
thesis_display February 2, 2018 10:58 Page i �
�	

�
�	 �
�	

�
�	

Thesis for the degree of Doctor of Philosophy

Functional EDSLs for Web
Applications

Anton Ekblad

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

thesis_display February 2, 2018 10:58 Page ii�
�	

�
�	 �
�	

�
�	

Functional EDSLs for Web Applications
Anton Ekblad

c© 2018 Anton Ekblad

ISBN 978-91-7597-692-1
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4373

ISSN 0346-718X

Technical report 154D
Department of Computer Science and Engineering
Functional Programming Division

Chalmers University of Technology

SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31-772 10 00

Printed at Chalmers
Gothenburg, Sweden 2018

thesis_display February 2, 2018 10:58 Page iii�
�	

�
�	 �
�	

�
�	

iii

Functional EDSLs for Web Applications
Anton Ekblad
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

This thesis aims to make the development of complex web applications
easier, faster and safer through the application of strongly typed functional
programming techniques.

Traditional web applications are commonly written in the de facto
standard language of the web, JavaScript, which, being untyped, provides
no guarantees regarding the data processed by programs, increasing the
burden of testing and defensive programming.

Modern web applications are often highly complex, with multiple in-
terdependent parts interacting over the Internet. Such applications are
traditionally implemented with each component as a separate program,
exposing its functionality to other components through different API:s over
some communication protocol such as HTTP.

This process is mostly manual, and thus error-prone and labour in-
tensive, with accidental API incompatibility between components being
particularly problematic. Even in a conventional typed language, the ab-
sence of such incompatibilities is not guaranteed. While the different
components may well be type-safe in isolation, there is no guarantee that
the whole is type-safe as the communication between components is not
type-checked.

We present a web application development framework, based on the
Haskell programming language, to increase programmer productivity and
software quality by addressing these issues. In our framework, an ap-
plication with an arbitrary number of components is written, compiled
and type-checked as a single program, guaranteeing that the application
as a whole, including network communication, is type-safe. Communica-
tion between components is automatically generated by our framework,
eliminating the risk of API incompatibilities completely.

Supporting this framework, we also present a state-of-the-art compiler
from Haskell to JavaScript, a novel foreign function interface to allow pro-
grams to leverage existing JavaScript code, an embedded language for
integrating low-level, high-performance kernels into otherwise high-level
web applications, and a highly expressive relational database language.

Keywords: web applications, distributed systems, functional programming,
domain-specific programming languages, tierless programming languages

thesis_display February 2, 2018 10:58 Page iv�
�	

�
�	 �
�	

�
�	

iv

thesis_display February 2, 2018 10:58 Page v �
�	

�
�	 �
�	

�
�	

v

This thesis is based on the work contained in the following papers:

I. A. Ekblad. 2018. Internals of the Haste Compiler.
Preprint. https://ekblad.cc/pubs/selda.pdf

II. A. Ekblad. 2015. Foreign Exchange at Low, Low Rates. Proceedings
of the 27th Symposium on the Implementation and Application of
Functional Programming Languages, 2, 2015. ACM.

III. A. Ekblad. and K. Claessen. 2014. A Seamless, Client-Centric Pro-
gramming Model for Type-Safe Web Applications. In Proceedings of
the 2014 ACM SIGPLAN International Symposium on Haskell. ACM.

IV. A. Ekblad. 2017. A Meta-EDSL for Distributed Web Applications. In
Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell. ACM.

V. A. Ekblad. 2016. High-Performance Web Applications through Haskell
EDSLs. In Proceedings of the 9th ACM SIGPLAN International Sym-
posium on Haskell. ACM.

VI. A. Ekblad. 2017. Scoping Monadic Relational Database Queries.
Preprint. https://ekblad.cc/pubs/selda.pdf

With the exception of Paper III, all work presented in this thesis was
conceived, carried out and documented solely by the author.

In the case of Paper III, the problem statement, plus revision work and
feedback on the paper itself, was provided by Koen Claessen, whereas the
design, implementation and evaluation of the programming model, as well
as the writing itself, was carried out by the author.

https://ekblad.cc/pubs/selda.pdf
https://ekblad.cc/pubs/selda.pdf

thesis_display February 2, 2018 10:58 Page vi�
�	

�
�	 �
�	

�
�	

Contents

Contents vi

Introduction 1
1 Introduction . 3

2 Contributions . 4

3 Background . 16

4 Bibliography . 22

Paper I: Internals of the Haste Compiler 27
1 Introduction . 29

2 Overview of the Haste Compiler 31

3 The runtime system . 33

4 Data representation . 38

5 From STG to JavaScript . 42

6 Optimising JavaScript . 50

7 Performance evaluation and discussion 55

8 Bibliography . 62

Paper II: Foreign Exchange at Low, Low Rates 67
1 Introduction . 69

2 An FFI for the modern web 73

3 Optimising for safety and performance 80

4 Extending our interface . 82

5 Performance . 90

6 Discussion . 93

7 Conclusions and future work 99

8 Acknowledgements . 100

9 Bibliography . 100

vi

thesis_display February 2, 2018 10:58 Page vii�
�	

�
�	 �
�	

�
�	

Contents vii

Paper III: A Seamless, Client-Centric Programming Model for Type-
Safe Web Applications 103
1 Introduction . 105

2 A seamless programming model 108

3 Implementation . 116

4 The Haste compiler . 121

5 Discussion and related work 125

6 Future work . 130

7 Conclusion . 131

8 Bibliography . 132

Paper IV: A Meta-EDSL for Distributed Web Applications 135
1 Introduction . 137

2 The Language . 140

3 Implementation . 151

4 Discussion and Related Work 157

5 Conclusions and Future Work 161

6 Bibliography . 162

Paper V: High-Performance Web Apps through Haskell EDSLs 165
1 Introduction . 167

2 Aplite: A High-Performance JavaScript EDSL 170

3 Interfacing with Haskell . 174

4 Code Generation . 180

5 Performance Evaluation . 187

6 Discussion and Related Work 192

7 Conclusions and Future Work 196

8 Bibliography . 198

Paper VI: Scoping Monadic Relational Database Queries 203
1 Introduction . 205

2 A basic query language . 207

3 Inner queries . 211

4 Discussion and related work 214

5 Conclusions and future work 216

6 Bibliography . 217

thesis_display February 2, 2018 10:58 Page viii�
�	

�
�	 �
�	

�
�	

thesis_display February 2, 2018 10:58 Page ix�
�	

�
�	 �
�	

�
�	

Contents ix

Acknowledgements

There are many, many extraordinary individuals who deserve to be credited
for their awesome contributions to these past five years of my life and, by
extension, to this thesis. It’s been a fantastic ride – if slightly bumpy at
times – mainly because I’ve had such a great team to share it with.

