
Thesis for the degree of Licentiate of Engineering

Deep Learning Applications
for Autonomous Driving

LUCA CALTAGIRONE

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Deep Learning Applications
for Autonomous Driving
LUCA CALTAGIRONE

c© LUCA CALTAGIRONE, 2018

THESIS FOR LICENTIATE OF ENGINEERING no 2018:02

Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31–772 1000

Chalmers Reproservice
Göteborg, Sweden 2018

Deep Learning Applications
for Autonomous Driving
Luca Caltagirone
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

This thesis investigates the usefulness of deep learning methods for solving
two important tasks in the field of driving automation: (i) Road detection,
and (ii) driving path generation. Road detection was approached using two
strategies: The first one considered a bird’s-eye view of the driving scene
obtained from LIDAR data, whereas the second carried out camera-LIDAR
fusion in the camera perspective. In both cases, road detection was performed
using fully convolutional neural networks (FCNs). These two approaches
were evaluated on the KITTI road benchmark and achieved state-of-the-art
performance, with MaxF scores of 94.07% and 96.03%, respectively.

Driving path generation was accomplished with an FCN that integrated
LIDAR top-views with GPS-IMU data and driving directions. This system
was designed to simultaneously carry out perception and planning using as
training data real driving sequences that were annotated automatically. By
testing several combinations of input data, it was shown that the FCN having
access to all the available sensors and the driving directions obtained the best
overall accuracy with a MaxF score of 88.13%, about 4.7 percentage points
better than the FCN that could use only LIDAR data.

Keywords: deep learning, computer vision, autonomous driving, robotic
perception and planning, sensor fusion

i

To Jaime, Isaac, and Dahlia

Acknowledgements

I would first like to express gratitude to my supervisor Prof. Mattias Wahde
for his faith in me and for his guidance in taking my academic career in the
directions that I have.

My heartfelt thanks also go to my co-supervisor Prof. Lennart Svensson
for his thoughtful advice and many stimulating discussions. I would like to
thank Dr. Mauro Bellone for sharing his knowledge and for helping me keep
my Italian alive.

I am very grateful to the PRELAT project for funding the work presented
in this thesis and to Dr. Martin Sanfridson for keeping the project running.
Last but not least, I wish to thank all my colleagues at VEAS for creating a
very welcoming and friendly working environment.

v

List of included papers

This thesis consists of the following papers. References to the papers will be
made using Roman numerals.

I. Caltagirone, L., Scheidegger, S., Svensson, L., and Wahde, M., Fast
LIDAR-based Road Detection Using Fully Convolutional Neural Net-
works. In: Proceedings of the 28th IEEE Intelligent Vehicles Sympo-
sium, Los Angeles, CA, pp. 1019-1024, 2017.

II. Caltagirone, L., Bellone, M., Svensson, L., and Wahde, M., LIDAR-
based Driving Path Generation Using Fully Convolutional Neural Net-
works. In: Proceedings of the 20th IEEE International Conference
on Intelligent Transportation Systems, Yokohama, Japan, pp. 573-578,
2017.

III. Caltagirone, L., Bellone, M., and Wahde, M., LIDAR-Camera Fusion
for Road Detection using Fully Convolutional Neural Networks. Sub-
mitted to Robotics and Autonomous Systems, January 2018.

vii

Technical terms used in the thesis

Activation function, 4
Artificial neural network (ANN), 3
Artificial neuron, 3

Batch size, 11

Classification, 9
Context module, 23
Convolution, 7
Convolutional layer, 5
Convolutional neural network (CNN),

5
Cross fusion, 25

Deep neural network (DNN), 21
Dilated convolution, 23
Dilation factor, 23

Early fusion, 25
Encoder-decoder, 8
Exponential linear unit (ELU), 5

Feature map, 8
Fully connected network, 3
Fully convolutional neural network

(FCN), 9

Hidden layer, 3
Hyperparameter, 8

Input layer, 3

Kernel, 7

Late fusion, 25

Max pooling, 8
Max unpooling, 9
Maximum F1-score (MaxF), 22

Output layer, 3

Pooling index, 9
Precision (PRE), 22

Recall (REC), 22
Receptive field, 5
Rectified linear unit (ReLU), 5
Regression, 9

Semantic segmentation, 10
Softmax function, 10
Stochastic gradient descent (SGD), 11
Stride, 7

Unit, 3

Weight, 4

Zero padding, 7

viii

Table of Contents

1 Introduction and motivation 1

2 Convolutional neural networks 3
2.1 Artificial neural networks . 3

2.1.1 Artificial neuron . 4
2.2 Convolutional neural networks 5

2.2.1 Convolutional layer . 5
2.2.2 Max pooling layer . 8
2.2.3 Encoder-decoder network 8

2.3 Training and objective function 9
2.3.1 Softmax function . 10
2.3.2 Cross-entropy loss and optimization 10

3 Data set and preprocessing 13
3.1 Point cloud top-view representation 13
3.2 GPS-IMU top-view representation 14

3.2.1 IMU augmentation . 16
3.2.2 Driving intention . 18

3.3 Point cloud projection and upsampling 18

4 Applications 21
4.1 Road detection . 21

4.1.1 LIDAR-only segmentation 23
4.1.2 LIDAR-camera segmentation 25

4.2 Driving path generation . 28

ix

x TABLE OF CONTENTS

5 Conclusion and future work 31
5.1 Conclusion . 31
5.2 Future work . 32

6 Summary of included papers 35
6.1 Paper I . 35
6.2 Paper II . 35
6.3 Paper III . 36

Bibliography 37

INCLUDED PAPERS

Chapter 1
Introduction and motivation

Every year about 1.3 million people die worldwide in road traffic accidents
[27] and 20 to 50 million are injured or disabled. Road traffic accidents are
currently the leading cause of death among young people aged 15 to 29 years.
Besides human suffering, road traffic accidents also cause the loss of about
3% of global GDP [6]. According to the Tri-level study of the causes of
traffic accidents [26], human factors were a probable cause in about 93% of
the examined accidents. The above numbers clearly indicate that if human
errors and deficiencies were removed from driving, there would be enormous
savings both economically and in terms of human lives [2]. This consideration
is one of the main motivating factors for the development of vehicles that
drive autonomously, that is, vehicles that can understand the world and
make decisions by themselves, without human input.

Driving a vehicle is quite a complex skill. Broadly speaking, it can be split
into three main components: perception, planning, and control. Perception
is the act of apprehending the environment in the immediate surroundings
of the vehicle and it includes tasks such as recognizing whether there are
other traffic participants and, if so, estimating their relative position and
velocity, locating the road and its lanes and estimating the vehicle position
within them, monitoring the vehicle state, and looking for traffic signs, traffic
lights, and other relevant landmarks. Given this knowledge, a driver can
plan the desired vehicle trajectory (planning) and then follow it by applying
appropriate actions to the vehicle’s steering wheel, brakes, throttle, and gear
shift (control).

