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We consider the reflection of relativistically strong radiation from plasma and identify the physical

origin of the electrons’ tendency to form a thin sheet, which maintains its localisation throughout

its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in

[Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set

of differential equations that describe the reflection of radiation with arbitrary variation of

polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of

incidence. We confirm with ab initio PIC simulations that the developed theory accurately

describes laser-plasma interactions in the regime where the reflection of relativistically strong radi-

ation is accompanied by significant, repeated relocation of plasma electrons. In particular, the the-

ory can be applied for the studies of plasma heating and coherent and incoherent emissions in the

RES regime of high-intensity laser-plasma interaction. VC 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5000785

I. INTRODUCTION

The reflection of electromagnetic radiation from a plasma

with overcritical density originates from the induced self-

consistent dynamics of electrons at the plasma interface. If the

radiation is intense enough to make the electrons’ motion rela-

tivistic, the radiation pressure causes an inward relocation of

electrons and enables a large variety of highly nonlinear

reflection scenarios. These span between the cases of ideal

reflection (the limit of highly overdense plasma with steep dis-

tribution) and relativistic self-induced transparency. Such rela-

tivistic intensities can be achieved with high-intensity optical

laser pulses, while overdense plasma with various scales of

density transition at the interface is naturally formed by the

ionization, heating, and thermal expansion of solids exposed

to pre-pulse light. The prospects of using laser-solid interac-

tions for various applications, ranging from high-harmonic

generation to plasma heating, has stimulated theoretical and

experimental studies of the non-linear reflection process.1–18

The most general theoretical description of the reflection

process is given by the kinetic approach. Although this

description is very useful for numerical studies, the high

degree of nonlinearity largely precludes direct theoretical

analysis based on the kinetic equations. A notable exception

is the case of normal incidence of circularly polarized radia-

tion. In this case, the balance between the radiation pressure

and the Coulomb attraction to the ions leads to quasi-

stationary plasma distributions. These distributions can be

obtained analytically in a hydrodynamical approxima-

tion.19,20 However, in other cases, the radiation pressure

oscillates in time and gives rise to complex plasma dynam-

ics. Some theoretical analysis can be performed in the limit

of high density using the cold fluid approximation.21–23

However, in the general case, oscillation of the radiation

pressure leads to the formation of many streams in plasmas

invalidating the hydrodynamical approximation.

An alternative approach is to develop a simple artificial

system, the behaviour of which mimics plasma dynamics in

certain aspects. The description in this case can be driven by

phenomenological, rather than ab initio, principles. If the

plasma has a sharp boundary with a steep rise of density to a

sufficiently high value, the incident radiation penetrates to a

negligible depth, and the deviation from ideal reflection can

be modelled using the principle of relativistic oscillating
mirror (ROM).24–26 This principle states that the ideal reflec-

tion happens at some oscillating point, where the incoming

and outgoing electromagnetic fluxes are equal to each other

(Leontovich boundary conditions27). Theoretical analysis

based on the ROM principle provides insights into various

aspects of interactions, such as polarization selection

rules5,25,28 and high-harmonic generation properties.29,30

However, the assumed-to-be instantaneous redirection

of the incident electromagnetic flux implies that energy is

not accumulated even for a fraction of the radiation cycle

when the electrons are relocated by radiation relative to the

ions. Thus, the ROM model cannot encompass effects due to

significant electron displacement, which happens when the

intensity is not too low and/or the density is not too high.

