
Thesis for the Degree of Licentiate of Engineering

End-to-End Learning of Deep Structured
Models for Semantic Segmentation

Måns Larsson

Department of Electrical Engineering
Chalmers University of Technology

Göteborg, Sweden 2018

End-to-End Learning of Deep Structured Models for Semantic Segmentation
Måns Larsson

c© Måns Larsson, 2018.

Technical report no R002/2018 ISSN 1403-266X
Computer Vision and Image Analysis group
Department of Electrical Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2018

End-to-End Learning of Deep Structured Models for Semantic Segmentation
Måns Larsson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The task of semantic segmentation aims at understanding an image at a pixel level.
This means assigning a label to each pixel of an image, describing the object it
is depicting. Due to its applicability in many areas, such as autonomous vehicles,
robotics and medical surgery assistance, semantic segmentation has become an
essential task in image analysis. During the last few years a lot of progress have
been made for image segmentation algorithms, mainly due to the introduction of
deep learning methods, in particular the use of Convolutional Neural Networks
(CNNs). CNNs are powerful for modeling complex connections between input and
output data but lack the ability to directly model dependent output structures,
for instance, enforcing properties such as label smoothness and coherence. This
drawback motivates the use of Conditional Random Fields (CRFs), widely applied
as a post-processing step in semantic segmentation.

This thesis summarizes the content of three papers, all of them presenting so-
lutions to semantic segmentation problems. The applications have varied widely
and several different types of data have been considered, ranging from 3D CT im-
ages to RGB images of horses. The main focus has been on developing robust and
accurate models to solve these problems. The models consist of a CNN capable
of learning complex image features coupled with a CRF capable of learning de-
pendencies between output variables. Emphasis has been on creating models that
are possible to train end-to-end, as well as developing corresponding optimiza-
tion methods needed to enable efficient training. End-to-end training gives the
CNN and the CRF a chance to learn how to interact and exploit complementary
information to achieve better performance.

Keywords: Semantic segmentation, supervised learning, convolutional neu-
ral networks, conditional random fields, deep structured models.

i

ii

Preface

I started my PhD with an attitude of "How am I going to come up with stuff
that someone else have not already thought about?". The idea of actually adding
something to the overwhelming mountain of knowledge already present in the field
seemed absurd, and almost three years later it still kind of does. Despite this
I somehow managed to arrive at the half-way milestone of a Licentiate thesis.
Something that would not have been possible if not for all the help and support
from my colleagues, friends and family.

I would like to start off by thanking my supervisor Fredrik Kahl for introducing
me to the field of Computer Vision as well as guiding me through my PhD while
constantly having to convince me that what I’m doing is actually worth publishing.
Your input, encouragement and ideas have been invaluable during this time.

I am also grateful for my current and former colleagues in the Computer Vi-
sion and Image Analysis Group and the department of Electrical Engineering at
Chalmers. Thank you Carl Toft, Olof Enqvist, Carl Olsson, Erik Stenborg, Lars
Hammarstrand, Eskil Jörgensen, Mikaela Åhlén, Lucas Brynte, Yuhang Zhang and
Jesús Briales García for you good company, great coffee break discussions and the
occasional after work. A special thanks to Jennifer Alvén for starting her PhD a
few months before me and hence constantly having to guide me through mine. In
addition I would like to extend my thanks to my collaborators at the Torr Vision
Group in Oxford, especially Anurag Arnab and Shuai Zheng who have been in-
volved in the development of a big part of this thesis and introduced me to the
wonderful yet frightening world of large-scale deep learning experiments.

Lastly, I would like to thank my friends and family. My family, for continuing
to support me in what I’m doing, even though they stopped understanding what
it is a long time ago. My friends, for brightening my spare time and constantly
reminding me that there are more important and enjoyable things than work. My
wonderful girlfriend, Maria, for all her support and constant encouragement in
everything I do. Thank you all!

iii

iv

Included publications

Paper I M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. Torr. ”Revisiting
Deep Structured Models in Semantic Segmentation with Gradient-
Based Inference”. Submitted to SIAM Journal on Imaging Sciences.
Extended version of paper (a).

Paper II M. Larsson, J. Alvén and F. Kahl. ”Max-Margin Learning of Deep
Structured Models for Semantic Segmentation”.Scandinavian Confer-
ence on Image Analysis (SCIA), 28–40, 2017.

Paper III M. Larsson, Y. Zhang and F. Kahl ”Robust Abdominal Organ Seg-
mentation Using Regional Convolutional Neural Networks”. Submit-
ted to Applied Soft Computing. Extended version of paper (b).

Subsidiary publications

(a) M. Larsson, A. Arnab, F. Kahl, S, Zheng, and P. Torr. ”A Projected Gra-
dient Descent Method for CRF Inference allowing End To End Training of
Arbitrary Pairwise Potentials”. 11th International Conference on Energy
Minimization Methods in Computer Vision and Pattern Recognition (EMM-
CVPR) 2017.

(b) M. Larsson, Y. Zhang and F. Kahl ”Robust Abdominal Organ Segmentation
Using Regional Convolutional Neural Networks”. Scandinavian Conference
on Image Analysis (SCIA), 41–52, 2017.

(c) A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M. Larsson, A. Kir-
illov, B. Savchynskyy, C. Rother, F. Kahl, P. Torr. Conditional Random
Fields Meet Deep Neural Networks for Semantic Segmentation: Combining
Probabilistic Graphical Models with Deep Learning for Structured Predic-
tion". IEEE Signal Processing Magazines Special Issue on: Deep Learning
for Visual Understanding, Volume: 35, Issue: 1, Jan. 2018, Pages 37-52 .

v

vi

Abbreviations
ANN Artificial Neural Network
CNN Convolutional Neural Network
CRF Conditional Random Field
DSM Deep Structured Model
IoU Intersection over Union
mIoU mean Intersection over Union
MRF Markov Random Field
ReLU Rectified Linear Unit
PGM Probabilistic Graphical Model
RNN Recurrent Neural Network
ROI Region Of Interest

vii

viii

Contents
Abstract i

Preface iii

Included publications v

Abbreviations vii

Contents ix

I Introductory Chapters

1 Introduction 1
1.1 Thesis Scope . 3
1.2 Thesis Outline . 3

2 Background 5
2.1 Semantic Segmentation . 5

2.1.1 Evaluation . 6
2.1.2 Development of Approaches 8

2.2 Learning Features . 9
2.2.1 Multilayer Neural Networks 10
2.2.2 Activation Functions . 11
2.2.3 Convolutional Neural Networks 11
2.2.4 Learning . 13

2.3 Learning Structure . 17
2.3.1 Conditional Random Fields 17

2.4 End-to-End Learning . 21
2.4.1 CRF Inference as a Neural Network Layer 22
2.4.2 Back-propagating CRF Learning Objective 22

3 Summary 23
3.1 Paper I . 25
3.2 Paper II . 26
3.3 Paper III . 27

ix

Contents

4 Outlook 29
4.1 Future Work . 30

4.1.1 Output Structure . 30
4.1.2 Weak Supervision . 30

Bibliography 33

II Included Publications
Paper I Revisiting Deep Structured Models in Semantic Segmen-

tation with Gradient-Based Inference 45
1 Introduction . 45
2 CRF Formulation . 48

2.1 Potentials . 48
2.2 Multi-label Graph Expansion and Relaxation 50

3 MAP Inference via Gradient Descent Minimization 51
3.1 Gradient Computations . 51
3.2 Update Step and Projection to Feasible Set 52
3.3 Comparison to Mean-Field. 53

4 Integration in a Deep Neural Network 53
4.1 Initialization. 54
4.2 Gradient Computations. 54
4.3 Entropic Descent Update . 55

5 Recurrent Formulation as Deep Structured Model 55
6 Implementation Details . 56
7 Experiments . 57

7.1 Weizmann Horse . 58
7.2 NYU V2 . 59
7.3 PASCAL VOC . 61
7.4 Execution time . 62

8 Conclusion . 63
References . 65
Supplementary Material . 70

Paper II Max-Margin Learning of Deep Structured Models for Se-
mantic Segmentation 75
1 Introduction . 75

1.1 Contributions . 76
1.2 Related Work . 77

2 A Deep Conditional Random Field Model 77
2.1 Inference . 78
2.2 Max-Margin Learning . 79

x

Contents

2.3 Back-propagation of Error Derivatives 80
2.4 End-to-End Training in Batches 82

3 Experiments and Results . 82
3.1 Weizmann Horse Dataset . 83
3.2 Cardiac Ultrasound Dataset 84
3.3 Cardiac CTA Dataset . 84

4 Conclusion and Future Work . 86
References . 86
Supplementary Material . 90

Paper III Robust Abdominal Organ Segmentation Using Regional
Convolutional Neural Networks 101
1 Introduction . 101
2 Proposed Solution . 102

2.1 Localization of region of interest 103
2.2 Voxel classification using a convolutional neural network . . 104
2.3 Postprocessing . 108

3 Experimental Results . 108
3.1 Runtimes . 110

4 Discussion . 114
5 Conclusion . 115
References . 115

xi

xii

Part I

Introductory Chapters

Chapter 1

Introduction

Understanding the content of an image is something that humans excel at. If I
were to ask you to describe the objects present in an image you would in almost
all cases manage that task effortlessly. However, if I ask you to state a set of rules
to decide if an image contains a cat or a dog, you might have difficulties. Humans
are so good at parsing and understanding visual scenes that we do not reflect on
how we do it. Designing methods that do this automatically has however been
proven to be a challenging problem and the field of Computer Vision is still very
active.

Given an image, information can be extracted on different levels. This is il-
lustrated in Figure 1.1 where a few examples of image analysis tasks of different
detail are shown. The focus of this thesis is semantic segmentation, which aims
at understanding an image on a pixel level. This means that we want to assign a
label to each pixel, describing the object it is depicting. For example, going back
to Figure 1.1 we have assigned the label "person" to the pixels colored pink and
the label "dining table" to the pixels colored yellow.

Semantic segmentation has numerous of applications. In robotics, agents are
usually needed to extract useful information and understand their environment to
perform tasks such as navigation and manipulation of objects. This is something
that can be achieved with a camera and a semantic segmentation algorithm. Also,
autonomous vehicles require a precise understanding of their surrounding to be
able to make safe decisions in traffic. Semantic segmentation algorithms are also
useful for numerous applications in medical research and clinical care, such as com-
puter aided diagnosis and surgery assistance. Since many of the images handled
in medical applications are three dimensional manual segmentation is time con-
suming. Having an automatic method will in these cases save medical personnel
a lot of time and be very helpful for time-critical tasks such as surgery planning.

Traditionally, semantic segmentation algorithms have been approached by ex-
tracting some type of hand-crafted image features from the image. These features
could be something as simple as color gradient or a more complex function of the

1

Chapter 1. Introduction

Figure 1.1: Example of scene understanding tasks with increasing detail from
left to right. From left: image captioning, object detection, semantic segmentation
and instance segmentation. This thesis focuses on semantic segmentation. Image
modified from [1].

pixel values. A model relating these features to semantic classes is then created,
or learnt from annotated examples, i.e. a set of images paired with their "true"
semantic segmentations. During recent years most methods have moved from
hand-crafted feature to using Convolutional Neural Networks (CNNs), capable of
learning complex images features from data.

The introduction of CNNs for semantic segmentation meant a large improve-
ment in performance and we are now able to create models that are fairly good at
understanding the content of an image (given that it is similar to the images it has
been trained on). A drawback with a CNN is however that they cannot explicitly
take the dependencies between output variables, i.e. how the label of one pixel
depends on the label of the output pixels, into account. This can however be done
using Conditional Random Fields (CRFs), which have been used extensively for
semantic segmentation. Because of this, many state-of-the-art methods combine
a CNN and a CRF creating a Deep Structured Model (DSM) capable learning
complex image features while still taking output dependencies into account.

The parameters of these DSMs are usually learnt from data. This learning can
be easily achieved by using traditional deep learning methods to train the CNN.
Then, using the output of the CNN to form the CRF, learning the weight of the
CRF. This approach, commonly referred to as piece-wise training, is suboptimal
since the parameters of the CNN is learnt while ignoring output dependencies. A
better approach is to train the CNN and CRF jointly, or end-to-end. This gives
the CNN and the CRF a chance to learn how to interact to achieve better results,
a sketch of piece-wise and end-to-end training of a DSM is shown in Figure 1.2.

2

1.1. Thesis Scope

p
ie

ce
-w

is
e

e
n
d

-t
o
-e

n
d

1. Train CNN 2. Train CRF

1. Train CNN and CRF

intermediate
result

Figure 1.2: Comparison of piece-wise and end-to-end training of a deep structured
model (DSM). For the piece-wise training (above) the CNN is trained first, as a
second step the parameters of the CRF is trained keeping the weights of the CNN
fixed. During end-to-end training (below) the weights of the CNN and CRF are
jointly trained, giving them a chance to learn how to interact to achieve better
results.

1.1 Thesis Scope

This thesis consists of three papers, all of them presenting solutions to semantic
segmentation problems. The applications have varied widely and several different
types of data have been considered, from 3D CT images to RGB images of horses
to indoor scene understanding. The main focus has been on developing robust
and accurate models to solve these problems. These models consist of a CNN
capable of learning complex image features coupled with a CRF capable of learning
dependencies between output variable, in our case pixel or voxel labels. Emphasis
have been put on creating these type of models that also are possible to train
end-to-end as well as the methods needed to enable this type of training.

1.2 Thesis Outline

The first part of this thesis consists of this introductory chapter, followed by Chap-
ter 2 that provides some background knowledge needed to understand the papers
included in this thesis as well as placing them in an academic context. Chapter 3
summarizes the work and contributions of this thesis as well as each paper sepa-
rately. A brief discussion of future work is given in Chapter 4. Finally, the papers
forming this thesis are appended in part II.

3

4

Chapter 2

Background

The focus of this thesis is to develop methods for semantic segmentation. Hence
the background chapter will start off with a brief introduction to the problem of
semantic segmentation. Afterwards a brief introduction to Convolutional Neural
Networks (CNNs) as well as Conditional Random Fields (CRFs) will be given.
Lastly, we will touch on the subject of end-to-end training of Deep Structured
Models (DSMs), i.e. a combination of a CNN and a CRF. The sections in this
chapter are by no means exhaustive but aim at giving the reader background
knowledge enough to understand the included papers as well as place them in an
academic context.

2.1 Semantic Segmentation

Semantic segmentation or scene labeling is the process of assigning each pixel of
an image to the semantic class that it is depicting. The semantic class should
depend on the surrounding information, or context, of the pixel. That means that
we want to understand what the image is containing on a pixel level. What classes
we are interested in dividing the image pixel in depends on the task and what
information about our surrounding we are interested in. Given a set of images
from a camera mounted on the front of a car we might want to classify each pixel
as being one of ("driveable surface", "sidewalk", "pedestrian" etc.) while given a
medical CT image of the abdomen we might want to classify pixels into different
organs, or perhaps "tumour" and "not tumour". An example of visualizations of
semantic segmentations is shown in Figure 2.1.

5

Chapter 2. Background

Figure 2.1: Two examples of semantic segmentations. To the left is an image
from the Mapillary Vistas dataset [2], a street-level image dataset with 66 semantic
classes. The semantic class of each pixel is visualized by overlaying the original
pixel with the class color. To the right is a slice of a CT image from the MICCAI
2015 challenge “Multi-Atlas Labeling Beyond the Cranial Vault” [3] for organ seg-
mentation in the abdomen. Here the voxels of a class are visualized by delineating
them with the class color. Note that this is only one slice of the original 3D CT
volume.

2.1.1 Evaluation

Given an image paired with a semantic segmentation it is quite easy for a human
to visually evaluate the segmentation as good or bad. It is however important to
quantify how good a segmentation is, both to be able to quickly evaluate a method
applied to a big set of images and also to be able to compare between different
methods. A straightforward metric to use is the pixel accuracy which is defined as
the ratio between correctly classified pixels and total number of pixels. However,
for some datasets, the per-pixel accuracy can be quite misleading. Given, for
example, an image with a lot of pixels labeled as "background". A segmentation
method simply assigning the "background" label to all pixels will get a high pixel
accuracy even though it obviously performs poorly.

An alternative metric is the commonly used Intersection over Union (IoU) or
"Jaccard" index. Given the set of pixels A segmented as a class and the set of
pixels B belonging to the same class according to the annotation the IoU is

IoU =
|A ∩B|
|A ∪B]

. (2.1)

In terms of true/false positives/negatives we get

IoU =
#tp

#tp+ #fn+ #fp
, (2.2)

where #tp denotes number of true positives, #fn denotes number of false negatives
and so on. The IoU can value between zero and one where a value of one means

6

2.1. Semantic Segmentation

0 0.2 0.4 0.6 0.8 1

IoU

0

0.2

0.4

0.6

0.8

1

D
ic

e

Figure 2.2: The Dice coefficient plotted as a function of the intersection over
union. The Dice coefficient and intersection over union are two commonly used
measure to quantify segmentation results.

a perfect overlap of the segmentation and the ground truth while a value of zero
means no overlap at all. For multi-label problems the mean IoU (mIoU) over all
classes is usually measured as an overall performance indicator of a segmentation
method. A segmentation method simply assigning the "background" label to all
pixels will get a quite low mIoU.