The ultimate goal of driving automation is to develop computer systems

1

2 Chapter 1. Introduction and motivation

that can carry out the previously described functions in all situations, effec-
tively replacing the human driver. This is called level 5 automation, or full
automation, according to the driving automation levels for on-road vehicles
defined by SAE [25]. Many automotive and technology companies (e.g., Volvo
Cars, Toyota, Google-Waymo, Apple), universities (e.g., Chalmers University
of Technology, Oxford University, Stanford University), and startups (e.g.,
Otto, Drive.ai) are currently working towards this goal and much progress
has been made in the past two decades. However, there are still many open
problems to solve, in particular regarding the perception function in chal-
lenging scenarios (e.g., rainy and snowy weather, nighttime, etc.).

Given that the transportation infrastructure has been tailored for human
drivers who mainly rely on vision for sensing the environment, a natural
choice is to equip autonomous vehicles with cameras in order for them to
perceive the world. The information content of camera images is, however,
strongly dependent upon the external lightning conditions and can be de-
graded to a large degree in certain circumstances. It is therefore common to
equip autonomous vehicles with additional sensors such as radars, sonars, and
LIDARs that can provide a complementary or alternative view of the envi-
ronment. For example, whereas cameras provide information about emitted
or reflected light from surrounding objects (passive sensing), LIDARs gener-
ate a sparse 3D representation of the scene by using their own emitted light
(active sensing).

The information acquired by the sensors must then be processed us-
ing computer algorithms that extract the information necessary to control
the vehicle. Unfortunately, camera images and 3D point clouds are high-
dimensional objects that are quite expensive to process. Only in recent years,
with the advent of fast GPUs and novel machine learning techniques, has it
become possible to accomplish that goal in real time and with portable com-
puting devices.

As previously mentioned, autonomous driving is dependent on the con-
certed action of many different functions. Furthermore, each function can
be approached using a wide variety of algorithms. In this work, two tasks
are investigated: (1) Road segmentation, and (2) driving path generation.
Both were addressed using a family of machine learning algorithms known as
deep learning [14]. These functionalities were developed and evaluated using
the KITTI data set [10]. Finally, two main sensors have been considered, a
monocular RGB camera and a multi-layer rotating LIDAR.

The author was the main contributor to all the papers in this thesis.

Chapter 2
Convolutional neural networks

2.1 Artificial neural networks

Artificial neural networks (ANNs) are a family of computing systems that
are inspired by biological neural networks. The basic building block of all
ANNs is the artificial neuron. Artificial neurons (or units) receive inputs
from other neurons in the network and then generate their own output. The
computation of the output as well as the connectivity among neurons depend
on the specific application. In fact, many strategies have been developed since
McCulloch and Pitts first proposed this type of computational model in 1943
[17]. This work focuses on multi-layer feedforward neural networks, that is,
networks where the units are organized in multiple distinct layers, such that
the information propagates only in one direction. The right panel of Fig. 2.1
shows an example of a feedforward ANN with three layers: (1) The leftmost
layer is called the input layer and its nodes simply return the input data.
(2) The inner layer processes the information coming from the input layer
and its result is forwarded to the following layer. (3) The rightmost layer, or
output layer, carries out further processing and generates the ANN’s final
output. Layers that are placed between the input and output layers are called
hidden layers. The ANN example just described is a fully connected
network, that is, each unit in a given layer is connected to all the units
in the previous and following layers. This connectivity is not efficient for
working with high-dimensional inputs, such as images, because the number
of connections becomes very large. Moreover, the fully connected architecture
does not explicitly exploit the spatial structure of the information.

3

4 Chapter 2. Convolutional neural networks

X1

X2

X3

W1

W2

W3

b

O

X1

X2

X3

H1

H2

H3

H4

O1

O2

Input Hidden Output

∑ f

Figure 2.1: (Left panel): A simple illustration of an artificial neuron receiving
inputs from three units. The artificial neuron computes the sum of its inputs
{xi}i=1,2,3 multiplied by their corresponding connection weights {wi}i=1,2,3, adds a
bias term b, applies an activation function f , and then sends its output forward to
other units. (Right panel) Illustration of a three-layer feedforward neural network.
The information flows from the input to the output layer passing through one
intermediate layer, called the hidden layer. The ANN is fully connected meaning
that each unit in a given layer is connected to all the units in the preceding and
following layer.

2.1.1 Artificial neuron

The output of an artificial neuron (see, for example, the left panel of Fig. 2.1)
is computed by applying a function f , also known as an activation func-
tion, to the weighted sum of all its K inputs plus a bias term b, that is:

o = f

(K∑

i=1

wixi + b

)
, (2.1)

where the coefficients wi represent the strength of the connections (or weights)
between the artificial neuron and its input units.

Over the years, many activation functions have been proposed, from the
step function used in the perceptron [23] to the sigmoid logistic function.
All of them, however, are nonlinear: This is a crucial requirement since
otherwise, any number of layers could always be reduced to one, given that
the composition of multiple linear transformations can be expressed as a
single linear transformation. Nowadays, the most commonly used activation

2.2. Convolutional neural networks 5

function is the rectifier [14] that is defined as follows:

f(x) = max(0, x). (2.2)

A neuron that utilizes the above transfer function is called a rectified linear
unit (ReLU) [19]. Another popular activation function that has been shown
to speed up learning and that is used in this work is the exponential linear
unit (ELU) [5] :

f(x) =

{
x if x ≥ 0

a(ex − 1) otherwise

where the parameter a is commonly set to one.

2.2 Convolutional neural networks

As mentioned in Sect. 2.1, fully connected neural networks are not efficient
for processing high-dimensional inputs such as images. By studying the hu-
man visual cortex, it was observed that individual neurons only have access
to a small portion, called the receptive field, of the entire visual field [12].
Information is then aggregated by neurons that have overlapping receptive
fields and neurons in deeper layers of the visual cortex. Biological consid-
erations then suggest that local connectivity and hierarchical layers might
be better suited for processing visual information. These observations were
the inspiration for the development of the convolutional layer which is the
building block of convolutional neural networks (CNNs) [14].

2.2.1 Convolutional layer

In contrast to a fully connected layer, artificial neurons in a convolutional
layer only have access to a limited region of the preceding layer, a region
specified by their receptive field size. If this size is small, the number of
connections is reduced significantly in comparison with a fully connected
layer. Another important feature of convolutional layers is that the weights
are shared among units which further decreases the number of parameters.
The rationale behind this design choice is that discriminative features can
be found anywhere in the visual field; a pattern of connectivity that detects
vertical edges will likely be useful in the top right corner of an image just as
much as in its bottom left corner.

