FV (u)

From Γ ` El v and the fact that the identity substitution [] is reducible,
by Lemma 3.5.1 we have that REDSet(v) holds. Then we can check that
v normalizes to an expression of the form Π t′ u′.

By the Church-Rosser property, whenever v Ã∗ Π t u we have t ./ t′ and
u ./ u′, and by Lemma 2.5.5 (Completeness with conversion) we have
Γ ` s1 ↑ (x : El t′) → El (u′ x) iff Γ ` s1 ↑ (x : El t) → El (u x).

From Γ ` El v, v Ã∗ Π t u and Lemma 2.4.18 (Subject reduction) we
have Γ ` El (Π t u).

By Lemma 2.4.14 then Γ ` (x : El t) → El (u x) with x 6∈ FV (u). By
induction Γ ` s1 ↑ (x : El t) → El (u x) is decidable.

7.
Γ, x : U ` s1 ↑ V

Γ ` λx.s1 ↑ (x : U) → V
x 6∈ supp(Γ)

First check x 6∈ supp(Γ). From Γ ` (x : U) → V and Lemma 2.3.4 (Type-
formation inversion) we have Γ, x : U ` V . By induction Γ, x : U ` s1 ↑ V
is decidable.

Proof of 1. Assume ` Γ. We have to decide Γ ` S ↑. We proceed by induction
on S. In each production we have to decide the premises and the side conditions.

96 CHAPTER 5. MAIN RESULTS

If any of the latter tests fail, the conclusion in the corresponding rule cannot be
type correct, by completeness. We have the following cases:

1. Γ ` Set ↑.
In this case the relation holds.

2.
Γ ` s ↑ Set
Γ ` El s ↑ .

By assumption ` Γ, hence Γ ` Set. Then, by 2 we have Γ ` s ↑ Set
decidable.

3.
Γ ` S1 ↑ Γ, x : S1 ` S2 ↑

Γ ` (x : S1) → S2 ↑ x 6∈ supp(Γ)

By assumption ` Γ, and by induction then Γ ` S1 ↑ is decidable. By
soundness then Γ ` S1. Check x 6∈ supp(Γ). We have ` Γ, x : S1. By
induction then Γ, x : S1 ` S2 ↑ is decidable.

5.1.2 Type-checking of patterns

Definition 5.1.2 (Size of pattern vector).
size() = 0
size(x,~p) = 1 + size(~p)
size(fun x,~p) = 1 + size(~p)
size(c ~q ,~p) = 1 + size(~q) + size(~p)

Lemma 5.1.3. If RED(Σ) and ` Σ then given ~p and Γ such that ` Γ holds,

we can find the unique normal ∆, if it exists, such that ∆
[~p]−→ Γ holds.

Proof. Assume RED(Σ), ` Σ and ` Γ.
Let ~p = (p1, . . . , pn) and Γ = (x1 : T1, . . . , xn : Tn). To abbreviate, let
~p′ = (p2, . . . , pn) and Γ′ = (x2 : T2, . . . , xn : Tn). We proceed by induc-
tion on size(~p).
First we observe, that from ` Γ and Corollary 2.3.7 we have ` T1. By
Lemma 3.5.1 (for the empty substitution), Corollary 3.3.4, and Proposition
2.2.39 (uniqueness of normal form), there is a unique U , such that T1 ⇓ U .
From ` Σ, ` T1, T1 ⇓ U and Lemma 2.4.18 (Subject reduction) we have ` U .
We may have the following forms of p1:

1. y.
As a sub-goal we need ` y : U,Γ′[y/x1]. We have [y/x1] : y : U → x1 : T1.
From ` Γ we have x1 : T1 ` T2. By Lemma 2.4.4 (Substitution lemma)
we have y : U ` T2[y/x1]. We get
[y/x1] : (y : U, x2 : T2[y/x1]) → (x1 : T1, x2 : T2).

5.1. DECIDABLE TYPE CORRECTNESS 97

We have x1 : T1, x2 : T2 ` T3. By Lemma 2.4.4 (Substitution lemma) we
have y : U, x2 : T2[y/x1] ` T3[y/x1]. Iterating this argument, we finally
arrive at ` y : U,Γ′[y/x1]. By Definition 2.3.11 (Atomic neighbourhood),

we have y : U,Γ′[y/x1]
[y/x1]−→ Γ. By induction we can find a unique normal

∆′ such that ∆′ [~p ′]−→ y : T1,Γ′[y/x1], if it exists, thus satisfying Definition
2.3.13 (Compound neighbourhood).

2. fun y.
For the goal to be fulfilled, by Definition 2.3.11 (Atomic neighbourhood),
we require that U is of the form El (Π t u).

Since we can choose names of the bound variables, we can make sure
y : (z : El t) → El (u z), Γ′[fun y/x1] is closed and disjoint.
As a sub-goal we need ` y : (z : El t) → El (u z), Γ′[fun y/x1]. From
` Σ, ` El (Π t u) and Lemma 2.4.14 we have ` (z : El t) → El (u z).
We have [fun y/x1] : (y : (z : El t) → El (u z)) → x1 : T1. From ` Γ
we have x1 : T1 ` T2. By Lemma 2.4.4 (Substitution lemma) we have
y : (z : El t) → El (u z) ` T2[fun y/x1]. We get
[fun y/x1] :

(y : (z : El t) → El (u z), x2 : T2[fun y/x1]) → (x1 : T1, x2 : T2).
We have x1 : T1, x2 : T2 ` T3. By Lemma 2.4.4 (Substitution lemma) we
have y : (z : El t) → El (u z), x2 : T2[fun y/x1] ` T3[fun y/x1]. Iterating
this argument, we finally arrive at ` y : (z : El t) → El (u z), Γ′[fun y/x1].
By induction we can find a unique normal ∆′ satisfying

∆′ [~p′]−→ (y : (z : El t) → El (u z), Γ′[fun y/x1]), if it exists. This satisfies
Definition 2.3.13 (Compound neighbourhood).

3. c ~q .
For the goal to be fulfilled, by Definition 2.3.11 (Atomic neighbourhood),
we require that U is of the form El (d ~t). Next, check that C(c) is of
the form ∆c → El (d ~z), and |~t | = |~z |. Since we can choose names
of the bound variables in C(c), let ~y = −−→supp(∆c), we can make sure
∆c,Γ′[c ~y /x1] is closed and disjoint. We need ` ∆c[~t /~z], Γ′[c ~y /x1] as a
sub-goal. From ` Σ, ` El (d ~t) and Lemma 2.4.13 we have ` ti : Set.
By Lemma 2.4.4 (Substitution lemma) we have ` C(c)[~t /~z], and so
` ∆c[~t /~z]. We have [c ~y /x1] : ∆c[~t /~z] → x1 : T1. From ` Γ we have

x1 : T1 ` T2. By Lemma 2.4.4 (Substitution lemma) we have ∆c[~t /~z] `
T2[c ~y /x1]. We get [c ~y /x1] : ∆c[~t /~z], x2 : T2[c ~y /x1] → x1 : T1, x2 : T2.