For medical image segmentation tasks the Sørensen-Dice coefficient, or sim-
ply Dice coefficient, is a common metric. Using the previous notation the Dice
coefficient is defined as

Dice =
2|A ∩B|
|A|+ |B|

, (2.3)

which in terms of true/false positives/negatives can be written as

Dice =
2#tp

2#tp+ #fn+ #fp
. (2.4)

Similar to the IoU the Dice score can vary between zero and one. The relation
between the Dice score and the IoU is Dice = 2 IoU/(1+IoU) which is visualized in
Figure 2.2. As can be seen from the figure the Dice coefficient always corresponds
to a lower intersection over union.

7

Chapter 2. Background

Deep Convolutional Neural Network

Input Image

Texton Feature

Extractor
Boosting Classifier

Unary Result

Grid CRF

Input Image

Texton Feature

Extractor
Boosting Classifier

Unary Result

Dense CRF

Input Image

Convolutional

Feature Extractor
Linear Classifier

Unary Result

Dense CRF

Deep Convolutional Neural Network

Input Image

Convolutional

Feature Extractor
Linear Classifier

Result

CRF Inference Layer

Figure 2.3: Evolution of Semantic Segmentation systems. Initially, most ap-
proaches relied on hand-crafted image features and a fairly simple CRF model, this
is represented in the first row showing the "Textonboost" work [4]. The second
row uses a more sophisticated CRF model, DenseCRF, presented in [5]. Later on,
most works have replaced the hand-crafted features with features learned from data
with a Convolutional Neural Network. An early example of this is [6]. Currently,
several state-of-the-art method follows an approach that first appeared in [7] where
the CRF inference is incorporated as a part of the neural network. Allowing learn-
ing of the CNN and CRF weight simultaneously. This image is taken from [1] and
result for this figure were obtained using the publicly available code of [6–10]

2.1.2 Development of Approaches

Semantic segmentation methods date back to the 1970s, e.g . [11, 12]. Many of
the early approaches tried to divide the image into semantic areas and then relate
these areas to each other using a fixed rule-based system. It was in most cases
hard to get these kind of rule-based or grammar-based methods to generalize well
and performance was quite poor for general images.

From the early 2000s up until now the popularity and performance of semantic
segmentation methods has increased tremendously. The early methods utilized
powerful tools such as image descriptor and machine learning [13]. The majority
of these methods are data driven and require manually annotated images to be
able to train the models. However, the models can of course be applied to unseen
images and segment them into the semantic classes that were present in the man-
ually annotated images. A lot of the state-of-the-art methods used a CRF to be

8

2.2. Learning Features

able to model interactions between the input images and output labels but also
interactions between output labels. Given a CRF model most early approaches
used the following pipeline

1. Extract features from the image. The features extracted could be the RGB
color of the pixel and its surrounding pixel or some more advanced features
such as Textons [14] or SIFT [4].

2. Use the extracted features and the annotated image to train an appearance
model, i.e. a local classifier.

3. Use the output of the appearance model to form the unary term, i.e. the
part of the CRF that models interactions between input and output.

4. Define, or learn from data, how the CRF should model interactions between
output labels. Most commonly the type of interactions were pairwise, i.e.
between the classes of two pixels.

5. Perform inference on the CRF model to segment an image.

This is of course a rough pipeline which a lot of methods will not fit into. In
addition, a lot of extensions and variants exists for basically each step of the
pipeline. Regarding, the first point of extracting features most work has moved
from the carefully designed features to learning features from annotated data,
usually with a CNN. This will be discussed thoroughly in Chapter 2.2. Also,
several works have done data driven approaches to learn the pairwise interactions
described by the CRF. In addition, several different types of CRF models have
been proposed. A notable example is the DenseCrf presented in [5] where every
pair of pixels is connected by a pairwise term in the CRF. Finally, during the last
few years methods that learn the parameters of the CRF as well as the weights
of the feature extracting CNN jointly have appeared. Two of them are the papers
included in this thesis but a few more examples exist. Figure 2.3 provides a
summary of this development.

2.2 Learning Features

As mentioned in Section 2.1.2 most methods for semantic segmentation nowadays
use image features learnt from annotated data. The dominating approach is to use
a CNN to learn these features and looking on most popular semantic segmentation
benchmarks all top entries on the leaderboard use a CNN. In this section an
introduction to Artificial Neural Networks (ANNs) and CNNs is given.

The idea behind ANNs and CNNs is not new. Already in the 1960s the bio-
logically inspired Perceptron was introduced [15] which resembles the commonly

9

Chapter 2. Background

used ANNs of today. Also the idea of introducing spatial invariance in ANNs were
presented already in 1980, when K Fukushima et al . introduced the "Neocogni-
tron" [16]. During the 1980s and 1990s there were some progression in the field of
neural networks but it wasn’t until a few years back that these types of methods
got their breakthrough. In 2012 Krizhevsky et al . [17] presented "Alexnet", a
CNN for classifying images of the ImageNet [18] dataset that achieved consider-
ably better than the previous state-of-the-art. Since then, approaches using CNNs
have become dominant in most detection and classification problems [19]. For the
task of semantic segmentation a defining paper was J Longs et al . "Fully convo-
lutional networks for semantic segmentation" [10] which introduced a method of
transforming CNNs previously used for classification to efficiently segment an im-
age. These types of "Fully Convolutional" networks are the standard for semantic
segmentation nowadays.

2.2.1 Multilayer Neural Networks

The most common ANNs have a feed-forward neural network architecture. In
these networks computations are done layer-wise, and the values of the data at
one layer of the network depend only on computations in previous layers. In one
layers of the network, the input to the layers is multiplied by a weight vector Wi

and a bias vector is added bi according to

gi = Wihi−1 + bi, (2.5)

here hi−1 is the output of the previous layer (or the input data if i is the first
layer). The vectors hi are commonly referred to as hidden units (except for the
inputs h0 and the output hL) and their size depends on the size of the weight
matrices W . A weight matrix with less rows than columns will decrease the size
of the hidden units vector. After this computation the output gi is passed through
a non-linear activation function

hi = σ(gi). (2.6)

These computation layers are stacked on top of each other and the output of the
last layer L is the output of the neural network y = hL. In modern literature,
these types of neural network layers are often referred to as fully connected layers.

10

2.2. Learning Features

2.2.2 Activation Functions

The activation functions are a crucial part of the neural network. If these were
to be omitted the computations of the entire network would consist of only linear
functions and could be replaced with an equivalent single matrix multiplication.
In contrast, with non-linear activation function, it has been shown that a feed-
forward neural network is a universal function approximator [20]. This means
that, in theory, they can learn any function.

In the early days of neural networks, smooth non-linear activation functions
were commonly used. Two examples of these are the Sigmoid, defined as

σ(x) =
1

1 + e−x
, (2.7)

and the hyperbolicus tangen function σ(x) = tanhx. These functions are quite
similar but differs in range, the output of a sigmoid lie within [0, 1] while the output
of tanh(x) lie within [−1, 1]. The most popular activation function at the moment
is the rectified linear unit (ReLU) [21] which is defined as σ(x) = max(0, x). Using
ReLU activation functions in a neural network makes the training faster in general
as well as allowing training of networks with more layers [19].

The activation function of the final layer is usually chosen differently to the
intermediate activation functions. The choice usually depends on what task we
are training the network to solve. For example, if we want to use the network to
solve a regression problem we might not use any final activation function at all,
allowing for unbounded output values of the network. If we instead are interested
in image classification we could use a softmax activation function defined as

σ(x)j =
exj∑N
k=1 e

xk
for j = 1, ..., N. (2.8)

The softmax function outputs a set of values all between zero and one and which
sum to one. The value of σ(x)j can hence be used as an estimation of the proba-
bility of the current input belonging to class j.

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks [22] are designed to process data that has an in-
herent grid-like structure, such as 2D RGB images, 3D videos or medical im-
ages such as CT scans. Since many of these data types have a lot of input pa-
rameters, an RGB image of standard size can for example be represented with
512 × 512 × 3 = 786432 values, the weight matrix W of a fully connected layer
would become very large. This would make the computations very demanding
while also giving the neural network an extremely large amount of weights, some-
thing that might cause overfitting.

11

Chapter 2. Background

CNNs circumvent this problem by using a biologically inspired spatial weight
sharing scheme [23]. Instead of learning full weight matrices for each layer a
CNN learns a bank of filters for each convolutional layer. The intermediate values
between layers are referred as feature maps and keep their spatial grid-like structure
throughout the network. Learning filter, instead of full weight matrices, means
that the same weight values will be applied at every spatial position for each layer,
greatly reducing the number of weights needed to be learnt. This would be the
equivalent of restricting the weight matrix of equation (2.5) to be a Toeplitz matrix.
In addition, the convolutional layers are spatially invariant, meaning that input
patterns found in different parts of an image will be processed similarly regardless
of spatial position.

Another common component of a CNN are pooling layers. A pooling layer
applies a rectangular window to each feature map forwarding for example the
maximum number present in the window (for max-pooling layers). Pooling layers
introduces an invariance to small shifts in input data while also reducing the
spatial size of the feature maps, controlling the capacity of the neural network [19].
Adding pooling layers also enlarges the receptive field of higher level features. The
receptive field of a feature is the part of the input image that might influence
the value of the feature, a larger receptive field enables learning of more complex
features. A common approach to building an CNN for image classification is to
stack a couple of convolutional and pooling layers, adding activation functions
(typically ReLU) after the convolutional layers. This enables the CNN to learn
more complex and high-level features for each stacked layer. Ideally the first few
layers learn to extract low level image features such as edges, lines and blobs while
later layers extracts complex features such as faces, legs or wheels. Finally one or
several fully connected layer can be applied to transform the features from spatially
structured maps to for example a vector of estimated class probabilities.

Convolutional Layers

As mentioned the convolutional layers of a CNN learn a bank of filters. Given an
input feature map X of size W in×H in×F in, where W is the width, H the height
and F the number of feature maps. A trained bank of filters is applied according
to

Yj = Bj +
∑
i

Wij ∗Xi, (2.9)

where Xi denotes the i-th feature map of X. The output feature map Y has a
size ofW out×Hout×F out, padding can be used to keep the same width and height
as the input feature map. The filter bank has a size of K1×K2×F in×F out, where
K1 × K2 is the size of each filter. For each output, optionally, a bias weight is
learnt. Bj denotes this bias resized to the width and height of the output feature

12

2.2. Learning Features

map. The size of the filters differs from application to application but a size of
3× 3 is most commonly used [24–26].

A variant of the convolutional layer designed to provide a greater increase of
the receptive field, i.e. the region of the input that affects a particular unit of
the network, between subsequent layers is the à-trous or dilated convolutions [27].
These convolutions uses a set of upsampled filters where only weights at every l-th
index is non-zero. Here, l is usually referred to as the dilation factor, note that
dilated convolution with l = 1 is just standard convolution.

Pooling Layers

Pooling layers perform down-sampling of the image features [28]. Several types of
pooling layers exist, the most common ones are max pooling and average pooling.
These layers applies a fixed size window to the input feature map in strides. It then
outputs the max (or average) of the values in this window. Choosing a stride equal
to the window size results in non-overlapping regions that forwards information to
the next feature map. Choosing a window size of 2 × 2 and a stride of 2 would
result in a down-sampling of the spatial size of the feature map by a factor of 2.

2.2.4 Learning

Once the architecture of our CNN is set we can view it as a function approximator
f(x,θ), where x is the input and θ the learnable weights of each layer. This
section will give a brief introduction to the most important parts needed for the
learning process. Note that this is only applicable for supervised learning, where
an annotated dataset is available.

Loss Function

A loss function is a way to quantify how well the CNN is performing, it hence
measure the compatibility of the CNNs output, or prediction, to the ground truth
label. The loss is generally defined for one sample of the dataset, and during
learning the weights of the CNN, θ are adjusted to minimize the mean of the
losses

L(X,Y ,θ) =
1

N

∑
i

Li(yi, f(xi,θ)). (2.10)

Here X,Y are the set of input and labels of a given dataset with N samples and
xi, yi denotes the data/label pair of one sample.

A commonly used loss function for classification tasks is the cross-entropy loss.
For a CNN with a softmax activation function as a last layer, meaning that it
outputs an estimation of the probabilities of input xi belonging to each class, the

13

Chapter 2. Background

cross-entropy loss may be defined as

Li(yi, f(xi,θ)) = − log(fyi(xi,θ)). (2.11)

Here, fyi(xi,θ) is the estimate of the probability from the CNN that the input
belongs to the ground truth class yi. The name cross-entropy loss comes from
the fact that this loss minimizes the cross entropy between the distribution of the
ground truth labels and the label distribution generated by the CNN, given that
the samples are independent and identically distibuted random variables.

Loss Minimization

As previously mentioned the learning is achieved by minimizing a defined loss func-
tion over the given dataset. Since there generally is not any closed-form solution to
the learning problem, θ∗ = arg max(L(X,Y ,θ)), local optimization methods are
often used. Most commonly a variant of gradient descent is used which updates
the parameters of the CNN according to

θi+1 = θi − η∇θL(X,Y ,θ), (2.12)

where η is the step size or learning rate. For large datasets this is however inefficient
and often a stochastic approximation of the gradient is used instead. This is called
mini-batch gradient descent and is defined as

θi+1 = θi − η
∑
i∈B

∇θLi(yi, f(xi,θ)), (2.13)

where B is the batch which in turn is a subset of the complete dataset. Using
a mini-batch of size one is referred to as stochastic gradient descent. There are
several variants of this update rule, designed to reduce noise of the estimated
gradient and accelerate convergence. Some examples are gradient descent with
momentum [29], with Nesterov momentum [30], AdaGrad [31] and Adam [32]. All
of these are first-order methods which means that they only require the calculation
of the gradient with regards to the weights.

The gradient of the loss function with respect to all the weight of the net-
work can be efficiently computed using the back-propagation algorithm [29]. The
back-propagation algorithm is just a practical application of the chain rule for
derivatives. Given the loss derivative ∂L

∂y
with respect to the output of a simple

layer described by y = f(x, θ), where x is the input, y the output and θ the weights.
The loss derivative with respect to the input can calculated by simply applying
the chain rule ∂L

∂x
= ∂L

∂y
∂f
∂x
, similarly for the weight we get ∂L

∂θ
= ∂L

∂y
∂f
∂θ
. Using this

back-propagation we can start from the final layer of the network and calculate
the loss with respect to the input of each layer, propagating the loss gradient all

14

2.2. Learning Features

through the network until we have calculated it with respect to every weight of
the network.

Since the learning problem is non-convex and almost all methods are based on
local optimization it is a possibility for the learning to get stuck in a poor local
minimum. In practice, this is generally not a big problem, even for different initial
conditions many networks reach a solution of very similar quality [19]. Recent
work points towards the existence of a lot of saddle points in the loss surface that
the learning algorithm might get stuck in [33,34]. However, all of them have very
similar and low values of the loss function and hence give a good enough solution.

Regularization

Overfitting is a term used for a model that performs well on the training data but
poorly on unseen input data. Since a typical CNN contains a very large number
of free parameters it is prone to overfitting. A large enough CNN could basically
learn to "memorize" the training data instead of learning good rules that generalize
to unseen data. Because of this, several regularization methods meant to prevent
the CNN to overfit have been developed.

Ideally, we would like to just add training data until the CNN is incapable of
overfitting. Annotating new data is however a timely process which we generally
want to avoid. An alternative to adding new training data is to perform data aug-
mentation on the already available data. This means changing the samples of the
data in an slightly randomized way during training. Common augmentation op-
erations used for image tasks are, random cropping of the image, random rotation
or simply adding noise to the pixel values.

Another fairly simple regularization technique is weight decay. This means
adding an extra term to the loss function that penalize large values of the parame-
ters of the CNN. For the case of L2 weight decay the term λ1

2

∑
i θ

2
i , where λ is the

weight decay strength, is added to the loss function in (2.10). For L1 regularization
we instead add the term λ

∑
i |θi|, favoring sparse solutions.

Two additional, very popular, regularization techniques are Dropout [35] and
Batch Normalization [36]. These are added as separate layers to the CNN and
have different functionalities during learning and during inference. Dropout works
by only keeping the values of each neuron non-zero with set probability p, the
others are set to zero. During inference, all neuron values are kept but scaled
with a factor p. Batch Normalization shift the values of the features to have zero
mean and unit variance for each mini-batch during training. In addition to avoid
overfitting to some extent this also allows the use of a higher learning rate during
training [36].

15

Chapter 2. Background

CNNs for Semantic Segmentation

The task of annotating data is considerably harder and more time-consuming for
semantic segmentation where each pixel need to be annotated compared to image
classification where only one label per image is needed. This restricts the size of
available datasets for semantic segmentation and there are no available datasets
of the same size as for example Imagenet [37]. Due to this, many popular CNNs
for semantic segmentation have a classification counterpart that has been trained
on the million images of Imagenet. The architecture of the classification CNN is
changed to enable dense output maps, transforming it to a segmentation CNN.
However, the weights of the first few layers are kept with the motivation that
these layers have learnt to extract meaningful image features during the extensive
classification training. This approach have shown to be preferable to training
from scratch for many segmentation tasks, even for images fairly different from
the Imagenet data [38–40].

