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1 Introduction

Gravity with maximal supersymmetry in four dimensions, N = 8 supergravity, exhibits

both N = 8 supersymmetry and the exceptional E7(7) symmetry [1]. This theory is known

to be better behaved in the ultraviolet than pure gravity and has recently been shown

to be finite up to four loops [2]. There is mounting evidence from these calculations

and others that points to unexpected cancellations and hence an underlying enhanced

symmetry. Using light-cone superspace, the Hamiltonian of maximal supergravity, in d = 4,

is constructed as a power series in the coupling constant and this has been achieved up

to the four-point coupling. In an earlier paper [3], we showed that “oxidation” [4] of the

N = 8 theory to d = 11, suggests that there is an E7(7) symmetry in eleven dimensions.

This result has been shown to first order in the coupling constant. Since the the states of

the d = 11 theory are not representations of the linearly realized maximal subgroup SU(8)
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of the E7(7) symmetry they have to be broken up into such representations to see the

symmetry. This is accomplished by using the same superfield in all dimensions (note that

the number of states is always 128 bosons + 128 fermions.) By writing the Hamiltonian

in this formulation we can prove the symmetry to the lowest order in the gravitational

coupling constant.

Motivated by this, we describe in this paper an entire process involving dimensional

reduction, field redefinitions and dimensional oxidation that leads us to conclude that

N = 8 supergravity in d = 4 exhibits an exceptional E8(8) symmetry, at least to second

order in the coupling constant, enhanced from E7(7).

In section 2, we review the formulation of (N = 8, d = 4) supergravity in light-

cone superspace. We dimensionally reduce this d = 4 theory in a straightforward way to

arrive at an action, in three dimensions, which mimics the four-dimensional one but with

only one transverse derivative. This formulation thus inherits a three-point coupling and

cannot exhibit the maximal subgroup of E8(8), SO(16), in a linear fashion since under this

symmetry, the states of the theory transform as 128-dimensional spinors. Three such states

cannot form a scalar. In the following section, we present a field redefinition that maps this

three-dimensional theory, with a cubic vertex to a three-dimensional theory without one.

This form of the three-dimensional theory exhibits both SO(16) invariance and a full E8(8)

symmetry [5]. We can then go back to the first formulation and indeed find the SO(16)

symmetry there, now realized non-linearly. We then “oxidize” the second formulation back

to four dimensions in a manner that preserves all the symmetries discussed earlier, thus

arriving at a four-dimensional maximally supersymmetric theory with E8(8) invariance to

that order.

Our formulation uses only the real degrees of freedom of the theory. This means that we

lose a lot of the covariance usually found in gravity theories, since many of the symmetries

are non-linearly realized. In a sense the formulation is packed with symmetries, some of

which are difficult to see. By making various field redefinitions we can make particular

symmetries visible but one formulation will never be enough to find all the symmetries.

We strongly believe that maximal supergravity and Yang-Mills theories have as many

symmetries as one can pack into one theory, and this is why they have unique quantum

properties.

2 (N = 8, d = 4) supergravity in light-cone superspace

With the metric (−,+,+,+), the light-cone coordinates are

x± =
1√
2
(x0±x3 ) x =

1√
2
(x1 + i x2 ) x̄ = (x)∗ , (2.1)

with the corresponding derivatives being ∂∓, ∂̄ and ∂. The N = 8 superspace is spanned

by the Grassmann variables θm and θ̄m (m = 1 . . . 8 ), the 8 and 8̄ of SU(8) respectively.
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All 256 physical degrees of freedom in the theory are captured by the superfield [6]

φ ( y ) =
1

∂+2 h (y) + i θm
1

∂+2 ψ̄m (y) +
i

2
θm θn

1

∂+
Āmn (y) ,

− 1

3!
θm θn θp

1

∂+
χ̄mnp (y) − 1

4!
θm θn θp θq C̄mnpq (y) ,

+
i

5!
θm θn θp θq θr ǫmnpqrstu χ

stu (y) ,

+
i

6!
θm θn θp θq θr θs ǫmnpqrstu ∂

+Atu (y) ,

+
1

7!
θm θn θp θq θr θs θt ǫmnpqrstu ∂

+ ψu (y) ,

+
4

8!
θm θn θp θq θr θs θt θu ǫmnpqrstu ∂

+2
h̄ (y) , (2.2)

where h and h̄ represent the graviton, ψ̄m the 8 spin-32 gravitinos, Āmn the 28 gauge fields,