We have x1 : T1, x2 : T2 ` T3. By Lemma 2.4.4 (Substitution lemma) we
have ∆c[~t /~z], x2 : T2[c ~y /x1] ` T3[c ~y /x1]. Iterating this argument, we
finally arrive at ` ∆c[~t /~z], Γ′[c ~y /x1]. By induction we can find a unique

normal ∆′ satisfying ∆′ [~q ,~p′]−→ ∆c[~t /~z], Γ′[c ~y /x1], it it exists. Thus we
satisfy Definition 2.3.13 (Compound neighbourhood).

98 CHAPTER 5. MAIN RESULTS

5.2 Type-checking the signature

In this section we show how to type-check a signature built up as a sequence
of extensions of the empty signature. This is an important step, where we tie
together the previously established results in this dissertation. This procedure
corresponds to what is usually called stratification.

Until now, the given signature Σ has been fixed, but below, by technical
reasons due to the reducibility method, we will have to make our statements
relative to given parts of the signature known so far. Recall notation 2.3.18,
page 41, for judgements made relative to an explicit signature.

5.2.1 Type-checking a sequence of extensions

Lemma 5.2.1 (Derivations independent of signature extensions).

1. (a) Γ `D,C,F,R T ⇒ Γ `D,C,F,RR′ T

(b) Γ `D,C,F,R t : T ⇒ Γ `D,C,F,RR′ t : T

2. (a) Γ `D,C,F,R T ⇒ Γ `D,C,FF ′,R T

(b) Γ `D,C,F,R t : T ⇒ Γ `D,C,FF ′,R t : T

Proof. This is direct, since the addition of new rules never prevents computa-
tions that were possible previously. For extensions of F , the presence of typing
specifications for other constants than those in F will not be used in the deriva-
tion that was already established.

Theorem 5.2.2 (A procedure for type-checking the signature). Given
the signature Σ = (D, C,F1F2,R1R2), where no rules for F2 are defined in R1,
no rules for F1 are defined in R2, no constant declared in F2 occurs in F1 nor
R1,2 and

∼Â is well-founded with respect to R1R2, one can decide
` D, C, ∅, ∅,
` D, C,F1, ∅, ` D, C,F1,R1,
` D, C,F1F2,R1, ` D, C,F1F2,R1R2,
in sequence, and on success of the previous steps obtain ` Σ and RED(Σ).

Proof. Similarly as in Theorem 5.1.1, we will perform a sequence of tests. If any
on the tests fail, the main goal certainly cannot be fulfilled, by completeness of
the type-checking steps. Note that the results from computations below, due to
Lemma 5.1.3, are normal and unique. Therefore, in the cases below that depend
on previously established computations, we will not lose completeness.
Consider Σ = (D, C,F1F2,R1R2) as given above.
Assume that

∼Â is well-founded with respect toR1R2. We perform the procedure
as follows:

2This condition is necessary for the success of the stratification, but not for the correct
behaviour of the procedure, since it will be a consequence of that we first check F1 and R1

without the presence of F2.

5.2. TYPE-CHECKING THE SIGNATURE 99

1. Verification of D, C.
(a) ` D, C, ∅, ∅.

Straight-forward from Definition 2.3.15.

(b) RED∅(∅).
Direct from Definition 3.4.10.

(c) REDR1(∅).
Direct from Definition 3.4.10.

(d) REDR1R2(∅).
Direct from Definition 3.4.10.

2. Verification of F1.

(a) Assume given f1 ∈ F1. Let S1 = F1(f1).

(b) Check `D,C,∅,∅ S1 ↑, and assume it succeeds.
This is justified by Theorem 5.1.1, using 1a and 1b.

(c) `D,C,∅,∅ S1.
By Lemma 2.5.3 (Soundness of type formation checking), using 2b
and 1a.

(d) `D,C,∅,R1 S1.
By Lemma 5.2.1 (Derivations independent of signature extensions),
using 2c.

(e) `D,C,∅,R1R2 S1.
By Lemma 5.2.1 (Derivations independent of signature extensions),
using 2c.

(f) RED∅(S1).
By Lemma 3.5.1 (Reducibility of well-typed terms), using 2c and 1b.

(g) REDR1(S1).
By Lemma 3.5.1 (Reducibility of well-typed terms), using 2d and 1c.

(h) REDR1R2(S1).
By Lemma 3.5.1 (Reducibility of well-typed terms), using 2e and 1d.

(i) Since f1 was arbitrary from 2a, we have:

i. `(D,C,∅,∅) F1. By 2c.

ii. RED∅(F1). By 2f.
iii. REDR1(F1). By 2g.
iv. REDR1R2(F1). By 2h.

(j) ` D, C,F1, ∅.
By Definition 2.3.17 using 2(i)i.

100 CHAPTER 5. MAIN RESULTS

3. Verification of R1.

(a) Assume given f ′1 ∈ F1. We have F1(f ′1) of the form Ξ1 → S′1.
(b) For f ′1, assume given a rule f ′1 ~p1 = s1 ∈ R1.
(c) `D,C,∅,∅ Ξ1 → S′1.

By 2(i)i.
(d) Ξ1 `D,C,∅,∅ S′1.

By iterating Lemma 2.3.4 from 3c.
(e) `(D,C,∅,∅) Ξ1.

By Lemma 2.3.6, using 3d.

(f) Find the unique and normal ∆1, if it exists, such that ∆1
[~p 1]−→ Ξ1 in

the signature (D, C, ∅, ∅).
By Lemma 5.1.3, using 3e, 1a and 1b.

(g) `(D,C,∅,∅) ∆1.
By Definition 2.3.13 (Neighbourhood), using 3f.

(h) [~p 1] : ∆1 → Ξ1 in the signature (D, C, ∅, ∅).
By Lemma 2.4.7, using 3f.

(i) ∆1 `D,C,∅,∅ S′1[~p 1].
By Lemma 2.4.4 (Substitution lemma), using 3d, 3h and 3g.

(j) ∆1 `D,C,F1,∅ S′1[~p 1].
By Lemma 5.2.1 using 3i.

(k) Check ∆1 `D,C,F1,∅ s1 ↑ S′1[~p 1], and assume success.
By Theorem 5.1.1, using 3j, 2j and 2(i)ii.

(l) ∆1 `D,C,F1,∅ s1 : S′1[~p 1].
By Lemma 2.5.2 (Soundness of type checking), using 3k and 2j.

(m) ∆1 `D,C,F1,R1 s1 : S′1[~p 1].
By Lemma 5.2.1, using 3l.

(n) Since f ′1 and f ′1 ~p1 = s1 was arbitrary, by 3a, 3b and Definition
2.3.16, using 3m we have:

i. ` D, C,F1,R1.
ii. ` D, C,F1,R1R2.

Recall from the definition thatR1R2 only have to be type correct
w.r.t. F1 in this case, since we quantify over the constants in F1,
and no rules for F1 are defined in R2.

