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Engineering Lipid Metabolism for Production of Oleochemicals in Saccharomyces 

cerevisiae 

Paulo Gonçalves Teixeira 

Department of Biology and Biological Engineering 

Chalmers University of Technology 

Abstract 

Oleochemicals are chemicals usually derived from plant oils or animal fat. Large use of plant 

oil derivatives as replacements for petroleum-derived chemicals brings sustainability issues 

from extensive cultivation of oil plants in restricted regions. This project studied and developed 

the baker’s yeast Saccharomyces cerevisiae as a platform for sustainable production of 

oleochemical precursors. 

The first part of this work studied the dynamics of free fatty acids (FFAs) production. First, an 

alternative fatty acid synthesis system based on the reverse β-oxidation pathway was evaluated 

for its in vivo function but concluding that it was not an efficient route for fatty acid synthesis. 

The subsequent studies were based on high level production of FFA and secretion to the 

extracellular medium through removal of acyl-CoA synthase activity by deleting the FAA1-4 

genes. This phenotype was coupled to a pathway that converts FFA to fatty alcohols, which 

allowed the observation that while FFA are more efficiently converted to fatty alcohols during 

growth on glucose, the production of FFA is highly increased during growth on ethanol. Fine-

tuning of FAA1 expression resulted in improved production of fatty alcohols without FFA 

secretion in this strain. Following up, the pathways leading to FFA formation in a Δfaa1 Δfaa4 

background were studied through construction of a strain with a constrained lipid metabolism 

network. It was observed that upon removing storage lipid formation, phospholipid synthesis 

had a strong correlation with FFA production and FFA formation was mostly derived from 

phospholipid hydrolysis. 

On the second part of this work, S. cerevisiae was engineered for the highest TAG production 

levels reported so far. This relied on overexpressing genes involved in malonyl-CoA supply 

and TAG synthesis from acyl-CoA, and removing genes involved in TAG hydrolysis, β-

oxidation and glycerol-3-phosphate usage. On a second approach, TAG accumulation 

properties were further improved in these strains through enhancing lipid droplet assembly 

processes. This was achieved through expression of perilipins and FIT proteins and through 

stimulation of ER stress mechanisms. 

In conclusion, lipid metabolism is an important part of cell homeostasis and engineering this 

system requires overcoming its tight regulation networks and mastering the processes involved 

in the physical structural organization of the system. Here this was highlighted using both 

knowledge-driven studies and engineering approaches, leading to important advancements in 

the field.  

Keywords: Saccharomyces cerevisiae; lipid metabolism; oleochemicals; lipid homeostasis 
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Prologue 

 

Metabolic engineering in a global context 

In a world of sustainable development, all materials, chemicals and energy sources need to 

have a renewable life cycle. An environmentally negative effect of the life cycle of any product 

necessary for human development ties the growth of humanity to the deterioration of the 

ecosystems we live in. Consequently, this causes a decay in life quality, economic instability 

and geopolitical problems related to limited resource availability (Sanborn Scott, 2005). The 

use of fossil sources for energy and materials has therefore been a concern raised many years 

ago and the finding of real sustainable alternatives to replace these sources is paramount. 

At current state of development, the dependency we have on fossil-derived production of fuels 

and chemicals is one of the major challenges for a sustainable development. Fossil energy 

sources are formed by natural processes, such as anaerobic decomposition of ancient million-

years-old organisms that contain energy and carbon stored at the time of death of the ancient 

organism. Usage of these energy and carbon sources originates two main issues. Firstly, fossil 

sources are a finite resource, since generation of these takes millions of years, while they can 

be processed and readily used in a short time scale (from some minutes to a few years). 

Secondly, use of fossil sources releases carbon to the atmosphere that is not consumed at the 

same rate that it is released. Carbon emissions are one of the main causes of global warming 

and climate change (Crowley, 2000), which was featured as one of the 10 biggest global 

challenges in 2016 by the World Economic Forum. 

As to the origin of this issue, the current dependence on fossil sources was created from an 

economic development due to historical events rather than from technical limitations regarding 

use of renewable sources. Since oil was found as a resource that could be extracted from the 

ground and provide a cheap and easy way to obtain energy and materials, much of the industry, 

technical production processes, consumer products and supply chains were developed 

optimally for the use of this resource. The development was exponentially stimulated through 

the developments of the industrial revolution in the 1870s and the two occurring World Wars 

that demanded a higher and faster supply of energy (Andres et al., 1999). 

As much as efforts are being made to replace fuels and chemicals from non-renewable sources, 

viable solutions for an independence from fossil resources are not yet achieved, and some 

https://paperpile.com/c/RjXLSq/M2eo
https://paperpile.com/c/RjXLSq/5tCQ
https://paperpile.com/c/RjXLSq/rzp5
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industries are very far away from an optimally sustainable solution. Potential solutions need to 

offer not only a reliable technical feasibility, but also a cost-effective production process and 

to some degree have a level of integration with either currently existing industrial processes or 

consumer products in order to penetrate the existent and well-established production and 

supply chains. In short, development of technology to progress towards sustainable supply of 

energy and materials must necessarily comply with the 3 main pillars of sustainability: The 

technology needs to be environmentally sustainable by relying on renewable sources and being 

carbon neutral, i.e. the capture of atmospheric carbon during the production process should be 

equal or superior to the carbon emissions during usage. It also needs to be economically feasible 

in order to be compliant with a society’s economic growth. Furthermore, opportunity for profit 

will stimulate a market involvement, creating therefore a driving force for corporate technology 

development efforts at a steady pace. As a last point, it needs to be socially beneficial and 

account for the impact on living communities, job market and impact on different social classes 

both on production and use of such alternative sources. 

The work described here aims to provide progress and knowledge towards a sustainable 

solution for producing fuels and chemicals. By relying on the transformative power of the 

biochemical processes existent in nature, it is possible to create a variety of sustainable material 

and energy products using i) renewable feedstocks and ii) microbial cells capable of converting 

these into the desired products. 

The following text aims to explore the potential of yeast cells as a catalyst for production of 

oleochemicals from fully sustainable sources. The first sections will focus on the molecular 

biology and biochemistry aspects behind it, offering background on the processes involved. 

The following sections will report on the scientific advancements to the field generated through 

the projects presented through this thesis, and their significance. 
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Introduction to Oleochemicals 

 

Oleochemicals: Definition, processes and applications 

Oleochemicals are defined as the group of chemicals that are extracted or derived from plant 

or animal fats (Rupilius and Ahmad, 2006). Because animal and plant fats are commonly 

composed of triacylglycerols, oleochemicals are characterized by the existence of one or more 

hydrophobic acyl-chains, which give them hydrophobic or amphipathic properties, depending 

on the product molecule. 

Due to the presence of acyl chains, oleochemicals have developed into replacements to 

petrochemicals, which are chemicals derived from petroleum. One group of the most common 

petrochemical precursors are α-olefins, or terminal alkenes, since the presence of a terminal 

carbon-carbon double bond allows for a series of different chemical reactions that transform 

this hydrocarbon into a chemical with a different terminal functional group, changing its 

properties and chemistry (Donohoe et al., 2009). In the same way, oleochemical processes use 

fatty acids (either in an unbound form or bound to a glycerol backbone) as a basic common 

precursor, in which the carboxyl group provides the needed reactivity for conversion into many 

other different functional groups. 

Fats and oils present in animals and plants are mostly composed of triacylglycerols (TAGs) 

(Montero de Espinosa and Meier, 2011). TAGs are neutral lipid molecules with a glycerol 

backbone esterified to three fatty acids. A few exceptions exist to this, such is the case of jojoba 

oil, which is composed of wax esters (Miwa, 1971). 

For oleochemical production, the TAGs from the fat material are the base material that through 

chemical reactions provides different basic industrial precursors (Metzger and Bornscheuer, 

2006) which is schematically shown in Figure 1. 

 

https://paperpile.com/c/RjXLSq/WBS1j
https://paperpile.com/c/RjXLSq/AJvje
https://paperpile.com/c/RjXLSq/uwpp7
https://paperpile.com/c/RjXLSq/bXPWl
https://paperpile.com/c/RjXLSq/uwpp7
https://paperpile.com/c/RjXLSq/kbcxe
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Figure 1. Chemical routes for basic oleochemical production and possible microbial routes to 

replace them. Traditional oleochemical industry typically extracts plant oils and chemically reacts 

them to generate other oleochemical species. Production of oleochemicals through microbial 

fermentation uses different biomass as feedstock. Through an engineered metabolism, the 

microorganism can produce any of the highlighted oleochemicals. (adapted from Pfleger et al., 2015)  

  

The basic oleochemicals, which can be simply converted from fat material and serve as 

precursors to all other oleochemical products are: free fatty acids, fatty methyl esters, fatty 

alcohols, fatty amines and glycerol (Biermann et al., 2011; Pfleger et al., 2015; Salimon et al., 

2012). Glycerol is the only one of these molecules that does not have an acyl chain and it is a 

byproduct of hydrolyzing the TAGs in fat into its single fatty acid constituents. Glycerol is a 

mostly unattractive product with a low market value and for that reason will be excluded from 

the definition here of oleochemical products of interest. The focus will instead be on 

oleochemicals with an acyl chain. 

Some basic oleochemicals, like free fatty acids or fatty acid methyl esters, can be derived 

directly from TAG conversion while others, such as fatty alcohols and fatty amines, are derived 

from chemical conversion of other basic oleochemical species. Fatty alcohols can be produced 

either from free fatty acids or fatty methyl esters while fatty amines must be derived from free 

fatty acids (Salimon et al., 2012). The enumerated basic oleochemicals can then be converted 

into more advanced chemicals with different applications to a variety of products. A short 

summary of these derived chemicals and applications is presented in Table 1. 

 

https://paperpile.com/c/RjXLSq/7Uc0
https://paperpile.com/c/RjXLSq/r5c2+DvUg+7Uc0
https://paperpile.com/c/RjXLSq/r5c2+DvUg+7Uc0
https://paperpile.com/c/RjXLSq/r5c2
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Table 1. Examples of chemicals and applications derived from basic oleochemicals. 

 

Oleochemicals: Raw materials, needs and sustainability 

The most common sources of fats for production of modern oleochemicals are plant oils. Which 

oil to use depends on the properties of the desired final product in terms of the desired acyl 

chain composition. Fatty acid composition changes between different plants and different 

tissues in terms of fatty acid chain length and presence of desaturations, which ultimately affect 

the properties of the final product (Carlsson, 2009). 

In 2017, the world production volume of vegetable oils reached 200 Million metric tons, from 

which at least 15% are estimated to be used for non-edible purposes (Rupilius and Ahmad, 

2006; Tao, 2007). The largest sources of world vegetable oils are palm and soybean, which 

together account for 65% of the total world production of plant oils (https://www.statista.com).  

Dependency on specific plant species for production of oleochemical precursors raises two 

main question. Firstly, the limited variety of fatty acid compositions in high-producing plants 

such as palm and soybean limits their use for applications where specific fatty acids are needed. 

In this case it is necessary to rely on more exotic plant species that can have low productivity 

or require cultivation under specific climate and soil conditions. This creates economic 

dependencies and supply chains controlled by few key players, which decreases flexibility of 

sources and increases instability of supply rates and prices. Secondly, both palm and soy 

require favourable climate and soil conditions to achieve a high productivity. As such, 85% of 

the world palm oil supply comes from Indonesia and Malaysia while 80% of soybean oil is 

Basic 
Oleochemical 

Free Fatty 
Acids 

Fatty Acid 
Methyl 
Esters 

Fatty 
Amines 

Fatty Alcohols 

Derivative 
Chemicals 

Fatty Acid 

Esters 

Conjugated 

Fatty Acids 

Alkyl 

Epoxyesters 

Sulfo Fatty 

Acid Ester 

Fatty Amine 

Oxides 

Fatty Alcohol 

Sulfates 

Fatty Alcohol 

Ethoxylates 

Fatty Alcohol 

Ethoxysulfates 

Major 
Applications 

Examples 

Soaps & 

Detergents 

Chemical 

Intermediates 

Plastics 

Personal Care 

Biodiesel 

Surfactants 

Fabric 

softeners 

Cosmetics 

Corrosion 

Inhibitors 

Antimicrobials 

Soaps & 

Detergents 

Personal Care 

Lubricants 

https://paperpile.com/c/RjXLSq/5ydZ6+bXPWl
https://paperpile.com/c/RjXLSq/KCrld
https://paperpile.com/c/RjXLSq/5ydZ6+bXPWl
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produced by the US, Argentina and Brazil (http://faostat.fao.org/). This monoculture of a single 

plant species only in a specific region and relying on those few regions to keep up with world 

demand leads to severe environmental problems such as deterioration of soils, deforestation 

and destruction of habitats (Danielsen et al., 2009) as well as social concerns such as land-

grabbing and exploitation of small farmer workers by large players in the plant oil industry 

(Gellert, 2015). 

Although the use of plant oils is a significant improvement in the sustainable and economic 

development of replacing petroleum-derived chemicals, it is by far not enough or optimal as 

the only solution if the aim is to achieve a fossil-fuel independent industry. There is a need to 

supply oleochemical products in which the production process can be: i) flexible in terms of 

raw material input and product output, in order to reduce dependency on localized production 

of specific oils and reduce transportation, ii) easily modifiable and specific in order to produce 

the desired products (specific chain lengths, unsaturation, position of functional groups) with 

a reduced amount of contaminants or undesired species and iii) sustainable, both economically, 

environmentally and socially. 

 

Microbial-based production of oleochemicals based on 

engineered microbes 

Microbes have been used in industry for a variety of purposes. Historically we see fermentation 

of food products as a prevalent theme throughout the ages with the advent of beer and wine 

brewing, bread baking, dairy processing and acetic conservation. Fermentation in this context 

can be simply described as cells consuming a carbon source, usually some type of sugar, and 

transforming it into another product such as ethanol or acids while harvesting energy from the 

process in order to grow. During fermentation, microbial cells are converting one product into 

another using a series of enzymes and reactions that are connected systematically and 

methodically and act as an assembly line. Conceptually, these cells are microbial cell factories 

and can be further developed and engineered for industrial conversion of a substrate into a 

specific product. 

 

Short introduction to the biorefinery concept 

The biorefinery concept consists of a group of processes able to separate biomass resources 

such as corn, energy grass or wood residues into different fractions (sugars, lignin, 

hemicellulose) to be used in generating high-value products, biofuels and chemicals 

(Cherubini, 2010). Economic viability of a biorefinery relies on the production of at least one 

value-added chemical. This often requires the use of specialized microbes to catalyze this 

conversion of the feedstock into the specific desired products. Coupled to this is the processing 

https://paperpile.com/c/RjXLSq/XX5Kf
https://paperpile.com/c/RjXLSq/jPj3y
https://paperpile.com/c/RjXLSq/sx34l
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of the biomass (pre-treatment) to separate it into a part that can be available to be consumed by 

the microbial cells and another that can be used for lower value outcomes such as combustion 

for heat generation and lower value product production (Ragauskas et al., 2014). After the 

fermentation, downstream processing is needed to separate and purify the products resulting 

from the fermentation (Kumar and Murthy, 2011) (Figure 2), which will isolate high value 

products that are usually required in high purity from other bulk chemicals and fuels that can 

be used in low purities or separate to different phases (Kaparaju et al., 2009). This process can 

be coupled to other different chemical and biological routes, even involving other fermentation 

reactions, in order to have a sustainable and economically viable production chain. 

 

 

Figure 2. A simple biorefinery concept. Low value biomass feedstock enters the process, from which 

the main goal is the production of value-added chemicals with generation of heat, energy, bulk 

chemicals and/or fuels in the process. 

 

Microbial cells are the main player in a biorefinery focused towards specific high-value 

products and the choice of microbial cell will decide which feedstocks can be used as 

substrates, which products can be produced from this biomass, and have a heavy impact on 

production yields, titers and rates. Exactly for this reason, the viability of a biorefinery 

applications needs to rely heavily on the development of capable, efficient and robust microbial 

cells. 

Microbial cells found in nature have been naturally evolved to maximize their growth and 

competitiveness in their native habitat, and as such their metabolism is adapted towards 

objectives different from the ones desired when using these in an industrial setting. Therefore, 

for industrial purposes, in order to specifically convert the feedstock into the desired product 

molecule and optimize the yield and rate of production of said molecule, cell metabolism needs 

https://paperpile.com/c/RjXLSq/tDiM
https://paperpile.com/c/RjXLSq/q39dF
https://paperpile.com/c/RjXLSq/OgcW
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to be rewired and re-purposed through metabolic engineering (Keasling, 2010). The importance 

of metabolic engineering for a sustainable development namely for production of fuels and 

chemicals has been recognized by the World Economic Forum through listing the technology 

as one of the Top 10 Emerging Technologies of 2016. 

 

Potential and limitations of Saccharomyces cerevisiae for 

production of oleochemicals 

 

S. cerevisiae as an industrial organism 

The baker’s yeast Saccharomyces cerevisiae has been used by humans for thousands of years. 

Through the development of beer and wine brewing, as well as bread making, this yeast became 

an important organism in our food industry and consequently our society. Due to its incredible 

efficiency at fermenting sugars and producing ethanol, S. cerevisiae has also been used in the 

past decades for production of bioethanol as a fuel through fermentation of sugar sources such 

as sugarcane, corn, wheat and beetroot (Balat et al., 2008). Production of ethanol as an 

economically viable biofuel allowed for formulations including blending up to 15% in gasoline 

for regular automobile engines, extending to the development of engines running on fuels with 

higher percentage of this ingredient. 

The parameters that allowed the success of S. cerevisiae for applications in industry are mostly 

its fast growth rate, robustness and resistance to low pH and fermentation inhibitors (Borodina 

and Nielsen, 2014; Cakar et al., 2012). This adds to the fact that it is a generally regarded as 

safe (GRAS) organism to handle, proving no danger regarding pathogenicity, virulence or 

environmental hazards. Furthermore, the applications of this yeast in industry have led to 

extensive knowledge on its handling and working conditions in applied settings. Together with 

the existence of many applied techniques and procedures, this makes S. cerevisiae a favourite 

organism to handle in industrial applications (Krivoruchko and Nielsen, 2015). 