6 Chapter 2. Convolutional neural networks

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

K(R)11 K(R)12 K(R)13

K(R)21 K(R)22 K(R)23

K(R)31 K(R)32 K(R)33

∑X=RGB

(X11*K(X)11 + X12*K(X)12 +

X13*K(X)13 + X21*K(X)21 +

X22*K(X)22 + X23*K(X)23 +

X31*K(X)31 + X32*K(X)32 +

X33*K(X)33)

∑X=RGB

 (X12*K(X)11 + X13*K(X)12+

X14*K(X)13 + X22*K(X)21 +

X23*K(X)22 + X24*K(X)23 +

X32*K(X)31 + X33*K(X)32 +

X34*K(X)33)

∑X=RGB

(X21*K(X)11 + X22*K(X)12 +

X23*K(X)13 + X31*K(X)21 +

X32*K(X)22 + X33*K(X)23 +

X41*K(X)31 + X42*K(X)32 +

X43*K(X)33)

∑X=RGB

(X22*K(X)11 + X23*K(X)12 +

X24*K(X)13 + X32*K(X)21 +

X33*K(X)22 + X34*K(X)23 +

X42*K(X)31 + X43*K(X)32 +

X44*K(X)33)

K(G)11 K(G)12 K(G)13

K(G)21 K(G)22 K(G)23

K(G)31 K(G)32 K(G)33

K(B)11 K(B)12 K(B)13

K(B)21 K(B)22 K(B)23

K(B)31 K(B)32 K(B)33

Input 3x4x4 Kernel 3x3

G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

Output 2x2

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

Max

(R11,R12,R21,R22)

Max

(R13,R14,R23,R24)

Max

(R31,R32,R41,R42)

Max

(R33,R34,R43,R44)

Max Max

Max Max

Input 3x4x4

Kernel 2x2

stride 2

G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

Output 3x2x2

Max

(G11,G12,G21,G22)

Max

(G13,G14,G23,G24)

Max

(G31,G32,G41,G42)

Max

(G33,G34,G43,G44)

Max

(B11,B12,B21,B22)

Max

(B13,B14,B23,B24)

Max

(B31,B32,B41,B42)

Max

(B33,B34,B43,B44)

Figure 2.2: (Top panel) Illustration of the convolution operation carried out
using a kernel of size 3 × 3 and stride 1. (Bottom panel) Max pooling operation
performed using a filter of size 2× 2 and stride 2.

2.2. Convolutional neural networks 7

A convolutional layer processes information structured as multidimen-
sional arrays (henceforth: tensors). An RGB image, for example, can be
represented as a 3D tensor of size D ×H ×W , where D denotes the depth
(or number of channels, which in this case equals three), H is the height, and
W is the width. Given a kernel K of size F × F and an input tensor I, the
convolution operation is defined as follows:

O(i, j) = (I ∗K)(i, j) =
D∑

l=1

F∑

m=1

F∑

n=1

I l(i+m, j + n)K l(m,n), (2.3)

The top panel of Fig. 2.2 illustrates this operation: given an input of size
3 × 4 × 4 and a kernel of size 3 × 3, an output of size 2 × 2 is produced by
sliding the kernel window over the input tensor and applying the convolution
operation. The stride of the convolution, denoted as S, controls how many
cells the kernel should slide over each time it is moved. In the example
above, the stride is set to one. Notice that only the spatial size of the kernel
is specified, in this case F = 3; its depth is always constrained to be equal
to the number of channels of the tensor it is applied to. As can be seen in
Fig. 2.2, the spatial size of the output is smaller than the input. In general,
the output size can be computed according to the following equation:

Wout =
(Win − F)

S
+ 1 (2.4)

Hout =
(Hin − F)

S
+ 1 (2.5)

In some cases, it is desirable to control the spatial size of the output; a com-
mon approach to achieve that is to pad the input with zeros before carrying
out the convolution, a procedure known as zero padding. Letting P denote
the amount of zero padding, Equations (2.5) and (2.4) then become:

Wout =
(Win − F + 2P)

S
+ 1 (2.6)

Hout =
(Hin − F + 2P)

S
+ 1 (2.7)

Here, it is assumed that zero padding is applied symmetrically on both spatial
dimensions; for example, P = 1 corresponds to adding two rows of zeros to
the input, one at the top and one at the bottom, and two columns, one to

8 Chapter 2. Convolutional neural networks

the left and one to the right. This procedure must be applied to each input
channel.

The example shown in the top panel of Fig. 2.2 considers only one kernel
which transforms the 3D input into a 2D tensor. In practice, however, a
convolutional layer usually consists of many kernels and its output is also a
3D tensor. Each channel (i.e., 2D output obtained by applying one kernel)
of the output tensor is called a feature map. To summarize, the output in
channel z of a convolutional layer with Z feature maps is obtained as follows:

Oz(i, j) = (I ∗Kz)(i, j) =
D∑

l=1

F∑

m=1

F∑

n=1

I l(i+m, j + n)K l
z(m,n) + bz, (2.8)

where now also the scalar bias term, bz, of feature map z and z ∈ (1, . . . , Z)
has been included.

2.2.2 Max pooling layer

In order to decrease the spatial size of the tensors processed with convolu-
tional layers, it is common practice to insert in the network one or more max
pooling layers. In this way, it is possible to reduce the memory requirements
for training and running the CNN. Additionally, this operation provides par-
tial translation invariance. A max pooling layer is entirely specified by its
filter size F and its stride S. The bottom panel of Fig. 2.2 shows an example
of the max pooling operation, considering a filter of size 2 × 2 and stride 2.
The output tensor is obtained by sliding the max pooling filter across the
input and by choosing the maximum value within the selected region; this
operation is carried out on each feature map individually, so that the output
will have the same depth as the input.

2.2.3 Encoder-decoder network

The previous sections presented some of the components that can be used
when designing CNNs. It is easy to see that there are countless ways of
selecting the layers’ hyperparameters (e.g., kernel size, stride, number of
feature maps, etc.) and their mutual connectivity. This work focuses on one
type of architecture known as encoder-decoder, an illustration of which is
provided in Fig. 2.3. The key ideas of this architecture are (i) to decrease
the spatial size of the input through a sequence of max pooling layers while

2.3. Training and objective function 9

Convolution 3x3, stride 1, zero-pad + ELU

Max pooling 2x2, stride 2 Max unpooling Softmax

W

H

D

W

H

D

W

H

D

W

H

D

W

H

N

O

U

T

P

U

T

W/2

H/2

D

Conv 3x3, stride 1, zero-pad

I

N

P

U

T

W/2

H/2

D*2

W/2

H/2

D*2

W/4

H/4

D*2

W/4

H/4

D*4

W/4

H/4

D*2

W/2

H/2

D*2

W/2

H/2

D*2

W/2

H/2

D

Encoder Decoder

Figure 2.3: Encoder-decoder CNN. The encoder consist of a sequence of con-
volutional and max pooling layers. The input spatial size is decreased after each
pooling operation, thus reducing the memory requirements. At the same time, the
number of trainable parameters is increased by doubling the number of feature maps
in the convolutional layers. The decoder carries out further processing while also
upsampling the spatial size of the input tensor. W is the input width, H is the
input height, and D is the initial number of feature maps. N is the depth of the
output tensor.

at the same time (ii) increasing the depth of the convolutional layers. With
this strategy the memory requirements are reduced and the number of tun-
able parameters is increased with each downsampling stage. The example
in Fig. 2.3 shows a network with two downsampling and two upsampling
stages. The max pooling layers also store the positions of the maximum
values (pooling indices) in their input tensors. Those indices can then be
used for carrying out the max unpooling operation in the decoding part
of the network [1]. When a CNN, such as the encoder-decoder presented in
this section, does not contain any fully connected layer (see Sect. 2.1), it is
commonly referred to as a fully convolutional neural network (FCN).