Indeed, the boundary conditions in the ROM model explic-

itly imply that the amplitude of the reflected radiation can

never exceed that of incident radiation. However, for certain

parameters, the electron displacement leads to the accumula-

tion of up to 60% of the energy of each radiation cycle, fol-

lowed by the release of that energy in the form of a short

burst with more than a hundred times higher intensity.31 A

principle that accounts for such energy redistribution and

describes this and other highly nonlinear interaction
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scenarios in this regime was proposed in Ref. 31 and is

known as the relativistic electronic spring (RES). The RES

model provides a direct description of the plasma and elec-

tromagnetic field dynamics over a large range of intensities

and densities, when the reflection of relativistically strong

radiation is accompanied by significant, repeated relocation

of plasma electrons. This regime can thus be referred to as

the RES regime of laser-plasma interaction. Due to the high

degree of energy coupling, the RES regime provides promi-

nent opportunities for plasma heating, as well as for incoher-

ent32,33 and coherent synchrotron emission (CSE).34 Instead

of the Doppler effect caused by quick phase leaps in the

ROM regime or triggered internal plasma oscillations in the

regime of coherent wake emission (CWE),1 the mechanism

of high-harmonic generation in the RES regime is a rapid re-

emission of the accumulated energy by a thin electron sheet

that naturally forms due to relativistic effects.

Recent studies have shown that the RES regime is effi-

cient in converting the energy of incident radiation into

coherent XUV bursts with short duration, high intensity35–37

and controllable ellipticity,38 as well as for producing inco-

herent X-ray and gamma radiation.32,33

In this paper, we reveal the physical origins of the RES

principle and elaborate further on the theory based on this

principle. We provide general equations that are applicable

for the arbitrary incidence angle, the arbitrary density profile

and the arbitrary temporal evolution of the field and polariza-

tion in the incident radiation. In this way, we demonstrate

that the RES model does not just mimic the reflection pro-

cess, but is a theory that arises from a physically-grounded

approximation.

II. ORIGINS OF THE GOVERNING PRINCIPLES

The primary assumption of the theory is that the plasma

eventually halts the propagation of the incident radiation.

This generally happens when the frequency range of the inci-

dent radiation is below the plasma frequency. If sufficiently

high densities are reached at some point inside the plasma,

then the radiation propagation is generally halted. Although

effects of relativistic self-induced transparency require more

detailed analysis, here, we assume that the density grows at

the interface to sufficiently high values to prevent the radia-

tion propagation. Under this assumption, we focus on the ori-

gins of the RES principle and answer the following

questions: Why do the electrons tend to form a thin sheet?

Why do the electrons maintain and sometimes even improve

their co-locality in space during the motion of the sheet?

Does the RES principle provide a self-consistent description

of plasma dynamics under certain assumptions?

We consider the problem in the reference frame moving

with velocity c sin h along the plasma surface, where c is the

speed of light and h is the angle of incidence. In this refer-

ence frame, the incidence is normal and the plasma streams

with a transverse speed of c sin h. Under the assumption that

the spatial scales of transverse variations of radiation and

plasma are large in comparison with the wavelength, the

problem can be locally considered as one-dimensional.

When the incident radiation reaches the plasma, electrons

start to move under the effect of the electromagnetic fields,

while the same fields are modified by the induced electron

and ion currents as they propagate deeper and deeper.

However, the fact that the propagation of radiation is eventu-

ally halted means that the inward emission due to these cur-

rents must, at some point, provide exact cancellation of the

incident radiation. Thus, the incident field cancellation by

the induced currents is a general formulation of the radiation

reflection. This cancellation requirement is one of the

assumptions of the RES theory.

One might expect the electron spatial distribution, which

is determined by the self-consistent electromagnetic fields,

to be highly complex. However, a remarkable simplification

takes place in the case of relativistic motion: the electrons

tend to form a single thin sheet that separates the region of

uncompensated ions and the unperturbed plasma.

We observed this tendency and its connection with rela-

tivistic effects in the consideration of the stationary problem

in Ref. 31. However, this does not explain why it occurs in

the general dynamical case: although the electrons can natu-

rally pile up into a localized layer at the rising edge of the

radiation pressure, one could expect that the opposite pro-

cess, i.e., spreading, happens, when the radiation pressure

decreases and the layer propagates backwards. However, as

one can see from Fig. 3(a) in Ref. 31, the layer actually

shrinks even further during this process. This gives rise to

the generation of short bursts of radiation. In terms of the

acting forces and the consequent particle dynamics, this

effect can be qualitatively explained as follows.