Besides the consolidated knowledge on applications, S. cerevisiae has been intensively studied 

as a model organism for many eukaryotic molecular pathways due to the conserved nature of 

many of these with higher eukaryotes (Botstein et al., 1997; Petranovic et al., 2010). Due to 

this, S. cerevisiae is one of the most well studied eukaryotic organisms and benefits from vast 

knowledge, literature resources and extensive data deposited at numerous databases (Dolinski 

and Troyanskaya, 2015; Engel et al., 2014). 

Through the years, the consolidated knowledge allowed the development of many tools for 

engineering this organism (Keasling, 2012; Murray et al., 2016). Early on, plasmid-based gene 

cloning and expression systems were set up, in which today the most commonly used are gene 

expression from 2μ plasmids which can multiply in the cell to up to 80 copies allowing strong 

https://paperpile.com/c/RjXLSq/4B9PS
https://paperpile.com/c/RjXLSq/soI3l+aau2c
https://paperpile.com/c/RjXLSq/rbSFc+BmhqW
https://paperpile.com/c/RjXLSq/xwJt4+EB9ts
https://paperpile.com/c/RjXLSq/zgupE
https://paperpile.com/c/RjXLSq/EMe4+OCW5
https://paperpile.com/c/RjXLSq/rbSFc+BmhqW
https://paperpile.com/c/RjXLSq/0tl5M
https://paperpile.com/c/RjXLSq/EMe4+OCW5
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expression of genes (Christianson et al., 1992), and centromeric (CEN) plasmids based on an 

ARS origin of replication. CEN.ARS plasmids replicate like chromosomes and usually only 

one single copy is kept in the nucleus (Rose et al., 1987). These are therefore important when 

a fine-tuned or controlled expression is desired. We also have a vast knowledge on gene 

promoter strength and inducibility conditions, and can therefore work with concepts of fine-

tuned and dynamic gene expression by placing the genes of interest under control of specific 

promoters (Hubmann et al., 2014). Genome engineering such as gene knockout has also been 

shown to be a straightforward process in yeast, since homologous recombination is a very 

efficient DNA repair mechanism in this species, making it easy to specifically target a gene 

and replace it by a genetic marker that will then allow for selection of positive clones with the 

correct gene deleted (Nihei and Kishi, 2017). Through the same way, it is simple to integrate 

into the genome specific genes of interest to be expressed. These genes can be integrated with 

a genetic marker and selected in the same way. More recently, development of the CRISPR-

Cas9 technology allowed for efficient genome engineering without the use of marker genes 

(Jensen et al., 2017; Mans et al., 2015). Due to high efficiency and selection by DNA repair 

capacity of the cell, CRISPR allowed for more time-efficient and simpler gene removal and 

insertion, speeding up the process of genome engineering. This efficiency and specificity in 

engineering, as well as the multitude of tools and knowledge available, make S. cerevisiae the 

preferred eukaryotic organism for precise cell factory development. 

 

Limitations of S. cerevisiae for production of oleochemicals 

Even though this organism is exquisite when it comes to engineering potential, it natively has 

a poor capacity for production of oleochemical precursors. Our analysis of a typical S. 

cerevisiae strain shows that only 2-3% of its dry cell weight is composed of lipids, of which 

approximately 53% are phospholipids, 27% TAGs, 15% sterol esters (SEs) and 3% free fatty 

acids (FFAs) (Figure 3A). 

Overlaying the lipid species produced by S. cerevisiae with potential molecules that are used 

as oleochemical precursors for industrial purposes highlights the potential of producing TAGs 

and free fatty acids using this organism. However, these two lipid species account for less than 

1% of the total cell dry biomass, and are therefore natively present in too low amounts to be 

viable in terms of production processes. Other yeast species exist and have been investigated 

for their capacity to accumulate a high percentage of their biomass as lipids, specially TAGs. 

Yeast genera such as Rhodosporidium, Rhodotorula, Yarrowia, Cryptococcus, Candida, 

Lipomyces and Trichosporon are considered oleaginous since some of their species are able to 

accumulate more than 20% of their dry cell weight as lipids, reaching values as high as 70% 

(Adrio, 2017; Patel et al., 2016). While these species do offer a better starting point in cell 

factory development, they lack the engineering tools, knowledge and data available for S. 

cerevisiae, as mentioned above. 
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Figure 3. Typical lipid composition of S. cerevisiae grown in minimal medium. A) Quantification 

of the different lipid classes in S. cerevisiae displayed as percentage of dry cell weight. B) Distribution 

of the different phospholipid classes within the phospholipid fraction. SE: sterol esters; TAG: 

triacylglycerol; CL: cadiolipin; FFA: free fatty acids; PI: phosphatidylinositol; PE: 

phosphatidylethanolamine; PC: phosphatidylcholine; PS: phosphatidylserine. Data was obtained from 

a compilation of the datasets generated for the control strains during the studies in this thesis. Strains 

were cultivated for 72h in minimal media with 2% glucose 

 

The factors described so far show a promising route towards using available engineering tools 

to develop S. cerevisiae cell factories for overproduction of either lipid species that can be used 

as oleochemical precursors, such as TAGs, or production of basic oleochemical species such 

as free fatty acids. This task, however, presents many challenges that will gradually be exposed 

in following sections. Overcoming these challenges requires a deep understanding of the lipid 

metabolism in this organism, as well as its overlaying regulation networks and the biological 

processes governing the organelles involved in these reactions. The following section will 

therefore focus on lipid metabolism in S. cerevisiae which will then allow us to expand this 

knowledge to design strategies for in vivo production of oleochemicals and its precursors. 
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Saccharomyces cerevisiae: An Overview 

of Lipid Metabolism 

 

Lipid metabolism in S. cerevisiae 

Lipid metabolism in S. cerevisiae involves an interplay between metabolic and regulatory 

networks (Jewett et al., 2013). These two networks communicate between each other to 

regulate levels of lipid pools and control the fatty acid composition of these (Henry et al., 2012). 

In Figure 4, the lipid metabolic network is presented in a simplified diagram. In terms of 

understanding of this network, a conceptual subdivision of all reactions is presented and here 

fatty acid biosynthesis is represented as the central process of lipid metabolism due to its 

importance. The fatty acid biosynthesis machinery produces acyl chains of up to 18 carbons 

based on 2 carbon monomers from acetyl-CoA. We can therefore divide lipid metabolism into 

3 main parts: i) Production of acetyl-CoA as a substrate for fatty acid biosynthesis, ii) The fatty 

acid biosynthesis machinery, and iii) the transfer of acyl-chains in the form of acyl-CoA into 

other lipid forms, including the interconversion and transfer of acyl-CoA between different 

lipid classes. 

The work developed here does not focus on engineering acetyl-CoA supply and only touches 

lightly on aspects of the fatty acid biosynthesis machinery, focusing mostly on the downstream 

lipid metabolism networks related to synthesis of different lipid classes from acyl-CoA, as well 

as acyl-CoA and fatty acid homeostasis and turnover through different lipids. For that matter, 

acetyl-CoA synthesis is here underrepresented and schematically simplified, since it is an 

extensive and complex subject on its own which would extend this thesis beyond its scope. 

 

https://paperpile.com/c/RjXLSq/WjSbo
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Figure 4. Simplified representation of lipid metabolism in S. cerevisiae. Cytosolic acetyl-CoA is 

produced from glucose or ethanol through complex pathways not displayed here. Cytosolic acetyl-CoA 

is then converted to malonyl-CoA, which is the building block of the fatty acid biosynthesis machinery. 

The product of fatty acid biosynthesis, acyl-CoA, is then used in a multitude of processes for production 

of membrane lipids such as phospholipids and neutral lipids such as TAGs and SEs. Phosphatidic acid 

(PA) is a common intermediate in the phospholipid and TAG synthesis pathways. Remodeling and 

hydrolysis of TAGs, phospholipids or SEs results in free fatty acids that are then re-activated to acyl-

CoA, which can then re-enter lipid synthesis processes or be oxidized back to acetyl-CoA. 

 

The fatty acid biosynthesis machinery 

Fatty acid biosynthesis entails a group of reactions that allow the condensation of multiple 

acetyl-CoA molecules in one acyl-CoA molecule, each acetyl-CoA contributing 2 carbon 

atoms to the acyl-CoA chain length (Tehlivets et al., 2007). This process happens in the cytosol 

and it is catalyzed by two distinct components: First, the acetyl-CoA carboxylase encoded by 

the ACC1 gene catalyzes the conversion of acetyl-CoA to malonyl-CoA. The second 

component is the Fatty Acid Synthase (FAS) complex, a multifunctional enzymatic complex 

with seven different catalytic domains and one acyl carrier protein (ACP) domain. This 

complex is composed by two subunits α and β, organized as a hexamer (α6β6) (Schweizer and 

Hofmann, 2004), each subunit encoded by the genes FAS1 and FAS2, and catalyzes all the 

other reactions necessary for the synthesis of a fatty acyl-CoA molecule. The FAS complex 

uses acetyl-ACP as a primer for the first cycle and the extending acyl-ACP for the following 

cycles, consuming one malonyl-ACP and 2 NADPH during each cycle to extend the 

acetyl/acyl-ACP chain by 2 carbons through the reactions depicted in Figure 5. When the acyl-

https://paperpile.com/c/RjXLSq/aM73
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ACP chain has reached a specific length, which in S. cerevisiae is often a 16 or 18 carbon chain, 

the acyl-ACP is converted to acyl-CoA by the MPT domain of the FAS complex and released 

to the cytosol where it becomes the substrate of other enzymes for further synthesis of other 

lipid species (Schüller et al., 1992; Schweizer and Hofmann, 2004; Tehlivets et al., 2007; Zhu 

et al., 2017). C16 or C18 fatty acids can be elongated to very long chain fatty acids of C20 to 

C26 through the action of an elongation system in the ER composed of the elongase enzymes 

Elo2, Elo2 and Elo3. The reaction involves cyclic steps analogous to the FAS system and also 

uses malonyl-CoA as a building block, but instead relying on -CoA intermediaries for the 

process (Aung et al., 2013; Tehlivets et al., 2007). 

 

 

Figure 5. Fatty acid biosynthesis through the yeast FAS complex. Synthesis of fatty acids as acyl-

CoA through the fatty acid synthase (FAS) complex. Malonyl-CoA is used as an elongation block and 

is synthesized by the acetyl-CoA carboxylase Acc1 from acetyl-CoA. The elongation reactions are done 

by the FAS complex which is a multifunctional enzyme complex generated by oligomerization of the 

polypeptides Fas1 and Fas2. Each cycle extends the size of the acyl-chain in the form of acyl-ACP by 

2 carbons at the cost of 1 malonyl-CoA and 2 NADPH. Acyl-ACP molecules of usually 16-18 carbons 

are converted to acyl-CoA still by the FAS complex, which is after this released.  

 

The fates of fatty acyl-CoA 

Acyl-CoA is a group of molecules having many fates. They are substrates of many different 

enzymes and their levels are a target of tightly controlled regulation. All this makes these 

molecules among the most important nodes in lipid metabolism networks. 

Acyl-CoAs are substrates in pathways for synthesis of phospholipids (Carman and Han, 2011; 

Henry et al., 2012), TAGs (Liu et al., 2012), sterols esters (Bailey and Parks, 1975; Zweytick 

et al., 2000) and sphingolipids (Cowart and Obeid, 2007) and can take part in reactions 

https://paperpile.com/c/RjXLSq/KzOBA
https://paperpile.com/c/RjXLSq/4UZ6N+WjSbo
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localized in a number of different organelles depending on its purpose (Henry et al., 2012): 

acyl-CoAs in the peroxisome will be targeted by the beta oxidation machinery to be oxidized 

back to acetyl-CoA to be used as an energy and carbon source by the cell (Poirier et al., 2006); 

cytosolic acyl-CoAs can be associated with phospholipid synthesis at the ER membrane 

(Carman and Henry, 1999) and with TAG synthesis in lipid droplets (LD) (Czabany et al., 

2007). Acyl-CoA has been shown to be transported between organelle membranes and 

enzymatic processes bound to an acyl-CoA-binding protein (ACBP) (Rasmussen et al., 1994). 

This acyl-CoA-ACBP complex is also involved directly and indirectly in regulation of acyl-

CoA levels as it is described in the following section (Knudsen et al., 1999). 

Due to their importance and involvement in different metabolic processes, acyl-CoAs play a 

central role in lipid metabolism regulation. Their synthesis is feedback regulated through 

modulation of Acc1 activity, which catalyzes a limiting step in fatty acid biosynthesis 

(Brownsey et al., 2006). 

When the acyl chains from neutral lipids or phospholipids are cleaved off as FFAs for 

remodeling or oxidation, FFAs are converted back to acyl-CoA in order to be reintegrated into 

lipid pools or oxidized in β-oxidation (Henry et al., 2012). The same happens when fatty acids 

are fed in the extracellular medium, where in order to be used in any way by the cell, these 

need to be activated to acyl-CoAs by the acyl-CoA synthases Faa1-4 or Fat1 (Black and 

DiRusso, 2007; Faergeman et al., 2001). The function of acyl-CoA synthases in the regulation 

of free fatty acid and acyl-CoA levels is explored in more detail in a later chapter. 

 

Phospholipid biosynthesis 

Phospholipids are the main components of cellular membranes (Gaspar et al., 2006; Spector 

and Yorek, 1985; Wagner and Paltauf, 1994). For this reason, these are probably the most 

important lipids with regard to cell viability, growth and correct function. Phospholipids are 

structurally composed of a phosphoglycerol backbone esterified with 2 acyl chains. Their 

synthesis starts with the esterification of a glycerol-3-phosphate with an acyl-CoA by the 

glycerol-3-phosphate acyltransferases Sct1 and Gpt2, forming Lysophosphatidic acid 

(LysoPA) and releasing the free CoA. A second step is the esterification of the LysoPA with a 

second acyl chain from another acyl-CoA by the lysophospholipid acyltransferases Slc1 and 

Ale1, forming PA (Carman and Henry, 1999; Chen et al., 2007). PA is an important branching 

point in lipid metabolism, and regarding phospholipid biosynthesis it is the common node 

between two different phospholipid biosynthesis pathways: the Kennedy pathway, and the 

CDP-DAG pathway (Carman and Han, 2011). 

Through the Kennedy pathway, PA is first dephosphorylated by the phosphatidic acid 

phosphatase Pah1 to diacylglycerol (DAG) (Han et al., 2007). If ethanolamine or choline are 

supplied in the growth media, these are activated to CDP-ethanolamine and CDP-Choline, 

respectively, and through the action of the phosphotransferases Ept1 or Cpt1, these can react 
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with DAG to form either phosphatidylethanolamine (PE) or phosphatidylcholine (PC) 

(Gibellini and Smith, 2010). This pathway requires external supply of either ethanolamine or 

choline since S. cerevisiae is not able to synthesize these molecules de novo. 

On the other hand, the CDP-DAG pathway enables synthesis of a variety of phospholipids 

using de-novo synthesis of all necessary components. Through this pathway, PA is first 

converted to CDP-DAG by the phosphatidate cytidylyltransferase Cds1 (Shen et al., 1996). 

CDP-DAG is then a branching point to different phospholipids. It can react with inositol by the 

action of Pis1 to form phosphatidylinositol (PI), it can form cardiolipin (CL) through a pathway 

composed of by Pgs1, Gep4 and Crd1, and it can be converted to phosphatidylserine (PS) by 

Cho1. PS can then be transformed into PE by Psd1 and Psd2, which can be further converted 

to PC by Cho2 and Opi3 (Henry et al., 2012) (Figure 6). 

 

 

Figure 6. Schematic representation of phospholipid and storage lipid synthetic pathways. 

Phospholipid and triacylglycerol (TAG) synthesis pathways share a common initial pathway until PA 

(Phosphatidic acid) formation. PA can then be converted into CDP-DAG for formation of all the 

different phospholipid species or converted into DAG. DAG can still be converted into PE or PC if 

ethanolamine or choline are supplied to the medium. TAGs are produced through acylation of DAG 

through the enzymes Dga1 which acylated DAG from acyl-CoA or Lro1 which acylates DAG using a 

phospholipid acyl chain. PA: phosphatidic acid; DAG: diacylglycerol; SE: sterol esters; TAG: 

triacylglycerol; CL: cadiolipin; PI: phosphatidylinositol; PE: phosphatidylethanolamine; PC: 

phosphatidylcholine; PS: phosphatidylserine. 
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Due to their importance to cell vitality and function, phospholipid biosynthesis pathways have 

some redundancy as it is show by the presence of two distinct pathways for formation of PE 

and PC, two of the most abundant phospholipid species in this yeast. Besides this, 

phospholipids can be remodeled through the action of phospholipases that cleave the acyl 

chains and acyltransferases capable to attaching new acyl chains (Merkel et al., 1999). This 

remodeling is important for maintaining membrane properties affected by the fatty acid species 

that compose the phospholipids (Schneiter et al., 1999; Spector and Yorek, 1985; Zinser et al., 

1991). Furthermore, phospholipid biosynthesis is subject to regulation mechanisms that extend 

to many other aspects of lipid metabolism in order to maintain this important homeostasis and 

required balance for membrane stability (Chen et al., 2007; Lopes and Henry, 1991). The 

particular aspects of this metabolic regulation are presented further ahead. 

 

Storage lipid biosynthesis 

Storage lipids are usually neutral lipids, such as TAGs and SEs. In rare cases, some organisms 

store fatty acids in other forms of neutral lipids, such as wax esters (Benson and Lee, 1972). 