(o)
∼Â is well-founded w.r.t. R1.
Since

∼Â is well-founded w.r.t. R1R2.
(p) ∀f ∈ F1.REDR1(F1(f)) ∧ REDR1

(F1(f))(f).
By Lemma 3.6.6 (Key lemma), using 3o, 3(n)i and 2(i)iii.

(q) ∀f ∈ F1.REDR1R2(F1(f)) ∧ REDR1R2
(F1(f))(f).

By Lemma 3.6.6 (Key lemma), using
∼Â well-founded, 3(n)ii and

2(i)iv.

5.2. TYPE-CHECKING THE SIGNATURE 101

4. Verification of F2.

(a) Assume given f2 ∈ F1F2. Let S2 = F1F2(f2).

(b) Check `D,C,F1,R1 S2 ↑, and assume it succeeds.
This is justified by Theorem 5.1.1, using 3p and 3(n)i.

(c) `D,C,F1,R1 S2.
By Lemma 2.5.3 (Soundness of type formation checking), using 4b
and 3(n)i.

(d) `D,C,F1,R1R2 S2.
By Lemma 5.2.1 (Derivations independent of signature extensions),
using 4c.

(e) REDR1(S2).
By Lemma 3.5.1 (Reducibility of well-typed terms), using 4c and 3p.

(f) REDR1R2(S2).
By Lemma 3.5.1 (Reducibility of well-typed terms), using 4d and 3q.

(g) Since f2 was arbitrary from 4a, we have:

i. `(D,C,F1,R1) F1F2. By 4c.

ii. REDR1(F1F2). By 4e.
iii. REDR1R2(F1F2). By 4f.

(h) ` D, C,F1F2,R1.
By Definition 2.3.17 using 4(g)i, 3(n)i and Lemma 5.2.1.

102 CHAPTER 5. MAIN RESULTS

5. Verification of R2.

(a) Assume given f ′2 ∈ F1F2. We have F1F2(f ′2) of the form Ξ2 → S′2.

(b) For f ′2, assume given a rule f ′2 ~p2 = s2 ∈ R1R2.

(c) `D,C,F1,R1 Ξ2 → S′2.
By 4(g)i.

(d) Ξ2 `D,C,F1,R1 S′2.
By iterating Lemma 2.3.4 from 5c.

(e) `(D,C,F1,R1) Ξ2.
By Lemma 2.3.6, using 5d.

(f) Find ∆2, if it exists, such that ∆2
[~p 2]−→ Ξ2 in the signature (D, C,F1,R1).

By Lemma 5.1.3, using 5e, 3(n)i and 3p.

(g) `(D,C,F1,R1) ∆2.
By Definition 2.3.13 (Neighbourhood), using 5f.

(h) [~p 2] : ∆2 → Ξ2 in the signature (D, C,F1,R1).
By Lemma 2.4.7, using 5f.

(i) ∆2 `D,C,F1,R1 S′2[~p 2].
By Lemma 2.4.4 (Substitution lemma), using 5h, 5d and 5g.

(j) ∆2 `D,C,F1F2,R1 S′2[~p 2].
By Lemma 5.2.1 using 5i.

(k) ∀f ∈ F1F2.REDR1(F1F2(f)) ∧ REDR1
(F1F2(f))(f).

Assume given f ∈ F1F2. Let F2(f) = Γf → Tf . If f ∈ F1, we use
3p. Otherwise f ∈ F2. Then by assumption there are no rules for f
in R1. In this case we use Lemma 3.4.13 and 4(g)ii.

(l) Check ∆2 `D,C,F1F2,R1 s2 ↑ S′2[~p 2], and assume success.
By Theorem 5.1.1, using 5j, 4h and 5k.

(m) ∆2 `D,C,F1F2,R1 s2 : S′2[~p 2].
By Lemma 2.5.2 (Soundness of type inhabitation checking), using 5l
and 4h.

(n) ∆2 `D,C,F1F2,R1R2 s2 : S′2[~p 2].
By Lemma 5.2.1, using 5m.

(o) ` D, C,F1F2,R1R2.
Since f ′2 and f ′2 ~p2 = s2 was arbitrary from 5a and 5b, by Definition
2.3.16, using 5n.

(p) ∀f ∈ F1F2.REDR1R2(F1F2(f)) ∧ REDR1R2
(F1F2(f))(f).

By Lemma 3.6.6 (Key lemma), using
∼Â well-founded w.r.t. R1R2,

5o and 4(g)iii.

5.2. TYPE-CHECKING THE SIGNATURE 103

The procedure above can generalized to an arbitrary number of extensions.
Then one has to add for each conclusion of a verification step, a list of statements
about the reducibility with respect to all the rule sets R1, . . . ,Rn that will
be verified throughout the proof, and so the size of the proof will grow rapidly,
using the technique presented here. An alternative solution could have been to
provide a lemma that REDRT (t) implies REDRR

′
T (t), provided that R′ does not

define any of the constants defined in R (omitting the details). However, this
seems very hard to prove in our setting.

Even if we have a decision procedure for a given sequence of extensions, we
have no decision procedure for ` Σ given at once, and it doesn’t seem possible
to prove RED(Σ) from

∼Â well-founded and ` Σ alone. But for each instance of
` Σ that has been obtained from the stratification procedure above, we have
RED(Σ).

Towards a more liberal stratification Note that each Fk corresponds to
a block of mutual definitions. We believe that this procedure allows us to add
parts of Rk in several iterations of the above steps, without extending Fk. Then
it should be possible to type-check one branch f ~p = s1 of a definition, and then
use this computation rule when checking another branch g ~q = s2 of the same
block of definitions. Then it holds also when f and g are the same constant.
Our present argument does not apply for this improvement, but we conjecture
that it is a correct extension.

104 CHAPTER 5. MAIN RESULTS

5.3 Consistency

We show that there exists a proposition expressible in our system, that cannot be
proved in the system. We introduce the empty data type ⊥ in the signature with
D(⊥) = Set. Accordingly there are no constructors c such that C(c) = Γ → El⊥.

So far we have overlooked the issue of defining and checking exhaustive
pattern matching. To show consistency in the sense that the empty ground type
cannot be inhabited, we need to know that a well-typed, closed full application
of a defined constant is always a redex. The following property is enforced by
exhaustive pattern-matching:

Definition 5.3.1 (Exhaustiveness). The property EXHAUSTIVE(F ,R) holds
iff for all f such that F(f) = (x1 : T1, . . . , xn : Tn) → T , where n = ar(f),
if ` t1 : T1 through ` tn : Tn[t1, . . . , tn−1] holds, then there is a rule
f p1 . . . pn = s ∈ R, such that (t1, . . . , tn) = (p1γ, . . . , pnγ), for some γ.

Stated as above, the exhaustiveness property is undecidable. Given some
constant f of type Γf → Tf , we cannot know in general if the telescope3 Γf is
inhabitable or not, so we cannot know if an empty set of rules for f should be
considered exhaustive or not. For instance, consider the denial of Goldbach’s
conjecture: if we instantiate T1 to be the natural numbers, and for all natural
numbers n, let T2[n] be the property that if n is an even number greater than
two, it cannot be written as the sum of two primes. Most likely, the empty set
of computation rules would be exhaustive for f !