2.3 Training and objective function

Machine learning can be used to solve many different tasks [11]. Two of the
most common ones are classification and regression. In a classification

10 Chapter 2. Convolutional neural networks

task, the algorithm should specify the class k ∈ 1, . . . , N that identifies a
given input X. As an example, given an image, the task of the program
might be to decide if there is a cat, or a dog, or a fox in it. Regression is
similar to classification but, in this case, the output is a continuous variable
instead of a discrete one. An example of regression is predicting the price of
a house or a stock.

The work presented here is concerned with a task known as semantic
segmentation, which can be seen as a generalization of the classification
example described above. In this case, a program assigns to each pixel of a
given image a probability distribution over the possible classes (e.g., road,
car, pedestrian, etc.) to which the pixel could belong.

2.3.1 Softmax function

The softmax function, here denoted σ, is used to ensure that the out-
put of an algorithm can be interpreted as a probability distribution. Each
component of a vector z ∈ RN is transformed as follows:

σ(z)i =
ezi∑N
j=1 ezj

, i ∈ 1, . . . , N (2.9)

It is easy to see that the components of the transformed vector are always
positive and sum to one. For a semantic segmentation task, a softmax layer
is usually inserted after the last convolutional layer of a CNN. Its purpose
is to apply the softmax function along the depth dimension at each spatial
location in order to generate a probability distribution for each pixel.

2.3.2 Cross-entropy loss and optimization

Consider a classification task solved with an ANN parametrized by a vector of
weights w and a training example (x, y), where x denotes the input and y rep-
resents its corresponding ground truth class. Let fw(x) = f(x) = [p1, . . . , pN]
denote the ANN-predicted probability distribution over the possible classes.
The cross-entropy error is then computed as follows:

H(x, y) = − log(f(x)y) = − log(py) (2.10)

The loss function L used for tuning the ANN’s weights is commonly defined
as the average cross-entropy error computed for the entire training set, that

2.3. Training and objective function 11

is:

L(w) = − 1

M

M∑

i=1

log(f(xi)yi) = − 1

M

M∑

i=1

log(piyi) (2.11)

where M denotes the total number of training examples.
The minimization of the loss function L is usually carried out using gradi-

ent descent and the backpropagation algorithm [24]. In practice, in order to
reduce the computational burden, at each iteration the loss function is com-
puted by considering only a randomly selected subset of the entire training
set and the optimization algorithm is then known as stochastic gradient
descent (SGD). The size of the subset is a hyperparameter called the batch
size.

Chapter 3
Data set and preprocessing

This work makes use of the well-known KITTI Vision Benchmark Suite [10]
which consists of many driving sequences logged over a period of several
days in and around Karlsruhe, Germany, and includes urban, rural, and
freeway scenarios. The data collection was carried out in day time and in fair
weather conditions, using several sensors mounted on a Volkswagen Passat
B6. Details about the setup can be found in [10]. The sensors relevant for
this work are (i) an RGB camera (Point Grey Flea 2 FL2-14S3C-C), (ii) a
LIDAR (Velodyne HDL-64E), and (iii) a GPS-IMU system (OXTS RT 3003).
Fig. 3.1 shows a detailed illustration of the KITTI sensor platform1.

3.1 Point cloud top-view representation

In order to process a point cloud efficiently with a CNN, a preprocessing step
is carried out for transforming it into a structured 3D tensor. The procedure
consists of the following steps: (1) a 2D grid is specified in the x-y plane of
the LIDAR coordinate system. Each grid cell has a size of L×L, where L is
set to 0.1 meters in this case. The region of space covered by the grid is set
according to the specific problem under consideration: In Paper I, it covered
x ∈ [6, 46] and y ∈ [−10, 10] meters; in Paper II, it covered for x ∈ [−30, 30]
and y ∈ [−30, 30] meters. (2) Each of the 4D data points, which contains the
position [x, y, z] and the reflectivity ρ, is then assigned to its corresponding

1http://www.cvlibs.net/datasets/kitti/setup.php

13

14 Chapter 3. Data set and preprocessing

Figure 3.1: Top view of the sensor platform used for data collection of the
KITTI Vision Benchmark Suite [10]. The sensors relevant for this work are Cam
2, which is an RGB camera, the Velodyne laserscanner, and the GPS/IMU.

cell by projecting it onto the grid:

x
y
z
ρ

grid−−−−−→
projection

u
v
z
ρ

 (3.1)

where u and v specify the column and row cell positions in the grid, respec-
tively. (3) In each grid cell, several statistical measures are then computed:
Number of points, mean reflectivity, as well as mean, standard deviation,
minimum, and maximum height. (4) The complete point cloud top-view in-
put is obtained by stacking together the 2D tensors corresponding to each
statistical measures. Fig. 3.2 shows the top-view images obtained by applying
the above procedure to an example from the KITTI road training set.

3.2 GPS-IMU top-view representation

This section describes how GPS-IMU information can be transformed into
a spatial representation that is suitable for data fusion with the point cloud
top-views described above, and that can be efficiently exploited by a CNN
for pattern recognition.

3.2. GPS-IMU top-view representation 15

Figure 3.2: Each image encodes a specific statistic computed inside the grid
cells using the procedure described in Sect. 3.1. (Top left) Maximum height. (Top
center) Mean reflectivity. (Top right) Occupancy. (Bottom left) Elevation standard
deviation. (Bottom center) Minimum height. (Bottom right) Number of points.

16 Chapter 3. Data set and preprocessing

Consider a generic driving sequence D consisting of N time steps. At each
time step, the GPS-IMU system acquires the following information (only the
relevant quantities are reported) about the vehicle state, (1) latitude, (2)
longitude, (3) altitude, (4) roll angle, (5) pitch angle, and (6) heading. The
data can then be summarized as a list of positions, {[x0i , y0i , z0i]T}Ni=1 and their
corresponding pose matrices {Mi}Ni=1, with respect to a reference coordinate
system denoted by the superscript 0.

By selecting k as the current time step, it is then possible to define two
sets of 3D points expressed in the current coordinate system, denoted by the
superscript k, the future path Π+, and the past path Π−. For example, the
vehicle relative future position at time step k+2 can be obtained by applying
the following transformation:

xkk+2

ykk+2

zkk+2

1

 = M−1

k Mk+2

0
0
0
1

 . (3.2)

Each point in Π+ and Π− can then be projected onto the 2D grid specified
in Sect. 3.1:

xki
yki
zki

 grid−−−−−→

projection

[
ui
vi

]
. (3.3)

The top left panel of Fig. 3.3 shows an example of past and future paths
rendered as disks in a point cloud top-view. The next step of the procedure
is to join neighboring points in order to obtain a continuous curve (see the
top middle panel of Fig. 3.3). In this case, the thickness of the driving paths
is set to 18 pixels or 1.8 meters, which is the vehicle’s nominal width.