χ̄mnp the 56 gauginos and C̄mnpq the 70 real scalars. These fields are local in the coordinates

y =

(
x, x̄, x+, y− ≡ x− − i√

2
θm θ̄m

)
. (2.3)

The superfield φ and its complex conjugate φ̄ satisfy

dm φ ( y ) = 0 ; d̄n φ̄ ( y ) = 0 , φ =
1

4

(d )8

∂+4 φ̄ , (2.4)

where

dm = − ∂

∂ θ̄m
− i√

2
θm ∂+ ; d̄n =

∂

∂ θn
+

i√
2
θ̄n ∂

+ , (d )8 ≡ d1 d2 . . . d8 . (2.5)

The kinematical, spectrum generating, supersymmetry generators are [7],

qm+ = − ∂

∂ θ̄m
+

i√
2
θm ∂+; q̄+n =

∂

∂ θn
− i√

2
θ̄n ∂

+ , (2.6)

satisfying {qm+ , q̄+n} = i
√
2δmn ∂+, while the dynamical ones are given by

qm
− =

∂̄

∂+
qm+ , q̄−n =

∂

∂+
q̄+n . (2.7)

These satisfy the free N = 8 supersymmetry algebra closing to the Hamiltonian generator

{qm− , q̄−n} = i
√
2δmn

∂∂̄

∂+
. (2.8)

In the interacting theory, the dynamical generators pick up corrections order by order thus

generating the interacting Hamiltonian.
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The action to order κ

To order κ, the action for N = 8 supergravity reads [8]

β

∫
d4x

∫
d8θ d8θ̄L , (2.9)

where β = − 1
64 and

L = −φ̄
✷

∂+4
φ+

4

3
κ

(
1

∂+4 φ̄∂̄∂̄φ∂
+2

φ− 1

∂+4 φ̄∂
+∂̄φ∂+∂̄φ+ c.c.

)
. (2.10)

The d’Alembertian is

✷ = 2 ( ∂ ∂̄ − ∂+ ∂− ) , (2.11)

κ =
√
8πG and Grassmann integration is normalized such that

∫
d8θ (θ)8 = 1.

The correction to the dynamical supersymmetry generator at this order is

q̄−m
(κ)φ =

1

∂+
(∂̄q̄mφ∂+2

φ− ∂+q̄mφ∂+∂̄φ) , (2.12)

where the + sign on the kinematic supersymmetery generators is no longer shown.

2.1 E7(7) symmetry

The non-linear E7(7)/SU(8) transformations to order κ are given by [9]

δφ =− 2

κ
θklmn Ξklmn

+
κ

4!
Ξmnpq 1

∂+2

(
dmnpq

1

∂+
φ∂+3φ − 4 dmnpφ dq∂

+2φ+ 3 dmn∂
+φ dpq∂

+φ

)
, (2.13)

where θklmn = θkθlθmθn, dm1...mn
= d̄m1 . . . .d̄mn

and Ξklmn = 1
2ǫklmnpqrs Ξ

pqrs, a constant.

These 70 coset transformations along with the linear SU(8) transformations

Tm
n =

i

2
√
2 ∂+

(
qmq̄n − 1

8
δmn q

pq̄p

)
; [Tm

n , T
p
q ] = δpn T

m
q − δmq T

p
n , (2.14)

constitute the entire E7(7) algebra. In compact coherent state-like notation the transfor-

mation (2.13) can be written

δφ = −2

κ
θmnpq Ξmnpq +

κ

4!
Ξmnpq

(
∂

∂η

)

mnpq

1

∂+2

(
eη

ˆ̄d∂+3φ e−η ˆ̄d∂+3φ
) ∣∣∣∣∣

η=0

+O(κ2) ,

(2.15)

where

η ˆ̄d = ηm
d̄m
∂+

, and

(
∂

∂η

)

mnpq

≡ ∂

∂ηm
∂

∂ηn
∂

∂ηp
∂

∂ηq
.