Repurposing a classification network for semantic segmentation is not entirely
straight-forward. As previously mentioned a defining paper for ths was "Fully
convolutional networks for semantic segmentation" by J Long et al . [10] where they
presented segmentation version of several classification network that were state-of-
the-art on Imagenet at that time. The fully connected layers of these networks were
transformed to convolutional layers with filter size 1×1, which changes the previous
classification scores to spatial feature maps. These feature maps, together with
feature maps earlier in the CNN were upsampled using deconvolution layers [41]
and merged providing dense output predictions for images of arbitrary size. These
CNNs can then be trained for segmentation end-to-end using a pixel-wise version
of the cross-entropy loss presented in Section 2.2.4.

Despite the success of fully convolutional networks of [10] this architecture has
several drawbacks. Pooling layers are great for image classification, enabling the
CNN to learn complex high-level image feature. It is however not ideal since per-
forming pooling operations means loosing spatial information of where the image
features came from in the image. Some works have tried to get rid of the pooling
layers entirely [42] and other types of layers has been introduced in an effort to
keep spatial information while still achieving large receptive field. An example of
this is the dilated convolutions mentioned in Section 2.2.3 [27].

Many recent works considering CNNs for semantic segmentation try to design
networks that are able to learn high-level image features while not losing spatial
information. Some examples include encoder-decoder networks such as Segnet
[43] and U-Net [44] as well as PSP-Net [45] that processes features on different
resolution in separate paths.

16

2.3. Learning Structure

2.3 Learning Structure

As mentioned in Section 2.2.3 CNNs are good at modeling complex relations be-
tween input data and output data. They cannot however explicitly take dependen-
cies between output variables into account. In addition, they are often trained with
a pixel-wise loss function, disregarding the fact that the output data is actually
structured.

A way of taking output structure into account which also allows for explicit
modeling of dependencies between output variables is using Probabilistic Graph-
ical Models (PGMs). A PGM models a probability distribution over a set of
random variables whose structure is defined via a graph. In this thesis we will
focus on Conditional Random Fields (CRFs) that are commonly used for semantic
segmentation.

2.3.1 Conditional Random Fields

Conditonal Random Fields (CRFs) models the conditional probability, P (Y|X)
of an output set Y = {Y1, ..., YN} given and input X. Working with images, X
denotes the image values and we generally associate one input and one output
variable with each pixel. For semantic segmentation each output Yi is assigned
a value from a finite set of possible states L = {l1, l2, ..., lL}, where each state
represent a class label. The dependencies between output variables are described
by an undirected graph whose vertices are the random variables {Y1, ..., YN}. The
conditional probability for the CRF can be written as

P (Y = y|X) =
1

Z(X)
exp(−E(y,X;w)), (2.14)

where E(y,X;w) denotes the Gibbs energy function with respect to the assign-
ment of labels to the output variables y ∈ LN . The parameters, w, of the CRF
can either be hand-crafted from prior knowledge or learnt from data. Z(X) is the
partition function given by

Z(X) =
∑
y∈LN

exp(−E(y,X;w)). (2.15)

It is hence a normalization constant making the conditional probabilities sum to
one. Note that the sum is over all possible combination of label assignments
available, it is hence computationally costly to evaluate the value of the partition
function.

For most image applications the Gibbs energy function decomposes over unary
and pairwise terms, i.e. terms depending on only one and two variable respectively.

17

Chapter 2. Background

The energy can be written as

E(y,X;w) =
∑
u∈V

ψu(yu,X;w) +
∑

(u,v)∈E

ψuv(yu, yv,X;w), (2.16)

note that the graph structure defines what terms are present in this energy. For
ψuv(yu, yv,X;w) to be non-zero node u and v must share an edge. The terms
ψu(yu) and ψuv(yu, yv,X;w) are commonly referred as unary and pairwise poten-
tials respectively.

Potential Types

The unary potentials, also known as the data cost, of the CRF energy are often
obtained from a pixelwise classifier estimating the class probabilities of each pixel.
Commonly the term for each pixel is set to

ψu(yu = lp) = −w1 log(P (yu = lp|X)), (2.17)

where P (yu = lp|X) is an estimate of the probability of pixel u belonging to class
lp.

For the pairwise potential,as a first step, the connectivity or structure of our
graph needs to be defined. This specifies what pairwise terms should be included
in the energy, and also which output variables should depend on each other. A
simple and commonly used structure is the nearest neighbour connectivity where
pixels are connected through an edge to its neighbours only. The size of the
neighbourhood might vary but for 2D images a size of four or eight is common.
An example of this structure can be seen in Figure 2.4.

The pairwise potentials, ψuv(yu = lp, yv = lq, I;w), defines the cost of assigning
label lp to pixel u and label lq to pixel v . It can hence be used to enforce con-
sistency and structure in the output. As an example, for semantic segmentation,
we generally want neighbouring pixels to have the same labels. A type of pairwise
term that enforces this is the Potts model given by

ψuv(yu = lp, yv = lq, I;w) = w21lp 6=lq , (2.18)

where 1lp 6=lq denotes the indicator function equaling one if lp 6= lq and zero oth-
erwise. This pairwise term can be generalized in several ways, for example we
might want to weight the cost of assigning different labels to neighbouring pixel
differently depending on if they have similar color or not. This can be achieved by
adding a weighting term according to

ψuv(yu = lp, yv = lq, I;w) = w21lp 6=lqe
−(xu−xv)2 , (2.19)

where xu and xv are the pixel values of pixel u and v. This type of pairwise terms
adds a lower energy if two neighbouring pixels differ a lot in color.

18

2.3. Learning Structure

y 1

x1

y 5

x5

y 9

x9

y 13

x13

y 2

x2

y 6

x6

y 10

x10

y 14

x14

y 3

x3

y 7

x7

y 11

x11

y 15

x15

y 4

x4

y 8

x8

y 12

x12

y 16

x16

unary

pairwise

Figure 2.4: CRF with a simple nearest neighbour connectivity, neighbourhood size
four. The variables yu are assigned class labels while the variables xu represents
the pixel values.

Both of these pairwise terms are constructed using prior knowledge, such that
neighbouring pixel often have the same label unless there is a change in contrast.
This is of course not true in all cases and several works have instead tried to learn
the pairwise term from data [46, 47]. In Paper I we present a CRF model with
more general pairwise potentials that can be learnt from data.

Using a neighbourhood only consisting of neighbouring pixels limits the extent
on how far across the image information can propagate. A natural way to increase
this limit is to increase the size of the neighbourhood, for example connecting all
pixels closer than d pixels apart. The extreme of this would be to connect all
pairs of pixels which is done for the denseCrf model. The denseCrf model were
popularized by [5], that presented a method to perform efficient inference for these
types of CRFs. The pairwise terms for dense CRFs also include a weighting on
the distance between two pixels, hence the strength of the pairwise term decays
exponentially with the distance between the pixels.

It is also possible to include potentials that depend on more than two pixel
labels, i.e. higher order potentials. Higher order potential can for example be
used to enforce consistency within superpixels or utilize object detection results
for semantic segmentation [48–51].

19

Chapter 2. Background

Inference

Given an imageX the inference problem, giving a semantic segmentation, equates
to finding the maximum a posteriori labeling of the model in equation 2.14. Finding
the minimizer to the Gibbs energy, i.e.

y∗ = arg min
y

E(y,X;w), (2.20)

is an equivalent problem. This problem is in general NP-hard [52], typical ap-
proaches to solving it can hence be divided into two categories, exact algorithms
that only applies to special cases of the energy and approximate solutions. We
will provide a few examples here but for an extensive overview of approaches we
refer to [53,54].

If we deal with a binary segmentation problem, i.e. only are interested in two
classes, and if the energy is submodular the globally optimal solution can be found
using the graph cuts method [54]. This approach can be extended to multi-label
problems using the α-expansion [55], however we lose the guarantee of finding the
global optimum.

Several popular methods are based on a relaxation of the original problem,
these are usually the most efficient ones for performing inference in denser CRFs.
One example is the mean-field method where the original distribution is P (y|I) is
approximated with a fully factorized one Q(y). The optimization is then done by
minimizing the Kullback–Leibler divergence between the two distributions. Other
approaches rely on a continuous relaxation of the Gibbs energy, and then using
local search methods to find a local minimum of the energy. This type of methods
have been shown to outperform mean-field on several tasks [56] and is the approach
used in Paper I.

Parameter Learning

The learning problem consists of estimating the parameters of the CRF, w, based
on a training set (Y (k),X(k))Nk=1. The goal with the training is that if inference is
performed for an input image from the data set, we want a solution close to the
ground truth labeling. An intuitive approach to the learning problem is based on
the maximum likelihood principle. This means finding the set of parameters that
maximizes the probability of the training set.

A major difficulty when performing maximum likelihood training for CRFs is
that it requires computation of the partition function for each training instance
and for each iteration of a numerical optimization algorithm. This is of course
computationally expensive and makes learning infeasible for CRF models used
for semantic segmentation. Most popular learning methods hence makes approx-
imations that simplifies the computation of the partition function. Mean field is

20

2.4. End-to-End Learning

an example of this where the fully factorized distribution simplifies computation
of the partition function [5]. Piece-wise training is also an option which only re-
quires computation of local normalization factor over fewer variables [57,58]. Other
methods instead try to estimate the partition function using sampling [59].

Another approach is to use a learning method that avoids the computation of
the partition function, for example learning a model that maximizes the margin
between the energy of the ground truth and any other output configuration [60,61].
This can be formulated as

max
w

ζ

s.t. E(Y ,X(k);w)− E(Y (k),X(k);w) ≥ ζ ∀ k and Y 6= Y (k).
(2.21)

Since, there is an exponential amount of constraint in this optimization problem it
is not feasible to solve it as is. A solution to this is to iteratively add the constraints
that currently is furthest away from being satisfied [62]. This learning method is
utilized in Paper II.

2.4 End-to-End Learning

Combining CNNs and CRFs is a powerful approach for dense classification tasks
such as semantic segmentation. The CNNs ability to learn complex high-level im-
age features paired with the CRFs ability to model output dependencies generally
yields impressive results. However, many existing approaches use a two step train-
ing process to learn the weights of the CNN and CRF. Firstly, the CNN is trained
to perform pixel-wise segmentation on the available data set. Secondly, the CRF
is trained keeping the unary potentials fixed (although based on the output of the
CNN). This is often referred to as piece-wise training and is non-ideal since the
CNN is learnt while ignoring dependencies between output variables.

Instead, a better solution would be to perform end-to-end training. This means
jointly training the CNN and the CRF at the same time. In this way the CNN
and the CRF get the chance to learn how to interact and exploit complementary
information to achieve as good of a result as possible. During recent years several
examples of these deep structured model trained end-to-end have been proposed
in the literature [7,47,63–65]. This section gives a very brief introduction to some
of these methods, for more details we refer to the recently published tutorial paper
on the subject [1].

21

Chapter 2. Background

2.4.1 CRF Inference as a Neural Network Layer

Given a CRF inference method only consisting of differentiable operations, these
operations can be implemented as neural network layers. By implementing the
back-propagation routines for this layer, which amounts to applying the chain rule
for derivative, the error derivatives with respect to the parameters of the CRF
can be computed during training. In addition, the error derivative with respect
to the output of the CNN can be computed and the error can be propagated all
the way back through the CNN. This enables the parameters of both the CRF
and the CNN to be updated simultaneously using for example stochastic gradient
descent. This was shown to be possible for the mean-field inference algorithm [7].
In Paper I we show that this is possible for gradient-based CRF inference as well.

2.4.2 Back-propagating CRF Learning Objective

Many of the approaches for CRF parameter learning presented in Section 2.3.1 can
be abstracted to minimizing a global objective L. This global objective depends
on the samples of the data set, the parameters of the CRF as well as the output of
the CNN, denoted z, used to create the CRF potentials. If we are able to calculate
the gradient of this global objective with respect to the CNN output, ∇zL, we can
back-propagate this gradient back through the CNN to calculate ∇θL, where θ
are the weights of the CNN. The weights can then be updated using local search
methods. Examples of methods in this category are [47, 59, 63]. In Paper II we
present a method for doing this utilizing the max margin training approach for
CRFs introduced in Section 2.3.1.

22

Chapter 3

Summary

The focus of this thesis is to develop DSMs for semantic segmentation. Emphasis
have been put on creating models that are possible to train end-to-end as well
as the methods needed for training. Paper I and Paper II are obvious examples
of this. In Paper III a robust segmentation method for abdominal organs using
CNNs is developed. The original idea was to use the DSM and training routines
developed in paper II and add it to this framework as well. However, this did not
actually improve the results much and was hence discarded. This brings up an
important question, what types of CRFs are needed to improve on the results of a
CNN? This is something that will be discussed in Chapter 4.

Regardless of using a DSM or not Paper III presents a robust method for
abdominal organ segmentation. The paper combines a robust organ localization
with the use of specialized organ CNNs for segmentation. Since segmentation is
a key problem in medical image analysis, a method for organ segmentation can
be crucial for numerous applications in medical research and clinical care such
as computer aided diagnosis and surgery assistance. In addition, robustness is
something that is generally highly valuable for medical applications. At the time
of writing this thesis the development of deep learning methods for 3D medical
application is a popular research subject and many large scale research projects
exist on this topic [66].

Paper II introduces a method of training a DSM end-to-end using a max-margin
objective. However, several restrictions to the CRF is needed to be able to do the
training efficiently. The CRF used has a pairwise term where each pixel is only
connected to its closest neighbours. This can easily be extended, however the
method uses graph-cut inference of the CRF during training which becomes slow
for densely connected CRFs.

In Paper I a framework for training DSMs with more expressive CRFs is pre-
sented, here a newly developed approximate inference method of the CRF is used.
However, we would like to point out that this should not be seen as a strictly better
approach than the one used in Paper II. The max-margin approach of Paper II

23

Chapter 3. Summary

has the advantage of using a fast and exact inference algorithm of the CRF. In
addition the learning approach used have been shown to generalize well, even for
smaller datasets. Something that suited the experiments on smaller medical data
sets presented in the paper well.

The more expressive DSM presented in Paper I is however suitable for larger
datasets with more semantic classes. This enabled us to do experiments on for
example the PASCAL VOC 2012 segmentation benchmark [67] consisting of several
thousands of annotated images and 21 semantic classes.

At the moment segmentation is all about the evaluation numbers. The meth-
ods achieving the highest mean Intersection over Union on the major benchmarks
get the most attention. This is of course positive in the manner of encouraging
researchers to develop practically useful and accurate methods. The major bench-
marks are also an invaluable tool for comparing different methods. However, the
chase for better numbers combined with the use of very data-hungry deep learning
brings on a research pipeline that usually is 10% method development and 90%
parameter tuning and learning hacks. Something that also makes reproducing
previous work harder.

Unfortunately, the methods presented in Paper II and Paper I fail to achieve
state-of-the-art results on the major benchmarks. We have however successfully
shown the usefulness of both approaches in each paper respectively. Perhaps most
notable for Paper II is the performance of the method on smaller medical datasets.
For Paper I the model has the ability to improve on very strong CNN baseline
trained on a lot of additional data, even though the DSM were only trained end-
to-end on a subset of the data.

The remainder of this chapter will contain short summaries of the papers in-
cluded in this thesis. In addition, the thesis author’s contribution to each paper
will be stated.

24

3.1. Paper I

3.1 Paper I

M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. Torr. ”Revisiting Deep Structured
Models in Semantic Segmentation with Gradient-Based Inference”. Submitted to
SIAM Journal on Imaging Sciences.

In this paper we move from binary label CRFs with short spatial pairwise
interactions to CRFs being able to handle multiple labels and learn pairwise inter-
actions on larger distances. We present an inference technique based on gradient
descent on the Gibbs energy of the CRF. This inference method consists only of
differentiable operations which enables us to unroll the CRF inference as a number
of update steps of a Recurrent Neural Network (RNN). During learning, we can
also back-propagate through the RNN and do end-to-end training of the entire
model.

Two different types of CRF models are presented in the paper. The first one
consists of a spatial pairwise term as well as a high-dimensional bilateral kernels.
In contrast to many previous works we don’t restrict these two kernels to have
Gaussian shape but allow for arbitrary shape of the spatial and bilateral kernels. In
addition, we introduce a new type of potential function which is image-dependent
like the bilateral kernel, but an order of magnitude faster to compute since only
spatial convolutions are employed. The major contributions of the paper are

• A new model for a pairwise CRF potential which is image-dependent like the
bilateral kernel, but does not require high-dimensional filtering. It is based
on a learned 2D filter bank which makes both inference and learning an order
of magnitude faster than high-dimensional filtering approaches.

• A new optimization method for CRF inference based on gradient descent
that enables end-to-end training.

• We show that our inference method supports learning pairwise kernels of ar-
bitrary shape. The learned kernels are empirically analyzed and it is demon-
strated that in many cases non-Gaussian potentials are preferred.

Author contribution. I did the method development and implementation with
support from F. Kahl. Experiments were run by me, A. Arnab and S. Zheng. The
writing was done by me and A. Arnab while the initial idea was proposed by
F. Kahl.