3.2.1 IMU augmentation

The future and past paths, so far, only contain occupancy information about
whether the vehicle covered or will cover a certain grid cell (or pixel). The
shape of the path already conveys useful knowledge that can, however, be
augmented with additional information about the vehicle’s motion, that is,
its forward speed, forward acceleration, and yaw rate. For each of those

3.2. GPS-IMU top-view representation 17

Figure 3.3: Illustration of the results generated using the procedure described in
Sect. 3.2. (Top left) Discrete past and future paths represented by red and blue
disks, respectively. The current position is drawn as a green disk. (Top middle)
Continuous driving paths with thickness of 1.8 meters corresponding to the ve-
hicle’s width. (Top right) Driving intention proximity encoding the approximate
distance where a turning action should be taken. (Bottom) From left to right: Im-
ages representing the vehicle’s forward speed, forward acceleration, and yaw rate.
The grayscale intensities are proportional to the numerical values of the illustrated
quantities; the intensity of the background color corresponds to a value of zero.

18 Chapter 3. Data set and preprocessing

quantities, a top-view image is generated by replacing the occupancy state
(1 or 0) with its corresponding value at a given position. Some examples are
presented in the bottom three panels of Fig. 3.3.

3.2.2 Driving intention

Lastly, given the coordinates of the current position, Google Maps is queried
in order to get the driving directions for reaching a desired destination. The
driving instructions consist of sequences of actions, such as turn left or go
straight, and the corresponding approximate distance to the point where they
should be enacted. Both the action and the approximate distance are then
used for augmenting the past path thus generating two additional top-view
images.

3.3 Point cloud projection and upsampling

Whereas the previous two sections discussed a bird’s-eye view representation
of LIDAR point clouds, here a camera perspective is considered that provides
a view of the world similar to the one experienced by the driver. Camera im-
ages are, of course, directly acquired in this perspective. By contrast, LIDAR
point clouds must be preprocessed using the multi-step procedure described
in the following. The first step is to apply the transformation matrix Tc

l

and rectification matrix R to transform a 3D point pl = [xl, yl, zl, 1]T in the
LIDAR coordinate system to a 3D point pc = [xc, yc, zc, 1]T in the rectified
camera coordinate system:

pc = R Tc
l p

l (3.4)

Given pc and the camera projection matrix, P, it is then possible to calculate
its corresponding column and row position in the image, which are denoted
by u and v, respectively, as:

λ

u
v
1

 = P

xc

yc

zc

1

 (3.5)

where λ is a scaling factor that is also determined by solving the above
system of equations. The projection is applied to every point in the point

3.3. Point cloud projection and upsampling 19

Figure 3.4: Illustration of the projection and upsampling procedure described
in Sect. 3.3. The topmost panel shows an RGB image. The left column shows
the sparse LIDAR images (from top to bottom: Z, Y, X) obtained by projecting
the point cloud onto the image plane. The right column shows the corresponding
upsampled images. The grayscale intensities are proportional to the numerical
values of the represented quantities.

cloud, while discarding points such that λ < 0 or when [u, v] falls outside
the image. This procedure generates three images, denoted as X, Y, and Z
where each pixel contains the xc, yc, and zc coordinates of the 3D point that
is projected into it. Given that the laser scanner has a limited number of
channels, many pixels in the image are not associated with a valid detection,
that is, there are no 3D points projected into them. In those cases, the pixel
values are simply set to zero. The sparse LIDAR images are lastly upsampled
using the procedure introduced by Premebida et al. in [22] in order to obtain
a dense input which is more suitable for fusion with the corresponding RGB
images. Fig. 3.4 illustrates some examples of sparse and dense LIDAR images
obtained using the above procedure.

Chapter 4
Applications

4.1 Road detection

A road detector is a system that estimates the free road surface that is avail-
able for the future motion of the vehicle. Most state-of-the-art approaches
carry out road detection using camera images and employ some kind of deep
neural network (DNN) [13, 20, 18]. However, in order to achieve higher
levels of driving automation, it will probably be necessary to use additional
sensors besides cameras. One reason for this is that cameras are passive
sensors and therefore cannot be relied upon in poor lighting conditions or at
nighttime. Laser scanners (or LIDARs) on the other hand carry out sensing
by emitting laser light pulses and timing their reflections. With this sensing
mechanism, they can measure distances with high accuracy in any lighting
condition. As shown in Fig. 4.1, the same scene captured by an RGB camera
at different times during a day might show significant variability. On the
other hand, those same scenes would appear rather similar to a laser scan-
ner. With these considerations in mind, Paper I approached the problem
of road detection using exclusively LIDAR point clouds, whereas Paper III
investigated how to fuse RGB images and LIDAR data.

Road detection is commonly framed as a binary semantic segmentation
task (see Sect. 2.3). The system is fed an image (e.g., RGB, point cloud top-
view, etc.) and produces as output a confidence map that assigns to each
pixel its probability of belonging to the road. Given the confidence map and
the ground truth, several measures can then be computed for evaluating the
system’s performance [7]. This work considers three in particular, namely

21

22 Chapter 4. Applications

Figure 4.1: Images of a scene captured at various times during the day [16].
As can be seen, there is significant appearance variability which makes the task of
road detection using only RGB images particularly challenging or even impossible
in certain conditions.

precision (PRE), recall (REC), and maximum F1-score (MaxF). These
measures are computed as follows:

PRE =
TP

TP + FP
, (4.1)

REC =
TP

TP + FN
, (4.2)

MaxF = max
τ

2× PRE(τ)× REC(τ)

PRE(τ) + REC(τ)
, (4.3)

where, TP denotes the true positives (road pixels correctly classified as road),
FN represents the false negatives (road pixels classified as not-road), and
FP denotes the false positives (not-road pixels classified as road). Lastly,
τ represents the classification threshold: Pixels in the confidence map with
probability smaller than τ are assigned to the class not-road, whereas pixel
with probability larger than τ are classified as road.

4.1. Road detection 23

Convolution 3x3, stride 1, zero-padding + ELU

Dilated convolution 3x3, stride 1, zero-padding + spatial dropout + ELU

Max pooling 2x2, stride 2 Max unpooling Softmax

Convolution 1x1

W

200

H

400

D

32

 Input Encoder Decoder Output

W

200

H

400

D

32

W

100

H

200

D

128

W

100

H

200

D

128

W

100

H

200

D

32

W

200

H

400

D

32

W

200

H

400

D

32

W

200

H

400

D

2

W

200

H

400

D

2

W

100

H

200

D

128

W

100

H

200

D

128

W

100

H

200

D

128

W

100

H

200

D

128

W

100

H

200

D

128

W

100

H

200

D

32

Context module

Conv 3x3, stride 1, zero-padding

Figure 4.2: FCN architecture used in Paper I for road segmentation in point
cloud top-views. The input consists of 6 stacked images encoding height and re-
flectivity information (see Sect. 3.1). The output is a road confidence map. W
represents the width, H denotes the height, and D is the number of feature maps.