We divide the motion of the electrons during a single

cycle of radiation pressure oscillations into two stages: first,

the radiation pushes electrons from left to right; then in the

second stage, the formed layer propagates from right to left

(towards the initial position of the plasma boundary). During

the first stage, at each instance of time, the following state-

ment holds true: the electrons in the left part of the layer

experience a stronger force of radiation pressure for a longer

time than the electrons in the right part of the layer. If the

force causes a relativistic motion of electrons, then this dif-

ference quickly results in piling up the electrons.

During the second stage, the mechanism by which the

sheet becomes thinner is different (see Fig. 1). To demon-

strate the idea we assume that the density of electrons n is

constant across the layer and that the electrons move with

roughly the same speed in the transverse direction (the dif-

ference cannot be dramatic because their motion approaches

the relativistic limit). We use xr to denote the distance

between a certain point within the layer and the rightmost

side of the layer. In this case, from Ampere’s law, we can

see that with the increase of xr, the transverse component of

the magnetic field B? and the related component of the

Lorentz force grow linearly

B? � nxr: (1)

The residual ions induce a longitudinal electric field that

causes attraction of the electrons in the layer to the residual

ions. The electrons in the layer compensate this, and the

compensation is complete at the most right point of the layer
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(xr¼ 0) because of the charge quasineutrality. Under the

assumption of the constant density in the layer, the deviation

from the complete compensation grows linearly with an

increase of xr. Thus, the electric component of the Lorentz

force also grows linearly with the increase of xr. When the

attraction to the residual ions starts to dominate over the

radiation pressure (determined by B?), the imbalance also

grows linearly with an increase of xr

Fx � nxr: (2)

The electrons in the thin layer start to move backward soon

after the force of attraction to the residual ions becomes

larger than that of the radiation pressure (we will see later

that the inertia plays a minor role here). From the conserva-

tion of the canonical momentum, we can conclude that the

transverse momentum of electrons grows quadratically with

xr (here, we assume p? � mc)

p? �
e

c

ðx

0

B?ðx0Þdx0 � nx2
r ; (3)

where e is the electron charge. Thus, the electrons in the left

part of the layer have larger values of transverse momentum,

and are therefore more “massive” in terms of longitudinal

motion due to a relativistic increase of the effective mass. In

the highly relativistic case, the effective mass for longitudi-

nal motion grows quadratically with xr

mk ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

?=ðmcÞ2
q

� nx2
r : (4)

As we can see, with an increase of xr, the relativistic increase

of mass grows quadratically, whereas the longitudinal force

grows linearly. This means that the response to the restoring

force of the electrons in the left part of the layer is retarded

relative to those in the right part. As a result, the electrons in

the right part move to the left faster than the electrons in the

left part. However, the electrons from the right part can

never overrun the electrons from the left part. This is because

of the conservation of transverse canonical momentum.

Suppose some electron L had the initial position to the left of

some electron R within the layer and furthermore the elec-

tron R overruns the electron L, then at some instance of time,

the electrons have the same longitudinal coordinate. At this

instance of time, the electrons have exactly the same trans-

verse momentum, because this depends only on the longitu-

dinal coordinate due to the conservation of transverse

canonical momentum. However, prior to this instance, the

electron R experienced a strictly weaker longitudinal force

and thus gained less longitudinal momentum than the elec-

tron L. Thus, the electron R has strictly smaller longitudinal

velocity than the electron L. This contradicts the initial sup-

position that the electron R overruns the electron L. The con-

sequence of this is that the electrons in the layer can come

closer to each other, but the effect of wave breaking can

never happen.