Storage lipids are lipids that can be mobilized by the cell when needed. This involves oxidation 

of fatty acids for energetic purposes, i.e. using lipids as a source of energy and carbon such as 

seen in humans, who can store large amounts of TAGs in adipocytes than can be mobilized in 

periods of hunger (Horton et al., 1995). The other use of storage lipids is to store fatty acids 

that are not to be included in the membranes of the cell, either for being toxic (Listenberger et 

al., 2003; Plötz et al., 2016) or for not having the desired saturations/chain lengths required at 

the given time, and therefore are stored in TAGs until mobilized for remodeling of the 

phospholipid acyl chains (Renne et al., 2015) 

Mutants of S. cerevisiae lacking synthesis of storage lipids are viable, and these lipids are not 

required for growth under normal culture conditions (Sandager et al., 2002). However, lack of 

neutral lipid synthesis causes an inability to respond to certain fatty acid toxicity. A case of this 

is oleate. When oleate is supplied in the media of a growing S. cerevisiae strain lacking storage 

lipid synthesis, it drastically increases in toxicity since the cell is not able to store it as a neutral 

lipid and therefore incorporates it excessively in its phospholipids, perturbing the stability of 

cell membranes and causing growth defects (Listenberger et al., 2003). 

SEs are synthesized primarily by the acyl-CoA:sterol acyltransferases Are1 and Are2, which 

esterify the acyl chains from acyl-CoA with ergosterol molecules (Zweytick et al., 2000). These 

esters can be hydrolysed by the steryl ester hydrolases Tgl1, Yeh1 and Yeh2 providing release 

of ergosterol and fatty acids (Köffel et al., 2005). 

TAGs are produced by acylating DAGs through the action of the diacylglycerol acyltransferase 

Dga1 which uses DAG and acyl-CoA to synthesize TAGs (Sorger and Daum, 2002) or the 

lecithin cholesterol acyl transferase homologue Lro1, which synthesizes TAGs by transferring 

acyl groups from the sn-2 position of a phospholipid to diacylglycerol, thus forming an sn-1-
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lysophospholipid and TAGs as products (Oelkers et al., 2000). Since TAGs are synthesized 

from DAGs, TAGs share part of their biosynthetic pathway with phospholipids. This is 

especially important because TAGs can quickly be remodeled to DAGs through the action of 

lipases such as Tgl3, Tgl4 and Tgl5 (Gaspar et al., 2011; Klein et al., 2016; Schmidt et al., 

2013). These DAGs can either enter the Kennedy Pathway or be phosphorylated back to PA 

by the diacylglycerol kinase Dgk1(Han et al., 2008a), allowing synthesis of phospholipids 

through the CDP-DAG pathway. There has been evidence of a coordinating action between 

storage lipid synthesis and phospholipid biosynthesis, which relates to this close relationship 

and share of main synthetic precursors (Gaspar et al., 2011). 

 

Regulation of lipid metabolism 

The metabolic network for biosynthesis of different lipids is regulated by a variety of 

mechanisms, such as regulation of gene expression from both cis- and trans- acting elements, 

(Lopes and Henry, 1991; Schüller et al., 1992) protein phosphorylation (Chumnanpuen et al., 

2012; O’Hara et al., 2006; Ratnakumar et al., 2009; Shi et al., 2014) and protein-lipid binding 

mechanisms (Hofbauer et al., 2014; Loewen et al., 2004). Furthermore, lipid metabolism 

regulation can be affected by a multitude of external factors such as carbon source and nutrient 

availability, growth stage, pH and temperature (Carman and Henry, 1999; Gaspar et al., 2007). 

A comprehensive overview of all the regulation mechanisms with a role in these aspects would 

fall out of scope of the work developed here, so instead the focus will be directed towards 

mechanisms that directly impact important metabolic pathways and enzymes in fatty acid 

biosynthesis and downstream lipid metabolism which had a role in the results later observed. 

These are composed of the most well understood regulation pathways of lipid metabolism and 

involve inositol-sensing regulation mechanisms, mechanisms dealing with PA-related 

signaling and control of acyl-CoA levels. 

 

UASINO-mediated regulation 

Probably the most important and well understood mechanism of phospholipid regulation that 

spans to other pathways of the lipid metabolism network is the transcriptional regulation 

mediated by the Inositol-responsive Upstream Activating Sequence (UASINO). This sequence 

is a short repeating element (consensus 5′-CATGTGAAAT-3′) that was first found on the 

promoter of the Inositol-3-phosphate synthase gene INO1 (Lopes and Henry, 1991). The 

sequence is a binding site for the Ino2/Ino4 complex, which activates gene expression on genes 

downstream of this element. 

The UASINO element is found in the promoter region of many genes involved in phospholipid 

biosynthesis belonging to both the CDP-DAG pathway such as CDS1, CHO1, PSD1, CHO2 

and OPI3 but also the Kennedy pathway like EKI1, EPT1, CKI1 and CPT1 (Chen et al., 2007; 

https://paperpile.com/c/RjXLSq/4VXm1
https://paperpile.com/c/RjXLSq/H4EoZ+ZknqZ+RN26d+TC37y
https://paperpile.com/c/RjXLSq/MLkMz+jVMp
https://paperpile.com/c/RjXLSq/ALzzs+2Wzm
https://paperpile.com/c/RjXLSq/H4EoZ+ZknqZ+RN26d+TC37y
https://paperpile.com/c/RjXLSq/ALzzs
https://paperpile.com/c/RjXLSq/Ro61O
https://paperpile.com/c/RjXLSq/Ro61O+mHERO+iAuJp
https://paperpile.com/c/RjXLSq/lsdDw+KshXb
https://paperpile.com/c/RjXLSq/L8OCs+rfrC7
https://paperpile.com/c/RjXLSq/Ro61O+mHERO+iAuJp
https://paperpile.com/c/RjXLSq/ePhGi


 
Saccharomyces cerevisiae: An Overview of Lipid Metabolism 
 

18 
 

Wimalarathna et al., 2011). Besides this direct strong correlation with phospholipid 

biosynthesis, the UASINO element is also found on the genes coding for the fatty acid 

biosynthesis machinery, ACC1, FAS1 and FAS2 (Chirala, 1992; Schüller et al., 1992), being 

therefore an important holistic element of lipid metabolism regulation. 

Opi1 is a repressor of the Ino2/Ino4 complex. In this sense, by binding to Ino2 and inhibiting 

its activity, Opi1 acts as a transcriptional regulator of UASINO-containing promoters, regulating 

phospholipid and fatty acid synthesis (Chen et al., 2007). The function of Opi1 is controlled by 

its cellular localization, i.e. it can be found associated with the ER membrane when inactive, 

and it is translocated to the nucleus in order to bind to Ino2 and repress its transcription factor 

activity (Loewen et al., 2004). Binding of Opi1 to the ER membrane is mediated through 

binding to the integral membrane protein Scs2 and this binding is stabilized by the interaction 

with PA present in the membrane (Loewen et al., 2004, 2003) (Figure 7). 

 

 

Figure 7. UASINO-mediated regulation. The transcription factor complex Ino2 and Ino4 bind to the 

UASINO regulatory element present in the promoter region. In conditions of high PA, Opi1 is mostly 

bound to the ER membrane though Scs2 where PA is enhancing this interaction. When PA 

concentrations are low, the interaction strength of Opi1 with the ER membrane is decreased, and this 

factor is transported to the nucleus where it binds to Ino2, inhibiting expression of phospholipid and 

fatty acid biosynthesis genes (adapted from Henry et al., 2014). 

 

The levels of PA in the membrane will directly impact the association of Opi1 to the ER, and 

therefore severely impact the regulation of important factors in lipid metabolism, giving PA a 

central role in lipid metabolism regulation (Carman and Henry, 2007). In this sense, high levels 

of PA increase the number and strength of the interactions between Opi1 molecules and the 

ER, whereas reduced PA levels allow Opi1 to be released from the membrane and to be 

transported into the nucleus, where it attenuates transcription of UASINO-regulated genes by 
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binding to Ino2. Furthermore, Opi1 has been shown to more effectively bind PA having C16 

over C18 fatty acids in its composition, allowing it to act in chain length control of the produced 

fatty acids through modulation of Acc1 activity (Hofbauer et al., 2014). 

 

The role and regulation of Pah1 

As seen before, PA levels have a critical role in regulating lipid metabolism. The phosphatidic 

acid phosphatase Pah1, a homologue of the human lipin gene, dephosphorylates PA into DAGs 

that can then be used for TAG synthesis or for phospholipid synthesis through the Kennedy 

pathway (Han et al., 2007). Since it has this ability to convert PA into DAG, Pah1 is thought 

to be the main regulator of PA levels, therefore able to impact regulation of both general fatty 

acid and phospholipid biosynthesis pathways (Carman and Han, 2009; Chen et al., 2007). 

Furthermore, variations in levels of PA have been shown to impact ER membrane structure 

(Han et al., 2008a) and deletion of the PAH1 gene has been associated with formation of 

enlarged ER membrane structures (Santos‐Rosa et al., 2005). 

Pah1 can be phosphorylated in vivo in multiple sites and this phosphorylation has a negative 

effect on the protein function (O’Hara et al., 2006). Dephosphorylation of Pah1 is carried out 

by the phosphatase activity of the Nem1-Spo7 complex (Santos‐Rosa et al., 2005). The Nem1-

Spo7 complex is localized in the ER membrane and Pah1 can be found in the ER membrane 

associated with this complex, coinciding with sites of LD biogenesis. Studies so far have shown 

that the interaction of Pah1 with the ER membrane is dependent on an amphipathic helix at the 

N-terminus and that exposure of this helix depends on the phosphatase activity of the Nem1-

Spo7 complex (Karanasios et al., 2010). 

The activity of Pah1 has also been shown to be affected by other metabolites. Presence of the 

phospholipids PI, CL and CDP-DAG have been shown to increase its activity while sphingoid 

bases and higher levels of the nucleotides ATP and CTP have been shown to inhibit its activity 

(Carman and Han, 2009). 

 

Acyl-CoA feedback regulation 

As stated before, acyl-CoA is the direct product of the fatty acid biosynthesis machinery and a 

central substrate for many lipid biosynthetic pathways (Neess et al., 2015). These features make 

it important for the cell to regulate acyl-CoA levels in order to keep a lipid homeostasis at a 

cellular level. 

Biosynthesis of acyl-CoA is self-regulated. The fatty acid synthase complex in yeast is 

inhibited by the acyl-CoA it produces (Sumper and Träuble, 1973) and increased levels of long 

chain acyl-CoA have been related to lower acetyl-CoA carboxylase activity, even though the 
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exact mechanism for this is not fully described (Faergeman and Knudsen, 1997; Kamiryo et 

al., 1976; Kamiryo and Numa, 1973; Wakil and Abu-Elheiga, 2009). It is possible however, 

that an allosteric regulation exists for Acc1 in which this is inhibited by acyl-CoA, since this 

inhibition was observed for the acetyl-CoA carboxylase from rat liver (Ogiwara et al., 1978). 

This regulation of Acc1 activity dependent on the levels of acyl-CoA allows for a feedback 

regulation mechanism working in a fashion that when acyl-CoA is available at increased levels, 

fatty acid biosynthesis activity is decreased resulting in less acyl-CoA production. This 

mechanism is responsible for inhibition of the fatty acid biosynthesis machinery when high 

levels of free fatty acids are detected, as an example, when fatty acids are supplied in the 

medium (Black and DiRusso, 2007; Kamiryo et al., 1976). Free fatty acids are activated to 

acyl-CoA by the fatty acyl-CoA synthases Faa1-4 and Fat1 (Black and DiRusso, 2007; 

Faergeman et al., 2001) and therefore high levels of free fatty acids consequently translates 

into an increase in acyl-CoA, which in turns acts through feedback inhibition of the fatty acid 

biosynthesis pathway. 

The levels of acyl-CoA have also been shown to be related to the amount of acyl-CoA binding 

protein Acb1 in the cell in a proportional way, since overexpression of ACB1 has been 

correlated to increased acyl-CoA levels (Knudsen et al., 1994). Also, the activity of Acb1 has 

been shown to be related to the regulation mechanism of different genes involved in fatty acid 

and phospholipid biosynthesis, since deletion of the ACB1 gene or replacing with a mutant with 

no acyl-CoA binding activity increased expression levels of FAS1, FAS2 and ACC1. This 

change in expression levels highlights a direct effect at the transcriptional level mediated 

through acyl-CoA binding to Acb1 and that the regulation of acyl-CoA levels is therefore 

mediated by the acyl-CoA-Acb1 link (Feddersen et al., 2007). 

 

The subcellular organization of lipid metabolism 

When looking at the lipid metabolic network, it is often easy to fall into the perception of a 

linear set of reactions and metabolites simply interconverting to each other. In reality, lipid 

metabolism occurs through different spaces among different organelles found in the cell (Henry 

et al., 2012). While fatty acid biosynthesis occurs in the cytosol, acyl-CoA is thought to be 

transferred either directly to membranes by the FAS complex (Sumper and Träuble, 1973) or 

to other organelles by the acyl-CoA binding protein Acb1 to participate in different processes 

(Knudsen et al., 1994). As shown in Figure 8, lipid metabolism is partitioned mostly among 

the Endoplasmic Reticulum (ER) and LDs (Grillitsch et al., 2011; Henry et al., 2012). 

Mitochondria have a relevant role in cardiolipin synthesis (Gohil et al., 2004) and peroxisomes 

and vacuoles are involved in degradation of LDs and fatty acid oxidation (Sibirny, 2016; Teter 

et al., 2001; van Zutphen et al., 2014). At the ER, PA is produced from cytosolic acyl-CoA and 

glycerol-3-phosphate as described before. PA is then either further converted to other 

phospholipids in the ER or is used towards TAG synthesis (Czabany et al., 2007). Production 

of DAGs from PA can either happen in the ER, where these are converted into TAGs here 
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during the LD assembly process as it will be explained further ahead, or TAGs can be 

synthesized de novo from glycerol and acyl-CoA exclusively in the LD (Athenstaedt and 

Daum, 1997). 

 

 

Figure 8. Major organelles involved in lipid metabolism in yeast. Lipid metabolism is spread among 

the cytoplasm, Endoplasmic Reticulum (ER), Lipid Droplet (LD), Peroxisome and Vacuole. Fatty acid 

biosynthesis is a cytosolic process. Produced acyl-CoA from the FAS complex can be transported to 

the ER for phospholipid and neutral lipid synthesis or to lipid droplets also for neutral lipid synthesis. 

Neutral lipid can be hydrolysed either through autophagy and transport to the vacuole or through neutral 

lipid hydrolysis by lipases with the release of free fatty acids (FFAs), which need to be then reactivated 

to acyl-CoA for oxidation in the peroxisome. 

 

LDs have a close relationship with the ER (Barbosa et al., 2015a; Schuldiner and Bohnert, 

2017). They are assembled from the external ER membrane and remain associated with it 

during this process. As a result, DAGs and TAGs formed in the ER are transferred to LDs 

during the LD assembly process and while this organelle is associated with the ER membrane 

(Jacquier et al., 2011). LDs can fully synthesize PA de novo from glycerol and acyl-CoA 

through the action of Slc1 and Gpt2 (Athenstaedt and Daum, 1997) and acylate DAGs to TAGs 

through Dga1 and Lro1 (Sandager et al., 2002). Assuming cytosolic Pah1 can interact with the 

external lipid droplet phospholipid membrane, it is also able to dephosphorylate PA to DAG 

and therefore LDs have the full machinery for synthesis of TAG from glycerol and acyl-CoA. 

LDs also contain TAG hydrolysis enzymes, the TAG lipases Tgl3, 4 and 5 that are capable of 
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hydrolysing TAGs into DAGs and FFAs (Athenstaedt and Daum, 2005; Schmidt et al., 2013). 

Some of these lipases, like Tgl3, are also able to hydrolyze DAGs into monoacylglycerols 

(MAGs), which can then be cleaved into glycerol and FFAs by the MAG lipase Yju3 (Heier et 

al., 2010).  

When it comes to oxidation of lipids, the peroxisomes take a central role. Presence of external 

fatty acid supply as well as low nutrient conditions activate peroxisome proliferation through 

the transcription factors Adr1 and Oaf1-Pip2, which bind to the oleate responsive element 

(ORE) (Hiltunen et al., 2003; Rottensteiner et al., 2003; Trzcinska-Danielewicz et al., 2008). 

Peroxisomes have a main function of hosting the β-oxidation pathway which oxidizes long 

chain acyl-CoAs into acetyl-CoA units that are then through conversion into C4 organic acids 

used for energy and biosynthetic purposes (Kunze et al., 2006; Poirier et al., 2006). Peroxisome 

membranes have transport systems for acyl-CoA as well as mechanisms for simultaneous 

transport and activation of cytosolic FFAs into peroxisomal acyl-CoAs (Chen et al., 2012; 

Hiltunen et al., 2003). These organelles can be found associated with LDs and this is thought 

to be connected with neutral lipid hydrolysis and consequent oxidation of released fatty acids 

(Binns et al., 2006; Kohlwein et al., 2013; Schuldiner and Bohnert, 2017). 

Lipid droplet degradation can also be taken upon through autophagy mechanisms. This requires 

formation of autophagosome structures with consequent transport to the vacuole, where LDs 

are the target of hydrolysis (Kaushik and Cuervo, 2015; Singh et al., 2009; van Zutphen et al., 

2014). Even though the autophagic process of LD degradation still remains partly unknown, 

an autophagy-specific lipase, Atg15, has been associated with TAG hydrolysis in the vacuole 

and is therefore a main player in this process (Maeda et al., 2015). 

 

The lipid droplet assembly mechanism 

Lipid droplets are central organelles in lipid metabolism. Previously thought as a mere structure 

for storage of neutral lipids, this organelle has recently gotten increased attention due to 

emerging knowledge of its new functions and associations (Beller et al., 2010; Welte, 2015). 