First and foremost, I’d like to thank my amazing supervisor Koen
Claessen. For your continuous support, for believing in me even when I
didn’t myself, for encouraging me to chase my ideas, for inspiring me to
embark on this journey in the first place, and – last but not least – for all
the fun discussions we’ve had.

To my awesome co-supervisors Emil Axelsson and Alejandro Russo;
thank you for your great support and advice!

To Dimitrios Vytiniotis, my supervisor during three intense months at
Microsoft Research; for your guidance, for the opportunity to be a part of
the Ziria project, and for your invaluable support when I needed it the most
– thank you!

To Christine Räisänen and Gerardo Schneider; without your timely
advice, this thesis would in all likelihood not exist. To all my colleagues;
thank you for making Chalmers such a fun and rewarding place to work. I
will miss you all!

To my life partner, Sofia Zaid, and to my other family and friends; your
support is the foundation upon which this thesis was built.

thesis_display February 2, 2018 10:58 Page x �
�	

�
�	 �
�	

�
�	

thesis_display February 2, 2018 10:58 Page 1 �
�	

�
�	 �
�	

�
�	

Introduction

Functional EDSLs for Web Applications

1

thesis_display February 2, 2018 10:58 Page 2 �
�	

�
�	 �
�	

�
�	

thesis_display February 2, 2018 10:58 Page 3 �
�	

�
�	 �
�	

�
�	

1 Introduction 3

This thesis explores the application of strongly typed functional pro-
gramming and embedded language techniques to the domain of distributed
web applications. By leveraging the existing ecosystem of the Haskell pro-
gramming language in the creation and popularisation of novel program-
ming models, we hope to improve the safety, ease of development and time
to market of modern, distributed web applications.

1 Introduction

In the production of this thesis, no less than three web applications were
used for feedback and communication, two for compiling the bibliography,
and another three for handling the paperwork. In fact, most of us make
extensive use of web applications to manage most aspects of our lives.

It is easy to see the appeal of a web application over a conventional
desktop application, both from a user and a developer perspective. For the
user, web applications don’t require installation, only requiring the user to
point their browser to an address and supply their credentials. Connectivity
is included by default, and the user’s data travels with them from device
to device. For the developer, being able to code against a (relatively)
homogeneous browser environment is vastly preferable to testing a wide
variety of hardware and operating system combinations. Any number of
platforms can be supported as long as each has a web browser, and per-user
accounts for an online service make it easy to prevent piracy and divide
the service into separate versions with different pricing models.

Anatomy of a web application A typical web application consists of
three tiers: frontend, backend and database. The exact division of tasks
between tiers varies considerably depending on the application’s problem
domain, requirements for latency or offline operation, and other factors. As
a rough guideline, however, the frontend mainly interfaces with the user,
the backend deals with authentication, communication and computation,
and the database deals with data storage and retrieval.

Traditionally, web applications have been built in a monolithic manner:
a single client program talking to a single server program over HTTP, using
some ad hoc API devised specifically for the application. More recently, a
design methodology known as microservices has gained popularity: breaking
the server monolith up into multiple small services according to the single
responsibility principle. The client may then communicate with any number
of these small services, and the services may of course also communicate
with each other [Namiot and Sneps-Sneppe, 2014].

thesis_display February 2, 2018 10:58 Page 4 �
�	

�
�	 �
�	

�
�	

4 Introduction

Common to both methodologies is that the client and the server(s) are
treated as independent applications who only happen to be talking to each
other. For better or for worse, this property means that web applications
are often less cohesive than their more conventional counterparts. That the
three tiers of a web application are commonly implemented using different
languages makes this divide even wider.

For applications completely or partially implemented using typed pro-
gramming languages in particular, this has far-reaching implications: while
client and servers may well be type-safe in isolation, the application as a
whole is not, as its constituent parts are all built and type-checked sepa-
rately from each other. Problems which can be seen as type mismatches,
which in theory could have been caught by a compiler with relative ease,
thus instead morph into runtime errors in the communication code.

Tierless web languages To remedy this situation and improve the type-
safety of web applications, a multitude of so-called tierless languages, such
as Opa [Rajchenbach-Teller, 2010], Ur [Chlipala, 2010], and Links [Cooper
et al., 2007], were devised. These languages allow developers to implement
a web application as a single program, using the same language for all
tiers and extending the guarantees provided by the type checker to the
whole application. While providing an interesting view of the problem and
possible solutions, tierless languages have so far not seen significant use by
developers. This is perhaps due to the fact that each language starts out
from a “clean slate”, with no community or ecosystem of their own.

Another, related, strain of research concerns itself with retargeting
existing languages towards tierless programming, either by extending the
core language or by using existing language features. Languages such as
Eliom [Radanne et al., 2016], Conductance [Fritze, 2014] and AFAX [Petricek
and Syme, 2007] take the first approach to OCaml, JavaScript and F#
respectively, while this thesis concerns itself with applying the second
approach, in a mainly Haskell context.

2 Contributions

This thesis describes a set of novel programming techniques for implement-
ing rich, distributed web applications:

• a JavaScript-targeting compilation scheme with accompanying com-
piler, which significantly outperforms the current state of the art;

thesis_display February 2, 2018 10:58 Page 5 �
�	

�
�	 �
�	

�
�	

2 Contributions 5

• a thorough analysis of common implementation techniques for web-
targeting compilers and their impact on the performance of the afore-
mentioned compilation scheme;

• the Haste.App programming model for type-safe, distributed web
applications;

• a method for implementing self-optimising, high-performance EDSLs
for web applications; and

• a solution to the long-standing problem of correctly scoping queries
in a monadic database language.

Each technique is accompanied by a proof-of-concept implementation,
which is available from the author’s website as free software.

Each contribution is described in detail in one chapter of this thesis,
with the exception of the Haste.App programming model which is covered
in two chapters. Each chapter corresponds to a paper, where papers II
through V have been published in the peer-reviewed proceedings of various
conferences, and papers I and VI are still undergoing preparation for
publication.

The remainder of this chapter gives a brief breakdown of each paper, as
well as a statement of contributions for each.

2.1 Foundations for Client-Side Haskell Web Applications

Paper I Paper I seeks to corroborate the hypothesis that lazy, functional
languages benefit substantially from relying heavily on complex function-
ality built into the target language, instead of using a straightforward
adaptation of a compilation scheme originally targeting a low-level instruc-
tion set, when compiled to another high-level language. Most interpreters
and JIT compilers for high-level languages contain extensive optimisations
for common code paths. Consequently, a related hypothesis of this paper
is that hitting said “hot paths” is an important factor in achieving good
performance from a compiler targeting such languages.