In such a way, we showed that in the case of relativistic

motion, the relativistic mass increase due to transverse

momentum causes an inversion of longitudinal velocities in

the layer, while the conservation of transverse canonical

momentum prevents breaking of this inversion. Therefore,

the layer tends to shrink during its backward motion. This

means that the electrons in the layer tend towards having the

same longitudinal velocity. Since their motion is relativistic,

and the orientation of the transverse motion is roughly the

same (being determined by the magnetic field orientation),

the transverse components of the electrons’ velocities are

roughly the same for all electrons within the layer. This pro-

vides complete self-consistency with the macroscopic

assumptions of the RES theory. In the RES theory, we make

use of the fact that the emission is determined by the elec-

trons’ velocity but not momentum. Thus, although the elec-

trons in the layer do have different values of momentum,

their emission can be described in terms of macroscopic

parameters: the layer’s charge and velocity.

The only special point in this respect is the point when

the layer moves almost exactly to the left. In this case, the

backward emission becomes singularly strong because Eqs.

(8) and (9) are divergent at bx ¼ �1. The actual limit

depends on the gamma factor distribution and the thickness

of the layer. Determining the actual limit of the layer’s

shrinking requires consideration of its microscopic dynam-

ics. The driving conditions for these dynamics can be

obtained from its macroscopic dynamics described by RES

theory under the assumption of the layer being thin in com-

parison with its macroscopic motion.

III. GOVERNING EQUATIONS

Here, we again use the moving reference frame, where

the incidence is normal and the problem can be considered

as one-dimensional. Although we use this approximation

here, the developed approach can be extended to account for

various deviations from one-dimensional geometry. We also

assume here that ions remain immobile, but their motion can

be accounted for, for example, as a slow deviation to the pre-

sented consideration. We use an orthogonal coordinate sys-

tem XYZ with the x-axis oriented towards the incidence

direction and the y-axis oriented against the plasma stream.

The RES principle includes three assumptions:31 (1) at

each instance of time, the electrons, pushed by the incident

radiation, form a thin layer that separates unperturbed plasma

FIG. 1. Schematic representation of the main assumptions and relations.
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and the region of uncompensated ions; (2) electrons in the

layer may have different gamma factors, but move with a rela-

tivistic speed in the same direction; and (3) the motion of elec-

trons together with the flow of uncompensated ions produces

emission that cancels the incident radiation behind the thin

layer (see Fig. 1). We use these assumptions here to derive a

generalized theory of interaction in the RES regime.

According to the RES principle, at each instance of

time, the plasma is assumed to consist of three regions: (1) a

region x < xs that contains only plasma ions but no electrons;

(2) a thin sheet of electrons at x¼ xs, where the uncompen-

sated charge of the first region is concentrated; and (3) unper-

turbed plasma for x > xs. The RES principle states that

radiation of the electrons in the thin layer and of uncompen-

sated ions provide compensation for the incident radiation

Ey cosh xs�ctð Þ
� �

¼ 2pe

cos2h

ðxs

�1

NðxÞdx sinh�
by

1�bx

 !
; (5)

Ez cos h xs � ctð Þ
� �

¼ 2pe

cos2h

ðxs

�1

NðxÞdx � bz

1� bx

� �
; (6)

where the arbitrary incident radiation is characterized in the

laboratory frame through the electric field (in CGS units) in

the plane of incidence EyðgÞ and in the other transverse

direction EzðgÞ as functions of coordinate g along the propa-

gation (for the respective components of the magnetic field,

this implies BzðgÞ ¼ EyðgÞ and ByðgÞ ¼ �EzðgÞ); the plasma

is characterized by an arbitrary function NðvÞ of ion density

in the laboratory frame as a function of depth v; bx, by and bz

are the effective (averaged) components of the electron

velocity in the sheet given in the units of the speed of light.