The LD is an organelle composed of a neutral lipids core, where the most prevalent lipids are 

TAGs and SEs, surrounded by a single phospholipid layer, where the polar part of 

phospholipids faces the cytosol and the hydrophobic part is turned towards the neutral lipid 

core (Brasaemle and Wolins, 2012). In S. cerevisiae it is possible to find associated with this 

phospholipid membrane more than 50 different enzymes and other proteins (Grillitsch et al., 

2011) that turn the LD from a warehouse into a functional distribution center of lipid 

metabolism (Kohlwein et al., 2013). 

LDs are formed in the ER membrane (Joshi et al., 2017) (Figure 9). The assembly process 

starts with generation of a “nucleation site” where a bending in the external ER membrane is 

associated simultaneously with appearance of a hydrophobic space between the two 

phospholipid layers (Thiam and Beller, 2017). This site accommodates neutral lipids such as 
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DAGs and TAGs that are formed in the ER membrane through the action of Pah1 and Dga1 

(Wilfling et al., 2013). Pah1 is dephosphorylated by the phosphatase complex Nem1-Spo7 and 

recruited to the ER membrane in an interaction that is associated with (and necessary to) the 

emergence of LD assembly sites (Adeyo et al., 2011; Barbosa et al., 2015b). Dga1 on the other 

hand is known to be located in the ER membrane when LDs are absent and relocate to LDs 

when these are formed. This transport mechanism is independent of vesicle transport 

mechanisms and it is suggested to happen by diffusion through the ER membrane to the LD 

during LD biogenesis (Jacquier et al., 2011). 

 

 

Figure 9. Factors involved in lipid droplet biogenesis from the ER. Nascent lipid droplet assembly 

requires production of neutral lipid in the ER, during which Pah1 is recruited to the ER membrane by 

the phosphatase complex Nem1-Spo7. FIT proteins and seipins are crucial structural elements in LD 

assembly while perilipins and DGATs are also recruited to the nascent LD site during the process. 

Seipin is present in LD-ER contact sites and allows for detachment of the LD from the ER. LDs are 

also matured through incorporation of more fatty acids as TAGs through their life cycle. In the mature 

droplet, perilipins can be found coating it and can be important for maturation, stabilization and 

mobilization of these. 
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Besides the metabolic pathways that create neutral lipids fundamental for the formation of LDs, 

there are other structural factors that allow this process to occur (Chen and Goodman, 2017). 

The 3 main protein families known to have an important role in structural aspects of LD 

biogenesis are perilipins, Fat-Inducing Transmembrane (FIT) proteins, and seipins (Chen and 

Goodman, 2017). 

Perilipins are a family of proteins characterized by the presence of a conserved PAT 

(Perilipin/ADRP/TIP47) domain (Bickel et al., 2009). The action of perilipins has been well 

described in mammals. In humans, 5 different perilipin proteins exist, and these have different 

functions (Sztalryd and Brasaemle, 2017; Sztalryd and Kimmel, 2014). Perilipin proteins can 

be involved in controlling lipase action as it is the case for Perilipin 1, which depending on its 

phosphorylation state can either promote or inhibit the binding of lipases to the LD (Brasaemle 

et al., 2000; Marcinkiewicz et al., 2006). Other perilipins, such as Perilipin 3, are involved 

mostly with the biogenesis process of the LD, having a role in the assembly process of the LD 

rather than in the protection against hydrolysis after maturation (Bulankina et al., 2009). 

FIT proteins have been described as transmembrane ER proteins that localize to LD biogenesis 

sites and actively participate in this process (Choudhary et al., 2015). Deletion of the FIT2 

homologue genes in S. cerevisiae, YFT2 and SCS3, leads to accumulation of LDs inside the ER 

lumen, suggesting a lack of a budding ability by the ER membrane to form the LD (Choudhary 

et al., 2015). It is known that knockout of FIT genes impairs LD formation (Kadereit et al., 

2008; Miranda et al., 2014) and overexpression usually leads to improved accumulation and 

formation of LDs (Cai et al., 2017; Tan et al., 2014). In terms of structure and function, it is 

only known that both FIT1 and FIT2 proteins have six transmembrane domains with both N- 

and C-termini localized to the cytosol (Gross et al., 2010) and FIT protein’s ability to bind 

TAGs is important for their LD formation role (Gross et al., 2011). Apart from these factors, 

nothing else is known about the mechanism of action of these proteins and their role in LD 

assembly. 

Seipin is an integral ER membrane protein with two transmembrane domains. Deletion mutants 

of the yeast seipin gene SEI1 reveal abnormal phenotypes of LD structures where some cells 

contain one or a few supersized LDs while others showed an amorphous aggregation of several 

small LDs (Fei et al., 2008; Szymanski et al., 2007). It is accepted that seipins have an important 

role in LD morphology (Cartwright et al., 2015) and have a major role in stabilization of LD-

ER contact sites (Grippa et al., 2015). The amorphous LD morphology associated with SEI1 

deletion has been shown to be related with envelopment of LDs by the ER membrane due to 

de-regulation of promoting correct contact sites (Grippa et al., 2015). 

Even though LD assembly has been a recent focus of research, not much is known so far on 

the exact mechanism through which this occurs and many questions still remain unanswered 

as to the role of the different elements such as FIT proteins or seipins. 
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Objectives and Overview 

 

 

This thesis aims to better understand aspects of S. cerevisiae lipid metabolism in the context of 

its developing potential as a cell factory for production of oleochemical precursors. Through 

analysis of the diagram in Figure 1 representing basic oleochemical interconversions, the most 

interesting precursors to produce in terms of their versatility for application in industry are 

TAGs and free fatty acids. This is due to their potential to be chemically converted to virtually 

any other basic oleochemical species. Furthermore, the advancements in engineering S. 

cerevisiae for production of basic oleochemicals has had more success with TAGs and free 

fatty acids than with any of the other chemicals. 

As such, this thesis is divided into two main parts. In the first one, composed of papers I to 

III, aspects of fatty acid metabolism were studied in order to better understand the dynamics 

and pathways underlying free fatty acid production. For this, previously described genetic 

alterations that result in improved free fatty acid production were applied, which allowed for 

studying the effects arising from these modifications or combinations of them. In the second 

part, S. cerevisiae was engineered for the highest TAG production yield reported so far, which 

is divided between paper IV and V. The two papers represent different strategies for achieving 

this. In paper IV, TAG production was improved through increasing the flux through fatty 

acid biosynthesis and the TAG synthesis pathway, as well as deleting competing pathways. 

Paper V describes a novel strategy for improving TAG production levels. This consisted of 

enhancing the LD biogenesis and assembly process in order to facilitate TAG accumulation on 

this organelle. 

The work developed here represents a process of simultaneous engineering of cell factories 

coupled with a scientific approach towards better understanding of how the system responds to 

the changes applied.  
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Methodology for Analysis of Lipid-producing Cell 

Factories 

 

Detection, screening and analysis 

Designing and building microbial cell factories heavily relies on the ability to analyze the result 

of the engineering process. As such, an ability to detect presence of a product and correctly 

quantify it is vital for the development of metabolic engineering as the field relies on 

reproducibility of results and ability to compare absolute values between different studies 

(Endy, 2005). Furthermore, accurate measurements will impact any calculations of yield, 

productivity, and even cost-effectiveness of the process, being again fundamental in the 

application aspect of the technology. 

The choice of method to analyze a given construct will depend largely on the objectives of the 

study and the stage of development of such strain and product (Hounslow et al., 2017). 

For proof of concept studies where a given molecule is being produced for the first time, it is 

important to be able to detect it with high sensitivity, since this will probably be firstly produced 

only in trace amounts. At this stage, large method development times are to be expected for 

optimization of instruments and protocols in order to specifically distinguish the compound of 

interest. 

When more knowledge is available about a certain metabolite, pathway or physiology 

surrounding the compound of interest, there are two main types of assays that can be performed 

depending on the study objective: either screening or analytics. Screening is related to high 

throughput methods for strain construction, such as mutation libraries for a gene, analysis of 

randomly mutated strains or expression of cDNA libraries (Dietrich et al., 2010). Here one 

needs to identify single clones from thousands or millions of others, and therefore requires a 

range of sensitivity that allows to discriminate clones. Absolute quantification is not a priority 

in a screening approach, but simply fast analysis of all clones to separate the ones that have a 

higher or lower relative signal. As for analytics, these are usually time consuming, single-

sample procedures that commonly allow for thorough analysis of the different metabolites in 

one single strain, with accurate absolute or relative quantification (Khoomrung et al., 2013). 

The descriptions here do not intend to be a thorough review of available methods but more as 

a guideline introduction to understand the purpose and differences of the methods applied 

during the work developed here. Naturally, a higher focus is put into the lipid analytics methods 

since these were the ones used here. 
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Screening methods 

As a simple description, screening in design of cell factories with the objective to improve 

production can be done through detection of the product or detection of a certain metabolite 

precursor. For high throughput applications, the detection of the compound in question must 

be done in a simple and fast fashion, for which colorimetric and fluorimetric assays are usually 

a good solution since these can be easily detected and registered by optic sensors (An, 2009). 

A common approach to screening for lipid content in a cell is staining with a fluorescent dye. 

Dyes like BODIPY or Nile Red bind and emit fluorescent light upon binding to neutral lipids, 

but do not emit fluorescence in solution (Govender et al., 2012). This makes them ideal for 

visualizing internal lipid structures through fluorescent or confocal microscopy. Staining of a 

culture and sorting different clones based on emitted fluorescence values can also be done and 

has been applied before in a medium-throughput fashion (Govender et al., 2012; Shi et al., 

2016). The limitation in this system comes when factors such as staining efficiency and dye 

diffusion come into play, creating large noise variability between cells and possibly occluding 

the possibility of single-cell sorting efficiency, which hinders single-cell applications for high-

throughput screening. 

Another more sophisticated and sensitive way to detect metabolites is through the use of 

biosensors. Briefly explained, biosensors are in vivo molecular systems that can sense a certain 

compound/metabolite and relate this to an output signal, usually expression of a fluorescent 

protein, with a dynamic range in which expression levels are related to metabolite 

concentration (Yan and Fong, 2016). One advantage of biosensors is that these can very 

efficiently detect intracellular metabolites in vivo and report with precision transient or unstable 

compounds that are hard to work with in vitro. But the main advantage is the ability to detect 

single-cell signals using techniques such as flow cytometry and select individual cells as well-

performing clones among thousands or millions of them in a matter of minutes (Piatkevich and 

Verkhusha, 2011). Limitations of biosensors come with the need for a specific recognition of 

the metabolite to be sensed, for which a molecular system needs to already exist or be possible 

to create from existing systems where the target molecule is recognized. 

With this in consideration, biosensors have been successful when it comes to detection of -

CoA molecules. Biosensors able to detect intracellular variations of acyl-CoA (Teo et al., 2013) 

or malonyl-CoA (David et al., 2016; Ellis and Wolfgang, 2012) levels have been successfully 

designed in S. cerevisiae and are a powerful tool for the development of oleochemical 

producing cell factories. 
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Methods for lipid analysis 

Lipidomics is a science with many different methods available that allow for analysis of 

different parameters when it comes to the lipids in a given sample. Different methods, 

instruments and sample preparation protocols will provide different information and what to 

use depends on the objective of the study. 

 

Sample preparation dictates target analysis 

Sample preparation is the process in which the metabolites to be analyzed are separated from 

the rest of the sample impurities and are prepared to be detected by the instrument in question. 

In case of lipid analysis, extraction of lipids is usually done using organic solvents, which 

provide a hydrophobic phase towards which lipids can diffuse and separate from all the soluble 

parts of the cell (Lee et al., 2010). Cell disruption and contact with organic solvents will extract 

lipids from all membranes, unless organelles are separated previously in some way, as for 

example, ultracentrifugation. 

The conditions in which this extraction is done will dictate if different lipid classes remain 

intact or if fatty acids will be hydrolyzed or parts of phospholipids oxidized. In a case where 

the total fatty acid composition or quantification of all fatty acids in the cell is desired, all lipid 

classes are hydrolyzed and fatty acids are usually trans-esterified to fatty acyl methyl esters 

(FAMEs) (Khoomrung et al., 2012; Rodríguez-Ruiz et al., 1998). In our studies, we have 

sometimes used transesterification of total fatty acids into FAMEs and analyzed these in a GC-

MS (Gas Chromatography coupled to detection through Mass Spectrometry) or GC-FID (Gas 

Chromatography coupled to detection through Flame Ionization Detector) instrument in order 

to analyze total fatty acid production in the cell and the composition of these fatty acids. 

Separation through a GC wax column allows for separation of fatty acids with different chain 

lengths and desaturation levels. By running in the same batch a set of external standards, it is 

possible to quantify the concentration of each fatty acid species through correlation with the 

standard curve of the “MS ion current” versus “known concentration of fatty acid”. This can 

give valuable information on quantifying i) the fatty acid biosynthesis pathway activity, since 

all fatty acids in the cell, independent of lipid classes, are produced via this pathway, ii) 

variations in fatty acid saturation levels and iii) fatty acid chain length, whether this is from the 

FAS system or from the elongation system. 

In a case where lipid classes need to remain intact, the extraction conditions should be milder 

and controlled (Hounslow et al., 2017). Lipid classes are extracted also by the use of organic 

solvents and analyzed directly. In our studies, we often use this approach in combination with 

an HPLC-CAD (High Performance Liquid Chromatography coupled to detection through 

Charged Aerosol Detection) analysis, where lipid classes are separated through a reverse-phase 

liquid chromatography column according to their polarity and are detected by a current detector 

that is sensitive to the concentration of that given lipid class (Khoomrung et al., 2013). Again 
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by running in the same batch a set of external standards of known concentrations, it is possible 

to quantify each lipid class through correlation with the standard curve of the “CAD current” 

versus “known concentration of lipid”. The HPLC-CAD method here applied does not allow, 

however, to know the fatty acid composition of the lipids in each lipid class. More sensitive 

methods exist based on LC-MS/MS detection, that allow to separate between chain length 

composition and saturation level of each different lipid species and infer fatty acid composition 

(Mehlem et al., 2016). Another more labor-intensive alternative for analysis of lipid class 

composition is separation by LC as done in our HPLC-CAD method or by SPE (solid phase 

extraction), but each peak should be collected and esterified to FAME for GC-MS analysis 

(Avalli and Contarini, 2005). One of the issues of milder extraction conditions for lipid class 

analysis is the possibility of incomplete cell disruption and extraction, which results in 

underestimated values for each lipid class.  

Protocols for extraction and isolation of specific species are also available. In cases where we 

wanted to quantify free fatty acids without pulling fatty acids from other lipid species, such as 

in paper II and III, a specific solvent mix was used that was shown to specifically esterify 

this fatty acid pool with methanol, forming FAMEs that could then be eluted in hexane 

separately from other lipids (Haushalter et al., 2014). 

 

Instrumental setup 

The choice of analytical instrument and the components of it is dictated by the metabolites that 

are being targeted. GC is able to separate volatile metabolites based on their boiling points and 

their chemical interaction with the stationary phase of the column. GC has some advantages 

over LC such as the resolution level one can acquire with the technique. Peak separation in GC 

is usually more accurate and reliable than LC. Other factors to consider is the time of each run, 

in which GC runs are usually faster than LC, and the cost of each run, given that solvent costs 

for LC are also often much higher than the costs of the carrier gas in GC. However, the use of 

GC requires the metabolites to be in a gas phase, so these must be volatile or converted into a 

volatile form before being run. In case of fatty acids for example, these need to be derivatized 

to methyl esters (FAMEs) previous to a run in GC because these cannot enter a gas phase 

easily. 

The choice of the gas chromatography method is also dependent on the metabolites to be 

analyzed. Proper programming of the GC oven temperature over the analysis allows for 

separation of different analytes with a wide range of boiling points such as fatty acids with 

different chain lengths. A too low temperature would for analytes with high boiling points lead 

to very high retention times and elution without a proper signal-to-noise ratio. A high column 

temperature would separate peaks of high boiling point analytes, but lower analytes would be 

covered by the solvent tail. Through paper I, the analysis needed to be focused on short chain 

fatty acids rather than long chain, which required a setup of the temperature variation specific 

to separate the shorter chains efficiently. 
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In terms of analyte detection, we have through this work used either a MS or a FID post GC 

separation. Detection through MS allows for selective and specific detection of FAMEs and 

identification of each different species by the mass spectra ion profile of each FAME species. 

This way, the detection sensitivity is highly increased since one can scan for specific ion 

detection, defined as selective ion monitoring (SIM). As an example, here we have used for 

many samples detection of a broad range of ions with an m/z range of 50-650 m/z and 

simultaneously run analysis in SIM mode with the ions at m/z 55, 67, 74, and 79 since these 

were previously identified as specific ions for FAMEs of any chain length. This way, high 

sensitivity and accuracy in fatty acid detection was possible in cases where this was needed. 

Concepts described in this last section regarding GC-MS setup for proper metabolite separation 

from extracted samples are extensively revised in (McMaster, 2008). 
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Part I: Understanding Free Fatty Acid Metabolic 

Fluxes 

 

Free fatty acids - a versatile precursor 

Referring back to the diagram depicting interconversion between different basic oleochemicals 

(Figure 1), the value of FFAs is evident when it comes to their application versatility for 

conversion into other basic oleochemical species. FFAs can be chemically converted into fatty 

acid methyl esters, fatty amines or fatty alcohols (Salimon et al., 2012), being therefore a 

possible first precursor for virtually any oleochemical product. 

Fatty acids are industrially produced through hydrolysis of TAGs, but direct microbial 

production of these molecules without chemical hydrolysis of TAGs offers many advantages. 

Besides the aforementioned sustainability improvements from shifting from exotic plant 

extraction of precursors towards microbial fermentation, metabolic engineering offers the 

possibility of producing tailored fatty acids with desired chain lengths and saturation levels. In 

terms of downstream processing, microbial production of FFAs does not produce glycerol as a 

side product and FFAs can be secreted to the culture medium, which due to their hydrophobic 

properties simplifies extraction through a two phase liquid separation process. 