25

Chapter 3. Summary

70.85 80.43

Image

53.79

Piecewise

69.66

Joint Ground Truth

Figure 3.1: Comparison of piecewise versus joint training of a deep structured
model for some hand-picked example. The number shown in the upper right corner
is the Jaccard index (%).

3.2 Paper II

M. Larsson, J. Alvén and F. Kahl. ”Max-Margin Learning of Deep Structured
Models for Semantic Segmentation”. Scandinavian Conference on Image Analysis
(SCIA), 28–40, 2017.

This paper presents a method for learning the parameters of a Deep Structured
Model which in this case refers to a CNN paired with a CRF. The learning problem
is formulated as a Structured Support Vector Machine (SSVM) and we show that
it is possible to calculate the derivative of the objective with respect to the output
of the CNN. This enables us to back-propagate all through the layers of the CNN
and learn the weights of the CNN and the CRF at the same time. Since the
SSVM uses a max-margin loss function that generally gives good generalization
capabilities of the trained model this method is especially suitable for application
where labelled data is limited.

Figure 3.1 shows a comparison of the piecewise and jointly trained models. As
can be seen the model where the CNN and CRF have been trained jointly performs
for better, avoiding error such as cutting of the legs of the horse. This is because
the CNN has learnt to compensate for the slight shrinking effect of the CRF.

Author contribution. I did the method development and implementation with
support from F. Kahl. The writing was done by me and J. Alvén while the initial
idea was proposed by F. Kahl.

26

3.3. Paper III

MergingROI
Localization

Spleen CNN

Aorta CNN

.

.

.

Organwise voxel
classification

Figure 3.2: Graphical representation of the method presented in Paper I.

3.3 Paper III

M. Larsson, Y. Zhang and F. Kahl ”Robust Abdominal Organ Segmentation Using
Regional Convolutional Neural Networks”. Submitted to Applied Soft Computing.

This paper presents a method for segmenting 13 different abdominal organs
utilizing CNNs. The method can be divided into two main steps. Firstly, an
efficient and robust feature registration method is applied estimating the center-
point of each organ. Secondly, a convolutional neural network performing voxelwise
classification is applied to a region, defined by a prediction mask placed at the
estimated organ center-point. The prediction mask is created using the ground
truths of each organ in the training set. The approach of first localizing a region
of interest for each organ transforms the problem the CNN has to solve from a
large multi-label problem to 13 smaller binary-labels problems. We can hence
train smaller CNNs and more specialized, or regional, networks that only need to
differentiate between a certain organ and the background.

During the development of this method and at the writing of the first draft
of this paper there were very few examples of deep learning methods applied to
medical 3D segmentation tasks and none for this specific tasks. Since then, there
has been a lot of development in this area and several papers have been published
further showing that deep learning methods can perform really well on these types
of tasks.

Author contribution. I did the method development and implementation with
support from Y. Zhang and F. Kahl. The writing was done by me while all authors
contributed to the main idea.

27

28

Chapter 4

Outlook

The field of semantic segmentation has moved at a high pace during the last few
years, especially when it comes to methods based on CNNs. Every month there is
a new CNN with a different architecture pushing state-of-the-art further. During
2015 and 2016 the results of CNNs presented for semantic segmentation could be
greatly increased by adding a CRF [7,26]. This is mainly due to the fact that the
architectures of the networks used during this time did not allow the CNN to learn
interactions over long ranges. In addition the downsampling of the pooling layers
resulted in a loss of spatial information that prohibited the accurate segmentation
of fine edges between classes, hence the output usually became "blobby". Both
of these errors are something that the most commonly used CRF models excel
at. However, during late 2016 and 2017 several new CNNs have been proposed,
raising state-of-the-art, that do not use a CRF for post-processing [45, 68]. This
indicates that the type of CRFs commonly used in semantic segmentation might
not be necessary for these large scale problems with a lot of annotated data.

An additional detail with the CRFs is that inference for most of the commonly
used models are still fairly slow, especially for the powerful dense models with
edge-aware pairwise potentials. Some work has been done on creating alternatives
to these CRFs that are less computationally demanding but still has the ability to
refine segmentations near edges [69,70]. This is also adressed as part of Paper I.

So, for CRFs and DSMs to be really useful for these large scale segmentation
problem in the future there are two improvements needed. Firstly, the inference
needs to be faster, adding a CRF should not speed down the inference or training
considerably. Unless, of course the gain in performance is worth it. Secondly, there
might be a need to rethink the type of models we are using and try to create CRFs
that are better suited to correct the errors that the new state-of-the-art CNNs do.

Moving away from the large scale segmentation benchmarks there are still a lot
of applications where adding a CRF gives a big increase in performance. Looking at
datasets with slightly smaller training set, DSMs tend to perform better in general.
CRFs are also a good way to include prior knowledge in you segmentation pipeline.

29

Chapter 4. Outlook

Previous work has shown that geometric constraints, such as convex or star shaped
for-ground objects only can be enforced by a CRF [71,72].

4.1 Future Work

4.1.1 Output Structure

At the moment many of the top entries of the major segmentation benchmarks
train CNNs with a pixel-wise loss function, disregarding the fact that the output is
structured. Modern CNNs have the capability to, and probably do, implicitly learn
that there is structure in the output. However, actually taking the output structure
into account, whether by using a CRF or in some other way, could be beneficial.
There is hence interest in continuing the work on end-to-end training of DSMs,
both trying to improve computation speed and to design more expressive models.
In addition it would be interesting to do more work on DSMs for medical image
segmentation where more application-specific types of CRFs might be needed.

Another interesting approach to taking output structure into account was in-
troduced in [73], which used a Generative Adversarial Network (GAN) for semantic
segmentation. The idea was that the discriminator would be able to learn how an
ground truth segmentation should look like. Hence during training, the generator,
that also performs the actual segmentation, would have to output realistic seg-
mentation to trick the discriminator. In this way the output of the segmentation
CNN would have to follow, and hence learn, the output structure of the segmenta-
tions. This introduces an interesting opportunity to learn output structure without
having to perform CRF inference.

4.1.2 Weak Supervision

Annotating data for semantic segmentation is a tedious task, especially for 3D med-
ical images. There has hence been an increase in approaches that utilize weakly
annotated data, for example image tags or bounding boxes of objects [74–77]. Hav-
ing powerful weak supervision learning methods would mean less needed annotated
data for application specific segmentation tasks, which would be crucial for many
situations. An interesting idea of utilizing GANs for this task was presented last
year [78], something that might be interesting to build upon.

One of our current projects is addressing the task of semantic localization, i.e.
utilizing semantic cues to estimate the pose of a camera given the image taken and
an 3D map. One step of the pipeline requires accurate semantic segmentations
for road-scenarios. What we noticed, when trying some state-of-the-art models
trained on the cityscapes dataset [79], was that these performed very poorly on
our images. This despite the fact that the environments were fairly similar. We

30

4.1. Future Work

are now working on improving segmentation results on these images by utilizing a
dataset consisting of a large 3D map. Using this we can extract correspondences
where we have two images of the same place, we can hence train the CNN to be
consistent for the part of the images that show the same object or objects. The
hope is that this would give us a CNN that generalizes better to new conditions,
without having to manually annotate new images.

31

32

Bibliography

[1] A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M. Larsson, A. Kir-
illov, B. Savchynskyy, C. Rother, F. Kahl, and P. H. S. Torr, “Conditional ran-
dom fields meet deep neural networks for semantic segmentation: Combining
probabilistic graphical models with deep learning for structured prediction,”
IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 37–52, Jan 2018.

[2] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street scenes,”
in International Conference on Computer Vision (ICCV), 2017. [Online].
Available: https://www.mapillary.com/dataset/vistas

[3] Z. Xu, “Multi-atlas labeling beyond the cranial vault - workshop and
challenge,” 2016, [Online; accessed 10-January-2017]. [Online]. Available:
https://www.synapse.org/#!Synapse:syn3193805/wiki/217752

[4] D. G. Lowe, “Object recognition from local scale-invariant features,” in Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
vol. 2, 1999, pp. 1150–1157 vol.2.

[5] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected CRFs
with gaussian edge potentials,” in Adv. Neural. Inf. Process. Syst., 2011.

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected CRFs,”
in Int. Conf. on Learning Representations, 2015.

[7] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr, “Conditional random fields as recurrent neural net-
works,” in Int. Conf. on Computer Vision, 2015.

[8] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr, “Associative hierarchical crfs
for object class image segmentation,” in International Conference on Com-
puter Vision, 2009.

[9] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with
gaussian edge potentials,” in Neural Information Processing Systems, 2011.

33

Bibliography

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[11] A. Hanson, “Visions: A computer system for interpreting scenes,” Computer
vision systems, 1978.

[12] Y.-i. Ohta, T. Kanade, and T. Sakai, “An analysis system for scenes containing
objects with substructures,” in Proceedings of the Fourth International Joint
Conference on Pattern Recognitions, 1978, pp. 752–754.

[13] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: A comprehensive survey
from bottom-up to semantic image segmentation and cosegmentation,” Jour-
nal of Visual Communication and Image Representation, vol. 34, pp. 12–27,
2016.

[14] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for
image understanding: Multi-class object recognition and segmentation by
jointly modeling texture, layout, and context,” International Journal of
Computer Vision, vol. 81, no. 1, pp. 2–23, Jan 2009. [Online]. Available:
https://doi.org/10.1007/s11263-007-0109-1

[15] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of
brain mechanisms,” Cornell Aeronautical Lab, Tech. Rep., 1961.

[16] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition,” in Competition and
cooperation in neural nets. Springer, 1982, pp. 267–285.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Adv. Neural. Inf. Process. Syst., 2012.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
geNet Large Scale Visual Recognition Challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[20] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366,
1989.

34

Bibliography

[21] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine
learning (ICML-10), 2010, pp. 807–814.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[23] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent facial
expression recognition with robust face detection using a convolutional neural
network,” Neural Networks, vol. 16, no. 5, pp. 555–559, 2003.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[26] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs.” IEEE transactions on pattern analysis and
machine intelligence, 2017.

[27] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” in International Conference on Learning Representations, 2016.

[28] M. Ranzato, F. J. Huang, Y. L. Boureau, and Y. LeCun, “Unsupervised learn-
ing of invariant feature hierarchies with applications to object recognition,”
in 2007 IEEE Conference on Computer Vision and Pattern Recognition, June
2007, pp. 1–8.

[29] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning represen-
tations by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1,
1988.

[30] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the 30th
international conference on machine learning (ICML-13), 2013, pp. 1139–
1147.

[31] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

35

Bibliography

[32] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[33] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,
“Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization,” in Advances in neural information processing systems,
2014, pp. 2933–2941.

[34] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The
loss surfaces of multilayer networks,” in Artificial Intelligence and Statistics,
2015, pp. 192–204.

[35] N. Sivastava, G., A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on
Machine Learning, 2015, pp. 448–456.

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in Conf. on Computer Vision and
Pattern Recognition, 2009.

[38] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing, “Training hierarchical feed-
forward visual recognition models using transfer learning from pseudo-tasks,”
Computer Vision–ECCV 2008, pp. 69–82, 2008.

[39] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2014, pp. 1717–1724.

[40] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” in Advances in neural information processing
systems, 2014, pp. 3320–3328.

[41] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional net-
works for mid and high level feature learning,” in Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE, 2011, pp. 2018–2025.

[42] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

36

Bibliography

[43] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention (MICCAI), ser. LNCS, vol. 9351. Springer, 2015,
pp. 234–241, (available on arXiv:1505.04597 [cs.CV]). [Online]. Available:
http://lmb.informatik.uni-freiburg.de//Publications/2015/RFB15a

[45] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing net-
work,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2017, pp. 2881–2890.

[46] S. Chandra, N. Usunier, and I. Kokkinos, “Dense and low-rank gaussian crfs
using deep embeddings,” in ICCV 2017-International Conference on Com-
puter Vision, 2017.

[47] G. Lin, C. Shen, A. van den Hengel, and I. Reid, “Efficient piecewise training
of deep structured models for semantic segmentation,” in Conf. on Computer
Vision and Pattern Recognition, 2016.

[48] V. Vineet, J. Warrell, and P. H. S. Torr, “Filter-based mean-field inference
for random fields with higher-order terms and product label-spaces,”
International Journal of Computer Vision, vol. 110, no. 3, pp. 290–307, Dec
2014. [Online]. Available: https://doi.org/10.1007/s11263-014-0708-6

[49] C. Wojek and B. Schiele, “A dynamic conditional random field model for
joint labeling of object and scene classes,” Computer Vision–ECCV 2008, pp.
733–747, 2008.

[50] P. Kohli, P. H. Torr et al., “Robust higher order potentials for enforcing label
consistency,” International Journal of Computer Vision, vol. 82, no. 3, pp.
302–324, 2009.

[51] A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr, “Higher order conditional
random fields in deep neural networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 524–540.

[52] M. Li, A. Shekhovtsov, and D. Huber, “Complexity of discrete energy mini-
mization problems,” in European Conference on Computer Vision. Springer,
2016, pp. 834–852.

[53] J. Kappes, B. Andres, F. Hamprecht, C. Schnorr, S. Nowozin, D. Batra,
S. Kim, B. Kausler, J. Lellmann, N. Komodakis et al., “A comparative study

37

Bibliography

of modern inference techniques for discrete energy minimization problems,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2013, pp. 1328–1335.

[54] V. Kolmogorov and R. Zabin, “What energy functions can be minimized via
graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp.
147–159, 2004.

[55] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[56] A. Desmaison, R. Bunel, P. Kohli, P. H. Torr, and M. P. Kumar, “Efficient
continuous relaxations for dense crf,” in European Conference on Computer
Vision. Springer, 2016, pp. 818–833.

[57] C. Sutton and A. McCallum, “Piecewise training for undirected models,” arXiv
preprint arXiv:1207.1409, 2012.

[58] A. Kolesnikov, M. Guillaumin, V. Ferrari, and C. H. Lampert, “Closed-form
training of conditional random fields for large scale image segmentation,”
arXiv preprint arXiv:1403.7057, 2014.

[59] A. Kirillov, D. Schlesinger, S. Zheng, B. Savchynskyy, P. H. Torr, and
C. Rother, “Joint training of generic cnn-crf models with stochastic opti-
mization,” in Asian Conference on Computer Vision. Springer, 2016, pp.
221–236.

[60] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, “Learning structured
prediction models: A large margin approach,” in Proceedings of the 22nd
international conference on Machine learning. ACM, 2005, pp. 896–903.

[61] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin
methods for structured and interdependent output variables,” Journal of ma-
chine learning research, vol. 6, no. Sep, pp. 1453–1484, 2005.

[62] M. Szummer, P. Kohli, and D. Hoiem, “Learning crfs using graph cuts,” Com-
puter Vision–ECCV 2008, pp. 582–595, 2008.

[63] L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep structured
models,” in Int. Conf. on Machine Learning, 2015.

[64] M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. H. S. Torr, “A projected gra-
dient descent method for crf inference allowing end-to-end training of arbitrary

38

Bibliography

pairwise potentials,” in 11th International Conference on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, (EMMCVPR).
Springer, 2017.

[65] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convo-
lutional network and a graphical model for human pose estimation,” in Adv.
Neural. Inf. Process. Syst., 2014.

[66] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,”
Annual Review of Biomedical Engineering, vol. 19, no. 1, pp. 221–248,
2017, pMID: 28301734. [Online]. Available: https://doi.org/10.1146/annurev-
bioeng-071516-044442

[67] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,”
International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan
2015. [Online]. Available: https://doi.org/10.1007/s11263-014-0733-5

[68] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-
volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,
2017.

[69] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with task-specific edge detection using cnns
and a discriminatively trained domain transform,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 4545–
4554.

[70] G. Bertasius, L. Torresani, S. X. Yu, and J. Shi, “Convolutional random walk
networks for semantic image segmentation,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.

[71] O. Veksler, “Star shape prior for graph-cut image segmentation,” Computer
Vision–ECCV 2008, pp. 454–467, 2008.

[72] L. Gorelick, O. Veksler, Y. Boykov, and C. Nieuwenhuis, “Convexity shape
prior for segmentation,” in European Conference on Computer Vision.
Springer, 2014, pp. 675–690.

[73] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using
adversarial networks,” in NIPS Workshop on Adversarial Training, 2016.

[74] D. Pathak, P. Krahenbuhl, and T. Darrell, “Constrained convolutional neural
networks for weakly supervised segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1796–1804.

39

Bibliography

[75] F. Saleh, M. S. A. Akbarian, M. Salzmann, L. Petersson, S. Gould, and J. M.
Alvarez, “Built-in foreground/background prior for weakly-supervised seman-
tic segmentation,” in European Conference on Computer Vision. Springer,
2016, pp. 413–432.

[76] Y. Wei, X. Liang, Y. Chen, Z. Jie, Y. Xiao, Y. Zhao, and S. Yan, “Learning
to segment with image-level annotations,” Pattern Recognition, vol. 59, pp.
234–244, 2016.

[77] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille, “Weakly-and
semi-supervised learning of a dcnn for semantic image segmentation,” arXiv
preprint arXiv:1502.02734, 2015.

[78] N. Souly, C. Spampinato, and M. Shah, “Semi supervised semantic segmenta-
tion using generative adversarial network,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017, pp. 5688–5696.