If the fields are sufficiently strong to cause a relativistic

motion of electrons, the limit b2
x þ b2

y þ b2
z ¼ 1 can be used

to account for relativistic restriction. Note that the relativistic

gamma factor does not directly enter the expressions for the

layer emission. In some cases, it might be important to con-

sider the finite value of the gamma factor; however, as we

understood above, the gamma factor is different for different

electrons in the layer. Thus, the above-mentioned relativistic

limit provides a natural self-consistent description in a sim-

ple form. Using that qs ¼ 2pe
Ð xs

�1 NðxÞdx= cos2h character-

izes the instantaneous total charge of electrons in the layer,

we can now write a closed system of differential equations

that describe the reflection process

Ey cos h xs � ctð Þ
� �

¼ qs sin h�
by

1� bx

 !
;

Ez cos h xs � ctð Þ
� �

¼ qs �
bz

1� bx

� �
;

b2
x þ b2

y þ b2
z ¼ 1;

dqs

dt
¼ 2pec

cos2h
NðxsÞbx;

dxs

dt
¼ cbx:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(7)

During the reflection process, the backward emission appears

as the component of the radiation of the uncompensated ions

and the electrons in the layer in the negative x direction

Eb
y cos h xs þ ctð Þð Þ ¼ qs

by

1þ bx

� sin h

 !
; (8)

Eb
z cos h xs þ ctð Þð Þ ¼ qs

bz

1þ bx

� �
; (9)

where the backward radiation is characterized in the labora-

tory frame through the electric field in the plane of incidence

Eb
yðnÞ and in the other transverse direction Eb

z ðnÞ as functions

of coordinate n along the specular direction (for the respec-

tive components of the magnetic field, this implies Bb
z ðnÞ ¼

�Eb
yðnÞ and Bb

yðnÞ ¼ EzðnÞ).
We can now show that system (7) always provides

exactly one solution, and that this solution is physically

meaningful. From the first three equations, we can explicitly

obtain

bx ¼
R2

y þ R2
z � 1

R2
y þ R2

z þ 1
; (10)

where the quantities Ry ¼ by=ð1� bxÞ and Rz ¼ bz=ð1� bxÞ
are given by

Ry ¼ sin h�
Ey cos h xs � ctð Þ
� �

qs
; (11)

Rz ¼ �
Ez cos h xs � ctð Þ
� �

qs
: (12)

Expression (10) always provides a value within a meaningful

range �1 < bx < 1. Another requirement for the solution to

be meaningful occurs under the assumption that the plasma

has a certain bound, which we can assume to be at x¼ 0, i.e.,

Nðx < 0Þ ¼ 0; Nðx > 0Þ > 0. In this case, the solution has a

physical meaning only if xs > 0. We can show that this is

always the case. If the value of xs approaches the point x¼ 0,

the value of qs also tends to zero. In this case, according to

Eqs. (11) and (12), the value R2
y þ R2

z tends to grow (if Ey 6¼
0 or Ez 6¼ 0). This eventually leads to bx > 0 [see Eq. (10)],

precluding reaching the point x¼ 0. The only exception is

the case when both Ey¼ 0 and Ez¼ 0. This can happen when

the polarization is strictly linear. In this case, one can con-

sider a linear approximation of the field in the vicinity of the

zero point and demonstrate that the linearised equations

always give a positive solution for bx. Thus, passing this spe-

cial point implies that bx switches from negative to positive

instantly at x¼ 0. (This result is expected, since we can

always introduce a small deviation from linear polarization

to resolve this special point and then consider the limit of the

deviation to be infinitely small.)

We have demonstrated that the theory always provides

exactly one solution, and this solution is physically meaning-

ful. Then, Eqs. (10)–(12) provide a practical means of com-

puting the solution numerically. Assuming that at the

instance of time t¼ 0, the incident radiation reaches the
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plasma at the point x¼ 0 [i.e., Eyðg > 0Þ ¼ 0;
Ezðg > 0Þ ¼ 0; Nðd < 0Þ ¼ 0], we can write the initial con-

ditions for system (7) in the form

xsðt ¼ 0Þ ¼ 0; (13)

qsðt ¼ 0Þ ¼ 0: (14)

Equations (10)–(12) coupled with the last two equations of

system (7) explicitly determine how xs and qs evolve, pro-

vided that we start from any negligibly small, but non-zero

values of xs and �qs (which is justified by the interest in the

solution with a physical meaning). For practical reasons, one

can also avoid the aforementioned singular point by intro-

ducing a small deviation to the field in the points where

Ey¼ 0 and Ez¼ 0. These practically motivated deviations do

not affect the results.