 

Metabolic engineering for free fatty acids and fatty acid-derived 

products 

Microbial cells can be engineered for production of either FFAs or other fatty acid-derived 

oleochemicals (Pfleger et al., 2015). S. cerevisiae has been engineered for production of basic 

oleochemicals like FFAs, fatty alcohols and fatty acid ethyl esters as well as hydrocarbons such 

as alkanes and alkenes. In the following section some of the more relevant strategies will be 

discussed. 

 

Free fatty acid production pathways and strategies 

FFAs in S. cerevisiae have been suggested to be mainly a product of lipid remodeling 

(Scharnewski et al., 2008). Since S. cerevisiae is not known to have cytosolic thioesterases that 
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would act in the hydrolysis of acyl-CoA esters to release FFAs, cytosolic FFAs can 

theoretically be a product of either i) neutral lipid hydrolysis through sterol esterases such as 

Yeh1, Yeh2 or Tgl1 (Köffel et al., 2005) or TAG lipases such as Tgl3, 4 and 5 (Athenstaedt 

and Daum, 2005) or ii) phospholipid hydrolysis through the action of phospholipases B such 

as Plb1, 2, 3 or Nte1 (Merkel et al., 1999). 

Formed cytosolic FFAs need to be reactivated to acyl-CoA so that fatty acids can be transported 

to other processes and organelles. This process is done through the action of fatty acyl-CoA 

synthases Faa1, 2, 3, 4 and Fat1 (Black and DiRusso, 2007). Faa1 and Faa4 are homologues 

and the main long-chain fatty acyl-CoA synthetases in the cell (Faergeman et al., 2001). Faa2 

is a peroxisomal medium-chain acyl-CoA synthase (Hiltunen et al., 2003; Knoll et al., 1994) 

while Faa3 has a much lower activity compared to Faa1 and Faa4 (Knoll et al., 1994). Fat1 is 

a bifunctional enzyme required both for fatty acid transport of long chain fatty acids but also 

activation of very long chain fatty acids (Zou et al., 2002). 

While deletion of either FAA1 or FAA4 causes a significant loss of acyltransferase activity, the 

deletion of one of the genes is to some degree compensated by the other. Simultaneous deletion 

of the FAA1 and FAA4 genes causes a strong phenotype where FFAs are overproduced and 

secreted to the extracellular medium (Leber et al., 2015; Scharnewski et al., 2008; Zhou et al., 

2016b). This phenomenon is believed to be due to an overaccumulation of these species and 

consequential diffusion to the extracellular media enhanced by an inability to reactivate and re-

import released FFAs rather than an active export mechanism (Faergeman et al., 2001). 

The deletion of these fatty acyl-CoA synthases is the starting point for most FFA 

overproduction strategies. Production of FFAs can be increased by about 40% solely by 

cytosolic expression of the truncated version of acyl-CoA thioesterase gene ACOT5 encoding 

the Mus musculus peroxisomal acyl-CoA thioesterase 5 (Chen et al., 2014b). This strategy was 

also the basis of another study (Runguphan and Keasling, 2014) where a truncated Escherichia 

coli thioesterase gene ‘tesA was expressed in a Δfaa1 Δfaa4 strain and endogenous genes from 

the fatty acid biosynthesis pathway ACC1, FAS1 and FAS2 were also overexpressed under a 

strong constitutive promoter (TEF1p). This strain produced 400 mg/L of FFAs in a mixed 

carbon source medium (1.8% Galactose, 0.2% Glucose). 

Engineering of S. cerevisiae by (Zhou et al., 2016b) where FAA1, FAA4 and the gene coding 

for the first enzyme in the β-oxidation POX1 were deleted resulted in 580 mg/L of FFAs using 

2% glucose in minimal synthetic media (8% of the maximum theoretical yield for FFA 

production from glucose, assuming this value to be 0.32 gFFA/gGlucose (Caspeta and Nielsen, 

2013). Further heavy engineering of this strain with expression of the truncated E. coli 

thioesterase ‘TesA, the fatty acid synthase gene RtFAS from the oleaginous yeast 

Rhodosporidium toruloides, the endogenous ACC1 gene and a partly heterologous citrate-lyase 

cycle for generation of cytosolic acetyl-CoA consisting of the M. musculus acetate-citrate lyase 

gene MmACL, malic enzyme gene RtME from R. toruloides, endogenous malate 

dehydrogenase MDH3 with removed peroxisomal signal and citrate transporter gene CTP1, 

resulted in FFA production levels up to 10.4 g/L in fed batch or 1.1 g/L in shake flask culture 
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reaching up to 14% of the maximum theoretical yield of FFA production from glucose (Zhou 

et al., 2016b). 

Another strategy by (Leber et al., 2015) generated a background strain with deletion of the 

acyl-CoA synthase genes FAA1, FAA4, FAT1 and FAA2, the β-oxidation gene POX1 and the 

peroxisomal acyl-CoA transporter gene PXA1. In this strain, overexpression of the 

diacylglycerol gene DGA1 and the TAG lipase gene TGL3 allowed for production of FFAs up 

to 2.2 g/L in complex YPD medium. This strategy used the fluxes towards TAG synthesis and 

TAG hydrolysis to produce FFAs. Interestingly, overexpression of only DGA1 or TGL3 did 

not increase the FFA titers in this background strain, indicating presence of an overlaying 

mechanism that regulates the flux to and from this lipid pool, making FFA production through 

TAG synthesis and hydrolysis only possible if both pathways are overexpressed. 

S. cerevisiae has also been engineered not only for increased titers of FFA production, but also 

for production of different fatty acid acyl-chain distribution. Engineering the native S. 

cerevisiae FAS complex by inserting a short-chain thioesterase domain in its structure and 

mutating the ketoacyl synthase domain to change its substrate specificity resulted in production 

of short and medium chain (C6-C12) fatty acids up to 175 mg/L, a more than 50-fold increase 

over wild-type S. cerevisiae levels, in which these can only be detected in low concentrations 

(Zhu et al., 2017).  

In another study, overexpression of human FAS mutants together with two different 

heterologous short chain thioesterases from Cuphea palustris (CpFatB1) and Rattus norvegicus 

(TEII) increased production of short chain (C6 to C12) fatty acids to 68 mg/L and additional 

expression of a phosphopantetheine transferase Sfp from Bacillus subtilis resulted in total 

SCFA titers of up to 111 mg/L (Leber and Da Silva, 2014). A minor improvement was also 

achieved from another study where the β-oxidation gene POX1 was replaced by the Yarrowia 

lipolytica gene POX2, coding for an acyl-CoA oxidase with a preference for long chain acyl-

CoAs. This allowed the strain to oxidize long chain acyl-CoAs into medium-chain acyl-CoAs 

but not further, transforming long chain fatty acids into C12 fatty acids and increasing 

short/medium chain fatty acid levels by 3.34-fold compared to a wild-type strain (Chen et al., 

2014a). 

The spectra of fatty acids produced in S. cerevisiae was also expanded towards the very long 

chain direction. Rewiring of the native fatty acid elongation system through deletion of the 

ELO3 gene and overexpression of ELO1 and ELO2 and additional expression of a heterologous 

Mycobacteria FAS I system allowed for specific production of C22 fatty acids, which were 

then used for docosanol (C22 fatty alcohol) production (Yu et al., 2017). Production of very 

long chain fatty acids through ELO3 deletion and ELO2 overexpression was also applied 

successfully for in vivo production of jojoba-like wax esters S. cerevisiae, since these are 

mostly composed of C20 and C22 fatty acids and fatty alcohols (Wenning et al., 2017). 
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Figure 10. Overview of native pathways and engineering targets for production of free fatty acids 

and basic oleochemicals. Increased production of acyl-CoA was previously enhanced through 

overexpression of chimeric pathways for generation of cytosolic acetyl-CoA, as well as overexpression 

of ACC1, FAS1, FAS2 and the FAS gene from Rhodosporidium toruloides. Acyl-CoA can be directly 

converted to free fatty acids through expression of thioesterases such as the E. coli ‘tesA or the mouse 

ACOT5. Free fatty acids were also previously overproduced through TAG by overexpressing DGA1 

and TGL3. Fatty alcohols can be produced from acyl-CoA through expression of different fatty acyl-

CoA reductase (FAR) genes, or from free fatty acids through the expression of a carboxylic reductase 

(CAR) and the native alcohols dehydrogenase ADH5. Fatty acyl ethyl esters can also be produced from 

acyl-CoA and ethanol through expression of wax esterases (ws). Strategies for production of free fatty 

acids also rely on deletion of the genes FAA1, FAA4 and POX1. Overexpressed native genes are 

highlighted in blue, heterologous genes in green and deleted genes in red. Reaction arrows in green 

depict reaction obtained through expression of heterologous enzymes and are not natively existent in S. 

cerevisiae. 

 

 

In vivo production of basic oleochemicals 
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Increasing the capacity of S. cerevisiae for overproducing fatty acids might be useful for 

production of FFAs per se as we have seen in the section before, but it can also be used as a 

platform strategy for in vivo production of fatty acid-derived products. Some basic 

oleochemicals like fatty alcohols and fatty acid esters can be synthesized in vivo from fatty 

acids through expression of heterologous pathways. 

Fatty alcohols are a basic oleochemical, and besides having direct applications, they can be 

used as an industrial precursor with many applications as it was discussed before. Fatty alcohols 

can be produced in S. cerevisiae by two main pathways. The first pathway uses fatty acyl-CoA 

as a precursor and the conversion is taken through the action of a fatty acyl-CoA reductase 

multifunctional enzyme (FAR). The FAR converts acyl-CoA into a fatty aldehyde intermediary 

which does not leave the enzyme pocket, oxidizing one NADPH to NADP+ and releasing CoA, 

and in a second step the fatty aldehyde is reduced to fatty alcohol at the expense of oxidizing 

another NADPH. The most commonly expressed genes for this reaction have been the mFAR1 

from M. musculus (d’Espaux et al., 2017), TaFAR1 from Tyto alba (Feng et al., 2015), and the 

FAR gene Maqu_2220 from Marinobacter aquaeolei VT8 (Pfleger and Tyler Youngquist, 

2017; Willis et al., 2011; Zhou et al., 2016a). The second pathway for in vivo fatty alcohol 

production uses a carboxylic reductase enzyme (CAR) to convert FFAs to fatty aldehydes at 

the cost of 1 NADPH and 1 ATP (Akhtar et al., 2013). This pathway requires a second enzyme 

to reduce the aldehyde group to a primary alcohol (Zhou et al., 2016b). As already mentioned, 

fatty alcohol conversion has already been coupled to specialty fatty acid synthesis towards 

production of docosanol and jojoba-like wax esters in which FARs with specificity towards 

very long chain acyl-CoA were used (Wenning et al., 2017; Yu et al., 2017). 

Fatty acid ethyl esters (FAEEs) are chemically similar to fatty acid methyl esters, with the 

difference that ethanol is used for esterification with the fatty acids instead of methanol. 

Therefore, FAEEs can be used as basic oleochemicals and directly as a biodiesel offering 

advantages over FAMEs (Yusoff et al., 2014). Production of ethyl esters in S. cerevisiae is 

more promising compared to methyl esters due to its ability to naturally produce ethanol, while 

methanol is toxic for this cell (Yasokawa et al., 2010). Production of FAEEs in S. cerevisiae is 

enabled through expression of wax ester synthases that can esterify the naturally produced 

ethanol with acyl-CoA. This has been demonstrated before by combining expression of the ws2 

gene from M. hydrocarbonoclasticus DSM 8798 with removal of storage lipids and β-oxidation 

(Valle-Rodríguez et al., 2014) and through expression of the wax-ester synthase AtfA from A. 

calcoacericus ADP1 (Runguphan and Keasling, 2014). However, the success of this is limited, 

the highest production titers being 17 mg/L of FAEEs, probably due to a low activity of wax 

ester synthase enzymes. 
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The reverse β-oxidation as an alternative to fatty acid 

biosynthesis 

As previously described, the fatty acid machinery composed by the acyl-CoA carboxylase 

Acc1 and the fatty acid synthase complex encoded by FAS1 and FAS2 is highly regulated and 

limited in its properties. Acc1 is regulated at the transcriptional level by the UASINO element 

and consequently the Ino2/Ino4/Opi1 system (Chirala, 1992; Hasslacher et al., 1993), at the 

post-translational level through Snf1 phosphorylation (Shirra et al., 2001; Shi et al., 2014; 

Woods et al., 1994) and feedback regulated by levels of acyl-CoA (Faergeman and Knudsen, 

1997; Wakil and Abu-Elheiga, 2009). Fas1 and Fas2 have been shown to be transcriptionally 

regulated also by the UASINO element (Chirala, 1992) and have phosphorylation and 

acetylation sites that might modulate their activity (http://www.uniprot.org/). Furthermore, the 

native S. cerevisiae FAS complex synthesizes fatty acids typically with chain lengths from C14 

to C18, which is a limitation for production of specialty fatty acids where other chain lengths 

might be desired. As such, an important advancement point in engineering yeast cell factories 

for production of oleochemical precursors would be an available alternative pathway for fatty 

acid synthesis that could offer tailored product modulation and isolated from internal regulatory 

elements that control fatty acid synthesis rate. 

An alternative pathway consisting on the reversal of the fatty acid β-oxidation pathway towards 

fatty acid biosynthesis was previously designed and successfully applied in E. coli (Clomburg 

et al., 2012; Dellomonaco et al., 2011). β-Oxidation is a fatty acid oxidation pathway where a 

n-carbon long acyl-CoA is oxidized to n/2 acetyl-CoA molecules, generating NADH in the 

process (Figure 11). This pathway was successfully engineered in E. coli to work in the reverse 

direction, synthesizing acyl-CoA from acetyl-CoA and NADH. 

The pathway design consists of deletion of the first oxidation step in the β-oxidation pathway, 

where O2 is used as the redox co-factor for oxidation of acyl-CoA in the first step of the 

pathway and replacing it with a reversible reaction catalyzed by a trans-enoyl reductase (TER) 

that uses NADH as co-factor for the reductive reaction. As the other reactions in the β-oxidation 

pathway are reversible, success of converting the pathway from a fatty acyl-CoA oxidation 

pathway to a fatty acyl-CoA synthesis pathway in bacteria relies on the shifting of the 

thermodynamics of the pathway and replacing the only irreversible reaction. In paper I, we 

analyze the thermodynamics of the reverse β-oxidation pathway (Table 2) and conclude that it 

is the replacing of this step by the TER-catalyzed reaction that makes the pathway feasible in 

the acyl-CoA synthesis direction. 
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Figure 11. Schematic representation of the reactions involved on the reverse β-oxidation pathway. 

The initiation strategy for formation of acetoacetyl-CoA uses Erg10 (acetyl-CoA acetyltransferase) for 

the condensation of 2 acetyl-CoAs. Following that, the pathway is composed of Fox3/FadA (3-ketoacyl-

CoA thiolase), Fox2/fadB (3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase multifunctional 

enzyme) or a combination of YlKR (ketoacyl-CoA reductase) and YlHTD (hydroxyacyl-CoA 

dehydratase) and tdTER (trans-2-enoyl reductase) for elongation. Termination is performed by cleavage 

of the fatty acyl-CoA into fatty acids by the thioesterase ‘TesA. 

 

Application of this pathway in eukaryotes requires additional concerns regarding 

compartmentalization. Since β-oxidation in yeast is present in the peroxisome, the pathway 

needs to be redesigned for cytosolic expression. One single study has successfully applied the 

reverse β-oxidation in S. cerevisiae for butyrate and short chain fatty acid synthesis (Lian and 

Zhao, 2015). In this study, the S. cerevisiae β-oxidation multifunctional enzyme Fox2 did not 

show in vitro activity from cell extracts when expressed in the cytoplasm, indicating that the 

cytosolic form of this enzyme was not functional. As such, the reversed β-oxidation was built 

using a chimeric pathway consisting of the S. cerevisiae 3-ketoacyl-CoA thiolase Fox3, the Y. 

lipolytica β-ketoacyl-CoA reductase YlKR and β-hydroxyacyl-CoA dehydratase YlHTD, the 

Treponema denticola trans-enoyl reductase TdTER or the endogenous truncated mitochondrial 

2-enoyl thioester reductase Etr1 and the short-chain fatty acyl-CoA thioesterase CpFatB1(Lian 

and Zhao, 2016, 2015). In paper I, we evaluated this design as well as own designs using the 

S. cerevisiae Fox2 and the E. coli thioesterase ‘TesA for production of short chain free fatty 

acids. Unfortunately, we could not detect significant changes in free fatty acid production of 

the strains expressing any of the pathway designs compared to controls. The pathway was also 

tested with expression of an additional conversion step to fatty alcohols, which also did not 

show significant differences (data not shown). 
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Table 2. Thermodynamics of the reactions involved in the reverse β-oxidation pathway 

Enzyme 

 

Reaction1 ΔG°’ 

(kJ mol-1) 

Erg10/Fox3/YqeF/FadA 2 acetyl-CoA → acetoacetyl-CoA + CoA 26.7 

Fox2 
3-oxoacyl-CoA + NADH + H+ → hydroxyacyl-CoA + 

NAD+ 
-19.9 

Fox2 hydroxyacyl-CoA → trans-2-enoyl-CoA + H2O 2.1 

tdTER 
trans-2-enoyl-CoA + NADH +H+ → acyl-CoA + 

NAD+ 
-57.9 

‘TesA acyl-CoA + H2O → fatty acid + CoA + H+ -35.5 

   

Pox1 

(oxidative reaction) 2 

acyl-CoA + O2 → trans-2-enoyl-CoA + H2O2 -42.6 

 

1 Reactions are presented and ΔG°’s were calculated in the synthetic (reductive) direction (except for 

POX1 reaction which is presented in the oxidative direction). 

2 The reaction for Pox1 is shown separately in the last column since Pox1 is not part of the reverse β-

oxidation pathway and shown here to illustrate how it influences the thermodynamics of the β-oxidation 

pathway in native conditions. 