However, we can restrict ourselves to observable emptiness of the telescope,
and allow an empty set of rules only in the case where the empty type appears
as one of the types in the given telescope. Then we can decide exhaustiveness
(and in the same time disjointness) by adapting for dependent types a more
general method that was presented in Huet & Lévy (1991). The algorithm
can be sketched as follows: see the set of left-hand sides of the equations as a
matrix of patterns. Require that there is a column (choose the leftmost one)
starting with only constructors. These constructors are required to exhaust the
ground type corresponding to the appropriate column position. Now, partition
the sub-matrix to the right of this column by each of these constructors. For
each cell the corresponding sub-telescope is now instantiated by the particular
constructor and we repeat the same procedure recursively for each such block-
matrix.

In McBride (2000) the issue of exhaustiveness is discussed in more detail.
McBride also suggests techniques how to give approximations of automatic
emptiness-detection.

3See Notation 2.1.12, page 27.

5.3. CONSISTENCY 105

Lemma 5.3.2.
If EXHAUSTIVE(F ,R) holds, there is no neutral term which is well-typed in
the empty context.

Proof. Assume EXHAUSTIVE(F ,R). Assume ` b : T for some neutral4 term b
and some type T . By Corollary 2.3.9 we have b closed. We have the following
two forms for how b may be constructed:

• b = x ~t, where ~t are normal.
We have x free in b, which contradicts that b is closed.

• b = f t1 . . . tn, where f t1 . . . tn is normal and n ≥ ar(f).
From ` f t1 . . . tn : T , since ti are normal, and by Corollary 2.5.6 (Com-
pleteness of type inhabitation checking) we have ` f t1 . . . tn ↑ T .
By definition then F(f) = (x1 : U1, . . . , xn : Un) → U , with
` ti ↑ Ui[t1, . . . , ti−1] and T ./ U [t1, . . . , tn]. By Lemma 2.5.2 (Sound-
ness of type inhabitation checking), we have ` ti : Ui[t1, . . . , ti−1]. By
exhaustiveness f t1 . . . tn is a redex, which is a contradiction.

Theorem 5.3.3 (Consistency).
Let ⊥ : Set be a data type with no constructors.
If RED(Σ) and EXHAUSTIVE(F ,R), then there is no derivation of ` t : El ⊥.

Proof. Assume EXHAUSTIVE(F ,R). Assume there is a derivation of ` t : El ⊥.
By Lemma 3.5.1 we have RED(El ⊥)(t). By Specification 3.1.8, either

1. there is c, ~t such that t ⇓ c ~t and C(c) = (El e1, . . . , El en) → El ⊥.
This is a contradiction, since there is no such constructor.

2. there is a neutral term b such that t ⇓ b.
By Lemma 2.4.18 (Subject reduction) we have ` b : El ⊥, but we have
from Lemma 5.3.2, that this is a contradiction.

4See Definition 3.1.1, page 67.

106 CHAPTER 5. MAIN RESULTS

Chapter 6

Discussion

6.1 Conclusions

We have presented a constructive predicative intensional type-theoretic for-
malism based on a variation of Martin-Löf’s logical framework1, with non-
judgemental Church-Rosser convertibility, first-order parameterized algebraic
data-types and recursive definitions defined by pattern-matching. The syntac-
tic core language is the untyped lambda-calculus.

We have proved normalization for the proposed system, based on the re-
ducibility method2 formulated for weak normalization. We have also proved
subject reduction and logical consistency.

We proved well-typed terms reducible under the assumption that all con-
stants are reducible. We have defined a relation of call-instance, about recur-
sive calls,3 and proved that the latter condition is satisfied if this relation is
well-founded.

To establish well-foundedness, we showed that the size-change principle for
program termination with a structural term ordering is a sufficient syntactical
condition. This shows that type-correctness and the size-change criterion to-
gether are sufficient for decidable type-correctness. In Section 5.1 we showed
how a group of new constants can be type-checked and added to the signature.

Our approach gives us modularity: once we can prove that some particular
syntactic criterion, like the size-change principle, implies well-foundedness, our
normalization result follows from it. For instance one could use the recent
work of Krauss (2007), who gave a formalization of the size-change principle in
Isabelle (Paulson, 1994). Krauss uses the ideas of Manolios & Vroon (2006),
which gives an enhancement of the size-change principle, making the analysis
more sensitive to branching in the program.

1Cf. Nordström et al. (1990).
2Recall the discussion in Section 1.5.3, page 20.
3Cf. Definition 3.6.3, page 80.

107

108 CHAPTER 6. DISCUSSION

6.1.1 Comparison with our Licentiate Thesis

Here follows a list of differences from our past work in Wahlstedt (2004).

• The dependent Cartesian product of a family of sets.

Without this construction, as we pointed out in Wahlstedt (2004), one
could have used a simpler method for proving normalization.

One can treat all the ground types as one big type, and hence essentially
adapt the proof to a simply typed system similar to Gödel’s system T.
But when we add Π A F in Set, this simply typed method does not apply
any more. For instance we can define the following recursive set-valued
function, which appears in Hancock (2000), page 52.4

F : Nat → Set
F 0 = Nat
F (s n) = Π (F n) (λ .F n)

Then the type (n : Nat) → F n can be defined, and it seems difficult to
reduce this type to a simple type.

• Parameterized data-types.

The present system has first-order parameterized data-types, whereas in
the past work we had only first-order non-parameterized data types.

• Defined constants with arbitrary types and curried functions.

In the past work, defined constants were purely first-order, and a type of
such a constant was constrained to be a list of first-order data types. Here
we allow arbitrary types.

• In our past work, in order to prove reducibility of defined constants, we
extended the size-change analysis to deal with both term- and type-level
dependencies. We introduced a “type-level” call relation, keeping track of
the function symbols appearing in the type declarations of other function
symbols. We used then the union of the latter relation and the call-
instance relation (here in Definition 3.6.3), and its well-foundedness was
shown to imply reducibility of the constants. In this work we instead
stratify the signature considering a sequence of extensions. See Section
5.2, where this is described.

6.1.2 Technical difficulties

The main difficulty was in the proof of Lemma 3.6.6, that a well-founded recur-
sion relation implies reducible constants. Instead of proving the goal directly by
induction on the typing derivations we prove it by induction on the β-normal
fragment of the language, for which type-checking is decidable. We then get the

4See also example 3.2.6, page 73.

6.2. FUTURE WORK 109

analytic property, that sub-derivations only concern sub-terms of the conclu-
sion, and this way we get a connection between calls and derivations, enabling
us to proceed by well-founded induction on the call-instance relation.