The equations of system (7) are self-similar under multi-

plication of the density and amplitude distributions by the

same factor. This means that the developed theory is relativ-

istically self-similar. Note, however, that in the general case,

the arbitrary variation of fields and density does not allow

defining any certain frequency, amplitude, density and thus

the value of relativistic similarity parameter26 S ¼ n=a,

where n and a are the plasma density in units of critical den-

sity and the radiation amplitude in relativistic units.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

To demonstrate the capabilities of the theory, we present

a comparison of the theoretical results with the results of a

PIC simulation for a particular interaction scenario. We con-

sider a pulse of radiation incident on a plasma slab with an

incidence angle of h ¼ p=7. We again consider the problem

in the moving reference frame, where the problem is one-

dimensional. In this reference frame, the pulse is defined by

the field components Eyðx� tÞ ¼ Bzðx� tÞ ¼ 300 sin ðx� tÞ;
Ezðx� tÞ ¼ �Byðx� tÞ ¼ 150 sin ððx� tÞ7=4Þ, where coordi-

nate x and time t are given in the units of k=ð2pÞ and

k=ð2pcÞ, respectively, and the field strength is given in rela-

tivistic units 2pc2=ðekÞ; k ¼ ð1 lmÞ= cos h. The plasma com-

prises immobile ions and electrons with the density rising

linearly from 0 to 500 over 0 < x < k=3, staying fixed over

k=3 < x < 2k=3 and falling linearly to 0 over 2k=3 < x < k.

Here, the density is given in units of ncr= cos h, where ncr

¼ pmc2=ðekÞ2 is the plasma critical density for the wave-

length k in the laboratory frame.

The results of 1D PIC simulation for this problem are

shown in Fig. 2 for four instances of time. At the instance

t¼ 4.4, we can clearly see how the incident radiation pushes

electrons so that they form a dense layer. At the instance

t¼ 5.5, we can see how this layer shrinks further during its

backward motion and how this results in the generation of a

singular burst of radiation. At the last instance t¼ 15.7, we

can see the resulting reflected radiation. The result of numer-

ical integration of system (7) is shown with dotted curves in

terms of Eyðxþ tÞ ¼ �Bzðxþ tÞ and Ezðxþ tÞ ¼ Byðxþ tÞ
calculated via Eqs. (8) and (9). As we can see, the theory

describes the entire process well. The most difficult instance

for the theory is the instance of the burst generation, when

bx � �1. At this point, the theory gives singular results

because the gamma factor is assumed to be infinite. The

results are not so sensitive to this assumption at other instan-

ces of time. The analysis presented above shows that it is not

reasonable to consider any particular value of gamma factor,

because it is different for different electrons within the layer.

This point is of particular interest for the generation of short

bursts of radiation and plasma heating because the electron

layer undergoes the most extreme bifurcation. To study these

problems, one needs to consider micro-dynamics of the elec-

tron layer. The presented theory can be very useful for deter-

mining the macroscopic conditions for these studies.

As one can see from the picture for t¼ 15.7 after the sin-

gular point at x � �2:6p, the resultant emission starts to

deviate slightly (in a non-systematic but rather random way)

from the predictions of the theory at x > �2:6p. However,

these deviations quickly decay and the generated signal

again follows perfectly the prediction from x > �2p. This

indicates that the theory encompasses the essence of the

FIG. 2. Comparison of theoretical calculations with the result of PIC simula-

tion for the scenario described in the text. The panels show the electric field

y- and z-components and the electron density as a function of the longitudi-

nal coordinate in the moving reference frame for four instances of time:

t¼ 0 (initial distributions), t¼ 4.4 (radiation pushing electrons that pile up

into a layer), t¼ 5.5 (the layer shrinking during backward motion), t¼ 15.7

(the resultant reflected signal that propagates from right to left). The results

of numerical integration of the theory equations are shown with dotted

curves for t¼ 15.7.
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plasma dynamics, while the particular perturbations decay

quickly so that the plasma does not accumulate and

“remember” earlier deviations. The parameters of the consid-

ered example have been chosen arbitrarily; similar or even

better agreement can be seen in other cases for the same

level of intensity.