We concluded that the reverse β-oxidation is an inefficient fatty acid production pathway when 

expressed in S. cerevisiae. This thought was supported by contact with other researchers 

working on this subject that also reported unsuccessful results in using this pathway in yeast 

for fatty acid production. This is also not surprising as there is a lack of literature describing 

use of this pathway successfully in eukaryotic organisms, while its use in E. coli cell factories 

continues to progress (Babu et al., 2015; Clomburg et al., 2015; Zhuang et al., 2014). 
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Optimization of fatty acid pools for production of fatty acid-

derived chemicals 

Application of new strategies for overcoming challenges in fatty acid biosynthesis is one 

strategy for improving fatty acid biosynthesis of cell factories. However, the solution might not 

be in bypassing the FAS complex, but working with it. Regulation of the FAS machinery is 

partly dependent on downstream homeostasis mechanisms in controlling acyl-CoA and lipid 

pools (Faergeman and Knudsen, 1997; Kamiryo and Numa, 1973; Sumper and Träuble, 1973). 

Furthermore, understanding of fatty acid fluxes in the downstream lipid metabolism network 

is fundamental for production of oleochemical precursors that can be produced through 

conversion of specific lipid pools. Motivated by these aspects, we aimed to understand and 

work through engineering of downstream fatty acid metabolic fluxes in S. cerevisiae cell 

factories to enable more efficient engineering of these strains for producing either basic 

oleochemicals or oleochemical precursors. 

The work here started with the need to understand the underlying fluxes behind a proof-of-

concept fatty alcohol production strain regarding the pathways involved in the balance between 

acyl-CoA and FFAs and the conversion of both these pools towards fatty alcohols. Therefore, 

in paper II we first studied a S. cerevisiae strain previously designed for production of fatty 

alcohols from free fatty acids. In this strain YJZ08, FAA1, FAA4 and POX1 have been deleted, 

resulting in overproduction and secretion of FFAs to the extracellular medium as mentioned 

before. Using this background, a pathway for conversion of FFAs to fatty alcohols was 

expressed consisting of the carboxylic acid reductase gene from Mycobacterium marinum 

(MmCAR) (Akhtar et al., 2013) which converts FFAs to fatty aldehydes, and the endogenous 

alcohol dehydrogenase gene ADH5 which in this pathway converts the formed fatty aldehyde 

to fatty alcohol (Zhou et al., 2016b) (Figure 12A). 

We analyzed the production profile of this strain and realized that the FFA-to-biomass ratio 

constantly increases during the ethanol growth phase, while during the glucose phase it seems 

to decrease (Figure 12B, C). Furthermore, the strain that does not express the fatty alcohol 

pathway genes does not decrease in FFA/OD values during glucose phase and about 90% of 

produced fatty acids were produced during the ethanol growth phase (Figure 12B). This 

indicates that growth on ethanol seems to be favourable for FFA production compared to 

growth on glucose on a Δfaa1 Δfaa4 Δpox1 background and conversion of FFA to fatty alcohol 

seems to be more efficient during growth on glucose. The fatty acid synthesis efficiency during 

ethanol is probably related to the availability of cytosolic acetyl-CoA needed for fatty acid 

biosynthesis, since growth on ethanol requires conversion of ethanol to acetate, which can then 

be converted to cytosolic acetyl-CoA through the acetyl-CoA synthases Acs1 and Acs2 (Chen 

et al., 2012). During this study, we also performed an experiment with glucose feeding through 

feed-beads, which allow for slow release of glucose to the medium, so cells can grow in a 

pseudo fed-batch condition of low glucose where pyruvate is imported to the mitochondria for 

respiratory growth, with no carbon flux towards acetate and ethanol. All samples taken during 
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https://paperpile.com/c/RjXLSq/PceEW
https://paperpile.com/c/RjXLSq/wcRys
https://paperpile.com/c/RjXLSq/wcRys
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this experiment showed no production of extracellular FFAs or fatty alcohols (data not shown), 

corroborating the hypothesis explored so far. 

 

 

 

Figure 12. Metabolic profiling of a fatty alcohol production platform strain. A) Schematic 

representation of the fatty alcohol producing strain. POX1, HFD1, FAA1 and FAA4 have been deleted 

in this strain for FFA overproduction and MmCAR and ADH5 are overexpressed for fatty alcohol 

production from FFAs. B) Total FFAs, fatty alcohols (FOH), glucose and ethanol (EtOH) levels in the 

culture of this strain. Samples were taken every 3 to 6 hours for 72 h. C) FFA and fatty alcohol titers 

normalized by the culture OD600 at each time point comparing the fatty alcohol producing strain (orange 

line) and a control strain without the fatty alcohol production genes (blue line). Polynomial trendlines 

are presented for each set of points. Dashed line at 21h represents the point of diauxic shift where 

ethanol starts being used as a carbon source instead of glucose.  

 

Although the fatty alcohol production pathway described benefits from high concentrations of 

substrate (FFA), the higher flux of FFA formation compared to its conversion to fatty aldehyde 

by MmCAR results in an overaccumulation of FFAs and consequential secretion to the 

extracellular medium. In this strain, only 20% of formed FFAs are converted to fatty alcohol, 

while most are secreted and not converted. In this paper, we design an alternate system where 

we fine tune the extent of FFA release through the disrupted fatty acid remodelling process by 

expressing FAA1 under the control of different promoters that are either induced upon addition 

of Cu2+ (CUP1 promoter), induced at high glucose concentrations (HXT1 promoter) or induced 
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at low glucose concentration (HXT7 promoter). This was combined with simultaneous 

production of fatty alcohols both from FFAs and fatty acyl-CoA by expressing the MmCAR + 

ADH pathway plus a FAR gene (FaCoAR) from M. aquaeolei VT8 (Figure 13A). This design 

through fine-tuning of FAA1 expression aimed for balancing of the two fatty acid pools and 

simultaneous conversion of both to fatty alcohols. Most analyzed strains had reduced levels of 

secreted FFAs due to presence of Faa1 (Figure 13B), allowing for fatty acid re-import and 

activation mechanisms to come into play, but showed simultaneously high levels of fatty 

alcohols, proving that Faa1 activity was low enough to still allow for high substrate availability. 

It also resulted in an increased specific flux towards fatty alcohol production, from which the 

best strain expressing FAA1 under the HXT1 promoter showed an increase of 30% in specific 

fatty alcohol accumulation (Figure 13C). 

During this work, we have highlighted the importance of fatty acyl-CoA synthases such as 

Faa1 for regulation of fatty acid levels. Higher expression of FAA1 results in lower levels of 

FFAs and at the same time lower levels of total lipids and fatty acid-derived products, therefore 

pointing towards a direct relationship between Faa1 activity, acyl-CoA levels and feedback 

regulation of fatty acid biosynthesis. 

The results generated here allowed for an understanding of the extent to which acyl-CoA 

synthases contribute to regulating free fatty acid levels and consequently lipid remodeling 

processes. Studies so far have described this in the context of the presence or absence of these 

genes and the enzymatic properties of these acyl-CoA synthases. However, it was not obvious 

so far what effect these could have when expressed at different levels or culture times like it 

was studied here. Expression of FAA1 with the lowest strength promoter we tested, HXT1p, 

still has a drastic effect in reducing secreted FFA. The effects observed in this paper reflects 

the importance and high activity of Faa1, and the extent to which it controls fatty acid levels 

and is fundamental for maintaining the homeostasis of fatty acid pools.  
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Figure 13. Optimizing fatty acid and fatty alcohol fluxes through dynamic FAA1 expression. A) 

Schematic representation of strain YZFOH2 (YJZ08 pAOH9) expressing FAA1 under different 

promoters. POX1, HFD1, FAA1 and FAA4 have been deleted in this strain and MmCAR, ADH5 and 

FaCoAR are overexpressed from a 2µ plasmid (pAOH9). B) Fatty alcohol and FFA titers produced by 

YZFOH2 expressing FAA1 under control of the HXT1 or HXT7 promoters. For comparison, the same 

strain without expression of FAA1 (p413) or with FAA1 being expressed under control of the TEF1 

promoter were used. c) Final fatty alcohol titers at 72 h normalized to the total OD600 values. Also shown 

is the distribution of fatty alcohols in terms of chain length and saturation levels. **: p-value < 0.005 

(Student’s t-test). 
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Dynamics of FFA turnover and its relationship with phospholipid 

metabolism 

In order to engineer S. cerevisiae for high-level production of FFAs it is necessary to better 

understand the pathways and intermediaries involved in cytosolic FFA biogenesis as to which 

lipid pools and pathways are involved in that process. For that, we developed the work 

described in paper III. In this paper, we explored how different lipid pools contribute towards 

FFA synthesis through engineering of a Δfaa1 Δfaa4 strain. Since S. cerevisiae does not have 

any cytosolic thioesterases to directly cleave acyl-CoA into FFAs, the origin of cytosolic and 

extracellular FFAs that are drastically increased upon deletion of FAA1 and FAA4 is an 

intriguing question. In this work, we first deleted POX1 from the Δfaa1 Δfaa4 strain in order 

to remove fatty acid oxidation on fatty acid levels, originating strain RP02 (Δfaa1 Δfaa4 

Δpox1). Subsequently, storage lipids were ablated from this strain by deletion of the genes in 

the TAG synthetic pathway DGA1 and LRO1 and removal of SE production pathway by 

deletion of the acyl-CoA:sterol acyltransferase genes ARE1 and ARE2, originating strain RP09 

(Δfaa1 Δfaa4 Δpox1 Δdga1 Δlro1 Δare1 Δare2). 

 

 

Figure 14. Effect of storage lipids on FFA formation in a Δfaa1 Δfaa4 Δpox1 strain. A) Total (intra- 

and extracellular) FFAs were quantified for the different knockout strains lacking fatty acid re-

activation (FAA1 and FAA4 deletions), β-oxidation (POX1 deletion) and storage lipid formation (DGA1, 

LRO1, ARE1 and ARE2 deletion). B) Fatty acid distribution in the free fatty acid pool between the two 

strains as percentage of the total free fatty acids. 

Removal of storage lipids did not present major differences in FFA levels since these were 

statistically similar between RP02 and RP09 (Figure 14A). Previous studies suggest that 

hydrolysis of storage lipids can be a source of cytosolic FFAs (Mora et al., 2012) and this was 

even explored as a FFA overproduction strategy by (Leber et al., 2015) through overexpression 

of the diacylglycerol synthase gene DGA1 and the TAG lipase gene TGL3, leading to 

https://paperpile.com/c/RjXLSq/STXCG
https://paperpile.com/c/RjXLSq/vRNB9
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production of up to 2 g/L of FFAs in rich media. In our study, even though storage lipids might 

play a role in FFA production when all lipid species are present, we first show these are not 

necessary and not the only source of FFA production. If storage lipids do contribute to the FFA 

pool, then this is compensated by some other lipid pool when these are ablated. However, fatty 

acid chain length and saturation levels of the FFA pool remain mostly unchanged between the 

strains, which can be an argument against this hypothesis (Figure 14B). 

 

 

Figure 15. Effect of deleting phospholipases or TAG lipases in a Δfaa1 Δfaa4 Δpox1 strain. A) 

Total (intra- and extracellular) FFAs quantified for RP02 (Δfaa1 Δfaa4 Δpox1) and for RP02 with 

deletion of phospholipase genes PLB1 and PLB2 or TAG lipase genes TGL3, TGL4 and TGL5. B) 

Total FFA quantification of RP02 with an empty plasmid (p416) or a plasmid expressing the lipase 

TGL3. C) Fatty acid distribution in the free fatty acid pool between the two strains as percentage of the 

total free fatty acids. 

 

In order to get additional insight into this matter, the main TAG lipase genes TGL3, TGL4 and 

TGL5 were also removed from the Δfaa1 Δfaa4 Δpox1 strain but this only resulted in a 10% 

reduction in FFA levels (Figure 15A). Overexpression of the lipase gene TGL3 did not bring 

significant changes to FFA production either (Figure 15B), as it has been observed before 

(Leber et al., 2015). Even though the results of lipase deletion from Mora et al., 2012 show a 

more drastic effect, both studies agree that neutral lipid hydrolysis is only part of the story 

when it comes to FFA production pathways and that removal of neutral lipids does not impair 

the FFA formation capacity of the cell and that other routes play this part when storage lipids 

https://paperpile.com/c/RjXLSq/vRNB9
https://paperpile.com/c/RjXLSq/STXCG
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are removed. Furthermore, a previous study has linked TAG hydrolysis with phospholipid 

synthesis, with less phospholipid synthesis observed when a TAG lipase was deleted 

(Rajakumari et al., 2010). In fact, less phospholipids are observed in RP09, which supports this 

(Figure 17B, Paper III: Figure 3), and this evidence makes it difficult to isolate the effect of 

phospholipid hydrolysis when the level of this pool is affected by TAG hydrolysis. 

At this point the question arises if the peroxisomal lipase Tes1 could have an effect on this 

pathway through an indirect action involving peroxisomal transport of acyl-CoA or temporary 

localization to the cytoplasm. However, deletion of this gene did not result in a significant 

difference in FFA levels (Figure 16), eliminating this hypothesis. 

 

 

Figure 16. Effect of TES1 deletion on FFA formation. A) Total FFAs quantified for RP02 (Δfaa1 

Δfaa4 Δpox1), RP09 (Δfaa1 Δfaa4 Δpox1) and RP09 with deletion of the peroxisomal thioesterase gene 

TES1.  

 

We further engineered RP09 in order to further focus the fatty acid fluxes towards phospholipid 

synthesis. For this, we removed the PA phosphatase genes PAH1, LPP1 and DPP1 generating 

strain MLM1.0. Deletion of these genes has been reported to eliminate formation of DAG and 

increase levels of PA (Chae et al., 2012; Han et al., 2007; Pascual et al., 2013), redirecting fatty 

acid flux towards the CDP-DAG phospholipid biosynthesis pathway. Enrichment in PA levels, 

as seen before, brings forward effects at the level of fatty acid and phospholipid biosynthesis 

regulation. High levels of PA increase the interaction strength of Opi1 with the ER membrane, 

therefore releasing inhibition of Ino2/Ino4-regulated genes (Henry et al., 2012; Kaadige and 

Lopes, 2006). The result from deletion of PAH1, LPP1 and DPP1 was a drastic increase of 

FFA levels by 98% and phospholipid levels by 8-fold (Figure 17A, B). Total fatty acids were 

also increased in this strain by 130% (Paper III, Supplementary Figure S5). These results 

highlight the relevance of the Ino2/Ino4/Opi1 system for control of the FAS machinery and 

phospholipid synthesis pathways, as reducing the effect of Opi1 repression leads to an increase 

of both total fatty acid content and phospholipid levels. As observed before in other studies 

https://paperpile.com/c/RjXLSq/F4ocD+WjSbo
https://paperpile.com/c/RjXLSq/X08gh
https://paperpile.com/c/RjXLSq/jsa6w+5TEjg+B4lVY
https://paperpile.com/c/RjXLSq/F4ocD+WjSbo
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where PAH1 was deleted (Santos‐Rosa et al., 2005), ER membrane expansion due to increased 

PA content was also observed in MLML1.0 (Figure 17 D) 

MLM1.0 shows a simultaneous increase of both phospholipids and FFAs, therefore pointing 

towards a correlation between the two. This link was further investigated by deleting and 

overexpressing the main phospholipase B genes PLB1 and PLB2 responsible for hydrolysis of 

acyl chains from phospholipids in both positions sn-1 and sn-2. Deletion of PLB1 and PLB2 

led to a drastic decrease of 46% in FFA levels and an increase of 105% in phospholipids (Paper 

III: Figure 4), which led us to pinpoint phospholipases as the main players in cytosolic and 

extracellular FFA biogenesis when fatty acid fluxes are redirected to phospholipids. 

Interestingly, deletion of these same phospholipase genes in the RP02 (Δfaa1 Δfaa4 Δpox1) 

strain led to a decrease of 20% in FFA levels (Figure 15A), indicating that these still have a 

role in FFA formation in this strain, but not as prominent as in MLM1.0. In fact, a previous 

study where phospholipase genes PLB1, PLB2, PLB3 and NTE1 were individually deleted from 

a Δfaa1 Δfaa4 strain did not report a significant difference in FFA levels (Mora et al., 2012). 

A slight change in the fatty acid profile was also observed here, which was not observed in a 

significant way when the lipase genes were deleted, which supports this hypothesis (Figure 

15C). This difference between the effect in MLM1.0 and RP02 might be simply due to a 

different effect of the phospholipases in question, since other phospholipases A and 

phospholipases B exist in S. cerevisiae and it is therefore possible that upon deletion of PLB1 

and PLB2 other genes are upregulated to compensate for this lack of activity. We could not, 

however, successfully delete any additional phospholipases whenever we tried in MLM1.0, 

probably due to a toxic effect of phospholipid overaccumulation and/or inability to remodel 

this lipid pool. Another explanation for the significant remaining FFA formation in Δfaa1 

Δfaa4 Δpox1, also supported by Mora et al., 2012, might be due to the presence of storage 

lipids that can provide a route for FFA synthesis when PLB1 and PLB2 are deleted. 

Put together, our results in context of previous literature suggests a high flexibility of lipid 

metabolism in terms of lipid pool remodeling. Previous studies have shown a relationship 

between phospholipid and storage lipid synthesis (Carman and Henry, 1999; Mora et al., 2012), 

in which the carbon flux at the PA node can change to one pathway or the other according to 

factors such as growth phase and nutrient needs/supply (Fakas et al., 2011; Gaspar et al., 2011). 

This process is usually regulated by the PA phosphatase Pah1 and the DAG kinase Dgk1 

(Gaspar et al., 2011; Han et al., 2008a, 2008b). It is therefore understandable that a major role 

of phospholipids in FFA formation is only observed when a high fatty acid flux is created and 

redirected to phospholipids, as phospholipids and storage lipids seem to complement each other 

for FFA supply in a Δfaa1 Δfaa4 background. This phenomenon is probably tied to homeostasis 

and regulation of the fatty acid composition of the different lipid pools, since acyl chains in 

phospholipids need to be able to be rapidly cleaved and re-inserted in order to remodel 

membrane properties as required. For this, acyl chains not used in phospholipids are stored in 

neutral lipids, which also need to be able to be rapidly hydrolyzed in order to cope with the 

remodeling of the phospholipid fraction.  