[79] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

40

Part II

Included Publications

Paper I

Revisiting Deep Structured Models in Semantic
Segmentation with Gradient-Based Inference

M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. Torr

Submitted to SIAM Journal on Imaging Sciences

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Revisiting Deep Structured Models in Semantic
Segmentation with Gradient-Based Inference

M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. Torr

Abstract

Semantic segmentation and other pixel-level labelling tasks have made
significant progress recently due to the deep learning paradigm. Many
state-of-the-art structured prediction methods also include a random
field model with a hand-crafted Gaussian potential to model spatial pri-
ors, label consistencies and feature-based image conditioning. These
random field models with image conditioning typically require com-
putationally demanding filtering techniques during inference. In this
paper, we present a new inference and learning framework which can
learn arbitrary pairwise CRF potentials. Both standard spatial and
high-dimensional bilateral kernels are considered. In addition, we in-
troduce a new type of potential function which is image-dependent like
the bilateral kernel, but an order of magnitude faster to compute since
only spatial convolutions are employed. It is empirically demonstrated
that such learned potentials can improve segmentation accuracy and
that certain label-class interactions are indeed better modelled by a
non-Gaussian potential. Our framework is evaluated on several pub-
lic benchmarks for semantic segmentation with improved performance
compared to previous state-of-the-art CNN+CRF models.

1 Introduction

Markov Random Fields (MRFs), Conditional Random Fields (CRFs) and more
generally, probabilistic graphical models are a ubiquitous tool used in a variety
of domains spanning Computer Vision, Computer Graphics and Image Process-
ing [1–3]. In this paper, we focus on the application of MRFs for Computer Vision
problems involving per-pixel labelling such as image segmentation. There are
many successful approaches in this line of research, such as the interactive seg-
mentation of [4] using graph cuts and the semantic segmentation works of [5, 6]
where the parallel mean-field algorithm was applied for fast inference. Recently,
Convolutional Neural Networks (CNNs) have dominated the field in a variety of
recognition tasks [7–9]. However, we observe that several leading segmentation
approaches still include CRFs, either as a post-processing step [10–13], or as part
of the deep neural network itself [14–19].

45

Revisiting Deep Structured Models for Semantic...

We also leverage this idea of embedding inference of graphical models into a
neural network. An early example of this idea was presented in [20] where the au-
thors back propagated through the Viterbi algorithm when designing a document
recognition system. Similar to [14,16,19,21], we use a recurrent neural network to
unroll the iterative inference steps of a CRF. This was first used in [14] and [22]
to imitate mean-field inference and to train a fully convolutional network [10, 23]
along with a CRF end-to-end via back propagation. In contrast to mean field, we
do not optimize the KL-divergence between the true probabiity distribution and
a fully-factorised approximation. Instead, we use a gradient descent approach for
the inference that directly minimizes the Gibbs energy of the random field and
hence avoids the approximations of mean-field. A similar framework was recently
suggested in [21] and the followup work [24] for multi-label classification problems
in machine learning with impressive results. Moreover, [25] have recently shown
that one can obtain lower energies compared to mean-field inference using gradient
descent based optimization schemes.

In many works, the pairwise potentials consist of parameterized Gaussians
[14, 16, 26] and it is only the parameters of this Gaussian which are learned. Our
framework can learn arbitrary pairwise potentials which need not be Gaussian.
In [27], a general framework for learning arbitrary potentials in deep structured
model was proposed based on approximate ML learning. One of the advantages
with that framework is that data likelihood is maximized in the learning process.
However, this involves approximating the partition function which is otherwise
intractable. This hinders the handling of large structured output spaces like in
our case.

Another approach to learning arbitrary pairwise potentials was presented in [18]
which uses Gibbs sampling. Again they struggle with the difficulty of computing
the partition function. In the end, only experiments on synthetic data restricted
to learned 2D potentials are presented.

The authors of [15] and [13] also learn arbitrary pairwise potentials to model
contextual relations between parts of the image. However, their approaches still
perform post-processing with a CRF model with parametric Gaussian potentials.
In [28], a pairwise potential is learned based on sparse bilateral filtering. Applying
such a filter can be regarded as one iteration in the CRF inference step. In [28],
the bilateral filter is applied twice, mimicking the first two iterations of inference.
Our method is not restricted to a limited number of iterations. Perhaps more
importantly is that we not only learn sparse high-dimensional bilateral filters, but
also learn arbitrary spatial filters. Such spatial 2D potentials are computation-
ally much more efficient and easier to analyze and interpret compared to their
high-dimensional counterparts. We also note that [29] proposed back propagating
through mean-field inference to learn parameters. However, this was not in the
context of neural networks as in the aforementioned approaches and our work. For

46 Paper I

1. Introduction

pixel-labelling tasks, we focus on discrete random fields. We note that learning
arbitrary pairwise potentials for deep structured models with continuous valued
output variables has recently been explored by [19].

A major drawback with using image dependent dense CRFs is the relatively
high computation cost. Calculating the contribution of a bilateral kernel requires
a filtering operation in 5D-space. Something that is very computationally ex-
pensive, even utilizing sophisticated approximate filtering techniques such as the
permutohedral lattice filtering technique [30]. Since the image dependent CRF
usually performs very well, especially when it comes to aligning object boundaries
in segmentation tasks, it is still used for these tasks. In this paper we also propose
an alternative CRF model which is also image dependent but only requires 2D
convolutions during inference. The image dependence of the model comes from a
output map of the base CNN that acts as a "filter selection" map. This enables
the model to, for example, use one filter representing pairwise interaction between
pixel labels at semantic edges and another filter far away from semantic edges.

Previous approaches trying to find alternatives to the computation heavy bilat-
eral CRF include [31] where they use discriminatively trained domain transform as
an edge-preserving filtering method. The authors show that the domain transform
can be applied as a Recurrent Neural Network (RNN) applied across the image
across all directions. Another example is [32] where they add a final layer that
performs random graph walk across the image refining the segmentation.

In summary, our contributions are as follows.

• We present a new model for a pairwise CRF potential which is image-
dependent like the bilateral kernel, but does not require high-dimensional
filtering. It is based on a learned 2D filter bank which makes both inference
and learning an order of magnitude faster than high-dimensional filtering
approaches.

• We introduce a new optimization method for CRF inference based on gradi-
ent descent that enables end-to-end training.

• We show that our inference method supports learning pairwise kernels of ar-
bitrary shape. The learned kernels are empirically analyzed and it is demon-
strated that in many cases non-Gaussian potentials are preferred.

Our framework has been implemented in Caffe [33] and all source code will
be made publicly available to facilitate further research.

Paper I 47

Revisiting Deep Structured Models for Semantic...

2 CRF Formulation

Consider a Conditional Random Field over N discrete random variables X =
{X1, ..., XN} conditioned on an observation I and let G = {V , E} be an undirected
graph whose vertices are the random variables {X1, ..., XN}. Each random variable
corresponds to a pixel in the image and takes values from a predefined set of L
labels L = { 0, ..., L− 1 }. The pair (X , I) is modelled as a CRF characterized by
the Gibbs distribution

P (X = x|I) =
1

Z(I)
exp(−E(x|I)), (1)

where E(x|I) denotes the Gibbs energy function with respect to the labeling
x ∈ LN and Z(I) is the partition function. To simplify notation the conditioning
on I will from now on be dropped. The MAP inference problem for the CRF model
is equivalent to the problem of minimizing the energy E(x). In this paper, we only
consider energies containing unary and pairwise terms. The energy function can
hence be written as

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj) (2)

where ψi : L → R and ψij : L × L → R are the unary and pairwise potentials,
respectively. We now describe these potentials before discussing inference in Sec. 3.

2.1 Potentials

The unary potential ψi(xi) specifies the energy cost of assigning label xi to pixel i.
In this work we obtain our unary potentials from a CNN. Roughly speaking, the
CNN outputs a probability estimate of each pixel containing each class. Denoting
the output of the CNN for pixel i and class xi as zi:xi , the unary potential is

ψi(xi) = −wu log(zi:xi + ε) (3)

where wu is a parameter controlling the impact of the unary potentials, and ε is
introduced to avoid numerical problems.

The pairwise potential ψij(xi, xj) specifies the energy cost of assigning label
xi to pixel i while pixel j is assigned label xj. Introducing pairwise terms in our
model enables us to take dependencies between output variables into account. We
consider two alternative types, the combined and the filterbank versions.

48 Paper I

2. CRF Formulation

Combined

The combined version has pairwise potentials that consist of a sum of one spatial
term and one bilateral term. It has the following form

ψij(xi, xj) = kspatialxi,xj
(pi − pj) + kbilateralxi,xj

(fi − fj) (4)

Here kspatialxi,xj
denote a spatial kernel with compact support. Its value depends

on the relative position coordinates pi − pj between pixels i and j. We do not
restrict these spatial terms to any specific shape. However we restrict the support
of the potential meaning that if pixels i and j are far apart, then the value of
kspatialxi,xj

(pi−pj) will be zero. We choose to use spatial kernels with compact support
in contrast to the commonly used dense Gaussian potential since this allows the
inference calculations to be performed using standard 2D convolutions. The CRFs
with Gaussian potentials do not in theory have compact support, and therefore,
they are often referred to as dense. However, in practice, the exponential function
in the kernel drops off quickly and effectively, the interactions between pixels far
apart are negligible.

The term kbilateralxi,xj
is a bilateral kernel which depends on the feature vectors fi

and fj for pixels i and j, respectively. Following several previous works on random
fields, we let the vector depend on pixel coordinates pi and RGB values associated
to the pixel, hence fi is a 5-dimensional vector. Note that for both the spatial
and the bilateral kernels, there is one kernel for each label-to-label (xi and xj)
interaction to enable the model learn differently shaped kernels for each of these
interactions.

Filterbank

The pairwise potentials of the filterbank version has the following form

ψij(xi, xj) =
F∑
f=1

gf (pi, I)kspatialxi,xj ,f
(pi − pj), (5)

where kspatialxi,xj ,f
denote a spatial kernel with compact support similar to the case of

the combined version. The weights gf depends both on the position of the pixel
as well as the image I. These weights are taken as the output of a CNN. Hence,
this gives rise to an image-dependent potential, but one only needs convolve with
a bank of F 2D filters to evaluate it during inference. For example, the CNN
outputting the weights can learn to detect semantic edges meaning that we would
apply a different spatial filter close to a semantic edge than at the center of an
semantic object. Setting the last layer of the CNN as a softmax the features gf
act as "filter selectors" deciding how the several 2d-filters describing the pairwise
term should b weighted for each pixel individually.

Paper I 49

Revisiting Deep Structured Models for Semantic...

2.2 Multi-label Graph Expansion and Relaxation

To be able to explain our inference method we reformulate the original minimiza-
tion of E(x) as a real-valued optimization problem. To facilitate a continuous
relaxation of the energy minimisation problem we start off by expanding our orig-
inal graph in the following manner. Each vertex in the original graph G will now
be represented by L vertices Xi:λ, λ ∈ L. In this way, an assignment of labels in L
to each variable Xi is equivalent to an assignment of boolean labels 0 or 1 to each
node Xi:λ, whereby an assignment of label 1 to Xi:λ means that in the multi-label
assignment, Xi receives label λ. To ensure that only one label is assigned to each
node, an additional constraint is needed saying that, for each i, only one of Xi:λ are
allowed to be labeled 1. This enables to rewrite the energy minimization problem
minE(x) as the following equivalent integer program

min
∑

i∈V,λ∈L

ψi(λ)xi:λ +
∑

(i,j)∈E
λ,µ∈L

ψij(λ, µ)xi:λxj:µ

s.t. xi:λ ∈ {0, 1} ∀i ∈ V , λ ∈ L∑
λ∈L

xi:λ = 1 ∀i ∈ V .

(6)

As a next step, we relax the integer program by allowing real values on the unit
interval [0, 1] instead of booleans only. We denote the relaxed variables qi:λ ∈ [0, 1].
We can now write our problem as a quadratic program

min
∑

i∈V,λ∈L

ψi(λ)qi:λ +
∑

(i,j)∈E
λ,µ∈L

ψij(λ, µ)qi:λqj:µ

s.t. qi:λ ≥ 0 ∀i ∈ V , λ ∈ L∑
λ∈L

qi:λ = 1 ∀i ∈ V .

(7)

The two constraints can by summarized as qi ∈ 4L, ∀i ∈ V where 4L is the
probability simplex and L is the number of classes. A natural question is what
happens when the domain is enlarged. Somewhat surprisingly, the relaxation is
tight [34].

Proposition 2.1. Let E(x∗) and E(q∗) denote the optimal values of (6) and (7),
respectively. Then,

E(x∗) = E(q∗).

In the supplementary material, we show that for any real q, one can obtain
a binary x such that E(x) ≤ E(q). In particular, it will be true for x∗ and q∗,
which implies E(x∗) = E(q∗). Note that the proof is constructive.

50 Paper I

3. MAP Inference via Gradient Descent Minimization

3 MAP Inference via Gradient Descent Minimiza-
tion

To solve the program stated in (7) we propose an optimization scheme based on
projected gradient descent, see Algorithm 1. It was designed with an extra condi-
tion in mind, that all operations should be differentiable to enable back propagation
during training.

Initialize q0

for t from 0 to T − 1 do
Compute the gradient ∇qE(qt).
Take a step in the negative direction, q̃t+1 = qt − γ ∇qE.
Project q̃t+1

i:λ to the probability simplex 4L. qt+1 = Proj4L(q̃).
end for
return qT−1

Algorithm 1: Algorithm 1. Projected gradient descent algorithm.

3.1 Gradient Computations

The gradient ∇qE of the objective function E(q) in (7) has the following elements

∂E

∂qi:λ
= ψi(λ) +

∑
j:(i,j)∈E
µ∈L

ψij(λ, µ)qj:µ. (8)

The contribution from the spatial kernel in ψij, cf. (4), can be written as

vspatiali:λ =
∑

j:(i,j)∈E
µ∈L

kspatialλ,µ (pi − pj)qj:µ. (9)

Since the value of the kernel vspatiali:λ only depends on the relative position of pixels
i and j, the contribution for all pixels and classes can be calculated by passing
qj:µ through a standard convolution layer consisting of L × L filters of size (2s +
1)× (2s+ 1) where L is the number of labels and s the number of neighbours each
pixel interacts with in each dimension.

The contribution from the bilateral term is

vbilaterali:λ =
∑

j:(i,j)∈E
µ∈L

kbilateralλ,µ (fi − fj)qj:µ. (10)

Paper I 51

Revisiting Deep Structured Models for Semantic...

For this computation we utilize the method presented by Jampani et al . [28] which
is based on the permutohedral lattice introduced by Adams et al . [30]. Efficient
computations are obtained by using the fact that the feature space is generally
sparsely populated. Similar to the spatial filter we get L × L filters, each having
size of (s + 1)d+1 − sd+1 where s is the number of neighbours each pixel interacts
with in each dimension in the sparse feature space.

For the filter bank version the contribution of the pairwise term can be calcu-
lated as

vbanki:λ =
F∑
f=1

gf (pi, I)
∑

j:(i,j)∈E
µ∈L

kspatialxi,xj ,f
(pi − pj)qj:µ, (11)

which, similar to the other spatial kernel can be efficiently calculated using a
standard convolution layer. The number of filters needed is L× FL.

3.2 Update Step and Projection to Feasible Set

Given the energy gradient and a previous estimate of the solution we want to
improve our solution by taking a step in that decreases the energy while still
keeping the solution feasible. A straightforward approach of doing this would be
to start by taking a step in the negative direction of the gradient according to

q̃t+1 = qt − γ ∇qE, (12)

where γ is the the step size. After taking the step the values are projected onto the
simplex 4L satisfying

∑
λ∈L qi:λ = 1 and 0 ≤ qi:λ ≤ 1 by following the method by

Chen et al . [35]. This method is used by by Larsson et al . in [36]. A drawback with
this approach is that, if q̃t+1 is outside of the simplex, backpropagation through
the projection method will give zero gradients.

An alternative method is to use the entropic descent algorithm proposed by
Beck et al . [37]. In this method, the distance measure for the projection is the
Kullback-Leibler divergence in contrast to the Euclidean distance. Beck et al .
showed that the update step can be written on the following closed form

qk+1
ij =

qkij exp (−tk∇qkE)∑
qkij exp (−tk∇qkE)

, tk =

√
2 lnn

Lf

1√
k

(13)

where n is the number of dimensions (the number of classes in our case), k is the
iteration number and Lf is a tunable parameter. Note that this projection is done
individually for each pixel i.

52 Paper I

4. Integration in a Deep Neural Network

Unary

Bilateral

Spatial

+ ED

Combined

Unary

Pairwise

+ ED

Filterbank

Figure 1: The data flow of one iteration of the projected gradient descent algo-
rithm. Each rectangle or circle represent an operation that can be performed within
a deep learning framework, the ED component performs an entropic descent update
step according to equation (13). Left: Combined version of CRF, Right: Filterbank
version of CRF.

3.3 Comparison to Mean-Field.

In recent years, a popular choice for CRF inference is to apply the mean-field
algorithm. One reason is that the kernel evaluations can be computed with fast
bilateral filtering [5]. As we have seen in this section, it can be accomplished with
our framework as well, with formulas that are less involved. The main difference
is that our framework directly optimizes the Gibbs energy which corresponds to
MAP while mean-field optimizes KL-divergence which does not.