However, the accuracy of description depends on how

relativistic the motion is. In the case of a wave with constant

frequency x, this can be characterized by a parameter a0,

which is the wave amplitude in relativistic units mcx=e. The

theory is not restricted to any certain frequency of the inci-

dent radiation (which can have a broad spectrum) and thus

the definition of a0 is not straightforward in the general case.

However, in order to provide a general sense of the theory’s

accuracy for different intensities, we present here the results

of several relativistically similar problems, defining a0 using

the frequency and the amplitude of the wave that comprises

the Ey component inside the incident pulse. In Fig. 3, we

show the results of PIC simulations for a0 ¼ 300 (as consid-

ered above), a0 ¼ 30 and a0 ¼ 3. To maintain relativistic

self-similarity, the density and field amplitudes in the last

two cases are accordingly multiplied by 0.1 and 0.01, respec-

tively; all other parameters and distributions are the same as

before. As one can see from Fig. 3(a), in terms of the field

peaks and their position, the theory captures the essence of

the plasma dynamics even for moderately relativistic intensi-

ties (a0 � 3), while the agreement becomes almost perfect

for highly relativistic intensities (a0 � 300).

Therefore, we conclude that the theory correctly and

accurately describes the ultra-relativistic limit of plasma

dynamics and also provides a guiding description at moder-

ately relativistic intensities. We can see that the singular

bursts predicted by the theory appear in the simulations in

the calculated form only in the case of sufficiently high

intensity, i.e., when the relativistic effects lead to shrinking

of the thin layer to a thickness less than the thickness of the

radiation burst. For the burst at x � �p, the PIC simulation

reproduces the calculated form perfectly already for

a0 ¼ 300, while the peak at x � �3p is more singular and

thus not reproduced completely even at this intensity. This

can also be seen from the spectra presented separately for

these peaks in Figs. 3(b) and 3(c): the spectrum obtained

from the PIC simulation for a0 ¼ 300 almost perfectly coin-

cides with the theoretical result for the peak at x � �p,

whereas for the peak at x � �3p, the numerical results start

to deviate in the high-frequency region (where the fitted

power law is I � k�1:31, with I being the spectral intensity

and k being the harmonic order). We can also see a clear ten-

dency of the numerical results to fit the theoretical results for

larger and larger frequency ranges with the increase of

intensity.

This clearly demonstrates that for moderate intensities,

the developed theory distinguishes and describes the essen-

tial dynamics of plasma and the general form of the reflected

radiation, while some properties of the singularly generated

bursts, their amplitudes and spectra may depend on the inter-

nal properties of the formed thin layer (such as the actual

thickness and the distribution of the electron gamma factor).

In this respect, by determining macroscopic external condi-

tions for the thin layer, the theory provides an essential basis

for determining its microscopic dynamics and the properties

of its emission in the vicinity of singularity points.

V. CONCLUSIONS

In this paper, we have identified the physical origins of

the RES principles and demonstrated that these principles

emerge from the general tendency of electrons to bunch into

a thin sheet due to relativistic effects in radiation-plasma

interactions of arbitrary type. Using the RES principles, we

developed a theory that is capable of describing radiation-

plasma interactions for the arbitrary variation of polarization

and intensity in the incident radiation, the arbitrary density

profile of irradiated plasma, as well as the arbitrary angle of

incidence. The theory can be applied for studies of surface

high-harmonic generation and plasma heating with intense

lasers. It can also guide theoretical and experimental studies

by revealing the dependence of interaction scenarios on the

incidence angle, the shape of the plasma density profile, as

well as the laser pulse shape, intensity, ellipticity, and

carrier-envelope phase.
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