Charge and Energy Noise from On-demand Electron Sources
Licentiatavhandling, 2018

On-demand single electron sources (SES) are of key importance for future elec- tronic applications such as metrology or quantum optics with electron. They allow for achieving a controlled, low-fluctuations flow of particles in a coherent mesoscopic conductor. One way to characterize the precision and spectrum of the injected single-particle state from these sources is to study correlations of charge- and energy currents. We analyze a prominent example for such single-electron sources which is the emission of single electrons from a driven mesoscopic capacitor in the quantum- Hall regime. By employing the Floquet scattering approach, we study the features of this source in charge- and energy-current noise. Whereas the charge-current noise is proportional to the number of emitted particles, the energy-current noise is sensitive to properties of the driving potential. When the mesoscopic capacitor is driven slowly, we compare its features with the application of a Lorentzian- shaped, time-dependent potential to a coherent conductor. Both sources emit exactly the same pulse but with di erent type and number of particles. In contrast to charge currents, energy currents and their fluctuations are more di cult to access experimentally. We theoretically propose a setup for the de- tection of fluctuating charge and energy currents, as well as their correlations, generated by an arbitrary time-dependently driven electronic source. Employing the Boltzmann-Langevin approach, we show that these fluctuations are detectable through a read-out of frequency-dependent temperature and electrochemical-pote- ntial fluctuations. We discuss the feasibility of our detection scheme for a con- crete example of the mesoscopic capacitor setup in the quantum Hall regime. Finally, we review di erent, experimental-related aspects that should be taken into account when optimizing the proposed detection scheme.

energy and heat currents

fluctua- tions and noise

charge current

time-dependently driven mesoscopic capaci- tor

Boltzmann-Langevin approach.

Floquet scattering theory

single-electron source

C511, seminar room, MC2-huset, MC2
Opponent: Francois Parmentier, CEA Saclay, France


Nastaran Dashti

Dashti, N, Misiorny, M, Samuelsson, P, Splettstoesser, J. Probing charge and heat current noise by frequency-dependent temperature and potential fluctuations


Nanovetenskap och nanoteknik


Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik


Chalmers tekniska högskola

C511, seminar room, MC2-huset, MC2

Opponent: Francois Parmentier, CEA Saclay, France