4 Integration in a Deep Neural Network

In this section we will describe how the steps of Algorithm 1 can be formulated as
layers in a neural network. For this, we need to be able to calculate error derivatives
with respect to the input given error derivatives with respect to the output. In
addition we need to be able to calculate the error derivatives with respect to the
network parameters, i.e. the filter weights for the pairwise kernels as well as the
unary weight. This will enable us to unroll the entire gradient descent process as a
Recurrent Neural Network (RNN) making it possible to train both the parameters
of the CRF as well as the parameters of the CNN that gives the unary potentials
as well as g, the filter weighting function. A schematic of the data flow for one
step is shown in Fig. 1. In the supplementary material, all derivative formulas are
written out in detail.

Paper I 53

Revisiting Deep Structured Models for Semantic...

4.1 Initialization.

The variables q0 are set as the output of the CNN, which has been pretrained
to estimate the probability of each pixel containing each class and has a softmax
layers as the last layer to ensure that the variables lies within zero and one.

4.2 Gradient Computations.

We have previously explained the gradient computations in Section 3 for the for-
ward pass. To describe the calculation of the error derivatives we first notice that
the gradient is calculated by summing the unary term and the pairwise term. We
can hence treat these separately and combine them using an element-wise summing
operation.

Unary Term. The unary term in (3) is an elementwise operation with the CNN
output as input and the unary weight wu as parameter. The operation is obviously
differentiable with respect to both the layer input as well as its parameter. Note
that for wu we get a summation over all class and pixel indexes for the error
derivatives while for the input the error derivatives are calculated elementwise.

Pairwise Term - Combined version. The spatial pairwise term of the gradient
can be calculated efficiently using standard 2D convolution. In addition to giving
us an efficient way of performing the forward pass we can also utilize the 2D
convolution layer to perform the backward pass, calculating the error derivatives
with respect to the input and parameters. Similar to the spatial term, the bilateral
term is also calculated utilizing a bilateral filtering technique. Jampani et al .
[28] also presented a way to calculate the error derivatives with respect to the
parameters for an arbitrary shaped bilateral filter.

Pairwise Term - Filterbank version. For the Filterbank version we also use
standard 2D convolution operations to calculate the pairwise part of the gradient.
This makes the process of propagating the error derivatives similar as for the spatial
term of the Combined version. Interpreting the calculations as two separate steps,
one convolution with L×FL filters and one weighted summation over the feature
weights, the error derivative can be calculated with standard network layers. Note
that the error derivatives with respect to the feature weights gf are also calculated
and propagated further back through the pairwise CNN.

54 Paper I

5. Recurrent Formulation as Deep Structured Model

CRF
update

stepCNN
Unary

G

Combined

CRF
update

stepCNN
Unary

G

Filterbank

Figure 2: The data flow of the deep structure model. Each rectangle or circle
represent an operation that can be performed within a deep learning framework.
Note that the CNN outputs both class probabilities z and filterbank features g for
the filterbank version.

4.3 Entropic Descent Update

The entropic descent step is done individually for each pixel. Since we have the
update step on closed form we can easily implement it as a layer in a deep learning
framework. Regarding the error derivative we are required to calculate both the
error derivatives with respect to the values of the previous iteration, qt and with
respect to gradient, ∇qtE. The error derivatives with respect to the values of the
previous iteration are given according to

∂L

∂qkij
=
qk+1
ij

qkij

(
∂L

∂qk+1
ij

−
n∑
l=1

∂L

∂qk+1
il

qk+1
il

)
, (14)

where the index i is over all pixels and j is over all the n number of classes. Note
that the error derivatives with respect to qk+1

ij are given by the previous iteration.
The error derivatives with respect to the gradient are given according to

∂L

∂yij
= −tkqk+1

ij

(
∂L

∂qk+1
ij

−
n∑
l=1

∂L

∂qk+1
il

qk+1
il

)
. (15)

Note that, for ease of notation, we have used yij as the energy derivative of pixel
i and class j.

5 Recurrent Formulation as Deep Structured Model

Our iterative solution to the CRF energy minimisation problem by projected gra-
dient descent, as described in the previous sections, is formulated as a Recurrent
Neural Network (RNN). The input to the RNN is the image, and the outputs of the
CNN, as shown in Fig. 2. The Unary CNN’s output, z, are the unary potentials
and obtained after the final softmax layer (since the CNN is initially trained for
classification). For the filterbank version the CNN also outputs image-dependent
features, g, which are "selecting" which filters to use to compose the pairwise term
at each pixel location.

Paper I 55

Revisiting Deep Structured Models for Semantic...

Each iteration of the RNN performs one projected gradient descent step to
approximately solve (7). Thus, one update step can be represented by:

qt+1 = f(qt, z, I,w). (16)

As illustrated in Fig. 2, the gating function G sets qt to z at the first time step, and
to qt−1 at all other time steps. In our iterative energy minimisation, the output
of one step is the input to the next step. We initialise at t = 0 with the output of
the unary CNN.

The output of the RNN can be read off qT where T is the total number of
steps taken. In practice, we perform a set number of T steps where T is a hyper-
parameter. It is possible to run the RNN until convergence for each image (thus a
variable number of iterations per image), but we observed minimal benefit in the
final Intersection over Union (IoU) from doing so, as opposed to fixing the number
of iterations to T = 5.

The parameters of the RNN are the filter weights for the pairwise kernels, and
also the weight for the unary terms. Since we are able to compute error derivatives
with respect to the parameters, and input of the RNN, we can backpropagate error
derivates through our RNN to the preceding CNN and train our entire network end-
to-end. Furthermore, since the operations of the RNN are formulated as filtering,
training and inference can be performed in a fully-convolutional manner.

The CNN part of our network allows us to leverage the ability of CNNs to learn
rich feature represenations from data, whilst the RNN part of the network utilises
the CRF’s ability to model output structure. As we learn the parameters of our
pairwise terms, we are not restricted to Gaussian potentials as in [14, 26], and we
show the benefits of this in our experiments (Section 7).

6 Implementation Details

Our proposed CRF model has been implemented in the Caffe [33] library. The
Unary CNN part of our model is initialized form a pre-trained segmentation net-
work. For all experiments we use the Deeplab-LargeFOV proposed by Chen et
al . [38]. For the combined version of our model the unary CNN is pre-trained for
pixel-wise classification.

For the filterbank version we use a modified version of the Deeplab-LargeFOV
where a second head is added to the the network as in [31]. This head is formed by
upsampling and concatenating several intermediate layers of the original network,
a final convolution are applied to the concatenated features and lastly a softmax
layer is added. The second head outputs the filter choosing features gf and is
pre-trained to classify each pixel as horizontal semantic edge, vertical semantic
edge or no edge. This part of the base network can also be trained during the final
end-to-end training.

56 Paper I

7. Experiments

CRF

CNN

upsample
and concat

kernel selection

unary terms

Figure 3: Schematic of the filterbank version of our model. The CNN part outputs
initial class probability maps as well as filter selection maps. The structure used
for the CNN is a modified version of the Deeplab-LargeFOV [38] with an extra
added head.

The CRF model has several tunable hyperparameters. The parameter Lf and
the number of iterations T specify the properties of the gradient decent algorithm.
Lf influences the step size (larger Lf gives a smaller step size), too high a step size
might make the algorithm not end up in a minimum while setting a low step size
and a low number of iterations might not give the algorithm a chance to converge.
The kernel sizes for the pairwise kernels also need to be set. Choosing the value of
these parameters gives a trade-off between model expression ability and number
of parameters, which may cause (or hinder) over-fitting.

The spatial weights of the CRF model are all initialized as zero with the mo-
tivation that we did not want to impose a shape for these filters, but instead see
what was learned during training. The bilateral filters were initialized as Gaussians
with the common Potts class interaction (the filters corresponding to interactions
between the same class were set to zero) [5, 10,14].

7 Experiments

We evaluate the proposed approach on three datasets: Weizmann Horse dataset [39],
NYU V2 geometric dataset [40] and Pascal VOC 2012 [41]. In these exper-
iments, we show that the proposed approach, has advantages over similar ap-
proaches such as CRF-RNN [14]. In addition we show that adding a CRF-model
as proposed in this paper improves the results on strong unary CNN networks,
even for cases where the CNN has been trained on large amounts of extra data.

Paper I 57

Revisiting Deep Structured Models for Semantic...

Method mIoU (%)
unary CNN - Deeplab [10] 90.89

CRF-RNN [14] 91.47
Gaussian-ED 92.64

Combined-ED 92.99
Combined-MF 92.73
Combined-PGD 92.79

Filterbank-ED 93.22

Table 1: Quantitative results on the Weizmann Horse dataset comparing our
method to baselines as well as comparison of different inference methods. Mean
intersection over union for the test set is shown.

7.1 Weizmann Horse

The Weizmann Horse dataset is widely used for benchmarking object segmen-
tation algorithms. It contains 328 images of horses in different environments. We
divide these images into a training set of 150 images, a validation set of 50 images
and a test set of 128 images. Our purpose is to verify our ability to learn reason-
able kernels and study the effects of different settings on a relatively small dataset.
In addition we use this dataset to evaluate our proposed inference method as well
as the different types of CRF-models. To compare the different types of inference
methods train our combined model with three types of inference methods: En-
tropic Descent (ED), Projected Gradient Descent (PGD) and Mean Field (MF).
We also train a version with only Gaussian potentials (using the same potentials
as for CRF-RNN [14]). We also trained and evaluated the filter-bank version. The
results are summarized in Table 1 and some example segmentations are shown
in Fig. 4. As can be seen from the results, our proposed inference method using
entropic descent achieves slightly better results on the test set for the combined
CRF model. However, the increase over mean field and projected gradient descent
inference is minor. For the case where we used Gaussian CRF potentials we get
better results with entropic descent inference compared to mean field. Comparing
entropic descent inference and projected gradient descent the two methods achieve
similar results. Training a model with projected gradient descent is however prob-
lematic due to the zeroing of gradients, to solve this we train with a "leaky" version
of projected gradient descent. This means that the intermediate states and final
results might not lie on the probability simplex, something that is guaranteed for
entropic descent inference.

In Fig. 5 the mean intersection over union on the test set is plotted as a
function of the number of CRF inference iterations. During training the number

58 Paper I

7. Experiments

Input Unary CRF-RNN Combined Filterbank Ground truth

Figure 4: Qualitative results on the Weizmann Horse dataset. Note that the
proposed methods capture the shape of the horses better than the baselines, espe-
cially compared to the unary netwok.

of iterations were set to five. As can be seen in the figure, increasing the number
of inference step will only slightly increase the segmentation result. In Fig. 6 the
pairwise weights of the filterbank version is visualized.

7.2 NYU V2

The NYU V2 dataset contains images taken by Microsoft Kinect V-1 camera in
464 indoor scenes. We use the official training and validation splits consisting
of 795 and 654 images, respectively. Following the setting described in Wang et
al . [40], we also include additional images for training. These are the images from
the NYU V1 dataset that do not overlap with the images in the official validation
set. This gives a total of 894 images with semantic label annotations for training.
As in [40] we consider 5 classes conveying strong geometric properties: ground,
vertical, ceiling, furniture and objects.

As shown in Table 2, we achieved superior results for semantic image segmen-
tation on the NYU V2 dataset. Some example segmentations are shown in Fig. 8.

Paper I 59

Revisiting Deep Structured Models for Semantic...

Method mIoU (%)
R-CNN [42] 40.3
Semantic HCRF [40] 42.7
Joint HCRF [40] 44.2
Modular CNN [43] 54.3

unary CNN - Deeplab [10] 62.8
CRF-RNN [14] 64.4

Combined 65.4
Filterbank 65.4

Table 2: Quantitative results comparing our method to baselines as well as state-
of-the-art methods. Mean intersection over union for the validation set is shown
for the NYU V2 dataset. The CRF-RNN baseline was initialized with the same
unary network as the proposed models.

Method mIoU (%)
unary CNN - Deeplab [10] 68.5
CRF-RNN [14] 71.7

Combined 72.0
Filterbank 70.1

Table 3: Quantitative results on the PASCAL VOC 2012 validation set. The
CRF-RNN baseline was initialized with the same unary network as the proposed
models. The unary model was pretrained on the MS-COCO 2014 dataset [44].

Method mIoU (%)
unary CNN - Deeplab [10] 68.9
DT-EdgeNet [31] 71.7
CRF-RNN [14] 72.2

Combined 72.5
Filterbank 69.5

PSPNet [46] 85.4
Multipath-RefineNet [47] 84.2

Table 4: Quantitative results on the PASCAL VOC 2012 test set. The three top
entries use the same base network as our models. The unary model was pretrained
on the MS-COCO 2014 dataset [44], but note that our models were not trained
using MS-COCO.

60 Paper I

7. Experiments

0 1 2 3 4 5 6 7

iteration

0.925

0.927

0.929

0.931

0.933

m
Io

U

combined

filterbank

Figure 5: Weizmann Horse test set results in terms of mean Intersection over
Union plotted as a function of the number of iterations for the CRF inference
method. During training the number of iterations were set to five.

7.3 PASCAL VOC

The PASCAL VOC 2012 segmentation benchmark [45] consists of 20 foreground
and one background class. The unary network used for these experiments is again
the Deeplab-LargeFOV network [38], this network has been pretrained on the MS-
COCO 2014 dataset [44] and then trained on the PASCAL VOC training data
as well as a training set created from annotations of the semantic boundaries
dataset [48]. We add our CRF-models to this baseline network and train only on
the PASCAL VOC training data. This to show that we can improve upon really
strong baselines, even though we finetune the complete models on only a fraction
of the training data used for the baseline. The results for the PASCAL VOC 2012
validation set is shown in Table 3. In addition we evaluate our model on the test
set, for this the results are shown in Table 4. As can be seen, our models perform
similar to models trained with the same base network. Note that our models are
only trained on the training data during end-to-end training. Recently there have
several CNNs with different base architectures presented that perform well, even
without a CRF. We include the three top entries in the table as well. We leave it
to future work to explore whether these architectures can be improved using our
proposed methodology.

Paper I 61

Revisiting Deep Structured Models for Semantic...

k1 k2 k3

g1 g2 g3

Figure 6: Visualization of the pairwise kernel weights for the filterbank version
trained on the Weizmann Horse data set. These weights are for the classes
"background" and "horse", the plots can be understood as the energy added when
assigning the pixels with the relative positions (x,y) and (x+x-shift,y+y-shift) as
background and horse. This energy is then multiplied by the "filter choosing"-map
g for each pixel and then summed. The first map of g has high values at edges in
the horizontal direction, looking at k1 we see that changing classes in this direction
does not add as much energy as changing classes in the vertical direction. Similar
behaviour can be seen for the second map.

7.4 Execution time

We also investigated the difference in running time between the two proposed
models. This was done on a computer with a Nvidia Titan X GPU with Pascal
architecture and an Intel i7-5930K processor. The implementation used for the
bilateral filtering used was the one from Jampani et al . [28] where most of the
computations are done on the GPU. The initialization of the permutohedral lattice
is however done on the CPU. The runtimes were tested by performing the forward
step for a randomized RGB image of size 640× 640 with 21 classes. The numbers
presented are the average of 100 runs. For the combined model the forward runtime
was 12 seconds while for the filterbank it was 0.37 second.

62 Paper I

8. Conclusion

furniture-ceiling object-ground

Figure 7: Visualization of the pairwise kernel weights for the filterbank version
trained on the NYU V2 data set. These weights are for the classes shown above
the plots and for the third filter choosing map which usually has a high value for
pixels with no semantic edge. The furniture-ceiling kernel favors putting furniture
labels below ceiling labels while the obejct-ground kernel has a more Gaussian-like
shape.

8 Conclusion

In this paper we have presented a gradient descent based method for inference
in Conditional Random Fields. This method allows for backpropagation of error
derivative hence enabling end-to-end training with an Convolutional Neural Net-
work of choice. We show that this inference method has beneficial properties and
performs better on some tasks compared to other methods such as mean field. In
addition, we present two types of Conditional Random Field models tailored for
semantic segmentation. The combined model that uses spatial pairwise terms as
well as image-dependent bilateral pairwise terms. This model performs well but
is somewhat computational expensive due to the high dimensionality of the bilat-
eral filtering. We also present the filterbank model which is also image dependent
but only requires 2D convolutions during inference. The image dependence of the
model comes from an output map of the base CNN that acts as a "filter choosing"
map. This enables the model to, for example, use one filter representing pairwise
interaction between pixel labels at semantic edges and another filter far away from
semantic edges. This model gives a speedup by a factor of 32 compared to the
combined model without loosing performance in terms of segmentation quality.
For the smaller dataset it achieves similar segmentation quality as the combined
model. For all the models presented the pairwise kernels can have arbitrary shape,
instead of commonly used Gaussian kernels. This enables the models to learn more
complicated pairwise label interactions.

Paper I 63

Revisiting Deep Structured Models for Semantic...

Input Unary CRF-RNN Combined Filterbank Ground truth

Figure 8: Qualitative results on the NYU V2 dataset. Note that the proposed
methods captures the shape of the object instances better than the baselines. This
effect is perhaps most pronounced for the paintings hanging on the walls. The pixels
colored off-white are "ignore"-pixels, these are not counted in the evaluation. The
training images have similar "ignore"-pixels.