This formulation is particularly useful for checking the commutation relations with other

generators like the superPoincaré ones. Note that in this formalism, the E7(7) symmetry,

which is a duality symmetry of the vector fields and a non-linear σ-model symmetry of the

scalar fields in the covariant formalism, transforms all the physical fields in the supermul-

tiplet. Hence the supermultiplet is a representation of both the superPoincaré algebra as

well as of the E7(7) one leading us to question which is the more basic one.
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3 Maximal supergravity in d = 3 — version I

(obtained by dimensional reduction from (N = 8, d = 4) supergravity)

When we dimensionally reduce the d = 4 theory to d = 3, we are left with the dependence

on one transverse derivative, ∂. We obtain, for the action for the d = 3 theory (up to an

overall constant)

S =

∫
d3xd8θd8θ̄L , (3.1)

where

L = −φ̄
✷

∂+4φ+
4

3
κ

(
1

∂+4 φ̄∂
2φ∂+2

φ− 1

∂+4 φ̄∂
+∂φ∂+∂φ+ c.c.

)
, (3.2)

where the ✷ here, is the three-dimensional d’Alembertian (see also appendix A). Before

we study the symmetries of this action, we divert our attention to the E8(8) invariant

supergravity theory in d = 3. This theory does not admit vertices of odd order (κ, κ3

etc.), due to the SO(16) R-symmetry. The action of the linear SO(16) and its non-linearly

realised quotient E8(8)/SO(16) on the light-cone superfield φ was extensively studied in [10].

4 Maximal supergravity in d = 3 — version II

(the manifestly E8-invariant version)

There is a better known form for maximal supergravity in three dimensions. We discuss

this version in this section, before relating it to the form in section 3. Maximal supergravity

in three dimensions is invariant under an E8(8) symmetry. The same chiral superfield φ

introduced earlier describes all the degrees of freedom: 128 bosons and 128 fermions,

256 = 128b + 128f (4.1)

The action for this theory contains no three-point coupling, since three spinor representa-

tions cannot form a scalar.

The linear action of q̄m, qm on the superfield

δkins̄ φ(y) = ǭmqmφ(y) , δkins φ(y) = ǫmq̄mφ(y) (4.2)

yield the kinematical light-cone supersymmetries, with ǫ being the parameter.

SO(16) invariance of the theory

In N = 8 superspace, the Grassmann variables, θm and θ̄m, form a 16 representation

SO(16) ⊃ SU(8) × U(1) , 16 = 8+ 8.

The quadratic action of the qm, q̄m generaors on φ generates the 120 SO(16) transforma-

tions, which are decomposed in terms of SU(8)×U(1) as follows.

120 = 630 + 28−1 + 281 + 10 (4.3)
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The SU(8) generators are given in (2.14) and U(1) generators are given by [10]

T =
i

4
√
2 ∂+

[ qm , q̄m ] , [T , Tm
n ] = 0 . (4.4)

The coset transformations SO(16)/(SU(8)×U(1)) are generated by the 28 and 28 of SU(8)

Tmn =
1

2

1

∂+
qmqn , Tmn =

1

2

1

∂+
q̄mq̄n , (4.5)

which close on (SU(8)×U(1))

[Tmn , Tpq ] = δnpT
m

q − δmpT
n
q − δmqT

n
p + δmqT

n
p + 2 ( δnpδ

m
q − δnqδ

m
p )T .

Hence, the linear SO(16) transformations read

δSU8
ϕ = ωn

m Tm
n ϕ , δU(1) ϕ = T ϕ ,

δ28 ϕ = αmn
qmqn

∂+
ϕ , δ28 ϕ = αmn q̄mq̄n

∂+
ϕ , (4.6)

where ωn
m, αmn, and αmn are the transformation parameters.

4.1 E8(8) symmetry

We decompose the non-linearly realized coset E8(8)/SO(16) in terms of SU(8)×U(1) rep-

resentations

128 = 1′2 + 28′1 + 700 + 28
′
−1 + 1̄′−2 . (4.7)

We identify the 70 as the representation in E7(7)/SU(8); the rest of the coset E8(8)/SO(16)

transformations form two U(1) singlets, a twenty-eight dimensional representation 28′1
and its complex conjugate 28′−1, (which are not related to the 28 and 28 of the SO(16)

discussed previously). All the bosonic components of the superfield contain a constant

term in the E8(8)/SO(16) variation, just as in a σ-model.