4.1.1 LIDAR-only segmentation

Paper I considered only LIDAR point clouds, which were then transformed
into top-view images using the procedure described in Sect. 3.1. A top-view
perspective was chosen because both path planning and vehicle control are
performed in this 2D world. Algorithms competing in the KITTI road bench-
mark are also evaluated in this perspective [8]. Additionally, classification
is simplified in comparison with the camera perspective where, for example,
objects farther away appear smaller; in that case, an FCN would have to
learn to recognize patterns at multiple scales thus requiring more training
data and larger capacity. Fig. 4.2 shows the FCN architecture that was used
for road segmentation. As can be seen, the general architecture resembles
the encoder-decoder network that was described in Sect. 2.2.3. In this case,
however, the encoder and decoder are shallower and include only one max
pooling and one max unpooling layer, respectively. By keeping the feature
maps at high resolution, it is possible to achieve higher segmentation accu-
racy. The FCN also includes several dilated convolutional layers which
are collectively denoted as a context module. Dilated convolutions are sim-
ilar to standard convolutions with the difference that one has to specify a
parameter called dilation factor that determines how many units to skip
when carrying out the convolution operation. By progressively increasing the
dilation factor, it is possible to grow the receptive field of the network with
fewer layers than would be required using standard convolutions.

24 Chapter 4. Applications

Convolution 3x3, stride 1, zero-padding 1+ ELU

W/2

H/2

D

I

N

P

U

T

W/2

H/2

D

W/4

H/4

2*D

W/4

H/4

2*D

W/8

H/8

4*D

W/2

H/2

D

W/2

H/2

D

W/4

H/4

2*D

W/4

H/4

2*D

W

H

8

W

H

3

S

O

F

T

M

A

X

O

U

T

P

U

T

ENCODER DECODER

CONTEXT

MODULE

Convolution 4x4, stride 2, zero-padding 1+ ELU Convolution 3x3, stride 1,zero-padding 1

Deconvolution 4x4, stride 2, zero-padding 1+ ELU

 L1 L2 L3 L4 L5 L15 L16 L17 L18 L19 L20 L21

 L6 to L14

Figure 4.3: Base FCN architecture used in Paper III. The network consists of
20 layers and it is entirely convolutional. Both downsampling and upsampling are
implemented using convolutional layers instead of max pooling and max unpooling
layers as was the case in Paper I and II. Details about the context module can be
found in Paper III.

RGB

LIDAR

LIDAR RGB L1 to L21

RGB

LIDAR

L1 to L20

L1 to L20

L20

LIDAR

L20

RGB
Conv OUT

L21

OUT

Lj-1

Lj-1

 +

 *aj-1

 *bj-1

 +

Lj

Lj

L20

L20

 *a20

 *b20

 +
L21

OUT

Early fusion Late fusion

Cross fusion

RGB

LIDAR

Lcam

Llid

 +

 *a1

 *b1

 +

L2

L2

1

1

cam cam cam cam

lid lid lid lid

Figure 4.4: Fusion strategies investigated in Paper III for carrying our LIDAR-
camera data fusion. In early fusion, the input tensors are concatenated and then
processed together. In late fusion, two parallel branches each process one input
tensor. Fusion happens deeper in the network at the decision level, just before the
output layer. Cross fusion is also carried out by two parallel branches, however,
in this case, trainable connections allow data integration at multiple depth levels.

4.1. Road detection 25

4.1.2 LIDAR-camera segmentation

Paper III also considered the road segmentation task using FCNs. In this
case, however, LIDAR and camera data were fused together to achieve higher
accuracy and robustness, in particular when dealing with challenging lighting
conditions. To establish a direct correspondence between camera and LIDAR
data, in this paper the point clouds were projected onto the camera plane
and then upsampled using the procedure presented in Sect. 3.3. The base
FCN architecture is shown in Fig. 4.3. As can be noticed, downsampling was
performed by using 4× 4 convolutions with stride 2 instead of max pooling
layers. Given that the input images had a larger size compared to those used
in Paper I, the encoder included three downsampling layers. Similarly, the
decoder contained three upsampling layers.

Two common approaches for fusing multimodal data with CNNs are
early fusion and late fusion. As shown in Fig. 4.4, early fusion simply
involves concatenating the input tensors of each modality to create a multi-
modal input tensor. In the specific case of LIDAR-camera fusion considered
here, the input tensors are the RGB camera image and the ZYX dense image
which, once stacked, become a tensor with 6 channels denoted as RGBZYX.
This tensor is then processed with a single branch FCN.

Late fusion instead is carried out with a two-branch FCN (see Fig. 4.4),
where each branch processes only one of the two input tensors. The actual
fusion happens right before the output layer by feeding the processed single
modality tensors to one last convolutional layer after concatenating them.

A contribution of Paper III was the introduction of a novel fusion strategy
named cross fusion which is illustrated in the bottom panel of Fig. 4.4. As
can be seen, the cross fusion network also consists of a two-branch FCN.
In this case, however, the two branches are connected by trainable cross
connections, denoted as aj and bj, j ∈ {1, . . . , N}, where N is the number
of layers. The underlying idea behind this strategy is to allow the FCN to
learn to integrate multimodal information at any level of abstraction.

KITTI road benchmark results

The road detector developed in Papers I and III were evaluated on the KITTI
road benchmark [8] to assess their performance against state-of-the-art algo-
rithms. The results are reported in Table 4.1. LoDNN stands for LIDAR-only
deep neural network and it is the system developed in Paper I. This approach

26 Chapter 4. Applications

Table 4.1: KITTI road benchmark results (in %) on the urban road category.
LidCamNet is the cross fusion FCN developed in Paper III. LoDNN is the LIDAR-
only FCN introduced in Paper I. Only results of published methods are reported.

Rank Method MaxF PRE REC Time (s)
1 DFFA [15] 96.35 96.02 96.69 0.4
2 LidCamNet 96.03 96.23 95.83 0.15
3 RBNet [4] 94.97 94.94 95.01 0.18
4 StixelNet II [9] 94.88 92.97 96.87 1.2
6 LoDNN 94.07 92.81 95.37 0.018
14 LidarHisto [3] 90.67 93.06 88.41 0.1

obtained a MaxF score of 94.07% and outperformed by 3.4 percentage points
the second best LIDAR-only system, LidarHisto. Furthemore, it is currently
the algorithm with fastest inference. The cross fusion FCN introduced in Pa-
per III is called LidCamNet which stands for LIDAR-Camera fusion network.
This approach is currently the second best algorithm on the benchmark.

LidCamNet performed significantly better than LoDNN, the system de-
veloped in Paper I. There might be several factors behind this gap: First
and foremost, LidCamNet also used camera images, which in good lighting
conditions provide rich discriminative clues for road detection. Another fac-
tor that favored LidCamNet was that, in Paper III, the LIDAR images were
upsampled, whereas the top-view images used in Paper I were sparse. One
of the arguments put forward in Paper I was that road detection is more
complex in the camera perspective because an FCN has to learn multiple
scales. Given that in Paper III a LIDAR-only FCN (called ZYX-FCN) was
also included in the experiments, it was possible to make some preliminary
comparisons between LIDAR-based road detectors working in different per-
spectives. ZYX-FCN could not be evaluated on the KITTI road benchmark
(multiple submissions are discouraged) so a direct comparison of ZYX-FCN
and LoDNN on the test set was not possible. However, the two FCNs were
compared on the validation set used in Paper III: LoDNN achieved a MaxF
score of 94.62% whereas ZYX-FCN obtained a score of 94.96%. The gap be-
tween the two systems is not very large but it is noteworthy that ZYX-FCN
performed better. In light of these results, it is clear that further experi-
ments are warranted to determine whether a top-view perspective is indeed
advantageous for carrying out road detection.