Input Unary CRF-RNN Combined Filterbank Ground truth

Figure 9: Qualitative results on the PASCAL VOC dataset. [45]. The pixels
colored off-white are "ignore"-pixels, these are not counted in the evaluation. The
training images have similar "ignore"-pixels.

64 Paper I

Bibliography

Bibliography

[1] D. Koller and N. Friedman, Probabilistic Graphical Models. MIT Press, 2009.

[2] A. Blake, P. Kohli, and C. Rother, Markov Random Fields for Vision and
Image Processing. MIT Press, 2011.

[3] A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M. Larsson, A. Kir-
illov, B. Savchynskyy, C. Rother, F. Kahl, and P. H. S. Torr, “Conditional ran-
dom fields meet deep neural networks for semantic segmentation: Combining
probabilistic graphical models with deep learning for structured prediction,”
IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 37–52, Jan 2018.

[4] C. Rother, V. Kolmogorov, and A. Blake, “"GrabCut": Interactive foreground
extraction using iterated graph cuts,” in ACM Transactions on Graphics,
2004, pp. 309–314.

[5] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected CRFs
with gaussian edge potentials,” in Neural Information Processing Systems,
2011.

[6] V. Vineet, J. Warrell, and P. Torr, “Filter-based mean-field inference for ran-
dom fields with higher order terms and product label-spaces,” in European
Conference on Computer Vision, 2012.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning Represen-
tations, 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Neural Information Pro-
cessing Systems, 2015.

[10] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,”
in International Conference on Learning Representations, 2015.

[11] ——, “Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” arXiv preprint
arXiv:1606.00915, 2016.

Paper I 65

Revisiting Deep Structured Models for Semantic...

[12] G. Ghiasi and C. Fowlkes, “Laplacian reconstruction and refinement for se-
mantic segmentation,” in European Conference on Computer Vision, 2016.

[13] S. Chandra and I. Kokkinos, “Fast, exact and multi-scale inference for seman-
tic image segmentation with deep gaussian crfs,” in European Conference on
Computer Vision, 2016.

[14] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr, “Conditional random fields as recurrent neural net-
works,” in International Conference on Computer Vision, 2015.

[15] G. Lin, C. Shen, A. Hengel, and I. Reid, “Efficient piecewise training of deep
structured models for semantic segmentation,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, Jun. 2016.

[16] A. Arnab, S. Jayasumana, S. Zheng, and P. H. S. Torr, “Higher order con-
ditional random fields in deep neural networks,” in European Conference on
Computer Vision, 2016.

[17] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang, “Semantic image segmentation
via deep parsing network,” in International Conference on Computer Vision,
2015.

[18] A. Kirillov, D. Schlesinger, S. Zheng, B. Savchynskyy, P. Torr, and C. Rother,
“Joint training of generic cnn-crf models with stochastic optimization,” in
Asian Conference on Computer Vision, 2016.

[19] W. Wang, S. Fidler, and R. Urtasun, “Proximal deep structured models,” in
Neural Information Processing Systems, 2016.

[20] L. Bottou, Y. Bengio, and Y. Le Cun, “Global training of document processing
systems using graph transformer networks,” in IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 1997, pp. 489–494.

[21] D. Belanger and A. McCallum, “Structured prediction energy networks,” in
International Conference on Machine Learning, 2016.

[22] A. Schwing and R. Urtasun, “Fully connected deep structured networks,” in
arXiv preprint arXiv:1503.02351, 2015.

[23] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[24] D. Belanger, B. Yang, and A. McCallum, “End-to-end learning for structured
prediction energy networks,” arXiv preprint arXiv:1703.05667, 2017.

66 Paper I

Bibliography

[25] A. Desmaison, R. Bunel, P. Kohli, P. H. S. Torr, and M. P. Kumar, “Efficient
continuous relaxations for dense CRF,” in European Conference on Computer
Vision, 2016.

[26] P. Kraehenbuehl and V. Koltun, “Parameter learning and convergent inference
for dense random fields,” in Proceedings of The 30th International Conference
on Machine Learning, 2013, pp. 513–521.

[27] L. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep structured
models,” in Int. Conf. Machine Learning, Lille, France, 2015.

[28] V. Jampani, M. Kiefel, and P. V. Gehler, “Learning sparse high dimensional
filters: Image filtering, dense crfs and bilateral neural networks,” in IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2016.

[29] J. Domke, “Learning graphical model parameters with approximate marginal
inference,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 10, pp. 2454–2467, 2013.

[30] A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional filtering using
the permutohedral lattice,” Computer Graphics Forum, 2010.

[31] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with task-specific edge detection using cnns
and a discriminatively trained domain transform,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 4545–
4554.

[32] G. Bertasius, L. Torresani, S. X. Yu, and J. Shi, “Convolutional random walk
networks for semantic image segmentation,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[34] E. Boros and P. Hammer, “Pseudo-boolean optimization,” Discrete Appl.
Math., vol. 123, pp. 155–225, 2002.

[35] Y. Chen and X. Ye, “Projection onto a simplex,” arXiv preprint
arXiv:1101.6081, 2011.

Paper I 67

Revisiting Deep Structured Models for Semantic...

[36] M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. H. S. Torr, “A projected gra-
dient descent method for crf inference allowing end-to-end training of arbitrary
pairwise potentials,” in 11th International Conference on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, (EMMCVPR).
Springer, 2017.

[37] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradient
methods for convex optimization,” Operations Research Letters, vol. 31, no. 3,
pp. 167–175, 2003.

[38] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs.” IEEE transactions on pattern analysis and
machine intelligence, 2017.

[39] E. Borenstein and S. Ullman, “Class-specific, top-down segmentation,” in Eu-
ropean Conf. on Computer Vision, 2002.

[40] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille, “Towards unified
depth and semantic prediction from a single image,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[41] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” Int. Journal Computer Vi-
sion, vol. 88, no. 2, pp. 303–338, 2010.

[42] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Conf. on Computer
Vision and Pattern Recognition, 2014.

[43] O. H. Jafari, O. Groth, A. Kirillov, M. Y. Yang, and C. Rother, “Analyzing
modular cnn architectures for joint depth prediction and semantic segmenta-
tion,” in International Conference on Robotics and Automation, 2017.

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, Microsoft COCO: Common Objects in Context. Cham:
Springer International Publishing, 2014, pp. 740–755.

[45] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,”
International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan
2015. [Online]. Available: https://doi.org/10.1007/s11263-014-0733-5

[46] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement
networks with identity mappings for high-resolution semantic segmentation,”
arXiv preprint arXiv:1611.06612, 2016.

68 Paper I

Bibliography

[47] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing net-
work,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2017, pp. 2881–2890.

[48] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic con-
tours from inverse detectors,” in 2011 International Conference on Computer
Vision, Nov 2011, pp. 991–998.

Paper I 69

Revisiting Deep Structured Models for Semantic...

Supplementary Material

Proof of Proposition 2.1

Let E(x∗) and E(q∗) denote the optimal values of (7), where x∗ is restricted to
boolean values. Then,

E(x∗) = E(q∗).

Proof. We will show that for any real q, one can obtain a binary x such that
E(x) ≤ E(q). In particular, it will be true for x∗ and q∗, which implies E(x∗) =
E(q∗).

Let q be given, and let x ∈ LN . One may define

Em(x, q) = E(x1, . . . , xm, qm+1, . . . , qN)

such that each xi or qi is a vector with entries such as qi:λ or xi:λ, but for each i
only one value xi:λ is non-zero (and equal to 1). Since E0 = E(q) and EN = E(x)
it will be sufficient to find a x such that Em(x, q) ≤ Em−1(x, q) for all m. The
required x will be constructed one element at a time.

The key observation is that Em is multilinear in the qi. Then, it follows that

Em−1(x, q) = E(x1, . . . , xm−1, qm, . . . qN)

=
∑
xm∈L

qm:xmE(x1, . . . , xm, qm+1, . . . qN).

Here, xm is treated as a variable and x1, . . . , xm−1 are fixed. Since
∑

xm∈L qm:xm = 1
there must be at least one choice of xm such that

Em−1(x, q) ≥ E(x1, . . . , xm, qm+1, . . . qm) = Em(x, q).

It is clear that E(q∗) ≤ E(x∗) since the domain is enlarged, which proves the
desired result.

70 Paper I

Supplementary Material

Error Derivatives for the CRF-Grad layer

In this section, we will explicitly formulate the error derivative necessary to train
our deep structure model jointly. The following section describes the calculations
for the combined version of the CRF, the changes needed for the filterbank version
is described in the next paragraph. The notation used in the section is not very
strict. Derivatives, gradients and jacobians are all referred to as derivatives. De-
noting the output of our CRF-Grad layer y we need expressions for the derivatives
∂y
∂z
, where z is the output from the CNN and hence also the input to the CRF-Grad

layer. In addition we need to calculate ∂y
∂wu

, ∂y
∂ws

and ∂y
∂wb

to be able to update the
weights of the layer. To simplify the notation we abbreviate the update step by
qt+1 = f(qt, z, I,w). Note that the output y = qT where T is the total number
of iterations for the RNN. We have

∂y

∂wu
=

∂y

∂qT
∂f(qT−1)

∂wu
+ . . .+

∂y

∂q1

∂f(q0)

∂wu
(17)

∂y

∂ws

=
∂y

∂qT
∂f(qT−1)

∂ws

+ . . .+
∂y

∂q1

∂f(q0)

∂ws

(18)

∂y

∂wb

=
∂y

∂qT
∂f(qT−1)

∂wb

+ . . .+
∂y

∂q1

∂f(q0)

∂wb

(19)

∂y

∂z
=

∂y

∂q0

∂q0

∂z
+

∂y

∂ψu

∂ψu
∂z

, (20)

where ψu denote the unary part of the CRF energy function. Note that

∂y

∂qt−1
=
∂y

∂qt
∂f(qt−1)

∂qt−1
(21)

To be able to calculate these we need the derivatives of the function f with
respect to qt, wu, ws and wb. We denote the spatial and bilateral filtering oper-
ations as ψs ∗ qt and ψb ∗ qt respectively. An update step can then be written
as

qt+1 = ED(qt,∇qtE).

where ED denotes the entropic descent update step for which the expressions
needed for backpropagation is shown in the main paper. The expression for cal-
culating the derivative is

∇qtE = ψu +ψs ∗ qt +ψb ∗ qt (22)

Denoting ∇qtE as et the aforementioned derivatives become

∂f

∂qt
=
∂ED
∂qt

+
∂ED
∂et

∂et

∂qt
, (23)

Paper I 71

Revisiting Deep Structured Models for Semantic...

where

∂et

∂qt
=
∂(ψs ∗ qt)

∂qt
+
∂(ψb ∗ qt)

∂qt
. (24)

For the weights

∂f

∂wu
=
∂ED
∂et

∂et

∂ψu
· ∂ψu
∂wu

, (25)

∂f

∂ws

=
∂ED
∂et

· ∂(ψs ∗ qt)

∂ws

, (26)

and

∂f

∂wb

=
∂ED
∂et

· ∂(ψb ∗ qt)

∂wb

, (27)

Note that ∂(ψs∗qt)
∂qt

, ∂(ψb∗qt)
∂qt

, ∂(ψs∗qt)
∂ws

and ∂(ψb∗qt)
∂wb

can be calculated using the back-
ward routines for a standard convolutional layer and bilateral filtering layer de-
scribed in the main paper.

Filterbank Version

For the filterbank version we don’t have a bilateral term for our gradient. Also,
the pairwise part of the gradient is calculated by first doing a standard convolution
operation and later a weighted sum over the feature values. Since we can divide
this into three separate operations: convolution, element-wise multiplication and
summing, the expressions for backpropagating the error can be derived from these
separate operations. Hence we leave the full explicit expression out of the supple-
mentary material. Note though that we also calculate the error derivative for the
"filter choosing"-features enabling backpropagation through that part of the CNN
as well.

72 Paper I

Paper II

Max-Margin Learning of Deep Structured Models
for Semantic Segmentation

M. Larsson, J. Alvén and F. Kahl

In Image Analysis: 20th Scandinavian Conference, SCIA 2017,
Springer International Publishing, 28-40

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Max-Margin Learning of Deep Structured Models
for Semantic Segmentation

M. Larsson, J. Alvén and F. Kahl

Abstract

During the last few years most work done on the task of image seg-
mentation has been focused on deep learning and Convolutional Neural
Networks (CNNs) in particular. CNNs are powerful for modeling com-
plex connections between input and output data but lack the ability
to directly model dependent output structures, for instance, enforcing
properties such as smoothness and coherence. This drawback moti-
vates the use of Conditional Random Fields (CRFs), widely applied as
a post-processing step in semantic segmentation.

In this paper, we propose a learning framework that jointly trains
the parameters of a CNN paired with a CRF. For this, we develop theo-
retical tools making it possible to optimize a max-margin objective with
back-propagation. The max-margin loss function gives the model good
generalization capabilities. Thus, the method is especially suitable for
applications where labelled data is limited, for example, medical appli-
cations. This generalization capability is reflected in our results where
we are able to show good performance on two relatively small medical
datasets. The method is also evaluated on a public benchmark (fre-
quently used for semantic segmentation) yielding results competitive to
state-of-the-art. Overall, we demonstrate that end-to-end max-margin
training is preferred over piecewise training when combining a CNN
with a CRF.

1 Introduction

Convolutional Neural Networks (CNNs) have, during the last few years, been used
with great success on a variety of computer vision problems such as image clas-
sification [1] and object detection [2]. The capability of CNNs to learn high-level
abstraction of data makes them well suited for the task of image classification.
Following this development, there have been several successful attempts to extend
CNN based methods to tasks done on the pixel level such as semantic segmenta-
tion [3–5].

A drawback of CNNs is that they do not have the ability to directly model
statistical dependencies of output variables. Hence they cannot explicitly enforce

75

Max-Margin Learning of Deep Structured Models...

smoothness constraints or encourage spatial consistency of the output, something
that arguably is important for the task of semantic segmentation. To deal with
this a Markov Random Field (MRF), or its variant Conditional Random Field
(CRF), can be used as a refinement step. This was done by Chen et al . in [6]
where they used CNNs to form the unary potential of the dense CRF model
presented by Krähenbühl et al . in [7]. However, the CNN and the CRF models
are trained separately in [6] meaning that the parameters of the CRF are learnt
while holding the CNN weights fixed. In other words, the deep features are learnt
disregarding statistical dependencies of the output variables. In reaction to this,
several approaches for jointly training deep structured models, combining CNNs
and CRFs, have recently been proposed [8–12]. In these approaches, as well as the
one presented in this paper, the parameters of the CRF and the weights of the
CNN can be trained jointly, enabling the possibility to learn deep image features
taking dependencies of the output variables into account.

1.1 Contributions

What differentiates this paper from previous work done on learning deep struc-
tured models is mainly the joint learning algorithm. We apply a max-margin
based learning framework inspired by [13]. This removes the need to calculate,
or approximate, the partition function present in learning algorithms that try to
maximize the log-likelihood. For instance, in [9, 12], the inference step is approx-
imately solved using a few iterations of the mean-field algorithm or gradient de-
scent, respectively. Similarly, in [8], sampling techniques are used to approximate
the partition function. In our learning framework, we can use standard graph cut
methods to perform optimal inference in the CRF model. We also show how the
CNN weights can be trained to optimize the max-margin criterion via standard
back-propagation. To our knowledge, we are the first to present a method for
jointly training deep structured models with a max-margin objective for semantic
segmentation.

Our experiments show that training deep structured models using our method
gives better results than piecewise training where the CNN and CRF models are
trained separately. This proves that training deep structured models jointly en-
ables the model to learn deep features that take output dependencies into account
which in turn gives better segmentations. We tested our method on the Weizmann
Horse dataset [14] for proof of concept. In addition we applied it to two medical
datasets, one for heart ventricle segmentation in ultrasound images and one for
pericardium segmentation in CTA slices.

76 Paper II

2. A Deep Conditional Random Field Model

1.2 Related Work

The concept of deep structured models has been examined extensively in recent
work. In [15] Ning et al . combine a CNN with an energy based model, similar
to a MRF, for segmentation of cell nuclei and in [6] a dense CRF with unary
potentials from a CNN is used to achieve state-of-the-art results on several semantic
segmentation benchmarks.

Methods for jointly training these deep structured models have also received
a lot of attention lately. In [11] Tompson et al . present a single learning frame-
work unifying a novel ConvNet Part-Detector and an MRF inspired Spatial-Model
achieving state-of-the-art performance on the task of human body pose recogni-
tion. Further, Chen et al . present a more general framework for joint learning of
deep structured models that they apply to image tagging and word from image
problems in [8]. Zheng et al . [12] show that the mean-field inference algorithm
with Gaussian pairwise potentials from [7] can be modeled as a Recurrent Neural
Networks. This enabled them to train their model within a standard deep learning
framework using a log-likelihood loss. In [10], they formulated a CRF model with
CNNs for estimating the unary and pairwise potentials via piecewise training.