All the 128 E8(8)/SO(16) coset transformations can be expressed in a compact form [10]

δE8(8)/SO(16) φ =
1

κ
F + κ ǫm1m2...m8

2∑

c=−2

(
d̂m1m2···m2(c+2)

∂+c F
)

(4.8)

×
{(

δ

δ η

)

m2c+5···m8

∂+(c−2)
(
eη·

ˆ̄d ∂+(3−c)φ e−η· ˆ̄d∂+(3−c)φ
) ∣∣∣∣

η=0

+O(κ2)

}
,

where the sum is over the U(1) charges c = 2, 1, 0− 1,−2 of the bosonic fields, and

F =
1

∂+2 β (y−) + i θmn 1

∂+
βmn (y

−)− θmnpq βmnpq (y
−) +

+ iθ̃ mn ∂
+ βmn (y−) + 4 θ̃ ∂+2

β̄ (y−) ,

and

d̂m1m2···m2(c+2)
≡ d̂m1 d̂m2 · · · d̂2(c+2) .

It is remarkable that the E8(8) symmetry can be represented on the same supermultiplet

as the E7(7) symmetry.

– 6 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
4

5 Relating the two different versions of three-dimensional maximal su-

pergravity

Having described the two different forms of maximal supergravity in three dimensions, we

are now in a position to establish a link between them. We will relate the d = 3 action

with a three-point coupling (3.2), obtained from dimensionally reducing (N = 8, d = 4)

supergravity to the E8(8) invariant supergravity theory sans a three-point coupling. We

will do this through a field redefinition and show that the dimensionally reduced form is

also invariant under SO(16) transformations, which are now non-linearly realized on the

superfield.

5.1 The field redefinition

The Lagrangian for the SO(16) invariant theory reads

L = −φ̄
✷

∂+4φ+O(κ2) . (5.1)

We want a field redefintion that will map the kinetic term in (5.1) to a kinetic term plus

the O(κ) terms in (3.2). Based on dimensional analysis, we start with the ansatz

φ = φ′ + ακ∂+A
(∂+B

φ′∂+C
φ′) + βκ∂+D

(∂+E
φ′∂+F

φ̄′) , (5.2)

where α, β are constants to be determined and the integers A, B, C, D, E, F obey

A+B + C = 2 , D + E + F = 2 . (5.3)

Simple computations lead us to

φ → φ = φ′ +
1

3
κ(∂+φ′∂+φ′) +

2

3
κ∂+4

(
1

∂+3φ
′∂+φ̄′

)
, (5.4)

which correctly reproduces the cubic terms in (3.2) as shown in appendix A. The (φ′φ̄′) piece

in the field redefinition achieves the same effect as replacing ∂− by ∂2

∂+ in the interaction

terms. We thus arrive at the new Lagrangian

L′ = −φ̄′
✷

∂+4φ
′ +

4

3
κ

(
1

∂+4 φ̄
′∂2φ′∂+2

φ′ − 1

∂+4 φ̄
′∂+∂φ′∂+∂φ′ + c.c.

)
, (5.5)

which exactly matches (3.2), since φ′ = φ at lowest order. Thus the the dimensionally

reduced action for d = 3 maximal supergravity with a cubic vertex can be obtained from

the SO(16)-invariant action (without a cubic vertex) by a field redefinition.

5.2 SO(16) symmetry revisited

The linear action of the various SO(16) generators on φ is listed in (4.6). The SO(16)

invariance of the Lagrangian (5.1) at the free order implies

δL = −(δφ̄)
✷

∂+4φ− φ̄
✷

∂+4 (δφ) = 0 (5.6)

(Note: δSO(16)φ ≡ δφ for simplicity.)
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To understand the action of SO(16) on the new superfield φ′, we invert (5.4) to obtain

φ′ = φ− 1

3
κ(∂+φ∂+φ)− 2

3
κ∂+4

(
1

∂+3φ∂
+φ̄

)
, (5.7)

δφ′ = δφ− 2

3
κ(∂+(δφ)∂+φ)− 2

3
κ∂+4

(
1

∂+3 (δφ)∂
+φ̄

)
− 2

3
κ∂+4

(
1

∂+3φ∂
+(δφ̄)

)
.

In appendix B, we prove that the new Lagrangian in (5.5) is also SO(16) invariant albeit

in a non-linear fashion. Finally, in appendix C, we prove that this new theory is also E8

invariant.

Thus the d = 3 supergravity Lagrangian with cubic interaction vertices, obtained by di-

mensional reduction from (N = 8, d = 4) supergravity, is equivalent to the d = 3 Lagrangian

without cubic vertices and futher, both these versions have an E8(8) symmetry.