To this end, paper I develops a compilation scheme and runtime system
for a Haskell dialect targeting the JavaScript language rather than a more
traditional machine architecture. In the paper, we present a compilation
scheme from the STG [Peyton Jones, 1992] intermediate language of the
GHC Haskell compiler to JavaScript. In accordance with the aforementioned
assumptions, the compilation scheme performs a high-level translation of
the STG language into JavaScript. Matching higher-level data and control
structures in STG to higher-level structures in the target language, which are

thesis_display February 2, 2018 10:58 Page 6 �
�	

�
�	 �
�	

�
�	

6 Introduction

less general than the simple branches and jumps usually produced during
code generation, is used to convey higher-level assumptions and invariants
directly from the source program to the target language’s optimiser.

Unlike when compiling for a native target, and unlike the current
state of the art, we do not attempt a lower-level compilation more true
to the STG abstract machine. Instead, we rely on the interpreter of the
target language being able to recognise high-level code and apply its own
optimised translation of the target program. A particularly interesting
instance of this is explicitly avoiding generating tagless code from the STG
input, in spite of conventional wisdom, on the assumption that our target
language will be able to produce more efficient code from a single branch
on a tag than from a more general, considerably heavyweight, function call
into a thunk.

Through comparison with GHCJS, the current state of the art in web-
targeting compilers for lazy, functional languages, we demonstrate that our
compilation scheme produces code which not only runs significantly faster,
but is also up to an order of magnitude smaller, than code produced by
competing compilation schemes. We also perform a survey of relevant opti-
misation techniques and their impact on the performance of the generated
code.

Our work mitigates the problem of lazy, functional programs often
being both slow and large. While large code size and significant slowdowns
may be acceptable in native binaries, which often have an abundance of
processing power and disk space at their disposal, increasing the amount
of program code transferred by a large web application by a factor of 10

or even more can be prohibitively expensive. By adopting the compilation
scheme proposed in Paper I, implementors of lazy, functional languages
can significantly reduce costs to users adopting their languages for use in
client-side web applications. The rest of the thesis uses our compilation
scheme and the compiler implementing it as a building block for higher-
level programming techniques.

Our compilation scheme is implemented in the Haste compiler, which is
available as free software at https://haste-lang.org.

Paper I is a pre-print version of a paper being prepared for submission
to the Journal of Functional Programming (JFP), 2018. It is based on the
first chapter of the author’s licentiate thesis [Ekblad, 2015].

Paper II This paper details the design and implementation of a novel
foreign function interface for a functional language compiling down to
some higher-order language. Again, the particular languages used as the
source and target languages for our reference implementation are Haskell

https://haste-lang.org

thesis_display February 2, 2018 10:58 Page 7 �
�	

�
�	 �
�	

�
�	

2 Contributions 7

and JavaScript respectively.
In the spirit of the compilation scheme described in Paper I – exploit

your host environment as much as possible – this interface uses the target
language’s own lambda abstractions to represent foreign code. Unlike
traditional foreign function interfaces, this has the advantage of allowing
arbitrary code fragments, not just named functions, to be imported from
the target language into the guest language.

Also unlike traditional foreign function interfaces, our interface allows
automatic marshalling of arbitrary data, including higher-order functions,
between the host and guest languages. Marshalling of non-function data
employs a generic traversal, converting source language data structures to
structurally equivalent target language data structures, with the exception
of “primitive” types – integers, booleans, etc. – which are losslessly con-
verted between their source and target language primitive representations.
Function marshalling is slightly more complicated, dynamically allocat-
ing new function objects as needed to convert between source and target
language calling conventions.

These two key features taken together allows code written using a
foreign function interface based on our technique to be significantly more
readable, and to avoid a considerable amount of boilerplate. As an example,
consider the following code fragment to fetch the current time, written
using the standard Haskell foreign function interface:

1 data CTimeval = MkCTimeval CLong CLong

2

3 instance Storable CTimeval where

4 sizeOf _ = (sizeOf (undefined :: CLong)) * 2

5 alignment _ = alignment (undefined :: CLong)

6 peek p = do

7 s ← peekElemOff (castPtr p) 0

8 mus ← peekElemOff (castPtr p) 1

9 return (MkCTimeval s mus)

10 poke p (MkCTimeval s mus) = do

11 pokeElemOff (castPtr p) 0 s

12 pokeElemOff (castPtr p) 1 mus

13

14 foreign import stdcall unsafe "time.h gettimeofday"

15 gettimeofday :: Ptr CTimeval → Ptr () → IO CInt

16

17 getCTimeval :: IO CTimeval

18 getCTimeval = with (MkCTimeval 0 0) $ \ptval → do

19 throwErrnoIfMinus1_ "gettimeofday" $ do

20 gettimeofday ptval nullPtr

21 peek ptval

Not only is it plagued by considerable amounts of boilerplate code, but

thesis_display February 2, 2018 10:58 Page 8 �
�	

�
�	 �
�	

�
�	

8 Introduction

much of that code is low-level enough to be nigh incomprehensible without
detailed knowledge of the underlying API. The following code fragment
performs the same task, but is written using the reference implementation
of our interface:

1 data UTCTime = UTCTime {

2 secs :: Word,

3 usecs :: Word

4 } deriving Generic

5 instance FromAny UTCTime

6

7 getCurrentTime :: IO UTCTime

8 getCurrentTime =

9 host "() ⇒ {var ms = new Date().getTime();\

10 \return {secs: ms/1000,\

11 \ usecs: (ms % 1000)*1000};}"

Contrasting this code fragment with the previous one, we see that not
only is the code considerably shorter, but the level of abstraction has also
been raised significantly.

In the paper, we describe the design of the interface and give a reference
implementation, fully embedded in the source language: the target language’s
dynamic code evaluation facilities are exploited to pass code fragments
directly to the its interpreter at run-time, through the source language’s
built-in, low-level foreign function interface. This property provides sig-
nificant ease of improvement and experimentation over other approaches,
which are normally integrated tightly into the compiler itself. We also
demonstrate how the reliance on dynamic code evaluation can be avoided
through a minor compiler augmentation. Finally, we give examples to
demonstrate that our interface does indeed reduce boilerplate code by a
significant amount, and we show through a set of benchmarks, compared
against Haskell’s standard foreign function interface, that the performance
impact of using our interface is in most cases negligible despite its increased
expressiveness.

While most languages, Haskell included [Chakravarty, 2003], include
perfectly workable interfaces for integrating with other languages, most
such interfaces were devised with the intention of interacting with C; the
programming lingua franca. Consequently, said interfaces focus on a low-
level core API over bytes and pointers. While inconvenient, this detour via a
lowest common denominator is often a necessity to bridge the gap between
two communicating higher-level languages. However, when compiling to
a higher-level language, said higher-level language may instead be used
as the lowest common denominator. At this point, the low-level detour is
not only inconvenient, but even increases the compatibility gap between
higher-level languages. Our foreign function interface elegantly solves this

thesis_display February 2, 2018 10:58 Page 9 �
�	

�
�	 �
�	

�
�	

2 Contributions 9

problem while remaining reasonably performant.
This foreign function interface serves as the cornerstone for the reference

implementations of the findings presented in papers III through V. Con-
sequently, all implementations can be used with any JavaScript-targeting
Haskell compiler, after implementing this interface. As the interface’s only
compiler-specific components are the stubs for the compiler’s native foreign
function interface and a small piece of target-language JavaScript for mar-
shalling functions using the source language’s particular calling convention,
porting the interface to any such compiler is straightforward.