6.1.3 Comparison with CAC

The Calculus of Algebraic Constructions (Blanqui, 2005) is the system closest to
ours. It is stronger than our system: besides that it is impredicative, it accepts
more general kinds of rewriting systems, for instance non-linear and overlap-
ping patterns. It also allows the definition of recursive higher-order data types.
Blanqui proved strong normalization, and therefore his reducibility predicates
are different from ours. What is more significant is that our only assumption
about recursive definitions is that the call relation is well-founded, which makes
our result independent of particular syntactic constraints. For instance, our
result applies to size-change termination, whereas CAC does not (at least not
without further investigations). Blanqui’s system is based on an extension of
the General Schema (Jouannaud & Okada, 1991), and it allows a large class of
rewriting systems to be accepted. However, it involves also a considerable sys-
tem of constraints to be satisfied for various kinds of rewriting systems, which
seems hard to give a simple presentation. In this sense his approach is less
modular.5

6.2 Future work

An obvious further direction is to develop more examples in our system, and
to implement a type-checker. An interesting case study would be to translate
the proof of Hancock (2000) that ε0 is well-founded. This was formalized in
Agda (Coquand, 2006), without any use of transfinite recursion. Another task
to consider in connection to our proof is to formalize it. To do this would
be an extensive effort, requiring more time resources than is available in the
scope of this dissertation, but it would certainly be interesting. Yet another
natural follow-up work would be to increase the strength of our system. In-
stead of having a “hard-wired” data-type Π as in the present work, we should
permit strictly positive higher-order recursive parameterized data-types with
dependently typed constructors. It would also be interesting to incorporate
inductive-recursive definitions. Among other further directions we give a list
below:

• Method of proving reducibility of constants.
We believe that our method of proving reducibility of constants could be
applied to other problems were recursive constants are involved. For func-
tional programming, it could be useful to extend the work of Danielsson
et al. (2006) with recursive definitions, there considering PER semantics
instead of reducibility.

5However, a similar but more general approach is taken in Blanqui (2003).

110 CHAPTER 6. DISCUSSION

• Decrease strength.
Instead of increasing strength, an investigation in the opposite direction
could be to remove Π from Set and see what can be done in this system.

• Type-checking of the signature.
We would like to be able to stratify the signature following a more lib-
eral discipline than in the present work. See the discussion after Theorem
5.2.2, page 98. As a further relaxation, it should be possible to consider
a group of mutually defined constants to have types that depend on con-
stants declared earlier in the same group. It would also be interesting to
investigate further under what conditions one can allow the execution of
certain rules for a given definition when checking the type of some other
rules of the same definition. In connection to this, it would be a challenge
to see if there are examples that motivate such a type-checking discipline.

• Justification of reducibility predicates.
The justification presented in Section 3.2, page 70 is yet just a rough
sketch. To our knowledge only little work has been done in this direction,
besides the analysis of Scott (1975) and Aczel (1980), that were done with
simple types. It would certainly be worthwhile to develop more rigorous
justifications of such definitions in the presence of dependent types. Also,
as pointed out by Aczel, one should try to do this constructively.

• Develop a decision procedure for exhaustive pattern-matching.
In its general form this property is undecidable with dependent types, but
it would certainly be worth investigating appropriate restrictions under
which this property is decidable. See the discussion in Section 5.3, page
104.

• Prove strong normalization.
It should be possible to adapt our proof for strong normalization using
a domain model as of Coquand & Spiwack (2006). We conjecture that
if we adapt our notion of reducibility for proving strong normalization,
the well-foundedness of the call-instance relation (Definition 3.6.3) will
coincide with reducibility.

• A constructive understanding of the size-change principle.
The proof by Lee et al. (2001) of the decidability of SCT uses Ramsey’s
theorem, the infinite binary version, which is also used in the theory of
Büchi automata. Looking at what is actually used from the proof of
Ramsey’s theorem, we believe that a weaker, constructively valid method
can be extracted. A constructive version of Ramsey’s theorem has been
given by Fridlender (1997).

Bibliography

Abel, Andreas. 1999. A Semantic Analysis of Structural Recursion. M.Phil.
thesis, Ludwig-Maximilians-University Munich.

Abel, Andreas. 2004. Termination Checking with Types. RAIRO – Theoretical
Informatics and Applications, 38(4), 277–319. Special Issue: Fixed Points in
Computer Science (FICS’03).

Abel, Andreas. 2006a. Implementing a Normalizer Using Sized Heterogeneous
Types. In: McBride, Connor, & Uustalu, Tarmo (eds), Workshop on Mathe-
matically Structured Functional Programming, MSFP 2006, Kuressaare, Es-
tonia, July 2, 2006. electronic Workshop in Computing (eWiC). The British
Computer Society (BCS).

Abel, Andreas. 2006b. A Polymorphic Lambda-Calculus with Sized Higher-Order
Types. Ph.D. thesis, Ludwig-Maximilians-Universität München.

Abel, Andreas. 2006c. Semi-continuous Sized Types and Termination. Pages 72–
88 of: Ésik, Zoltán (ed), Computer Science Logic, 20th International Work-
shop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary,
September 21-24, 2006, Proceedings. Lecture Notes in Computer Science, vol.
4207. Springer-Verlag.

Abel, Andreas. 2006d. Towards Generic Programming with Sized Types. Pages
10–28 of: Uustalu, Tarmo (ed), Mathematics of Program Construction: 8th
International Conference, MPC 2006, Kuressaare, Estonia, July 3-5, 2006.
Proceedings. Lecture Notes in Computer Science, vol. 4014. Springer-Verlag.

Abel, Andreas, & Altenkirch, Thorsten. 2002. A Predicative Analysis of Struc-
tural Recursion. Journal of Functional Programming, 12(1), 1–41.

Ackermann, Wilhelm. 1928. On Hilbert’s construction of the real numbers.
English translation in van Heijenoort (1977).

Aczel, Peter. 1980. Frege structures and the notions of proposition, truth and
set. Pages 31–59 of: The Kleene Symposium (Proc. Sympos., Univ. Wis-
consin, Madison, Wis., 1978). Stud. Logic Foundations Math., vol. 101.
Amsterdam: North-Holland.

111

112 BIBLIOGRAPHY

Aczel, Peter, & Rathjen, Michael. 1997. Notes on Constructive Set Theory.
Tech. rept. Institut Mittag-Leffler, The Royal Swedish Academy of Sciences.
ISSN 1103-467X, Preprint series: Mathematical Logic - 2000/2001, No. 40.

Andrews, Peter. Fall 2006. Church’s Type Theory. In: Zalta, Edward N.
(ed), The Stanford Encyclopedia of Philosophy. http://plato.stanford.
edu/archives/fall2006/entries/type-theory-church/%.

Appel, K., & Haken, W. 1976. Every planar graph is four colourable. Bulletin
of the American Mathematical Society, 82(5).

Augustsson, Lennart. 1985. Compiling Pattern Matching. Pages 368–381
of: Functional Programming Languages and Computer Architecture. Lecture
Notes in Computer Science, vol. 201. Berlin: Springer-Verlag.

Backhouse, R. C. 1986. On the Meaning and Construction of the Rules in
Martin-Löf ’s Theory of Types. Computing Science Notes CS 8606. Depart-
ment of Mathematics and Computing Science, University of Groningen.