6 Oxidation back to d = 4 preserving the E8(8) symmetry

We now demonstrate how the d = 3 Lagrangian, without cubic vertices, may be oxidized

to four dimensions while preserving the E8(8) symmetry. We achieve this by introducing a

“new” tranverse derivative, ∂2.

In [10], the E8(8) symmetry was used to construct the order-κ2 dynamical supersym-

metry transformations in d = 3

δdyns φ = ǫm
∂

∂+
q̄m φ

+
κ2

2

2∑

c=−2

1

∂+(c+4)

{
δ

δa

δ

δb

(
δ

δη

)

m1m2...m2(c+2)

(
E∂+(c+5)

φE−1

)∣∣∣∣
a=b=η=0

×ǫm1m2...m8

(4− 2c)!

(
δ

δη

)

m2c+5...m8

∂+2c
(
E∂+(4−c)

φE−1∂+(4−c)
φ

)∣∣∣∣
η=0

}
, (6.1)

where

E ≡ ea∂̂+bǫˆ̄q+η ˆ̄d and E−1 ≡ e−a∂̂− bǫˆ̄q− η ˆ̄d ,

with

a ∂̂ = a
∂

∂+
, b ǫ ˆ̄q = b ǫm

q̄m
∂+

, η ˆ̄d = ηm
d̄m
∂+

.

We oxidize this expression to d = 4 by replacing all the ∂(= ∂1) by a generalized derivative

∇ ≡ ∂1 + i∂2 , (6.2)

such that
[
δdyns φ (∂, ∂+, q̄m, d̄m, φ)

]

d=3
−→

[
δdyns φ(∇, ∂+, q̄m, d̄m, φ)

]

d=4
.

We now note that for maximally supersymmetric theories one can obtain the light-cone

Hamiltonian using the quadratic form expression [11]

H =
1

4
√
2
(Wm,Wm) ≡ 2i

4
√
2

∫
d8θd8θ̄d3xWm 1

∂+3Wm , (6.3)
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where Wm is the dynamical supersymmetry variation on φ

δdyns φ ≡ ǫmWm . (6.4)

Once we obtain Wm in d = 4 through the oxidation, we can in principle construct a

SO(16) invariant Hamiltonian with only even order coupling. In doing so, we need to take

the complex conjugate of Wm, which will introduce the conjugate “new” derivative

∂1 − i∂2 ≡ ∇ . (6.5)

This method of oxidation respects both the SO(16) and the full E8(8) symmetry, because

the generalized derivatives, ∇ and ∇ do not contain any qm , q̄m or dm , d̄m operators,

which can affect the invariance of the Hamiltonian in d = 4. Thus, we will end up with

a maximal supergravity theory in d = 4 with the same field content as in (2.2). Since

the N = 8 theory is unique, we have arrived at a form of N = 8 supergravity in d = 4

with E8(8) symmetry to this order. One could ask why we had to leave four dimensions

in the first place? We could have simply found a field redefinition from the N = 8 theory

to a form that is E8(8)-invariant. The answer is that our procedure, of going down one

dimension, allows us to render the enhanced symmetry manifest. This manifest enhanced

symmetry is the difficult step to achieve. Once this is in place, we oxidize the theory,

preserving the enhanced symmetry arriving at our goal.

Note that in order to argue that the Hamiltonian is E8(8)-invariant to this order we

must treat the states as 128-dimensional spinors. These are clearly not the four-dimensional

states of (N = 8, d = 4) supergravity. In order to argue that this symmetry is present in

d = 4 scattering amplitudes we must add up such amplitudes such that the external states

span the full 128-dimensional spinors. We have seen though as in the original paper on

complete one-loop amplitudes [12] that all of those amplitudes have the same divergence

pattern. It is a further assumption that this is true also to higher loops which the analysis

in [2] indicates.

We have not discussed the supersymmetry generators in this form of (N = 8, d = 4)

supergravity. Since this formulation is obtained by a field redefinition from the original one

we do not expect supersymmetry generators to be straightforward to write down. This is

a price we have to pay in this formalism which is minimal in terms of field components.