Paper II is based on a paper presented at the Symposium on the Imple-
mentation and Application of Functional Languages (IFL), 2015.

Impact The Haste compiler and its accompanying foreign function inter-
face have been used in several functional programming courses at Chalmers
University of Technology and one MSc. thesis [Sjösten, 2015]. A BSc. thesis
at Chalmers [Block et al., 2016] carried out a more systematic evaluation
of the Haste compiler and the Haste.App programming model described
in Paper III, in regards to usability and performance, with a generally
favourable outcome.

The Haste compiler has seen some use in industrial settings, and the
ideas underpinning the FFI described in Paper II have made their way into
industry on their own; for instance, the foreign function interface of the
Haskell embedding of the R language by Tweag I/O [Boespflug, 2015] is
explicitly based on Paper II.

The Haste compiler has also garnered some attention in open source
circles, so far totalling more than 16 000 downloads from the Hackage
package repository alone, with another conservatively estimated 10 000

binary and source code downloads from the project’s website and GitHub
source repository. Said repository is at the time of writing the 25th most
“starred” 1 out of the more than 60 000 Haskell projects on GitHub. Talks
about the compiler have been given by independent third parties at industry
conferences such as BayHac, CampJS and Strange Loop, in addition to an
invited talk by the author at the MLOC.JS web development conference
[Ekblad, 2014, Kuhtz, 2014, Miller, 2014, Swenson-Healey and Cooper,
2014].

2.2 Type-Safe, Distributed Web Applications

Paper III This paper presents a tierless programming model for imple-
menting rich, client-server web applications using only standard Haskell,

1A measure of popularity, akin to a Facebook “like”.

thesis_display February 2, 2018 10:58 Page 10�
�	

�
�	 �
�	

�
�	

10 Introduction

and the Haste.App library implementing it. Web applications, traditionally
implemented as two or more independent programs communicating using
some ad hoc communication protocol, are in this model written as a single
Haskell program. The client and server parts of the application are sepa-
rated by the type system, with client-side code residing in a Client monad
and server-side code in a corresponding Server monad. The computation is
driven by the client side, with the server lying dormant until a client makes
a remote procedure call to some function in the Server monad; the server
may not call back into the the client on its own volition. This restriction
helps keep the program flow clear and explicit.

A key component of this programming model is that programs are
compiled not once, but twice – once to produce a server binary, and once to
produce client-side JavaScript code. The supporting Haste.App library splits
the application in two parts, ensuring that code executing in the Client
monad ends up on the client, and that code executing in the Server monad
ends up on the server. A third monad is used as a staging area, where
server-side functions are “imported” onto the client, to provide the glue
between the client and the server. This code is executed on the client as well
as the server, but performs a slightly different task depending on where
it executes: on the client, it connects source-language identifiers to their
corresponding server-side RPC endpoints, whereas on the server, it builds
a lookup table to map client RPC calls to their server-side implementations.
Pure code – that is, effect-free code callable from any monad – is duplicated,
and ends up on both client and server.

This automatic splitting is achieved by compile-time introspection.
When the library detects that the program is being compiled for the client,
it filters out any server-side code, replacing all calls to such functions with
stubs taking care of the network communication and synchronisation nec-
essary to make a remote call. Similarly, when the library detects that the
program is being compiled for the server, all client-side code is filtered out
and the program’s entry point is replaced by an event loop, dispatching
server-side functions to fulfil remote calls as they come in from clients.

As previously mentioned, there exists a wealth of previous work on
tierless web applications. What sets our programming model apart is its re-
liance only on existing tools for the Haskell language: it can be implemented
entirely as a library, without the need for new languages or compiler modi-
fications. In addition to lending itself well to agile experimentation, this has
the benefit of letting it ride on the coattails of the Haskell community and
infrastructure, as developers can combine it with their favourite Haskell
tools, libraries and idioms right out of the box. A key insight in enabling
this is the use of multiple compilers to produce different binaries from

thesis_display February 2, 2018 10:58 Page 11�
�	

�
�	 �
�	

�
�	

2 Contributions 11

a single program, with the supporting Haste.App library controlling the
placement of code fragments.

Paper III is based on a paper presented at the Haskell Symposium, 2014,
coauthored with Koen Claessen.

Paper IV While the programming model presented in paper III works
well for single-server applications, its model of a web application is overly
simplistic. Commonly, an application does not consist of a client and a
single server, but of a client and multiple servers, which are often heteroge-
neous in nature. Computational resources, databases, ad servers, etc. are
all common occurrences in present-day web applications.

In paper IV, we generalise the results from paper III to cover an arbitrary
number of interconnected servers. We keep the basic premise of using
two compilers to produce client and server executables, but generalise it to
allow any number of different binaries to be produced by any number of
compatible compilers. We also keep the idea of determining code placement
based on the type of an expression, but again generalise this concept from
two designated client and server monads to any number of different nodes.
Communication between nodes is still handled like “normal”, type-safe,
monadic function calls, with the underlying network code being generated
by the supporting library.

We also lift the requirement that nodes must be monadic, allowing, for
instance, applicative and arrow nodes. This is partially to better support
exotically typed nodes – nodes on which calculations are performed in
another type universe than on the calling client. Tight integration with
exotically typed nodes reduces the amount of boilerplate code required
to directly connect nodes written in some embedded, domain-specific
language to the network, as even EDSLs with very different programming
models – SQL queries or GPU kernels, for instance – can be called by
clients without having to deal with type conversions or the details of how
to compile, load and execute the embedded programs.

Nodes are connected in a directed graph, where the client node – the
one executing in the user’s browser – is transitively connected to all other
nodes. The client still drives the computation, but server nodes may now
themselves be clients of other server nodes as well. A node is connected to
the network by instantiating a type class, describing how it may be reached
by other nodes, which other nodes may communicate with it, how its type
universe maps to that of any calling client, and whether the node needs
any particular initialisation. For nodes which are not exotically typed, most
of these properties are optional, defaulting to values appropriate for most
nodes written in “normal” Haskell.

thesis_display February 2, 2018 10:58 Page 12�
�	

�
�	 �
�	

�
�	

12 Introduction

We further generalise the concept of nodes to cover virtual servers as
well, and demonstrate how this lets us model fine-grained sandboxing
of untrusted JavaScript code as simple RPC calls. Web applications of-
ten load third party code from external sources at runtime, which makes
them vulnerable not only to being compromised themselves, but to secu-
rity breaches on any network or remote host from which code is loaded.
Our sandboxes-as-servers method exploits browsers’ built-in sandboxing
mechanisms, which are normally too coarse-grained and cumbersome to
see widespread use, to implement convenient, fine-grained sandboxing.