Backhouse, Roland, & Chisholm, Paul. 1989. Do-It-Yourself Type Theory. For-
mal Aspects of Computing, 1(1), 19–84.

Barthe, G., Grégoire, B., & Pastawski, F. 2006. Type-based termination of
recursive definitions in the Calculus of Inductive Constructions. In: Proceed-
ings of the 13th International Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR’06). Lecture Notes in Artificial Intelli-
gence. Springer-Verlag. Available at http://www-sop.inria.fr/everest/
personnel/Benjamin.Gregoire/Publi/CICso%mbrero.pdf.gz.

Barthe, Gilles, Frade, Maria João, Giménez, E., Pinto, Luis, & Uustalu,
Tarmo. 2004. Type-based termination of recursive definitions. Mathemat-
ical Structures in Computer Science, 14(1), 97–141. Available at http:
//dx.doi.org/10.1017/S0960129503004122.

Ben-Amram, Amir M. 2002. General Size-Change Termination and Lexico-
graphic Descent. Pages 3–17 of: Mogensen, Torben, Schmidt, David, & Sud-
borough, I. Hal (eds), The Essence of Computation: Complexity, Analysis,
Transformation. Essays Dedicated to Neil D. Jones. Lecture Notes in Com-
puter Science, vol. 2566. Springer-Verlag.

Berger, U. 2005. Continuous Semantics for Strong Normalization. Pages 23–34
of: Cooper, S.B., Löwe, B., & Torenvliet, L. (eds), CiE 2005: New Compu-
tational Paradigms. Lecture Notes in Computer Science, vol. 3526.

Berry, Gérard. 1978. Stable Models of Typed lambda-Calculi. Pages 72–89
of: Ausiello, Giorgio, & Böhm, Corrado (eds), Automata, Languages and
Programming, Fifth Colloquium, Udine, Italy, July 17-21, ICALP 1978, Pro-
ceedings. Lecture Notes in Computer Science, vol. 62. Springer.

BIBLIOGRAPHY 113

Berry, Gérard. 1979. Modeles completement adequats et stable de lambda-calculs.
Ph.D. thesis, Universite Paris VII.

Björk, Magnus. 2000. Compiling Embedded ML. M.Phil. thesis, Chalmers Uni-
versity of Technology.

Blanqui, Frédéric. 2003. Inductive Types in the Calculus of Algebraic Con-
structions. Pages 46–59 of: Hofmann, Martin (ed), TLCA. Lecture Notes in
Computer Science, vol. 2701. Springer.

Blanqui, Frédéric. 2004. A type-based termination criterion for dependently-
typed higher-order rewrite systems. Pages 24–39 of: Rewriting techniques
and applications. Lecture Notes in Comput. Sci., vol. 3091. Berlin: Springer.

Blanqui, Frédéric. 2005. Definitions by Rewriting in the Calculus of Construc-
tions. Mathematical Structures in Computer Science, 15(1), 37–92.

Blazy, Sandrine, Dargaye, Zaynah, & Leroy, Xavier. 2006. Formal Verification of
a C Compiler Front-End. Pages 460–475 of: FM 2006: Int. Symp. on Formal
Methods. Lecture Notes in Computer Science, vol. 4085. Springer-Verlag.

Bove, A., & Capretta, V. 2005. Modelling General Recursion in Type The-
ory. Mathematical Structures in Computer Science, 15(February), 671–708.
Cambridge University Press.

Bove, Ana. 2002. General Recursion in Type Theory. Ph.D. thesis, Chalmers
University of Technology.

Breazu-Tannen, V. 1988. Combining Algebra and Higher-Order Types. In:
Proc. LICS’88.

Burstall, R. M. 1969. Proving Properties of Programs by Structural Induction.
The Computer Journal, 12(1), 41–48.

Cartmell, John. 1986. Generalised Algebraic Theories and Contextual Cate-
gories. Annals of Pure and Applied Logic, 32(3), 209–243.

Church, Alonzo. 1941. The Calculi of Lambda-Conversion. Annals of Mathe-
matics Studies, no. 6. Princeton, N. J.: Princeton University Press.

Colson, Löıc. 1989. About Primitive Recursive Algorithms. Pages 194–206
of: Ausiello, Giorgio, Dezani-Ciancaglini, Mariangiola, & Rocca, Simona
Ronchi Della (eds), Automata, Languages and Programming, 16th Interna-
tional Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings.
Lecture Notes in Computer Science, vol. 372. Springer.

Constable, R. L., & Mendler, N. P. 1985. Recursive definitions in type theory.
Pages 61–78 of: Logics of programs (Brooklyn, N.Y., 1985). Lecture Notes
in Comput. Sci., vol. 193. Berlin: Springer.

114 BIBLIOGRAPHY

Coquand, Catarina. 1998. A realizability interpretation of Martin-Löf’s type
theory. In: Sambin, G., & Smith, J. (eds), Twenty-Five Years of Constructive
Type Theory. Oxford University Press.

Coquand, Catarina. 2006. The Agda Home Page. Department of Computer
Science, Chalmers University of Technology and Göteborgs Universitet. http:
//www.cs.chalmers.se/~catarina/agda/.

Coquand, Thierry. 1985. Une Théorie des Constructions. Ph.D. thesis, Univer-
sité Paris VII.

Coquand, Thierry. 1992. Pattern Matching with Dependent Types. Pages 71–
84 of: Nordström, B., Pettersson, K., & Plotkin, G. (eds), Informal Proc. of
Wksh. on Types for Proofs and Programs, B̊astad, Sweden, 8–12 June 1992.
Dept. of Computing Science, Chalmers Univ. of Technology and Göteborg
Univ. http://www.cs.chalmers.se/~coquand/pattern.ps.

Coquand, Thierry, & Paulin-Mohring, Christine. 1990. Inductively defined
types. In: Martin-Löf, P., & Mints, G. (eds), Proceedings of Colog’88. Lecture
Notes in Computer Science, vol. 417. Springer-Verlag.

Coquand, Thierry, & Spiwack, Arnaud. 2006. A Proof of Strong Normalisation
using Domain Theory. Pages 307–316 of: LICS. IEEE Computer Society.

Cornes, Cristina. 1997 (Nov.). Conception d’un langage de haut niveau de
representation de preuves: Récurrence par filtrage de motifs; Unification en
présence de types inductifs primitifs; Synthèse de lemmes d’inversion. Thèse
de Doctorat, Université Paris 7. Available at http://pauillac.inria.fr/
~cornes/Papers/thesis.ps.gz.

Curry, Haskell B., & Feys, R. 1958. Combinatory Logic. Vol. 1. North Holland.

Danielsson, Hughes, Jansson, & Gibbons. 2006. Fast and Loose Reasoning is
Morally Correct. SPNOTICES: ACM SIGPLAN Notices, 41.

de Bruijn, N. G. 1968. The Mathematical Language AUTOMATH, Its Usage,
and Some of Its Extensions. Pages 29–61 of: Laudet, M. (ed), Proceedings of
the Symposium on Automatic Demonstration. Versailles, France: Springer-
Verlag LNM 125.