 

https://paperpile.com/c/RjXLSq/rfrC7+vRNB9
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Figure 17. Effect of deleting storage lipid formation and PA phosphatases on FFA and 

phospholipid levels. A) Total FFA quantification of MLM 1.0 compared to strains RP09, RP02 and 

the control strain (wt). D) Phospholipid levels and composition in strains RP02, RP09 and MLM 1.0 

compared to wt control strain. C) Summary table of strain phenotype. D) Transmission electronic 

microscope pictures of strains RP02 and MLM1.0 compared to wild-type. 

 

A better understanding of fatty acid dynamics 

Throughout this section we studied physiological and metabolic outcomes of pathways and 

strategies currently employed in designing yeast cell factories for production of free fatty acids 
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and fatty acid-derived basic oleochemicals. More specifically, we studied the interconversion 

between the product of fatty acid biosynthesis, acyl-CoA, and its direct oleochemical precursor 

FFAs. We explored the pathways through which the acyl-CoAs can be converted into FFAs 

and which lipid pools are involved, and the dynamics and extent through which these FFA are 

reactivated through the action of acyl-CoA synthases. 

We can understand from the studies here that acyl-CoA is the form through which fatty acids 

are transferred through different organelles, pathways and lipid pools. The presence of free 

fatty acids, on the other hand, seems to be often innocuous to most metabolic processes if not 

previously converted to their -CoA forms, since FFAs are not known substrates for any reaction 

in yeast apart from esterification with -CoA by acyl-CoA transferases. In terms of regulation, 

sensing of external fatty acid supply by the oleate-responsive element (ORE) (Gurvitz and 

Rottensteiner, 2006; Trzcinska-Danielewicz et al., 2008) has also been shown to depend on the 

presence of Faa1-4 (Faergeman et al., 2001) which points towards the need of activation of 

fatty acids to acyl-CoA in order to transcriptionally regulate fatty acid-responsive genes. 

By deleting FAA1 and FAA4 we enable overproduction and accumulation of FFAs partly 

because there is an inability by the cell to sense these increased levels and consequently 

feedback-regulate their synthesis. From this point on, increase in FFA synthesis will result in 

an increased accumulation of extracellular FFAs that do not create biosynthesis inhibition 

through feedback regulation. 

An ability to achieve high titers of extracelular FFAs is extremely convenient for industrial 

processes since low solubility of hydrophobic products leads to their separation into a different 

phase, which facilitates downstream processing and purification. 

We have therefore provided important knowledge that can undoubtedly be applied to design of 

S. cerevisiae cell factories for FFA production while exploring the advantageous properties of 

FFA deregulation and secretion. 
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Part II: Improving Triacylglycerol Production 

 

Triacylglycerols - natural fat storage 

Most eukaryotic organisms have evolved the same strategy for storing energy and carbon: 

neutral lipids. TAGs are neutral storage lipids and are often the main constituent of animal fat 

and plant oils. The same is true for many microorganisms such as oleaginous yeasts, which can 

accumulate up to 70% of their dry cell weight as lipids, mostly TAGs.  

TAGs are the most common precursor in the oleochemical industry as explained before since 

these can be hydrolyzed into fatty acids or derivatized to other basic oleochemicals. But as we 

have evaluated before, direct production of FFA instead of TAGs becomes an advantage in this 

context. The important application it cannot replace is the use of specialty TAGs directly as 

food or cosmetic ingredients. TAGs with specific properties and defined fatty acid composition 

are of high value in the food and cosmetic market and some cases of synthetic TAGs produced 

through enzymatic processes have been registered in the past. 

 

Triacylglycerols production pathways in S. cerevisiae 

TAGs are neutral lipids composed of a glycerol backbone in which all three hydroxyl groups 

have been esterified with fatty acids. The three positions available for fatty acids, referred to 

as sn-1, sn-2 and sn-3 are stereochemically different since the central carbon on position sn-2 

is chiral. As described before, synthesis of TAGs in S. cerevisiae shares a common initiation 

pathway with phospholipid synthesis. Glycerol is first phosphorylated to glycerol-3-phosphate 

at the sn-3 position, which is then acylated with fatty acid chains at positions sn-1 and sn-2, in 

this order. Cleavage of the phosphate group by Pah1 forms DAG with an hydroxyl group that 

can be acylated with the last fatty acid at the sn-3 position using acyl-CoA by Dga1 or 

alternatively using the sn-2 chain of another phospholipid molecule by Lro1, resulting in 

production of TAGs. The fatty acid composition of the TAG pool is therefore dependent on the 

acyl-CoA produced by the fatty acid biosynthesis machinery and the specificity and preference 

of the acyltransferases that compose this metabolic pathway. As a result of this, each of the 3 

positions on the TAG molecule will have different preference for the fatty acid present. 

This complexity, dynamics and specificity of TAG synthesis is the main argument towards the 

use of S. cerevisiae for specialty TAG production. Through modulation of fatty acid synthesis 

and engineering of the TAG production pathway enzymes, it is possible to produce specialty 
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TAGs in S. cerevisiae with engineering ease and efficiency with which oleaginous yeasts and 

plants cannot compete. A clear case of this is the study by (Wei et al., 2017) where two different 

glycerol-3-phosphate acyltransferases (GPATs), two lysophosphatidate acyltransferases 

(LPATs) and two diacylglycerol acyltransferases (DGATs) from Theobroma cacao (cocoa 

tree) were expressed in different combinations in S. cerevisiae in order to produce TAGs with 

similar fatty acids and positioning as the ones found in cocoa butter. This had the effect of 

increasing the content of cocoa butter-like lipids by up to 2.3-fold (Wei et al., 2017). 

In order to use this advantage for production of specialty TAGs, it is necessary to first transform 

S. cerevisiae into a high TAG producing organism and develop its full potential for 

accumulation of this lipid species. As such, previous strategies have been applied to increase 

the metabolic flux through the TAG synthesis pathway. A previous study (Kamisaka et al., 

2007) increased lipid content in S. cerevisiae to 30% producing 0.44 g/L of TAGs from glucose 

by deleting the transcription factor gene SNF2, which has been previously identified as a 

regulator of lipid metabolism with an unclear mechanism (Kamisaka et al., 2006), and 

overexpressing DGA1. A follow-up study expressed a truncated version of DGA1 in a Δdga1 

strain reaching up to 50% lipid content in a 10% glucose culture with a production titer of 0.97 

g/L of lipids (Kamisaka et al., 2013). A different study used overexpression of ACC1, FAS1 

and FAS2 under a constitutive strong TEF1 promoter to obtain a strain with 17% lipid content 

and 0.17 g/L of lipids from 2% glucose (Runguphan and Keasling, 2014). Another strategy 

reconstituted an algal TAG production pathway through expression of a DGAT from 

Chlamydomonas reinhardtii (CrDGTT2) and overexpression of the endogenous PAH1 together 

with deletion of the DAG kinase gene DGK1 and the phospholipid biosynthesis gene OPI3 

(Hung et al., 2016) reaching 12% of lipid content and 0.17 g/L of TAG titers. 

TAG was also produced using glycerol as the sole carbon source. Overexpression of the 

glycerol kinase gene GUT1 together with DGA1 and LRO1 resulted in production 8% TAG 

content and a titer of 0.02 g/L of TAG from a 2% glycerol medium (Yu et al., 2013). 

Even though these strategies led to S. cerevisiae strains capable of accumulating high amounts 

of their dry cell weight as lipids, conversion yields of glucose to TAGs only reached a 

maximum of 0.047 gTAGs/gGlucose. Assuming the maximum theoretical yield for production 

of TAGs through the metabolic network of S. cerevisiae to be approximately 0.32 g/g (Caspeta 

and Nielsen, 2013), these strategies achieved values that are still 14% of the maximum yield 

possible in S. cerevisiae for production of TAGs, leaving room for improvement into 

transforming this yeast into a high TAG producer. 
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Metabolic engineering of S. cerevisiae for high-level TAG 

production 

Although different strategies have been applied to engineer S. cerevisiae for accumulation of 

high contents of TAGs, strategies are still disperse and have only targeted a few genes and 

pathway steps. With the advent of faster genome engineering tools like CRISPR-Cas9, it is 

possible to generate heavily engineered strains faster and more efficiently. Based on previously 

validated approaches, in paper IV we have developed S. cerevisiae strains that were able to 

carry high flux through fatty acid biosynthesis and TAG production pathways. 

The first major step for successful application of this strategy was the use of an ACC1 mutant 

allele in which two identified phosphorylation sites have been mutated in order to express a 

constitutively de-regulated form. The Ser1157 and Ser659 residues of Acc1 have been 

identified as potential phosphorylation sites for Snf1, either through phosphoproteome analysis 

for Ser1157 (Ficarro et al., 2002) or through bioinformatics analysis for Ser659 using the 

conserved phosphorylation recognition motif for Snf1 (Dale et al., 1995). Mutation of these 

two serines to alanine residues highly increased activity of Acc1 in vivo by 2.5-fold and 

consequently increased production of malonyl-CoA and fatty acyl-CoA derived products by 

more than 3-fold (Shi et al., 2014). In our study, we first expressed this ACC1 double mutant 

(ACC1**) together with an extra chromosomal copy of the endogenous PAH1 and DGA1 

expressed under control of the strong constitutive promoters PGK1p and TEF1p, respectively. 

The resulting strain, ADP, was able to produce up to 13% of its dry weight content as TAGs in 

2% glucose minimal medium, a higher than 10-fold increase in comparison to the reference 

wild-type strain and showed a clear increase in LD accumulation when stained with BODIPY 

(Figure 18). 

The second major step in TAG improvement was the deletion of the TAG lipase genes TGL3, 

TGL4 and TGL5 with the goal of removing TAG hydrolysis and avoiding TAG mobilization. 

At the same time, we aimed to remove the two acyl-CoA:sterol acyltransferase genes ARE1 

and ARE2 in order to focus neutral lipid synthesis into TAGs instead of SEs, but technical 

difficulties did not allow a successful removal of ARE2. The new strain RF08 (ACC1** PAH1 

DGA1 Δtgl3 Δtgl4 Δtgl5 Δare1) showed a 68% increase in TAGs levels compared to strain 

ADP, with a final TAG content of 22% of its dry cell weight (Figure 18A). Further engineering 

aimed at removing the β-oxidation gene POX1 and the gene coding a subunit of the 

peroxisomal transporter involved in the import of acyl-CoA PXA1 with the goal of removing 

transport and oxidation of fatty acids in the peroxisome. The glycerol-3-phosphate utilization 

pathway was also targeted by deleting the glycerol-3-phosphate dehydrogenase encoding gene 

GUT2 with the objective of increasing the supply of glycerol-3-phosphate for the TAG 

synthesis pathway. The strain RF11 with all these modifications was able to produce up to 25% 

of its dry weight as TAGs with a production titer of 1.76 g/L from 20 g/L of glucose, which 

translates to 27.4% of the maximum theoretical yield of TAG production from glucose. 
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Figure 18. Effects of metabolic engineering of S. cerevisiae for high TAG production. A) TAG 

quantification of different engineered strains. TAGs were quantified for strains with the implemented 

push-and-pull approach (ACC1**, DGA1 and PAH1 overexpression) and lacking TAG lipases 

(TGL3/4/5 deletion), sterol acyltransferases (ARE1 deletion), β-oxidation (POX1 deletion), glycerol 

utilization (GUT2 deletion), the acyl-CoA peroxisomal transporter (PXA1 deletion) and fatty acyl-CoA 

synthetase (FAA2 deletion). Strains were grown for 72h in minimal medium containing 2% glucose. 

*p-value < 0.05 (Student’s T-Test: two-tailed, two-sample equal variance). B) Lipid droplet staining of 

strains IMX581 and ADP with BODIPY and analyzed with a fluorescent microscope showing lipid 

droplets in green. 

 

The results from TAG production yields from glucose in this paper are impressive in a way 

that represent a 160% increase over the previous benchmark strain for TAG production in S. 

cerevisiae (Kamisaka et al., 2013). This is the result of a successful push-and-pull strategy 

where many factors were taken into account, from the upregulation of the fatty acid 

biosynthesis pathway through ACC1** overexpression, to upregulation of the TAG synthesis 

pathway from PA, supply of glycerol-3-phosphate as a substrate for the pathway initiation, 

removal of competing fluxes for SE formation, removal of TAG hydrolysis enzymes and 

deletion of genes involved in fatty acid oxidation. 

Even though the lipid content percentage for the obtained strains in this study is much lower 

than the maximum reported for S. cerevisiae, the biomass values obtained are much higher than 

in all the other studies here analyzed in the context of TAG production. The reasons for this 

might vary and it might be strongly related to the culture media used in each study. While here 

we used minimal media buffered with KH2PO4, many of the studies reported used variants of 
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SD media, which first are sensitive to pH variation due to low buffer capacity and secondly 

have different nitrogen bases, amino acid content and consequently a different C/N ratio. All 

these factors will affect biomass yield and lipid metabolism and the correct balance is required 

for an efficient production of the product in question. 

 

Improving TAG production and accumulation through the use of 

perilipins 

The work developed in paper IV allowed us to generate S. cerevisiae strains capable of 

accumulating TAG amounts that were more than 20-fold higher than a wild-type strain, in fact 

turning this yeast into an oleaginous one by definition. The first modifications consisting of 

ACC1**, PAH1 and DGA1 overexpression proved to be the most relevant ones in terms of 

improvement, followed by deletion of the lipase genes. Modifications from that point onwards 

only resulted in small improvements of the TAG levels, providing the feeling that a plateau of 

maximum productivity was being reached. Contemplating this idea, we realized that increasing 

the fluxes towards TAG production provokes drastic increase of LD distribution and number 

in the cell, and envisioned that structural limitations of the LD assembly and stabilization in 

the context of the cell might be hindering further development. 

Paper V describes the work where we focused on engineering the LD at the level of its 

biogenesis mechanisms and protein-mediated stability in the cell. LD biogenesis and assembly 

mechanisms have been explained in a previous section and as we have seen, besides enzymes 

involved in synthesis of storage lipids necessary for LD biogenesis, there are 3 main families 

of proteins involved in structural aspects of the assembly mechanism: Perilipins, FIT proteins 

and seipins. 

The first part of paper V deals with aspects of perilipins. Perilipins are a family of PAT proteins 

that can have different roles in LD biogenesis and modulation of lipid hydrolysis through 

lipases and autophagy (Sztalryd and Brasaemle, 2017). When the project started, no perilipins 

had been described in S. cerevisiae, it was only during the development of the work that the 

gene PET10 was shown to code for a S. cerevisiae perilipin protein (Gao et al., 2017). Pet10 

was shown to bind early to nascent LDs, and biogenesis rate is decreased in pet10Δ. Moreover, 

LDs isolated from pet10Δ are fragile, aggregate and fuse in vitro, showing a role of this 

perilipin in maintaining LD stability. Pet10 was also shown to genetically interact with seipin 

and Fit2 and modulate the activity of Dga1 (Gao et al., 2017). 

Even though a perilipin is present in this yeast, a previous study has reported improvements in 

TAG synthesis rate, reduced TAG hydrolysis and promoted LD formation when human 

perilipins genes PLIN1, PLIN2 and PLIN3 as well as the Oleosin 1 from Arabidopsis thaliana 

were expressed in yeast (Jacquier et al., 2013). Based on this, we speculated that strains with 

increased TAG accumulation and therefore enlarged LD structures would benefit from perilipin 

https://paperpile.com/c/RjXLSq/ThB2y
https://paperpile.com/c/RjXLSq/8fTCW
https://paperpile.com/c/RjXLSq/daAb6
https://paperpile.com/c/RjXLSq/daAb6
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expression and as such expressed the same human perilipin genes PLIN1-3 described before 

(Jacquier et al., 2013) in the strain ADP that was developed during paper IV. The reason to 

evaluate the genes in this strain was that further engineered strains had deletions of the main 

lipase genes, and thus it would not be possible to detect effects arising from inhibition of lipase 

activity. Expression of PLIN1-3 improved the production of TAG in the ADP strain by 22%, 

23% or 28% respectively (Figure 19), validating our hypothesis that expression of these 

proteins would be beneficial. 

 

 

Figure 19. Effect of expressing different perilipin proteins in the TAG levels of the ADP strain. 

Different perilipin homologues were expressed in a previously engineered strain ADP overexpressing 

ACC1**, PAH1 and DGA1 for accumulation of high TAG levels. Three different categories are 

represented: Human perilipins: PLIN1, PLIN2/ADRP and PLIN3/TIP47; Fungal perilipin-like protein 

homologues identified in the literature: RtLDP1 from Rhodosporidium toruloides, MaMPL from 

Metarhizium anisopliae, YlPLP1 from Yarrowia lipolytica and Pet10 from Saccharomyces cerevisiae; 

and 6 novel candidates identified from a bioinformatic analysis using BLASTP: MlPLP1 from 

Melampsora larici-populina 98AG31, KbPLP1 from Kalmanozyma brasiliensis, MoPLP1 from Mixia 

osmundae IAM 14324, OrPLP from Obba rivulosa, XdPLP1 from Xanthophyllomyces dendrorhous 

and LcPLP1 from Leucosporidium creatinivorum. Resulting strains were cultivated in minimal medium 

with 2% glucose for 72 h. *p-value < 0.05, **p-value < 0.005 (Student’s t test, one-tailed, unequal 

variance). 