These generalisations sets Haste.App further apart from other tierless
web programming models, which generally only support a fixed set of
nodes under a fixed set of programming paradigms.

Paper IV is based on a paper presented at the Haskell Symposium, 2017.

Impact Like the Haste compiler, a systematic evaluation of the initial
Haste.App programming model, described in paper III, was carried out at
Chalmers University of Technology, with favourable results both regard-
ing performance and usability. While industry interests have been rather
more reluctant to embrace Haste.App than the Haste compiler, it has been
used with positive results to implement research and teaching software at
Chalmers as well as at other institutions [Kahl, 2016].

2.3 Domain-Specific Problem Solving through EDSLs

Paper V This paper describes a method for integrating high-performance,
low-level computational kernels into Haskell web applications, and an
accompanying proof of concept EDSL.

While concise, high-level and readable code is often preferable to highly
performant code for most applications – developer time being significantly
more expensive than processing time – some applications may benefit from
having both. For instance, online games, signal processing and crypto-
graphic applications may all have performance-critical bottlenecks where
the performance penalty imposed by higher-level languages is unaccept-
able, while large parts of the application – such as user interfaces and data
storage – may not be very performance sensitive at all. In a traditional set-
ting, such situations are often resolved by writing the performance-critical
parts of an application from C and integrating them into the higher-level
application using some foreign function interface, but in a web application
there is no such recourse.

Paper V provides a solution to this problem, in the form of the Aplite
low-level EDSL geared towards computationally heavy tasks. We build
on the results from the DSP-targeting Feldspar language [Axelsson et al.,

thesis_display February 2, 2018 10:58 Page 13�
�	

�
�	 �
�	

�
�	

2 Contributions 13

2010], but adapt the methods to a web context, exploring a multi-backend
compilation scheme targeting both ASM.js – a subset of JavaScript designed
to be highly optimisable – and plain but efficient JavaScript.

We demonstrate a method to seamlessly integrate Aplite kernels into
the Haskell host program, making them indistinguishable from “normal”
Haskell functions, even though Aplite kernels have a completely different
type universe from its Haskell host. Kernels with host-observable side-
effects can be imported as plain Haskell functions in the IO monad, whereas
kernels with only local side-effects may be imported either as pure or
monadic functions, depending on which type best suits the programmer.
This is accomplished by leveraging the dynamic code loading capabilities of
the foreign function interface described in paper II and judicious application
of type-level functions. Being first-class objects, Aplite programs represent
an application of multi-stage programming, allowing the host program to
specialise Aplite programs to its runtime environment as well as user input
and other parameters.

Recognising that different applications may have wildly different perfor-
mance characteristics depending on the combination of backend, browser
environment and user input they are presented with, Aplite supports re-
compiling existing kernels with different parameters. More interestingly,
we demonstrate a method whereby a kernel is automatically profiled with
a series of different compilation parameters, and the most efficient imple-
mentation selected by any subsequent calls to the kernel.

We thoroughly benchmark our reference implementation against web-
targeting Haskell code as well as hand-rolled JavaScript, and demonstrate
that our language outperforms both on all investigated benchmarks. In
particular, we demonstrate that backend selection must be informed by
both the performance characteristics of the kernel in question and the
current browser environment, giving solid evidence for the efficacy of our
multi-backend compilation scheme and profile-guided backend selection.

Paper V is based on a paper presented at the Haskell Symposium, 2016.

Paper VI This paper presents a simple but effective solution to the long-
standing problem of ensuring the well-scopedness of a monadic formulation
of relational database queries, together with a simplified version of Selda,
the first relational database EDSL to support both a well-scoped monadic
interface and fully general2 inner queries.

While there exists an ample body of previous work in EDSLs for inte-
grating with relational databases, so far none has managed to ensure that
queries are well-scoped in the presence of fully general inner queries, while

2As opposed to static SELECT statements over fixed tables.

thesis_display February 2, 2018 10:58 Page 14�
�	

�
�	 �
�	

�
�	

14 Introduction

maintaining a monadic interface. Monadic interfaces are useful for Haskell
EDSLs, as they provide a familiar and well understood interface to user and
developer alike, with good support from standard and third-party libraries.

Consider the following monadic pseudocode query, intended to asso-
ciate each person with their home city, but only if said city is located in
Sweden.

1 addresses = do

2 (name :*: addr) ← select persons

3 city ← leftJoin (\city → addr .== city) $ do

4 (city :*: country) ← select cities

5 restrict (country .== "Sweden")

6 return city

7 return (name :*: city)

A straightforward translation into SQL presents us with the following
query.

1 SELECT personName, cityName

2 FROM persons

3 LEFT JOIN (

4 SELECT cityName

5 FROM cities

6 WHERE cities.country = "Sweden"

7)

8 ON persons.address = cityName

While this query is not problematic per se, the fact that the name and
addr identifiers are in scope inside the body of the left join is a cause for
concern. In fact, this enables the creation of decidedly nonsensical queries,
as in the following modification of the above example.

1 illScopedAddresses = do

2 (name :*: addr) ← select persons

3 city ← leftJoin (\city → addr .== city) $ do

4 (city :*: country) ← select cities

5 restrict (country .== "Sweden")

6 restrict (city .== addr)

7 return city

8 return (name :*: city)

Here, the body of the join refers directly to the addr identifier, even
though no table referenced by the inner query has any such field; the query
is ill-scoped. Clearly, any type-safe relational database EDSL must disallow
such nonsensical queries.

This paper presents a simple way to ensure the well-scopedness of
inner queries based on type-level functions over phantom types. Like the
standard Haskell ST monad [Launchbury and Peyton Jones, 1994], Selda
solves the problem by parameterising its query monad over a phantom

thesis_display February 2, 2018 10:58 Page 15�
�	

�
�	 �
�	

�
�	

2 Contributions 15

type denoting its scope. Expressions in the monad are then also augmented
with a scope parameter, ensuring that computations can only operate on
expressions within its own scope.

Unlike the ST monad, which only allows pure values to be returned
from stateful computations, inner queries in a database EDSL must be able
to return EDSL expressions to the outside world. As this is not possible
using the method employed by the ST monad, its type parameter being
existentially quantified, we instead view the scope parameter as a scope
counter. The outermost query has a scope equivalent to zero, and each
nesting of an inner query increments the scope counter by one. Expressions
returned from an inner query have their scope counter decremented by
one, to allow the outer query to operate on them, but crucially, expressions
are not able to migrate inward, solving the scoping problem introduced
previously.