4.1. Road detection 27

9
4

.9
6

%

9
6
.0

0
%

9
5

.4
1

%

9
6

.0
6
%

9
6
.2
5
%

9
5
.2

1
%

9
1

.8
1

%

9
5

.4
4

%

9
5
.2

4
%

9
6
.0
2
%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

ZYX RGB Early fusion Late fusion Cross fusion

MaxF [%] - validation MaxF [%] - challenging

Figure 4.5: Comparison of MaxF scores on the validation set and the challenging
set.

Challenging driving scenes

An additional contribution of Paper III was to extend the KITTI road data
set with additional scenes that were visually challenging. The purpose was
to highlight the benefits of fusing LIDAR and camera data for achieving
high accuracy in a wider spectrum of external conditions. The fusion FCNs
previously described and two single modality FCNs were evaluated on a val-
idation set selected from the KITTI road data set (fair weather and good
lighting conditions) and on the challenging set mentioned above. The results
of this experiment are reported in Fig. 4.5. As can be seen, the RGB-FCN
performance was rather good on the validation set (96.00% MaxF) but, as
expected, it decreased significantly on the challenging set (91.81% MaxF).
All the FCNs that had access to LIDAR data achieved scores above 95% on
the challenging set, thus confirming the usefulness of this sensor for robust
road detection. The cross fusion FCN was again the most successful fusion
strategy achieving a MaxF score above 96% in both the validation set and
the challenging set.

28 Chapter 4. Applications

4.2 Driving path generation

The previous section dealt with the problem of road detection using camera
and LIDAR sensors. Road detection, however, is just one among many tasks
that must be carried out within the perception component of autonomous
vehicles. The final goal is to detect and recognize all the driving factors in
the vehicle’s surroundings so that a world model can be generated and then
used for carrying out higher level functions such as path planning, decision
making, and control.

An alternative paradigm, known as behavior reflex, instead proposes to
learn all the driving functions with one single system. A famous example of
this approach is ALVINN [21] developed by Pomerlau in 1989; in that work, a
fully connected feedforward neural network with one hidden layer was trained
to map low-resolution camera and range images to desired heading angles.
An advantage of this type of approach is that the training data, which usually
consists of sequences of camera images together with the corresponding ac-
tions carried out by the driver (e.g., steering angle and acceleration), can be
obtained automatically without the need of time-consuming hand-labeling.
On the negative side, given that the system carries out all the driving func-
tions, from perception to control, it is much more difficult to gain insight into
its decision-making process and to predict how it will behave when presented
with novel situations.

Paper II described an alternative approach where an FCN was trained to
predict human-like driving paths for the future motion of a vehicle. Training
examples were obtained automatically by processing the data logged during
real driving sequences (e.g., LIDAR point clouds, GPS positions, etc.). In
this way, a large data set was obtained without much effort. Also in this
case, LIDAR top-view images were used as input for the FCN (see Sect. 3.1),
however a larger region of interest was considered which covered the range
[−30, 30] meters in both the x and y directions. Additional input channels
encoding information about the vehicle’s past motion and driving directions
were generated by using the procedure described in Sect. 3.2. The FCN’s
architecture was similar to the one used in Paper I, one of the main differences
being that there were two max pooling layers instead of one in order to reduce
the computational requirements because of the larger size of the input images.

Several FCNs were trained using different combinations of input chan-
nels for evaluating the benefits provided by individual sensor or information
modalities. The FCN that only used LIDAR data obtained a score of 83.44%.

4.2. Driving path generation 29

Adding IMU provided a gain of 1.7 percentage points, whereas considering
driving directions resulted in a gain of 2.3 percentage points. The FCN that
used all the available data, that is, LIDAR point clouds, IMU information,
and driving directions, obtained the best MaxF score of 88.13%. These re-
sults showed that each modality contributed to improve performance and
that the adopted data representation was appropriate for integrating multi-
modal information.

Chapter 5
Conclusion and future work

5.1 Conclusion

This thesis has explored several applications of deep learning methods in the
context of driving automation. It has been shown that CNNs, which are
commonly used for processing camera images, can also be used effectively
for working exclusively with LIDAR data (Paper I) or in combination with
other sensors or information modalities (Papers II and III). The emphasis on
the LIDAR sensor was motivated by its capacity to provide highly accurate
range measurements in any lighting conditions; this alternative view of the
environment can then be leveraged for making driving automation possible
in a broader spectrum of external conditions.

It has been shown that sparse bird’s-eye view images can directly be used
as input to an FCN for carrying out road segmentation (Paper I) with high ac-
curacy and fast detection. The LIDAR-only deep neural network (LoDNN),
achieved state-of-the-art performance with a MaxF score of 94.07% on the
KITTI road benchmark, outperforming by a wide margin the second best
LIDAR-based system.

By working in the same top-view perspective, a novel end-to-end learning
system has been developed for generating driving paths (Paper II). Whereas
a behavior reflex approach simply predicts the next driving action, a driving
path specifies the vehicle’s future positions over a longer look-ahead horizon
(30 meters, in this work). This makes the output of the proposed approach
more interpretable and informative for further planning and decision-making.
Additionally, the ground truth annotations for training the FCN are obtained

31

32 Chapter 5. Conclusion and future work

in an automatic fashion thus allowing the generation of large training sets
with no additional human effort and the possibility of continuous learning,
that is, training the system while it is running in order for it to adapt to
entirely novel situations. In order to exploit the visual pattern recognition
capability of CNNs, information about the vehicle’s past motion and future
destination were transformed into a spatial representation that allowed a
direct integration with the point cloud top-views (Paper II).

Multimodal sensor fusion has also been investigated for the task of road
detection. It has been shown that by combining camera images and LIDAR
data, an FCN can carry out road segmentation in a wider range of external
conditions than possible using only RGB images (Paper III). Besides evalu-
ating two established fusion FCNs, early and late fusion, a novel multimodal
FCN has been developed that can learn at what abstaction level and to what
extent LIDAR and camera information should be fused. This approach was
evaluated on the KITTI road benchmark for which it achieved state-of-the-
art performance. In fact, it outperformed by almost two percentage points
the system introduced in Paper I, a result that highlights the importance of
developing multimodal approaches in the quest towards full driving automa-
tion.

5.2 Future work

The approaches described in this thesis were all memory-less, that is, they
processed each input independently of the previous ones. The integration of
time in the system, either in the form of aggregated inputs (e.g., combining
multiple LIDAR scans within one image) or by using networks with an in-
ternal memory (such as recurrent neural networks) would likely improve the
overall performance and robustness for all the considered tasks. For exam-
ple, in its current formulation, the driving path generation FCN described in
Paper II cannot know which objects are stationary and which ones are not,
something that limits its applicability mostly to traffic-free scenarios.