7 Conclusions

Maximally supersymmetric gravity and Yang-Mills theories have been found to have the

simplest perturbation series among theories of their kind. In some sense they have only

the bare bone structure needed to build a perturbation series which is both unitary and

causal. There are also strong reasons to believe that the perturbation series of (N = 8, d =

4) supergravity is, in a certain sense, the square of that in (N = 4, d = 4) Yang-Mills

theory (KLT-relations [13, 14]).This perturbative simplicity is all the more remarkable since

at least the Yang-Mills theory non-perturbatively even knows about superstring theory

through the AdS-CFT duality.
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Our analysis does not shed light on whether the (N = 8, d = 4) supergravity is

perturbatively finite. We can only argue that the perturbation series ought be more finite

than what the usual counterterm arguments based on E7(7) and maximal supersymmetry

suggest (for a related discussion, see [15]). Counterterms could in principle be constructed

in our formalism, but this is a formidable task that we hope to return to. Not only do

we need to construct counterterms, we must also prove that they cannot be absorbed by

a field redefinition. Further, the remaining counterterms should be invariant under the

residual reparametrization, local supersymmetry and gauge symmetries as we have shown

in the case of pure gravity [16]. We can only see two ways to finally settle the question

(of finiteness): do the full calculation or find a power counting argument as was achieved

in the case of N = 4 Yang-Mills theory [17] and its deformations [18, 19]. That analysis

cannot be carried over straightforwardly but new additional symmetry-related inputs may

help limit the possible diagrams that need checking.

Are there even larger symmetries lurking in these theories? There have been strong

indications that the affine algebras E10 and E11 could be present [20, 21]. Such symmetries

could possibly be realized by the superfield and all its superspace derivatives. However, we

find it difficult to see how such symmetries could directly be symmetries of the scattering

amplitudes since that would amount to infinitely many kinematical constraints on the

amplitudes. Those symmetries must be more deeply ingrained in these theories and we

hope to return to this question in future publications.
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A Verification of field redefinition

Under the field redefinition (5.4), the kinetic term in (3.2) becomes

−φ̄
✷

∂+4φ = −2φ̄
(∂2 − ∂+∂−)

∂+4 φ

= −2

{
φ̄′ +

1

3
κ(∂+φ̄′∂+φ̄′) +

2

3
κ∂+4

(
1

∂+3 φ̄
′∂+φ′

)}
×

(∂2 − ∂+∂−)

∂+4

{
φ′ +

1

3
κ(∂+φ′∂+φ′) +

2

3
κ∂+4

(
1

∂+3φ
′∂+φ̄′

)}

The free order term gives back the kinetic term. Now, at order κ we keep terms which are

of the form φ̄′φ′φ′ only.1

−2

3
κφ̄′ (∂

2 − ∂+∂−)

∂+4 (∂+φ′∂+φ′)− 4

3
κ∂+4

(
1

∂+3 φ̄
′∂+φ′

)
(∂2 − ∂+∂−)

∂+4 φ′ = A+ B

1The other kind of terms φ̄′φ̄′φ′, which are just complex conjugate of these terms, reproduce the κφ̄′φ̄′φ′

vertex in (3.2).
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A and B can be further simplified as follows.

A = −2

3
κ

1

∂+4 φ̄
′(∂2 − ∂+∂−)(∂+φ′∂+φ′)

= −4

3
κ

1

∂+4φ
′(∂+∂2φ′∂+φ′ + ∂+∂φ′∂+∂φ′) +

4

3
κ

1

∂+4 φ̄
′∂+(∂+∂−φ′∂+φ′)

B = −4

3
κ

(
1

∂+3 φ̄
′∂+φ′

)
(∂2 − ∂+∂−)φ′

= +
4

3
κ

1

∂+4 φ̄
′∂+(∂2φ′∂+φ′)− 4

3
κ

1

∂+4 φ̄
′∂+(∂+∂−φ′∂+φ′)

= +
4

3
κ

1

∂+4 φ̄
′(∂+∂2φ′∂+φ′ + ∂2φ′∂+2

φ′)− 4

3
κ

1

∂+4 φ̄
′∂+(∂+∂−φ′∂+φ′)

Hence, the order-κ terms are

A+ B =
4

3
κ

(
1

∂+4 φ̄
′∂2φ′∂+2

φ′ − 1

∂+4 φ̄
′∂+∂φ′∂+∂φ′

)
,

B SO(16)-invariance of the new Lagrangian

The SO(16) variation of L′ yields

δL′ = δL′
kinetic + δL′

cubic , (B.1)

where

δL′
kinetic = −(δφ̄′)