We also discuss the similarities and differences between general inner
queries and inner aggregate queries, show how a similar problem arises
when compiling aggregated queries to SQL, and demonstrate how the scope
counter solution may be applied to the aggregate compilation problem.
Finally, we present a simplified version of the Selda API, demonstrating
how the scope counter solution can be incorporated in the language to
provide a simple, monadic interface that supports fully general inner queries
while ensuring their well-scopedness.

Paper VI is based on a paper presented at the Symposium on Trends in
Functional Programming, 2017, and being prepared for submission to the
2018 Haskell Symposium.

Impact While not as popular as the Haste compiler, the Selda library
has in its nine months of existence become the fourth most downloaded
database EDSL on the Hackage package repository, as well as one of the
200 most popular Haskell repositories on GitHub out of more than 60 000.
As paper VI is as yet unpublished academic interest has been scarce, but
the community surrounding the library includes several industrial users.

Aplite, on the other hand, has so far not garnered any significant
industrial or open source interest. With the rapid advance of WebAssembly
[Eich, 2015] rendering ASM.js largely obsolete, this is not expected to change
without significant retargeting and repackaging efforts.

thesis_display February 2, 2018 10:58 Page 16�
�	

�
�	 �
�	

�
�	

16 Introduction

3 Background

3.1 Functional Programming

Functional programming is a discipline of software development which
views programs as functions from inputs to outputs, built from smaller
functions which are in turn built from even smaller functions, and so on.
Unlike the more familiar functions encountered in high school, a functional
program does not restrict itself to operations over, say, real numbers. Mouse
movements, real-time audio streams and even other programs are all exam-
ples of possible inputs, while outputs may include the sending of messages
over a network, pixels displayed on a screen, or haptic feedback through a
game controller.

Functional programs are declarative: the programmer describes the
relations between the application’s states, focusing on what the application
is supposed to be doing. In contrast, imperative programs consist mainly
of code describing how the program is intended to achieve its goal.

Higher-order functions The functional in functional programming is per-
haps most apparent in its treatment of functions as first-class objects: just
like integers or floating point numbers, functions are just another type of
data to be created, passed around and bound to identifiers – or not, as
the programmer chooses. This enables powerful forms of decoupling and
abstraction, where functions may leave “holes” of undefined behaviour, to
be filled in by its caller.

For instance, consider the following implementation of the merge func-
tion, which merges two lists which are sorted in ascending order, into a
single list which is also sorted in ascending order:

1 merge :: Ord a ⇒ [a] → [a] → [a]

2 merge (x:xs) (y:ys) =

3 if x < y then x:merge xs (y:ys)

4 else y:merge (x:xs) ys

5 merge _ [] ys = ys

6 merge _ xs [] = xs

While this function is certainly useful, perhaps to display two separate,
ordered data sources to a user as a single table, it is not very flexible: what if
we sometimes need to merge two lists sorted in descending order? We could,
of course, implement two functions – mergeAscending and mergeDescending –
but by the DRY3 principle [Hunt and Thomas, 2000], we really shouldn’t.

A better solution would be to parameterise the function’s behaviour
over the way in which we want to sort the elements:

3Don’t Repeat Yourself

thesis_display February 2, 2018 10:58 Page 17�
�	

�
�	 �
�	

�
�	

3 Background 17

1 merge2 :: Ord a ⇒ Bool → [a] → [a] → [a]

2 merge2 ascending (x:xs) (y:ys) =

3 if ascending

4 then if x < y then x:merge2 ascending xs (y:ys)

5 else y:merge2 ascending (x:xs) ys

6 else if x > y then x:merge2 ascending xs (y:ys)

7 else y:merge2 ascending (x:xs) ys

8 ...

While this solution certainly contains less repetition than writing two
separate functions, it is still not ideal. We don’t entirely get rid of repetition
and, most importantly, we can only support merging behaviours that the original
implementer of merge2 could foresee! This is a real problem when working
with data that does not necessarily have a single, canonical total ordering
but which we still may want to sort somehow: tuples of numbers sorted by
some mathematical property, or cartoon ponies sorted by their suitability
for some given task, for instance.

Instead, in a functional program we would parameterise the merge
function, not over a flag to choose one of several hard-coded comparison
behaviours, but over a function describing the comparison itself :

1 mergeBy :: Ord a ⇒ (a → a → Bool) → [a] → [a] → [a]

2 mergeBy goesBefore (x:xs) (y:ys) =

3 if x ‘goesBefore‘ y then x:mergeBy goesBefore xs (y:ys)

4 else y:mergeBy goesBefore (x:xs) ys

5 ...

By simply leaving the choice of the comparison function up to the caller,
we gain several important advantages: we no longer need to implement
different behaviours depending on some user-supplied flag, we get rid of
the repetition inherent in doing so, and – most importantly – we separate
the task of merging two lists from the task of comparing two elements.

Functions that accept other functions as inputs are known as higher-
order functions, and are the bread and butter of functional programming,
providing programmers with a natural means to modularise their programs,
with any desired level of granularity.

Function composition The treatment of functions as first-class objects
enables us to write higher-order functions to compose functions in various,
often highly generic, ways. As a example, Haskell provides a standard
function composition operator to compose two functions f and g by creating
a new function which first applies g to its argument x, and then applies f

to the result of g:

thesis_display February 2, 2018 10:58 Page 18�
�	

�
�	 �
�	

�
�	

18 Introduction

1 (.) :: (b → c) → (a → b) → (a → c)

2 f . g = \x → f (g x)

Almost trivial in its definition, standard function composition is surpris-
ingly useful, allowing many complex functions to be expressed as a pipeline
of smaller, less complex, functions.

As an example, consider the following function:

1 toSet :: (Ord a, Eq a) ⇒ [a] → [a]

2 toSet = map head . group . sort

This function performs the nontrivial task of turning an unsorted list of
possibly duplicate elements, into an ordered set: a list which is sorted and
guaranteed to contain no duplicate elements. Instead of tackling the whole
task at once, we construct the solution as a pipeline: first we sort the input
list, then we group all adjacent elements that are equal to each other into
sub-lists, and finally we extract the head – or first element – of each such
sublist.

Compared to a more monolithic solution, it is easy to convince oneself
that this function is correct: if two or more elements are equal, then they
must all be adjacent to one another after sorting; if two or more equal
elements are adjacent to each other, they must all end up in the same sub-
list after grouping; ergo, extracting the first element of each such sublist
trivially gives us a single representative for each group of equal elements.

Note how this manner of programming plays into the aforementioned
theme of modularity: the toSet function is a simple composition of pre-
built, generic functions, with no conditionals or logic of its own save for
the choice of functions used in its implementation and the order in which
they are composed. This is a great boon to modularity and code reusability,
which in turn brings substantial benefits for programmer productivity
[Hughes, 1989].