Dedekind, Richard. 1888. Was sind und was sollen die zahlen ? Braunschweig:
F. Vieweg. Translated by W.W. Beman and W. Ewald in Ewald (1996) 787–
832.

Dybjer, Peter. 1994. Inductive Families. Formal Aspects of Computing, 6(4),
440–465.

Dybjer, Peter. 2000. A general formulation of simultaneous inductive-recursive
definitions in type theory. J. Symbolic Logic, 65(2), 525–549.

BIBLIOGRAPHY 115

Ewald, William Bragg (ed). 1996. From Kant to Hilbert: a source book in the
foundations of mathematics. Vol. I, II. Oxford Science Publications. New
York: The Clarendon Press Oxford University Press. Compiled, edited and
with introductions by William Ewald.

Feferman, S. (ed). 1986. Kurt Gödel Collected Works. Oxford, UK: Oxford
University Press.

Fridlender, Daniel. 1997. Higman’s Lemma in Type Theory. PhD thesis, Dept.
of Computing Science, Chalmers Univ. of Techn. and Univ. of Göteborg.

Gentzen, Gerhard. 1969. The collected papers of Gerhard Gentzen. Edited by M.
E. Szabo. Studies in Logic and the Foundations of Mathematics. Amsterdam:
North-Holland Publishing Co.

Giesl, Jürgen, Thiemann, René, Schneider-Kamp, Peter, & Falke, Stephan.
2004. Automated Termination Proofs with AProVE. Pages 210–220 of: van
Oostrom, Vincent (ed), Rewriting Techniques and Applications, 15th Inter-
national Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3091. Springer-Verlag.

Giménez, Eduardo. 1995. Codifying guarded definitions with recursive schemes.
Pages 39–59 of: Types for proofs and programs (B̊astad, 1994). Lecture Notes
in Comput. Sci., vol. 996. Berlin: Springer.

Giménez, Eduardo. 1998. Structural recursive definitions in type theory. Pages
397–408 of: Automata, languages and programming (Aalborg, 1998). Lecture
Notes in Comput. Sci., vol. 1443. Berlin: Springer.

Girard, J-Y., Lafont, Y., & Taylor, P. 1989. Proofs and Types. Cambridge
University Press.

Girard, Jean-Yves. 1971. Une extension de l’interprétation de Gödel à l’analyse,
et son application à l’élimination des coupures dans l’analyse et la théorie
des types. Pages 63–92 of: Proceedings 2nd Scandinavian Logic Symposium.
Amsterdam: North-Holland.

Gonthier, Georges. 2004. A computer-checked proof of the Four Colour Theorem.
Available at http://research.microsoft.com/~gonthier/.

Hancock, Peter. 2000. Ordinals and Interactive Programs. Ph.D. thesis, Uni-
versity of Edinburgh.

Herbrand, Jacques. 1931. On the Consistency of Arithmetic. English translation
in van Heijenoort (1977).

Hilbert, David. 1925. Über das Unendliche. Mathematische Annalen, 95, 161–
90. Translated by Stefan Bauer-Mengelberg and Dagfinn Føllesdal in van
Heijenoort (1977).

116 BIBLIOGRAPHY

Howard, W. 1980. The formulae-as-types notion of construction. Pages 479–490
of: J. P. Seldin and J. R. Hindley (ed), To H. B. Curry: Essays on Combi-
natory Logic, Lambda-Calculus, and Formalism. Academic Press. Hitherto
unpublished note of 1969, rearranged, corrected, and annotated by Howard,
1979.

Huet, Gérard P., & Lévy, Jean-Jacques. 1991. Computations in Orthogonal
Rewriting Systems, II. Pages 415–443 of: Computational Logic - Essays in
Honor of Alan Robinson.

Hughes, John, Pareto, Lars, & Sabry, Amr. 1996. Proving the Correctness of
Reactive Systems using Sized Types. In: Jr, Guy L. Steele (ed), Principles
of Programming Languages, vol. 23. St Petersburg, Florida: ACM.

Jouannaud, & Okada. 1997. Abstract Data Type Systems. TCS: Theoretical
Computer Science, 173.

Jouannaud, Jean-Pierre, & Okada, Mitsuhiro. 1991. Executable Higher-Order
Algebraic Specification Languages. Pages 350–361 of: Proceedings, 6th Sym-
posium on Logic in Computer Science. IEEE.

Kleene, S. C. 1938. On a notation for ordinal numbers. Journal of Symbolic
Logic, 3, 150–155.

Kleene, Stephen Cole. 1945. On the Interpretation of Intuitionistic Number
Theory. The Journal of Symbolic Logic, 10(4), 109–124.

Kolmogorov, Andrei Nikolaevich. 1932. Zur Deutung der intuitionistischen
Logik. Mathematischen Zeitschrift, 35, 58–65. English translation in P.
Mancosu, Ed., From Brouwer to Hilbert : the debate on the foundations
of mathematics in the 1920s, Oxford University Press, 1998.

Krauss, Alexander. 2007. Certified Size-Change Termination. Pages 460–476
of: Pfenning, Frank (ed), Automated Deduction — CADE-21 International
Conference. Lecture Notes in Computer Science, vol. 4603. Springer. To
appear.

Landin, P. J. 1964. The Mechanical Evaluation of Expressions. The Computer
Journal, 6(4), 308–320.

Landin, P. J. 1966. The Next 700 Programming Languages. Communications of
the ACM, 9(3), 157–164. Originally presented at the Proceedings of the ACM
Programming Language and Pragmatics Conference, August 8–12, 1965.

Lee, C. S., Jones, N. D., & Ben-Amram, A. M. 2001. The Size-Change Principle
for Program Termination. Pages 81–92 of: Conference Record of the 28th
Annual ACM Symposium on Principles of Programming Languages. New
York: ACM.

BIBLIOGRAPHY 117

Leroy, Xavier. 2006. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. Pages 42–54 of: POPL ’06: Confer-
ence record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. New York, NY, USA: ACM Press.

Leroy, Xavier, Doligez, Damien, Garrigue, Jacques, Rémy, Didier, & Vouil-
lon, Jérôme. 2004. The Objective Caml system, Documentation and user’s
manual. release 3.09 edn. Available at http://caml.inria.fr/pub/docs/
manual-ocaml/index.html.

Manolios, Panagiotis, & Vroon, Daron. 2006. Termination Analysis with Call-
ing Context Graphs. Pages 401–414 of: Ball, Thomas, & Jones, Robert B.
(eds), Computer Aided Verification, 18th International Conference, CAV
2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. Lecture Notes
in Computer Science, vol. 4144. Springer.

Martin-Löf, Per. 1971. Hauptsatz for the intuitionistic theory of iterated in-
ductive definitions. Pages 179–216. Studies in Logic and the Foundations
of Mathematics, Vol. 63 of: Proceedings of the Second Scandinavian Logic
Symposium (Univ. Oslo, Oslo, 1970). Amsterdam: North-Holland.