✷

∂+4φ
′ − φ̄′ ✷

∂+4 (δφ
′) (B.2)

and

δL′
cubic = +

4

3
κ

(
1

∂+4 (̄δφ
′)∂2φ′∂+2

φ′ +
1

∂+4 φ̄
′∂2(δφ′)∂+2

φ′ +
1

∂+4 φ̄
′∂2φ′∂+2

(δφ′)

− 1

∂+4 (δφ̄
′)∂+∂φ′∂+∂φ′ − 2

1

∂+4 φ̄
′∂+∂(δφ′)∂+∂φ′

)
+ c.c. . (B.3)

Using (5.7) and keeping terms up to order κ, we get

δL′
kinetic =

{
−(δφ̄)

✷

∂+4φ− φ̄
✷

∂+4 (δφ)

}

+

{
1

3
κ(δφ̄)

✷

∂+4 (∂
+φ∂+φ) +

2

3
κφ̄

✷

∂+4 (∂
+(δφ)∂+φ)

+
2

3
κ∂+4

(
1

∂+3 (δφ̄)∂
+φ

)
✷

∂+4φ+
2

3
κ∂+4

(
1

∂+3 φ̄∂
+(δφ)

)
✷

∂+4φ

+
2

3
κ∂+4

(
1

∂+3 φ̄∂
+φ

)
✷

∂+4 (δφ)

}
+ c.c. . (B.4)
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The terms of order κ0 cancel against each other, as in eq. (5.6). We have only considered

terms of the form (φ̄φφ), since the others are contained in the complex conjugate. After

partially integrations of ∂+ and simple manipulations, (B.4) takes the form

δL′
kinetic = −4

3
κ

(
1

∂+4 (̄δφ
′)∂2φ′∂+2

φ′ +
1

∂+4 φ̄
′∂2(δφ′)∂+2

φ′ +
1

∂+4 φ̄
′∂2φ′∂+2

(δφ′)

− 1

∂+4 (δφ̄
′)∂+∂φ′∂+∂φ′ − 2

1

∂+4 φ̄
′∂+∂(δφ′)∂+∂φ′

)
+ c.c. , (B.5)

which cancels against (B.3) rendering the new Lagrangian, with a cubic vertex, SO(16)-

invariant.

C E8 invariance

We show here, how the non-linearly realised SO(16) for the action with a three-point cou-

pling can be extended to an E8(8) symmetry. The action of the 128 E8(8)/SO(16) transfor-

mations on the superfield φ is given in (4.8). We know that two such coset transformations

should close on SO(16), (we denote the coset transformations here by δ′φ)

[δ′1, δ
′
2]φ = δSO(16)φ . (C.1)

Using (5.7), we can readily express δ′φ′ in terms of δ′φ. Let us consider two coset trans-

formations, δ′1 and δ′2 on φ′

[δ′1, δ
′
2]φ

′ = [δ′1, δ
′
2]φ− 1

3
κ[δ′1, δ

′
2](∂

+φ∂+φ)
2

3
κ[δ′1, δ

′
2]

{
∂+4

(
1

∂+3φ∂
+φ̄

)}

= δSO(16)φ+ X + Y (C.2)

where X and Y simplify to

X = −1

3
κ[δ′1, δ

′
2](∂

+φ∂+φ)

= −2

3
κ[∂+(δ′1δ

′
2φ)∂

+φ+ ∂+(δ′2φ)∂
+(δ′1φ)− ∂+(δ′2δ

′
1φ)∂

+φ− ∂+(δ′1φ)∂
+(δ′2φ)]

= −2

3
κ(∂+[δ′1, δ

′
2]φ∂

+φ)

= −1

3
κδSO(16)(∂

+φ∂+φ)

and

Y = −2

3
κ[δ′1, δ

′
2]

{
∂+4

(
1

∂+3φ∂
+φ̄

)}
= −2

3
κδSO(16)

{
∂+4

(
1

∂+3φ∂
+φ̄

)}
.

So, from (5.7) we find that for the new field φ′

[δ′1, δ
′
2]φ

′ = δSO(16)φ− 1

3
κδSO(16)(∂

+φ∂+φ)− 2

3
κδSO(16)

{
∂+4

(
1

∂+3φ∂
+φ̄

)}

= δSO(16)φ
′ , (C.3)

thus proving that the transformations close.
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