Higher-order functions as OOP design patterns Readers familiar with
object-oriented design patterns [Gamma et al., 1993] may notice certain
similarities between higher-order functions, function composition, and sev-
eral design patterns: the command, visitor, observer, strategy and dependency
injection patterns directly correspond to different specialised uses of higher-
order functions, while patterns such as bridge, facade, adapter, builder and
proxy can be easily implemented using function composition.

Pure functional programming While functional programming in general
can be beneficial to programmers, the Haskell programming language used

thesis_display February 2, 2018 10:58 Page 19�
�	

�
�	 �
�	

�
�	

3 Background 19

throughout this thesis takes the functional programming paradigm one
step further, in its adoption of pure functional programming.

In a purely functional programming language, all functions are functions
in the mathematical sense: the output of a function depends solely on its
inputs. That is to say, a function may not give a different result depending
on the number of times it has been called, the current date, or any other
information that may vary depending on the program’s circumstances. A
pure function must also not perform any effects – changing the state of the
program or its environment – aside from computing its value. Consequently,
data in a purely functional program is immutable.

Immutability brings a host of benefits for programmers: it is easier to
reason about programs without ever-changing program state, and bugs are
easier to prevent, diagnose and rectify in a program with fewer “moving
parts”. The advantages of immutability are widely recognised, and its
application is recommended even for languages with relatively poor built-
in support for enforcing immutability [Bloch, 2008].

Above all, pure computations are highly composable, as they do not
make any assumptions about the context from which they are called, only
relying on their inputs. This makes the dependencies of program units
explicit, reducing the cognitive burden on the programmer when assessing
whether a particular modification will affect another part of the program.
This property is particularly important for web applications, which are
mainly event-driven and continuation based, making their flow of execution
impossible to predict.

Enforcing purity through types While immutability by convention is
indeed an important step up from a programming style based on gratuitous
mutation, it still leaves many things to be desired. It is not always trivial
to convince oneself that a piece of code written in, say, C# or JavaScript is
indeed pure: as purity is not tracked across compilation units – or even
classes or methods – mutation may hide in the murkiest code depths, many
layers of indirection removed from the call sites where we would like to
verify its immutability. The allure of sacrificing compositionality by turning
to mutation as a quick and dirty fix, with only programmer discipline to
keep it in check, only serves to exacerbate this problem.

To fully reap the benefits of purity, Haskell encodes the effects a function
may perform in its type, encapsulating computations with side effects in a
type of their own called IO. If an integer has the type Int, then a computation
that produces an integer has the type IO Int; and if a function which accepts
a string as its input and returns an integer has the type String -> Int, then
a function from strings to integers which also may perform some effect

thesis_display February 2, 2018 10:58 Page 20�
�	

�
�	 �
�	

�
�	

20 Introduction

has the type String -> IO Int. This ensures that purity is tracked and
enforced throughout programs: if we have a function plusOne :: Int ->

Int, applying it to a computation of type IO Int rather than a plain Int will
cause a type error during compilation.

At first glance, this would seem to preclude the use of pure functions
to manipulate user input, as it is plainly impossible for a function which
reads user input – thereby depending on the state of the world – to be
pure. Fortunately, the IO type is an example of a monad [Wadler, 1995]: an
abstraction which allows values contained in another type to be manip-
ulated by pure functions, the resulting new value safely re-encapsulated
within the containing type again. Thus, in a Haskell program, impure code
may depend on pure functions, but pure code may not depend on impure
functions.

3.2 Embedded Domain-Specific Languages

Embedded, domain-specific languages, or EDSLs, are a software design
pattern in which different problem domains of an application are addressed
using different programming styles, effectively creating a set of task-specific
sub-languages inside the general-purpose host language. It is related to
the object-oriented interpreter, or little languages design pattern, where an
application outsources some problem domain to an external domain-specific
language, which the main application then interprets [Bentley, 1986].

The main difference between the two design patterns lies in the embedded
part: where an external domain-specific language has the freedom to
implement any conceivable language, an EDSL instead piggy-backs on the
capabilities of the host language. While an EDSL does not enjoy the same
degree of freedom as its non-embedded kin, it also does not incur the same
implementation and usage overheads. At the cost of being bound by the
host language’s restrictions, the EDSL gains the use of the host language’s
parser, type system, runtime system, tooling, and so on.

EDSLs have a strong tradition in the functional programming commu-
nity [Hudak, 1996], but has also seen significant adoption in other, more
mainstream, communities, with high-profile projects such as Tensorflow
[Abadi et al., 2016] and RSpec [Chelimsky et al., 2010] being built largely
on this idiom, in Python and Ruby respectively.

It can sometimes be hard to make the distinction between an EDSL
and a particularly focused library. Ultimately, this is often a matter of
branding, and the level of cohesion between the components making up
the EDSL/library. In this thesis, we take the view that an EDSL is a library
where the components are intended to be used almost exclusively together
in a cohesive manner to solve problems in some particular domain, as

thesis_display February 2, 2018 10:58 Page 21�
�	

�
�	 �
�	

�
�	

3 Background 21

opposed to being thinly sprinkled across a code base largely consisting of
“other” host language code.

EDSLs and types While the EDSL design pattern can be powerful in any
language, the dynamic type system and reliance on convention offered
by common implementation languages such as Ruby and Python can
sometimes, perhaps counter-intuitively, restrict the applicability of EDSLs.

As a motivating example, let us look at the Haskell STM EDSL, which
allows the programmer to implement communication in a concurrent pro-
gram as a set of transactions over shared mutable variables. STM works
on the principle that, just like with relational database transactions, most
concurrent data accesses do not interfere with each other, and the overhead
of locking shared data is thus often unnecessary. Additionally, handling
multiple locks at once is a subtle and error-prone business, and is best
avoided whenever possible.

Instead, STM programs are separated into transactions, where each
transaction reads and writes shared references with impunity, only com-
mitting the result of all writes at the end of the transaction. If any shared
reference accessed by the transaction was modified at some point during
the transaction, the result is not committed but the whole computation is
instead retried until it succeeds.

It is easy to see that this programming model places some heavy restric-
tions on the programmer: any code placed within a transaction must be
free from effects, as the transaction may be retried any number of times
before finally being committed. If any piece of the transaction causes, say,
an intercontinental missile to be launched, high contention over shared
resources may cause us to retry the transaction a significant number of
times, thereby exhausting our stockpile of missiles even though we only
intended to fire one!

It is equally easy to see that this EDSL would be depressingly unsafe if
implemented in a language where purity is not enforced by the compiler.
As pointed out in Sect. 3.1, manually ensuring that any piece of code is
indeed pure is a non-trivial task – one that we may want to avoid altogether
if the correctness of our application depends on it.