Martin-Löf, Per. 1971. A Theory of Types. Tech. rept. 71-3. University of
Stockholm.

Martin-Löf, Per. 1972. An Intuitionistic Theory of Types. In: Sambin, G.,
& Smith, J. (eds), Twenty-Five Years of Constructive Type Theory. Oxford
University Press. Edited in 1998.

Martin-Löf, Per. 1984. Intuitionistic Type Theory. Notes by Giovanni Sambin
of a series of lectures given in Padua, June 1980. Bibliopolis, Napoli.

Martin-Löf, Per. 1992. Substitution Calculus. September. Lecture notes from
the logic seminar, University of Stockholm.

Martin-Löf, Per. 1996. On the Meaning of the Logical Constants and the Jus-
tifications of the Logical Laws. Nordic Journal of Philosophical Logic, 1(1),
3–10.

Matthes, Ralph. 1998 (May). Extensions of System F by Iteration and Primitive
Recursion on Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians-
University.

McBride, Conor. 2000. Dependently Typed Functional Programs and their
Proofs. Ph.D. thesis, LFCS, University of Edinburgh, Edinburgh, Scot-
land. Available at http://www.lfcs.informatics.ed.ac.uk/reports/00/
ECS-LFCS-00-419/.

McBride, Conor, & McKinna, James. 2004. The view from the left. Journal of
Functional Programming, 14(1), 69–111.

118 BIBLIOGRAPHY

McCarthy, John. 1962. Checking mathematical proofs by computer. In: Pro-
ceedings Symposium on Recursive Function Theory. American Mathematical
Society.

McCarthy, John. 1963a. A basis for a mathematical theory of computations.
Pages 33–70 of: Braffort, & Hershberg (eds), Computer Programming and
Formal Systems.

McCarthy, John. 1963b. Towards a mathematical science of computation. Pages
21–28 of: Information Processing: The 1962 IFIP Congress.

Mendler, Nax P. 1987. Recursive Types and Type Constraints in Second-Order
Lambda Calculus. Pages 30–36 of: Symposium on Logic in Computer Science
(LICS ’87). IEEE Computer Society.

Milner, Robin, Tofte, Mads, & Harper, Robert. 1990. The Definition of Standard
ML. MIT Press.

Müller, Fritz. 1992. Confluence of the lambda calculus with left-linear algebraic
rewriting. Information Processing Letters, 41(6), 293–299.

Newman, James R. 1956. The world of mathematics. Simon and Shuster, Inc,
New York.

Nordström, Bengt, Petersson, Kent, & Smith, Jan M. 1990. Programming in
Martin-Löf ’s Type Theory . Oxford University Press.

Odifreddi, Piergiorgio. Fall 2006. Recursive Functions. In: Zalta, Edward N.
(ed), The Stanford Encyclopedia of Philosophy. http://plato.stanford.
edu/archives/fall2006/entries/recursive-functions%/.

Pareto, Lars. 2000. Types for crash prevention. Ph.D. thesis, Chalmers Univer-
sity of Technology.

Paulson, Lawrence C. 1994. Isabelle: A Generic Theorem Prover. Lecture Notes
in Computer Science, vol. 828. Springer Verlag.

Péter, Rózsa. 1967. Recursive functions. Third revised edition. Translated from
the German by István Földes. New York: Academic Press.

Peyton Jones, Simon. 2003. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press. ISBN 0521826144.

Pfenning, F., & Paulin-Mohring, C. 1990. Inductively defined types in the
Calculus of Constructions. In: Proceedings of Mathematical Foundations of
Programming Semantics. LNCS 442. Springer-Verlag.

Pollack, Robert. 1995. Polishing Up the Tait–Martin-Löf Proof of the Church-
Rosser Theorem. In: Proceedings of De Wintermöte ’95. Department of
Computing Science, Chalmers Univ. of Technology, Göteborg, Sweden. http:
//www.dcs.ed.ac.uk/home/rap/export/churchrosser.ps.gz.

BIBLIOGRAPHY 119

Prawitz, Dag. 1965. Natural deduction. A proof-theoretical study. Acta Univer-
sitatis Stockholmiensis. Stockholm Studies in Philosophy, No. 3. Stockholm:
Almqvist & Wiksell.

Schönfinkel, Moses. 1924. Über die Bausteine der mathematischen Logik. Math-
ematische Annalen, 92, 305–316. Translated into English and republished as
“On the building blocks of mathematical logic” in (van Heijenoort, 1977,
pp. 355–366).

Scott, Dana S. 1975. Combinators and classes. Pages 1–26 of: Böhm, Cor-
rado (ed), Lambda-Calculus and Computer Science Theory, Proceedings of
the Symposium Held in Rome, March 25-27, 1975. Lecture Notes in Com-
puter Science, vol. 37. Springer-Verlag.

Seldin, Jonathan. 2002 (May). Curry’s anticipation of the types used in pro-
gramming languages. Pages 148–163 of: Proceedings of the Annual Meeting
of the Canadian Society for History and Philosophy of Mathematics, Toronto,
Ontario.

Smith, Jan. 1983. The Identification of Propositions and types in Martin-Löf’s
Type Theory: A Programming Example. Pages 445–456 of: Proceedings
of the 1983 International FCT-Conference on Fundamentals of Computation
Theory. London, UK: Springer-Verlag.

Smith, Jan M. 1989. Propositional Functions and Families of Types. Notre
Dame Journal of Formal Logic, 30(3), 442–458.

Tait, William W. 1967. Intensional Interpretation of Functionals of Finite Type.
Pages 198–212 of: Journal of Symbolic Logic, vol. 32:2.

Tait, William W. 1975. A realizability interpretation of the theory of species.
Pages 240–251. Lecture Notes in Math., Vol. 453 of: Logic Colloquium
(Boston, Mass., 1972-1973). Berlin: Springer.

The Coq Development Team. 2006. The Coq Proof Assistant : Reference Manual
: Version 8.0. Tech. rept. INRIA, Roquencourt, France. Available at http:
//coq.inria.fr/doc/main.html.

Uustalu, Tarmo, & Vene, Varmo. 2002. Least and greatest fixed points in
intuitionistic natural deduction. Theoret. Comput. Sci., 272(1-2), 315–339.
Theories of types and proofs (Tokyo, 1997).

van Heijenoort, Jean (ed). 1977. From Frege to Gödel, a Source Book in Math-
ematical Logic, 1879-1931. 3 edn. Cambridge: Harvard University Press.

Vogel, Helmut. 1976. Ein starker Normalisationssatz für die bar-rekursiven
Funktionale. Arch. Math. Logik Grundlagenforsch., 18(1–2), 81–84.

Wahlstedt, David. 2000. Detecting Termination Using Size-Change in Parame-
ter Values. M.Phil. thesis, Göteborgs Universitet. http://www.cs.chalmers.
se/~davidw/.

120 BIBLIOGRAPHY

Wahlstedt, David. 2004. Type Theory with First-Order Data Types and Size-
Change Termination. Tech. rept. Chalmers University of Technology. Licen-
tiate thesis, No. 36L.