 

Continuing the study on using perilipins for improving TAG production, we aimed to screen 

for fungal homologues of perilipin proteins to evaluate the potential of perilipins that would 

increase this effect more efficiently than the human perilipins. As such, we started from 

previously identified genes from oleaginous yeasts such as R. toruloides or Y. lipolytica (Zhu 

https://paperpile.com/c/RjXLSq/31WmQ
https://paperpile.com/c/RjXLSq/ThB2y
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et al., 2015) and expanded the bioinformatics search using BLASTP, selecting 6 additional 

genes with different sequence similarity values. All genes were expressed in strain ADP, but 

the highest increases registered were after expression of 2 genes from Melampsora larici-

populina (MlPLP1) and Kalmanozyma brasiliensis (KbPLP1) which improved the TAG 

content by 25% and 26%, respectively, still lower than the improvement for PLIN3 (Figure 

19) Furthermore, the beneficial effect from PLIN3 was independent from lipase action, and it 

showed an even better improvement, by 34%, when expressed in RF07 (ACC1** PAH1 DGA1 

Δtgl3 Δtgl4 Δtgl5 Δare1). The effect from the fungal perilipins MlPLP1 and KbPLP1 seemed 

to be more related to the lipase effect since its improvement went down to 22% and 9% 

respectively when expressed in RF07 (Paper IV: Figure 3). 

Since Plin3 in humans was described as having a strong impact on the LD biogenesis process 

(Bulankina et al., 2009), it had been shown to promote LD budding in yeast (Jacquier et al., 

2013), and our data showed an improvement independent of lipase effect, we hypothesized that 

the observed improvement in TAG production by Plin3 expression was due to a stimulation of 

the LD biogenesis and assembly process. 

 

Enhancing lipid droplet biogenesis for improved TAG 

accumulation 

 

The effect of FIT2 proteins in increasing TAG levels 

To explore the potential of improving the LD biogenesis effect as an engineering strategy, we 

overexpressed the two FIT2 gene homologues that can be found in the S. cerevisiae genome, 

YFT2 and SCS3, in RF07. Surprisingly, overexpression of YFT2 improved TAG accumulation 

levels by 27% but the same was not true for SCS3, which did not improve TAG accumulation 

(Figure 20). Even though SCS3 and YFT2 are homologues (Choudhary et al., 2015), the two 

have been previously shown to have different genetic interaction dynamics and therefore 

different functions (Moir et al., 2012). Although it is not clear which different factors could be 

in play that explain the difference observed here, it was shown that SCS3 is more involved in 

promoting phospholipid synthesis in reaction to ER stress and to positively interact with the 

transcription of DGK1 and some phospholipid biosynthetic genes, whereas YFT2 was neutral 

in this sense (Moir et al., 2012), which could partially explain the negative effect from SCS3 

overexpression in TAG synthesis. 

 

https://paperpile.com/c/RjXLSq/rePvr
https://paperpile.com/c/RjXLSq/qxaur
https://paperpile.com/c/RjXLSq/ThB2y
https://paperpile.com/c/RjXLSq/mP7pW
https://paperpile.com/c/RjXLSq/31WmQ
https://paperpile.com/c/RjXLSq/qxaur
https://paperpile.com/c/RjXLSq/ThB2y
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Figure 20. Effect of FIT proteins on TAG accumulation in RF07. A) Endogenous FIT protein genes 

YFT2 or SCS3, and/or human perilipin gene PLIN3 were expressed in RF07 (ADP Δtgl3/4/5). 

Resulting strains were cultivated in minimal medium with 2% glucose for 72h. *p-value < 0.05, **p-

value < 0.005, NS: not statistically significant (Student’s t test, one-tailed, unequal variance). 

 

Observation of LDs stained with fluorescent dyes through fluorescent microscopy did not show 

any apparent differences in LD number or morphology upon expression of either perilipins or 

the FIT proteins. This observation however, is hindered by the fact that RF07 contains a large 

number of LDs for each cell, therefore making it difficult to detect any increase in this number. 

Confocal microscopy associated with imaging processing software could possibly provide 

more insight on this through quantitative data on the number of LDs per cell. 

Overall, overexpression of FIT proteins has been shown to stimulate LD formation and create 

fat phenotypes in other organisms (Cai et al., 2017; Tan et al., 2014), which is in accordance 

to what we observed in our work for YFT2 expression. The non-concordant result for SCS3 

overexpression indicates a functional difference between the two genes. While Yft2 might be 

more actively involved with the structural aspects of LD biogenesis, the role of Scs3 might be 

majorly towards regulating phospholipid metabolism and response to Inositol-mediated 

regulation, as it was also observed by (Moir et al., 2012).  

We did not observe a cumulative effect from simultaneous overexpression of PLIN3 and YFT2. 

The reason for this is elusive since the exact mechanism for the effect of each protein is not 

well described. However, we can assume that both act on LD biogenesis, even if through 

different mechanisms, and probably expression of either one stimulates the whole LD assembly 

mechanism sufficiently so that additional expression of another factor would not further 

enhance it. 

 

https://paperpile.com/c/RjXLSq/qxaur
https://paperpile.com/c/RjXLSq/LsDRy+4TQGB
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Increased TAG levels through stimulation of ER stress 

Through looking at the correlation between improved TAG synthesis and enhanced LD 

biogenesis, we realized that conditions that cause ER stress have been strongly associated with 

increased LD formation rate and higher TAG and SE content in S. cerevisiae (Fei et al., 2009; 

Moir et al., 2012). Stress responses are an output of intracellular monitoring systems that 

deploy a set of regulatory pathways to respond to cellular imbalances. One of the best 

characterized pathways is the unfolded protein response (UPR) pathway, which monitors ER 

homeostasis and responds to alleviate effects of ER stress (Wu et al., 2014). In yeast, UPR 

relies exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which activates a 

multitude of genes including genes involved in lipid metabolism, specifically inositol-regulated 

phospholipid genes (Jesch et al., 2006, 2005). The UPR is therefore a pathway for maintaining 

lipid homeostasis in the ER membrane and can control lipid synthesis genes in order to balance 

membrane lipid composition (So et al., 2012) as well as playing a fundamental role in ER 

membrane expansion (Schuck et al., 2009). 

Interestingly, various gene deletions causing defects in protein glycosylation or ER-associated 

protein degradation (ERAD) lead to an ER stress response (Chantret et al., 2011; Uchimura et 

al., 2005) and have been associated with an increased number of LDs in the cell as well as an 

increase in TAG and SE content (Fei et al., 2009). This outcome, however, was independent 

of Ire1 and consequently the UPR since Δire1 strains still had the same increase in neutral lipid 

content and increased LD number. The effect was also observed without higher levels of Dga1, 

Lro1, Are1 and Are2 in the cell extracts, indicating an independence of upregulating any 

storage lipid synthesis. 

To evaluate the potential effect of this, we individually deleted in strain RF07 two of these 

identified genes, ERD1 encoding for a predicted membrane protein required for lumenal ER 

protein retention, and PMR1 encoding for a Ca2+/Mn2+ P-type ATPase. The deletion 

phenotypes of these genes have been previously associated with promoting ER stress and an 

increase in TAG content and LD number (Fei et al., 2009). In our study, it resulted in an 

increase of 72% and 67% in TAG content when ERD1 or PMR1, respectively, were deleted. 

We additionally then expressed either YFT2 or PLIN3 in the Δerd1 strain, which increased the 

TAG content by 104% and 138% respectively compared to RF07. Even though expression of 

either YFT2 or PLIN3 showed an average additive effect with the ERD1 deletion, there was a 

large clone variability for these strains, which did not allow for a statistically significant result 

(Figure 21). Speculating, expression of genes from a plasmid or from the TEF1 promoter might 

be compromised in a Δerd1 phenotype, leading to inconsistency between transcription 

efficiency in different clones. Other than that, it is possible that overexpression of proteins that 

interact with the ER in this phenotype create instability in LD assembly. Expression assays 

using integrated gene constructs with promoters of different strengths can probably help solve 

this issue and allow for further clone consistency. 

 

https://paperpile.com/c/RjXLSq/XxgMW+qxaur
https://paperpile.com/c/RjXLSq/MUpS2
https://paperpile.com/c/RjXLSq/PN5uR
https://paperpile.com/c/RjXLSq/NCYMr+sFZKw
https://paperpile.com/c/RjXLSq/TEQcL+iq2kg
https://paperpile.com/c/RjXLSq/XxgMW
https://paperpile.com/c/RjXLSq/XxgMW+qxaur
https://paperpile.com/c/RjXLSq/UEJF9
https://paperpile.com/c/RjXLSq/NCYMr+sFZKw
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Figure 21. Effect of promoting ER stress and FIT protein overexpression on TAG accumulation 

in RF07. B) Genes ERD1 and PMR1 involved in ER stress were deleted. Additional expression of 

YFT2 or PLIN3 was also evaluated in these deletion strains. Resulting strains were cultivated in 

minimal medium with 2% glucose for 72h. *p-value < 0.05, **p-value < 0.005, NS: not statistically 

significant (Student’s t test, one-tailed, unequal variance). 

 

From an engineering perspective, enhancement of TAG levels through ER stress stimulation 

and enhancement of LD biogenesis through either Yft2 or Plin3 was a success, with high titers 

reported (Figure 21) and low penalty to growth (Paper V: Supplementary Figure S2). The 

mechanism of action concerning TAG and LD increase through ER stress caused by these 

deletions is so far unknown. The data generated here are however supportive of an Ire1-

mediated effect, since SCS3 expression, but not YFT2, has been shown to be related to and 

affected by Ire1 activity (Moir et al., 2012). 

We have here reproduced the observation of ER stress sensing mechanisms related to lipid 

homeostasis that are UPR-independent, pointing towards the existence of mechanisms that still 

need to be further understood. Other studies have also suggested and reported UPR-

independent regulation of ER stress related to reorganization and morphology of the ER 

membrane, but without clear evidence on the molecular mechanisms of these (Sano and Reed, 

2013; Schuck et al., 2009; Varadarajan et al., 2012) 

 

https://paperpile.com/c/RjXLSq/PN5uR+eZScX+6wVO9
https://paperpile.com/c/RjXLSq/qxaur
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Engineering approaches for lipid accumulation must go beyond 

metabolism 

A strong link was shown during our work between stimulation of LD assembly and 

accumulated TAG levels. Also, as shown before (Schuck et al., 2009), there seems to be a 

crosstalk between lipid homeostasis, ER stress response, ER membrane expansion and 

phospholipid-TAG interconversion pathways. 

Increasing metabolic fluxes towards neutral lipid formation resulting in more than 25-fold 

increase of TAG levels will bring consequences to the cell in terms of its lipid homeostasis and 

activate responses to counterbalance that effect. Since TAG synthesis is partly located in the 

ER and partly on the LD, increasing the flux of this pathway will create a pressure on the ER 

in which this needs to increase LD assembly rates in order to properly pack these neutral lipids 

and avoid ER deformities from excess neutral lipid accumulation. Native mechanisms probably 

exist to upregulate this process to some extent, and as such we can observe an increase in LD 

number in the cell in this situation. However, it is only natural that the evolution process of S. 

cerevisiae did not adapt this organism for such an increase in TAG synthesis pathways. In this 

sense, increasing the protein number of LD assembly factors can help this process by increasing 

the number of LD formation sites. In the same way, directly promoting a strong ER stress 

response will also result in an increased rate of LD biogenesis to levels more beneficial than 

the upregulation caused by a sensing of increased TAG levels. 

The results from this section provide additional insight on the links between TAG synthesis, 

LD assembly and ER stress. Furthermore, the study from paper V is a new approach to 

engineering of cell factories for TAG synthesis, relying on structural factors of organelle 

biogenesis instead of a pure metabolic engineering approach. 

The success of this approach clearly shows the need to consider structural, physiological and 

regulatory factors in cell factory design. When engineering lipid metabolism it is of most 

importance to consider the cellular context that supports this complex network and consider 

the subcellular localization and molecular structures in which these reactions occur. 

  

https://paperpile.com/c/RjXLSq/PN5uR
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Conclusions and Perspectives 

 

The work developed during this thesis provided new advancements and knowledge for 

metabolic engineering of S. cerevisiae cell factories with regard to lipid and fatty acid-derived 

products. 

In Part One of this thesis, the reversed β-oxidation was evaluated as a potential pathway for 

production of fatty acids in yeast as a more efficient alternative to fatty acid biosynthesis, but 

with no success. From that, the focus shifted towards fatty acid dynamics in the downstream 

lipid metabolism network. Fine-tuning of FAA1 expression on a fatty alcohol production 

platform demonstrated the high relevance of acyl-CoA synthases in lipid homeostasis 

processes. Following up on the subject, the interest was then on the pathways leading to 

cytosolic free fatty acid formation when long chain acyl-CoA synthases are absent. This was 

done through engineering of a new strain with a constrained lipid metabolism network that 

focused on phospholipid accumulation and consequently free fatty acid production from 

phospholipid hydrolysis. 

From the three studies put together, one can generally conclude that lipid remodeling is a very 

dynamic process that involves balanced hydrolysis of storage lipids and phospholipids, and 

that the process is highly regulated and flexible in a way that is self-compensatory to keep 

cellular homeostasis of fatty acid pools. Deletion of the FAA1 and FAA4 genes causes over 50-

fold increase in FFA levels, going from levels that composed around 0.1% of the cell weight 

to more than 5%, a percentage which is almost double the total amount of lipids present in a 

wild-type cell. These results reveal the high fatty acid turnover rates in these remodeling 

processes, which shows not only the potential for this organism to produce high amounts of 

fatty acids, but also how tight the regulation mechanisms controlling these are. This regulated 

high flux of lipid remodeling is probably tied to the natural evolution of this species, which 

focused on adaptability and robustness, one of the reasons which make this yeast so desirable 

in industry. The ability to quickly remodel lipids is an advantage for fast adaptation to new 

environments and stresses.  

The strains generated in paper III represent interesting platforms for further development of 

cell factories. The strains with the constrained lipid metabolism network (MLM1.0 and 

variants) are first of all interesting due to their PA-mediated upregulated fatty acid metabolism. 

The upregulation of the UASINO-regulated gene set with a linear fatty acid metabolism towards 

phospholipids represents an interesting platform for any product that can be produced from 

intermediates in this pathway. These can further be useful for screening of gene variants that 

catalyze one of the steps of this pathway, since the linear flux allows for a straightforward 

screen of the metabolic output. When it comes to production of free fatty acids, this strain is 
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compatible with strategies developed in other studies. Without the use of gene overexpression 

cassettes or markers, the strain is genetically compatible with further engineering without 

problems that might come from presence of genome editing marks. This strain can be further 

engineered with other aspects seen through this work, such as enhancement of cytosolic acetyl-

CoA supply, expression of Acc1 mutants, thioesterases or other FFA or acyl-CoA consuming 

pathways. 

In Part Two, we contributed major advancements in the development of S. cerevisiae strains 

for TAG production. This was achieved not only by using metabolic engineering approaches, 

but by bringing into play enhancement of the LD assembly mechanism. Since the mechanisms 

of LD biogenesis and the role of the factors involved are not completely described or 

understood, our approach relied more on screening and trial-and-error. However, the results 

generated here become very valuable exactly due to this lack of knowledge. By using the strains 

built in paper IV, we could study the mechanism of LD formation in a model where the 

synthesis of TAG is largely increased. Since these mechanisms are very conserved among 

eukaryotes, this could provide valuable information for understanding obesity phenotypes in 

mammals. 

A particularity about paper V was that the TAG levels quantified for the ADP and RF07 strains 

carrying empty plasmids were consistently much lower than the quantification of the same 

strains grown with uracil supplementation on paper IV. As a consequence, in paper V we did 

increase by almost 140% the levels of RF07, but this was compared to the control strain with 

the empty plasmid and as such in paper V we did not obtain levels as high as paper IV. 

However, if this actually is an effect of plasmid presence, then further genome engineering of 

the best strains from paper IV, such as RF11, with the elements from paper V such as deletion 

of ERD1 and expression of YFT2 or PLIN3, could increase the TAG levels in these strains to 

even higher values, potentially reaching values as high as 50% of cell dry biomass as TAGs 

and production above 50% of the maximum theoretical yield. So again, here it was developed 

different compatible strategies that contribute to the advancement of the technology and can be 

combined to achieve levels close to industrial applications. 

The observational conclusion from all the work put together here is that engineering of lipid 

metabolism is a problem more complex than just a simple network of chemical reactions 

mediated by enzymes. Considerations regarding regulation networks, cellular context, 

localization and processes involved the molecular structures supporting the reactions involved 

are of most importance in the design of cell factories for this purpose. The work developed 

during this thesis was therefore meant to communicate that message through success cases and 

relevant knowledge, which was hopefully achieved in the eyes of the reader. 
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Is there a future for yeast as a cell factory for oleochemicals? 

If there is one aspect that should have become transparent during this text, is that by thoroughly 

understanding the mechanisms that govern metabolism, different research groups have 

achieved remarkable success in transforming the common baker’s yeast into a new cell capable 

of producing chemicals that the native species was never able to. In regards of lipids, S. 

cerevisiae natively accumulates a very low amount of lipids and it has already been engineered 

to accumulate more than 50 times these amounts. Moreover, additional progress is being done 

every day to convert this yeast into an efficient oleaginous species and showcasing the its 

untamed potential. 

To this one should not fall into the idea that the worth of S. cerevisiae is in the production of 

the common C18 and C16 oleochemical species, but as explored before, in its potential to be 

engineered for production of specific rare species of oleochemicals. The strategies explored 

during the studies here shown focus on knowledge to increase productivity of FFA and TAGs. 

However, if this is coupled to product specificity-related engineering, such as engineering of 

the FAS product specificity (Zhu et al., 2017) or changing the specificity of enzymes in the 

TAG synthesis pathway (Wei et al., 2017), it is possible to create high levels of tailored 

products for specialty applications. High levels production of specialty chemicals enables the 

creation of a cell which is a producer of high value chemicals from biomass. This will in a first 

step allow for economic feasibility of the technology through simple fermentation of sugars. 

In a later stage, these cell factories can compose the most-important high-value production part 

of a biorefinery and take the central pillar that allows for the setup of a biorefinery concept that 

creates both market value and sustainable solutions to materials and energy. 
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