In Haskell, by contrast, this property can be almost trivially guaranteed
by leveraging the type system. The monad concept used to model effectful
computations in Haskell, turns out to be a flexible, general abstraction for
implementing EDSLs, providing a greater level of cohesion and isolating
EDSLs from each other as well as from impure host language code [Hudak,
1996]. The STM EDSL uses this to great effect by giving all transactions the
type STM a, where a can be any type. By not including an operation in the

thesis_display February 2, 2018 10:58 Page 22�
�	

�
�	 �
�	

�
�	

22 Introduction

language to turn an IO computation into an STM computation, the risk of
effectful computations being executed more than once due to transaction
retries is completely eliminated.

The power of Haskell’s type system allows us to restrict the behaviours
of embedded programs even further, for instance by disallowing pure
computations over types not well suited to the problem domain [Axelsson
et al., 2010, Bracker and Gill, 2014, Svenningsson and Svensson, 2013] or by
enforcing custom scoping rules [Launchbury and Peyton Jones, 1994].

In essence, when it comes to EDSLs, it is sometimes the case that “less is
more”, and that by restricting embedded languages to their target problem
domain – and that domain only – we open up additional opportunities for
safe and efficient problem solving.

4 Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda. Feldspar: A
domain specific language for digital signal processing algorithms. In For-
mal Methods and Models for Codesign (MEMOCODE), 2010 8th IEEE/ACM
International Conference on, pages 169–178. IEEE, 2010.

J. Bentley. Programming pearls: little languages. Communications of the
ACM, 29(8):711–721, 1986.

J. Bloch. Effective Java. Addison-Wesley, 2008.

B. Block, J. Gustafsson, M. Milakovic, M. Nilsen, and A. Samuelsson. Eval-
uating Haste.App: Haskell in a web setting. Effects of using a seamless,
linear, client-centric programming model, 2016.

M. Boespflug. Haskellr. https://tweag.github.io/HaskellR/, 2015.

J. Bracker and A. Gill. Sunroof: A monadic DSL for generating JavaScript.
In M. Flatt and H.-F. Guo, editors, Practical Aspects of Declarative Languages,
volume 8324 of Lecture Notes in Computer Science, pages 65–80. Springer
International Publishing, 2014. doi: 10.1007/978-3-319-04132-2_5.

M. M. Chakravarty. The Haskell Foreign Function Interface 1.0: An Addendum
to the Haskell 98 Report. 2003.

https://tweag.github.io/HaskellR/

thesis_display February 2, 2018 10:58 Page 23�
�	

�
�	 �
�	

�
�	

4 B ibliography 23

D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis, and A. Hellesoy.
The RSpec Book: Behaviour Driven Development with RSpec. Cucumber,
and Friends, Pragmatic Bookshelf, 2010.

A. Chlipala. Ur: Statically-typed metaprogramming with type-level record
computation. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10, pages 122–
133, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3. doi:
10.1145/1806596.1806612.

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming
without tiers. In F. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever,
editors, Formal Methods for Components and Objects, volume 4709 of Lecture
Notes in Computer Science, pages 266–296. Springer Berlin Heidelberg,
2007. ISBN 978-3-540-74791-8. doi: 10.1007/978-3-540-74792-5_12.

B. Eich. From ASM.js to WebAssembly. https://brendaneich.com/2015/06/
from-asm-js-to-webassembly/, 2015.

A. Ekblad. Hastily paving the way for diversity. http://www.ustream.tv/
recorded/43804744, 2014.

A. Ekblad. A distributed haskell for the modern web. 2015. Also available
from https://ekblad.cc/pubs/haste-licentiate.pdf.

A. Fritze. The Conductance application server. http://conductance.io, 2014.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. In European Conference on
Object-Oriented Programming, pages 406–431. Springer, 1993.

P. Hudak. Building domain-specific embedded languages. ACM Computing
Surveys (CSUR), 28(4es):196, 1996.

J. Hughes. Why functional programming matters. The computer journal, 32

(2):98–107, 1989.

A. Hunt and D. Thomas. The pragmatic programmer: from journeyman to
master. Addison-Wesley Professional, 2000.

W. Kahl. CalcCheck: A Proof-Checker for Gries and Schneider’s "Logical
Approach to Discrete Math". http://calccheck.mcmaster.ca/, 2016.

L. Kuhtz. Haste: Front end web development with haskell. https://www.
youtube.com/watch?v=Arot_cDmQHI#t=220, 2014.

https://brendaneich.com/2015/06/from-asm-js-to-webassembly/
https://brendaneich.com/2015/06/from-asm-js-to-webassembly/
http://www.ustream.tv/recorded/43804744
http://www.ustream.tv/recorded/43804744
https://ekblad.cc/pubs/haste-licentiate.pdf
http://conductance.io
http://calccheck.mcmaster.ca/
https://www.youtube.com/watch?v=Arot_cDmQHI#t=220
https://www.youtube.com/watch?v=Arot_cDmQHI#t=220

thesis_display February 2, 2018 10:58 Page 24�
�	

�
�	 �
�	

�
�	

24 Introduction

J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. In
Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, PLDI ’94, pages 24–35, New York, NY, USA,
1994. ACM. ISBN 0-89791-662-X. doi: 10.1145/178243.178246.

K. Miller. Make haste: Fast track fo functional thinking. https://www.
youtube.com/watch?v=o3JMxnnTZ64, 2014.

D. Namiot and M. Sneps-Sneppe. On micro-services architecture. Interna-
tional Journal of Open Information Technologies, 2(9):24–27, 2014.

T. Petricek and D. Syme. AFAX: Rich client/server web applications in F#.
2007.

S. Peyton Jones. Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine. Journal of Functional Programming, 2:
127–202, 1992. ISSN 1469-7653. doi: 10.1017/S0956796800000319.

G. Radanne, J. Vouillon, and V. Balat. Eliom: A core ML language for
tierless web programming. In Asian Symposium on Programming Languages
and Systems, pages 377–397. Springer, 2016.

D. Rajchenbach-Teller. Opa: Language support for a sane, safe and secure
web. Proceedings of the OWASP AppSec Research, 2010.

A. Sjösten. SWAP-IFC: Secure Web Applications with Information Flow
Control. 2015.

J. D. Svenningsson and B. J. Svensson. Simple and compositional reification
of monadic embedded languages. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’13, pages 299–
304, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi:
10.1145/2500365.2500611.

E. Swenson-Healey and J. Cooper. Haste: Full-stack haskell for non-phd
candidates. https://www.youtube.com/watch?v=3v03NFcyvzc, 2014.

P. Wadler. Monads for functional programming. In International School on
Advanced Functional Programming, pages 24–52. Springer, 1995.

https://www.youtube.com/watch?v=o3JMxnnTZ64
https://www.youtube.com/watch?v=o3JMxnnTZ64
https://www.youtube.com/watch?v=3v03NFcyvzc