Another important issue is the annotation of data. Supervised learning
approaches, such as the ones presented here, need annotated training exam-
ples which in general are very expensive to obtain in terms of time, money,
and human effort. In Paper II, the problem of creating annotations was
solved by using the GPS to recover the vehicle’s future driving path. A rele-
vant topic for future work would be to devise similar strategies for automatic

5.2. Future work 33

or semi-automatic data labeling.
As was shown in Papers II and III, fusing multiple sensors and informa-

tion modalities is generally beneficial for achieving better performance and
robustness. In future work, it will be of high interest to investigate how addi-
tional sensors (such as radars, stereo cameras, etc.) and information sources
(e.g., high-definition maps) can be integrated within the proposed systems.
A related topic will be the development of additional data representations
that are suitable for multimodal data fusion.

Chapter 6
Summary of included papers

6.1 Paper I

This work was concerned with road detection using a LIDAR as the main
sensor. The problem was cast as a semantic segmentation task and it was
approached using a fully convolutional neural network (FCN). The FCN was
designed to have a large receptive field and used high-resolution feature maps
in order to achieve higher accuracy. Top-view images encoding several basic
statistics were generated to summarize the information content of unstruc-
tured point clouds into a format that was suitable for processing with the
FCN. The proposed system carried out real-time inference at about 55 Hz us-
ing a modern GPU and achieved state-of-the-art performance on the KITTI
road benchmark reaching a MaxF score of 94.07% and outperforming by over
3.4 percentage points the second best LIDAR-only system.

6.2 Paper II

In this paper, a deep learning approach was developed to carry out driving
path generation in LIDAR top-view images. This was accomplished by fus-
ing LIDAR point clouds with GPS-IMU information and driving directions
using an FCN. The system was trained using as ground truth driving paths
followed by human drivers. An advantage of this approach was that the an-
notations were obtained automatically and therefore a large data set for su-
pervised learning could be collected with limited effort. Several combinations

35

36 Chapter 6. Summary of included papers

of inputs were considered to determine the effect of individual information
modalities. The main result was that the FCN trained with all the available
information (i.e., LIDAR, GPS-IMU, and driving directions) achieved the
highest accuracy thus confirming that the chosen architecture and data rep-
resentation were suitable for carrying out information fusion and that each
modality contributed to the overall system performance.

6.3 Paper III

As Paper I, this work was also concerned with the task of road detection.
However, in this case, the problem was solved by integrating RGB images
and LIDAR point clouds that were projected onto the image plane. One of
the main contributions of this work was the introduction of a novel fusion
FCN architecture, called cross fusion, that allowed multimodal information
fusion at any depth level in the network by using trainable cross connections.
The cross fusion FCN outperformed two other established fusion approaches,
early fusion and late fusion, as well as the single modality (RGB or LIDAR)
FCNs. The system was evaluated on the KITTI road benchmark and ranked
second with a MaxF score of 96.03%.

Bibliography

[1] V. Badrinarayanan, A. Handa, and R. Cipolla, Segnet: A deep
convolutional encoder-decoder architecture for robust semantic pixel-wise
labelling, arXiv preprint arXiv:1505.07293, (2015).

[2] M. Blanco, J. Atwood, S. Russell, T. Trimble, J. McClaf-
ferty, and M. Perez, Automated vehicle crash rate comparison us-
ing naturalistic data, tech. rep., Virginia Tech Transportation Institute,
2016.

[3] L. Chen, J. Yang, and H. Kong, Lidar-histogram for fast road and
obstacle detection, in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 1343–1348.

[4] Z. Chen and Z. Chen, Rbnet: A deep neural network for unified
road and road boundary detection, in International Conference on Neural
Information Processing, Springer, 2017, pp. 677–687.

[5] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and
accurate deep network learning by exponential linear units (elus), CoRR,
abs/1511.07289 (2015).

[6] S. Dahdah and K. McMahon, The true cost of road crashes: valuing
life and the cost of a serious injury, International Road Assessment
Programme, World Bank Global Road Safety Facility, (2008).

[7] T. Fawcett, An introduction to roc analysis, Pattern Recognition Let-
ters, 27 (2006), pp. 861 – 874. ROC Analysis in Pattern Recognition.

37

38 BIBLIOGRAPHY

[8] J. Fritsch, T. Kuhnl, and A. Geiger, A new performance measure
and evaluation benchmark for road detection algorithms, in Intelligent
Transportation Systems-(ITSC), 2013 16th International IEEE Confer-
ence on, IEEE, 2013, pp. 1693–1700.

[9] N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner,
A. Ayash, V. Goldner, R. Cohen, K. Horn, and D. Levi, Real-
time category-based and general obstacle detection for autonomous driv-
ing, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 198–205.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets
robotics: The kitti dataset, The International Journal of Robotics Re-
search, 32 (2013), pp. 1231–1237.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016.

[12] D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex, The Journal
of physiology, 160 (1962), pp. 106–154.

[13] A. Laddha, M. K. Kocamaz, L. E. Navarro-Serment, and
M. Hebert, Map-supervised road detection, in Intelligent Vehicles Sym-
posium (IV), 2016 IEEE, IEEE, 2016, pp. 118–123.

[14] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521
(2015), pp. 436–444.

[15] X. Liu, Z. Deng, and G. Yang, Drivable road detection based on
dilated fpn with feature aggregation, in 29th International Conference on
Tools with Artificial Intelligence (ICTAI), IEEE, 2017.

[16] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, 1 Year,
1000km: The Oxford RobotCar Dataset, The International Journal of
Robotics Research (IJRR), 36 (2017), pp. 3–15.

[17] W. S. McCulloch and W. Pitts, A logical calculus of the ideas
immanent in nervous activity, The bulletin of mathematical biophysics,
5 (1943), pp. 115–133.

BIBLIOGRAPHY 39

[18] R. Mohan, Deep deconvolutional networks for scene parsing, arXiv
preprint arXiv:1411.4101, (2014).

[19] V. Nair and G. E. Hinton, Rectified linear units improve restricted
boltzmann machines, in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML), 2010, pp. 807–814.

[20] G. L. Oliveira, W. Burgard, and T. Brox, Efficient deep models
for monocular road segmentation, in 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Oct 2016, pp. 4885–
4891.

[21] D. A. Pomerleau, Alvinn: An autonomous land vehicle in a neural
network, in Advances in Neural Information Processing Systems 1, D. S.
Touretzky, ed., Morgan-Kaufmann, 1989, pp. 305–313.

[22] C. Premebida, J. Carreira, J. Batista, and U. Nunes, Pedes-
trian detection combining rgb and dense lidar data, in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sept 2014,
pp. 4112–4117.

[23] F. Rosenblatt, The perceptron, a perceiving and recognizing automa-
ton, Technical Report 85-460-1, (1957).

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representations by back-propagating errors, Nature, 323 (1986), pp. 533–
538.

[25] SAE On-Road Automated Vehicle Standards Committee and
others, Taxonomy and definitions for terms related to on-road motor
vehicle automated driving systems, SAE Standard J3016, (2014), pp. 01–
16.

[26] J. R. Treat, N. Tumbas, S. McDonald, D. Shinar, R. D. Hume,
R. Mayer, R. Stansifer, and N. Castellan, Tri-level study of the
causes of traffic accidents: final report, (1979).

[27] World Health Organization, Global status report on road safety
2015, World Health Organization, 2015.