In the field of medical image analysis, methods based on CNNs have also re-
ceived an increased interest during the last few years with promising results [16–18].
Recently, more intricate deep learning approaches have been proposed. Ron-
neberger et al . [19] proposed the U-Net, a network based on the idea of “fully
convolutional networks” [4]. A similar network structure was also proposed by
Brosch et al . in [20]. However, to our knowledge, methods utilizing end-to-end
training of deep structured models have yet to be presented for medical image
segmentation tasks.

2 A Deep Conditional Random Field Model

The deep structured model proposed in this paper consists of a CNN coupled
with a CRF. This setup allows the model to learn deep features while still taking
dependencies in the output data into account. Denote the set of input instances
by X = {x(n)}n and their corresponding labelings by Y = {y(n)}n. The input
and output instances are images indexed for each pixel by x(n) = (x

(n)
1 , . . . , x

(n)
N)

and y(n) = (y
(n)
1 , . . . , y

(n)
N) respectively. We only consider the binary labeling case,

hence y(n)
i = {0, 1}. Our deep structured model is described by a CRF of the form

P (Y |X;w,θ) =
1

Z
e−

∑
n E(y(n),x(n);w,θ), (1)

where w are the weights of the CRF, θ are the weights of the CNN and Z is the
partition function. The energy E considered decomposes over unary and pairwise

Paper II 77

Max-Margin Learning of Deep Structured Models...

terms according to the following form

E(y,x;w,θ) =
∑
i∈V

φi(yi,x;w,θ) +
∑

(i,j)∈E

φij(yi, yj,x;w), (2)

where V is the set of nodes (i.e. pixels) and E is the set of edges connecting
neighbouring pixels.

The unary term of the energy E has the following form

φi(yi,x;w,θ) = w1 log(Φi(yi,x;θ)), (3)

where Φi(yi,x;θ) denotes the output of the neural network for pixel i. There are
no explicit requirements for the CNN except that it should output an estimate of
the probability for each pixel being either foreground or background.

The pairwise term consists of two parts both penalizing two neighbouring pixels
being labeled differently. The first part adds a constant cost while the other one
adds a cost based on the contrast of the neighbouring pixels. If 1yi 6=yj denotes the
indicator function equaling one if yi 6= yj, the pairwise term has the following form

φij(yi, yj,x;w) = 1yi 6=yj

(
w2 + w3 e

−
(xi−xj)

2

2

)
. (4)

Note that, given these unary and pairwise terms, the energy is linear with respect
to the weights w.

2.1 Inference

Given an input instance x, the inference problem equates to finding the maximum
a posteriori labeling y∗ given the model in (1). This is equivalent to finding a
minimizer of the energy E in (2):

y∗ = arg min
y

E(y,x;w,θ). (5)

For our deep structured model the inference is done in two steps. Firstly, an
estimation of the probability of each pixel being either foreground or background
is computed by a forward pass of the CNN. Secondly, problem (5) is solved. We
add the constraints wi ≥ 0, i = 2, 3 when learning the weights to make the energy
E submodular. This means that graph cut algorithm can be used to efficiently
find a global optimum [21].

78 Paper II

2. A Deep Conditional Random Field Model

2.2 Max-Margin Learning

There are two sets of learnable parameters, the weights of the CRF w and the
weights of the CNN θ. The method of learning is based on an algorithm proposed
by Szummer et al . [13] where the goal is to find a set of parameters w,θ such that

E(y(n),x(n);w,θ) ≤ E(y,x(n);w,θ) ∀y 6= y(n), (6)

i.e. we want to learn a set of weights that assign the ground truth labeling an equal
or lower energy than any other labeling. Since this problem might have multiple
or no solutions we introduce a margin ζ and try to maximize it according to

max
w:|w|=1

ζ

s.t. E(y,x(n);w,θ)− E(y(n),x(n);w,θ) ≥ ζ ∀y 6= y(n).
(7)

Finding the set of parameters that provides the largest margin regularizes the
problem and tends to give good generalization to unseen data. However, for the
final objective we make a few changes suggested by Szummer et al . [13]. To start
of, a slack variable for each training sample ξn is introduced to make the method
more robust to noisy data. In addition, we use a rescaled margin, demanding a
larger energy margin for labelings that differ a lot from the ground truth. Also,
the program described in (7) includes an exponential amount of constraints which
makes solving it intractable, we therefore perform the optimization over a much
smaller set S(n). These changes, given the variable transformation ||w|| ← 1/ζ,
give rise to the following problem

γ = min
w

1

2
‖w‖2 +

C

N

∑
n

ξn s.t. ∀y ∈ S(n) ∀n

E(y,x(n);w,θ)− E(y(n),x(n);w,θ) ≥ ∆(y(n),y)− ξn
ξn ≥ 0, w2 ≥ 0, w3 ≥ 0,

(8)

where N is the number of training samples, C is a hyperparameter regulating the
slack penalty and ∆(y(n),y) is the Hamming loss ∆(y(n),y) =

∑
i δ(y

(n)
i , yi).

The constraint set S(n) is iteratively grown by adding labelings that violate
the constraints in (8) the most. For each iteration, the weights are then updated
to satisfy the new, larger constraint set. This weight update is repeated until
the weights no longer change. The complete learning algorithm is summarized in
Algorithm 2.

Paper II 79

Max-Margin Learning of Deep Structured Models...

Input: image-labeling pairs {(x(n),y(n))} in the training set
initialize S(n) = ∅ for each training instance n and w = w0

while w not converged do
for all training instances n do

find MAP labeling of instance n: y∗ ← arg miny E(y,x(n);w,θ)−∆(y(n),y)

if y∗ 6= y(n) then
add y∗ to constraint set: S(n) ← S(n) ∪ {y∗}

end
update w to ensure ground truth has the lowest energy by solving program (8)

end
end
Output: w

Algorithm 2: Pseudocode for the CRF weight learning algorithm from [13].

2.3 Back-propagation of Error Derivatives

In this section, we show how the max-margin objective from the previous section
can be optimized for our coupled CNN and CRF model. Our main goal during
learning is to maximize the margin, or equivalently, minimize the objective γ as
defined in (8). To be able to perform a gradient based weight update we need to
calculate the derivative of this objective with respect to the weights of the network

∂γ

∂θj
=
∑
n

∑
i

∂γ

∂Φi

∂Φi

∂θj
, (9)

where the two sums are over the training instances, n, and the pixels, i. As
previously, Φi is the output of the network. Given a well-defined network structure
the term ∂Φi

∂θj
can be easily calculated using standard back-propagation. Henceforth

we will focus on calculating the term ∂γ
∂Φi

. To simplify notation we will introduce
zi as the output of the network of pixel i being foreground, zi = Φi(yi = 1,x;θ).
We start of by expressing (8) on the following compact form

γ(z) = min
w,ξ

f(w, ξ),

s.t. hk(w, ξ, z) ≤ 0, k = 1, . . . ,M,
(10)

where f is the objective function, hk characterize the constraints andM is the total
number of constraints. We will treat γ as a function depending on the network
output, γ(z).

80 Paper II

2. A Deep Conditional Random Field Model

In addition, the minimizers w∗ and ξ∗ can also be seen as functions of z, that
is, w∗ = w∗(z) and ξ∗ = ξ∗(z), which gives that

γ(z) = f(w∗(z), ξ∗(z)) =
1

2
‖w∗‖2 +

C

N

N∑
n=1

ξ∗n,

∂γ

∂zi
=

D∑
j=1

fwj

∂wj
∂zi

+
N∑
n=1

fξn
∂ξn
∂zi

=
D∑
j=1

wj
∂wj
∂zi

+
C

N

N∑
n=1

∂ξn
∂zi

,

(11)

where D is the number of weights and N is the number of slack variables. To be
able to calculate ∂γ

∂zi
we need ∂wj

∂zi
and ∂ξn

∂zi
. These derivatives are found by creating

and solving a system of equations from the optimality conditions of the problem.
The Lagrangian for the constrained minimization problem in (10) is

L(w, ξ,λ) = f(w, ξ) +
M∑
k=1

λkhk(w, ξ),

where λ is the vector of Langrangian multipliers with elements λk. At optimum,
the first-order optimality conditions are satisfied:

∇wL = w +
M∑
k=1

λk∇whk = 0 and ∇ξL =
C

N
+

M∑
k=1

λk∇ξhk = 0. (12)

Now, the conditions for the implicit function theorem are satisfied and we also get
that

∂(∇wL)

∂zi
=
∂w

∂zi
+

M∑
k=1

(
∂λk
∂zi
∇whk + λk

∂∇whk
∂zi

)
= 0, (13)

∂(∇ξL)

∂zi
=

M∑
k=1

(
∂λk
∂zi
∇ξhk + λk

∂∇ξhk
∂zi

)
= 0. (14)

Note that λk is a function of z. For the active constraints, where hk = 0, it holds
that ∂hk

∂zi
= 0. For the passive constraints, hk < 0, we use the following identities:

λk = 0 and
λhk
∂zi

= 0. (15)

The equations in (12) to (15) give a linear system of equations with the unknowns
∂wj

∂zi
, ∂ξn
∂zi
, λk and ∂λk

∂zi
. Solving this enables us to calculate ∂γ

∂zi
from (11) and finally

∂γ
∂θj

according to (9). Having this derivative makes it possible to learn CNN weights
that optimize the max-margin objective formulated in (8) using gradient based
methods. For more details, see the supplementary material.

Paper II 81

Max-Margin Learning of Deep Structured Models...

2.4 End-to-End Training in Batches

We have now derived all the theoretical tools needed to train our deep structured
model in an end-to-end manner. The joint training is done in epochs, where all
training samples are utilized in each epoch. In every training epoch, new CRF
weights are computed and the CNN weights are updated using gradient descent:
θj ← θj + η ∂γ

∂θj
for all j.

To facilitate the process of learning deep image features for the CNN we first
pretrain the weights θ on the dataset without the CRF part of the model. Note
that the CNN we used is based on a network pretrained on the ImageNet dataset
[22]. The pretraining is done using stochastic gradient descent with a standard
pixelwise log-likelihood error function.

The original learning method involves the entire training set when computing
the CRF weights. However, since the linear equation system that needs to be
solved grows with the number of training instances the learning process quickly
becomes impractical with an increasing number of images. Hence we propose a
method to compute the derivatives in batches. In batch mode we apply the CRF
learning method from Algorithm 2 for each batch separately, We also calculate
∂γb
∂θj

following the steps described in Section 2.3. Note that the objective γb that
we actually minimize here is an approximation of the true objective since not all
images are included. For each batch, the constraint set S(n)

b is saved. These are, at
the end of the epoch, merged to a set S(n) containing the low-energy labelings for
all training instances. Finally the optimization problem in (8) is solved with this
S(n) to get the CRF weights. When solving for the CRF weights we also get the
current value of our objective γ, which obviously should decrease during training.
The algorithm is summarized in Algorithm 3.

3 Experiments and Results

Now, we present the performance of our method on three different segmentation
tasks including comparisons to two baselines. For the first baseline, “CNN (only)“,
the segmentation is created by thresholding the output of a pretrained CNN. For
the second baseline, “CNN + CRF (piecewise)“, a CNN coupled with a CRF is
trained in a piecewise manner, meaning that the network weights are kept fixed
while learning the CRF weights. The results for the joint learning is denoted
”CNN + CRF (joint)“. For all experiments the CNN had the same structure as
the FCN-8 network introduced by Long et al . [4]. The parameter settings were
the same for all three segmentation tasks (learning rate = 10−4, batch size = 10
and C = 1). All routines for training and testing were implemented in Matlab
on top of MatConvNet [23].

82 Paper II

3. Experiments and Results

Input: image-labeling pairs {(x(n),y(n))} in the training set.
initialize w = w0 and θ = θ0

for number of epochs do
initialize S(n) = ∅ for each training instance n
for each batch b do

CNN forward pass → z

CRF learning by Algorithm 2
add low-energy labelings to set S(n)

calculation of objective derivative → ∂γb
∂zi

, back-propagation → ∂γb
∂θj

update CNN weights, θj ← θj + η ∂γb
∂θj

end
update CRF weights by solving (8) → w, γ

end
Output: w, θ

Algorithm 3: Pseudocode for joint learning of parameters in batches.

3.1 Weizmann Horse Dataset

The Weizmann Horse dataset [14] is widely used for benchmarking object segmen-
tation algorithms. The dataset contains 328 images of horses in different environ-
ments, we divide these images into a training set of 150 images, a validation set of
50 images and a test set of 128 images.

Our algorithm is compared to the, to our knowledge, best previously published
results on the data set; Reseg [24], CRF-Grad [9] and PatchCut [25]. There are
a few variations of the Weizmann Horse dataset available, we used the same one
as in PatchCut [25]. Our algorithm is also compared to the two baselines, ”CNN
(only)” and ”CNN + CRF (piecewise”). Quantative results (mean Jaccard index)
are shown in Table 1 for the test images. In Fig. 1 some qualitative results are
presented.

Table 1: Mean Jaccard index for the Weizmann Horse dataset (test set).

Method Jaccard (%) Method Jaccard (%)

PatchCut [25] 84.03 CNN (only) 79.97
ReSeg [24] 91.60 CNN + CRF (piecewise) 81.62
CRF-Grad [9] 83.98 CNN + CRF (joint) 84.54

Paper II 83

Max-Margin Learning of Deep Structured Models...

66.85 70.85 80.43

80.83 82.12 93.90

Image

58.32

CNN only

53.79

Piecewise

69.66

Joint Ground Truth

Figure 1: Qualitative results on the Weizmann Horse dataset. "Piecewise" de-
notes "CNN + CRF (piecewise)" and "Joint" denotes "CNN + CRF (joint)".
The number shown in the upper right corner is the Jaccard index (%).

3.2 Cardiac Ultrasound Dataset

The second dataset we consider consists of 2D cardiac ultrasound images (2-
chamber view, i.e. the left artrium and the left ventricle are visible). The ground
truth consists of manual annotations of the left ventricle made by an experienced
cardiologist according to the protocol in [26]. The dataset contains 66 images
which are divided into a training set of 33 images, a validation set of 17 images
and a test set of 16 images. See Fig. 2 and Table 2 for qualitative and quantitative
results respectively.

3.3 Cardiac CTA Dataset

The third dataset we consider consists of 2D slices of cardiac CTA volumes origi-
nating from the SCAPIS pilot study [27]. The ground truth consists of slice-wise
manual annotations of the pericardium made by a specialist in thoracic radiology
and according to the protocol in [28]. The dataset includes in total 1500 2D slices
which are divided into three subsets of equal size to be evaluated separately repre-
senting three different views (i.e. axial, coronal and sagittal view). For each view
the 2D slices were divided into a training set of 300 images, a validation set of 100

84 Paper II

3. Experiments and Results

Table 2: Quantitative results for the Cardiac Ultrasound dataset (US) and the
Cardiac CTA dataset (CTA). For the CTA dataset, the different types of slices
are evaluated separately (ax - axial, cor - coronal and sag - sagittal). The mean
Jaccard index (%) for the test sets are reported.

Method US CTA-ax CTA-cor CTA-sag

CNN (only) 82.28 81.40 77.11 75.96
CNN + CRF (piecewise) 85.79 81.84 77.12 75.83
CNN + CRF (joint) 86.20 82.10 77.71 76.34

U
S

78.94 77.13 83.59

C
T

A
 -

 a
x

77.69 78.48 84.69

C
T

A
 -

 c
o

r

93.05 93.82 95.35

Image

C
T

A
 -

 s
a
g

85.29

CNN only

85.89

Piecewise

90.33

Joint Ground Truth

Figure 2: Qualitative results on the Cardiac ultrasound dataset (US) and the
Cardiac CTA dataset (CTA). For the CTA dataset, the different types of slices
are evaluated separately (ax - axial, cor - coronal and sag - sagittal). "Piecewise"
denotes "CNN + CRF (piecewise)" and "Joint" denotes "CNN + CRF (joint)".
The red number shown in the upper right corner is the Jaccard index (%).

Paper II 85

Max-Margin Learning of Deep Structured Models...

images and a test set of 100 images. Some of the 2D slices originate from regions
where the pericardium is not visible. Thus, these images were excluded from the
quantitative results since the Jaccard index is undefined if the ground truth and
segmentation are both empty sets. Some qualitative results of the joint training
process are visualized in Fig. 2 and quantitative results are presented in Table 2.

4 Conclusion and Future Work

In this paper, we have proposed a segmentation algorithm based on a deep struc-
tured model consisting of a CNN paired with a CRF. We also presented a method
for jointly learning the parameters of the CNN and the CRF using a max-margin
approach. Conveniently, the max-margin objective could be optimized with stan-
dard back-propagation thanks to the theoretical results derived in Section 2.3.

We achieve superior results on two smaller medical datasets when comparing
to using a CNN only and using a CNN paired with a CRF trained separately.
Note that the CNN we used is based on a network pretrained on the ImageNet
dataset [22]. It has hence learnt image features for standard RGB images and
for classification tasks, which of course makes it more challenging learning CNN
weights well-adjusted for medical image segmentation. In spite of this, we still
achieve good results on the two medical datasets. A future continuation of this
work would be to combine the CRF with a CNN trained on a larger set of medical
images. Also, implementing the framework for 3D would increase its usability
when it comes to medical applications.

In addition, other types of CRFs could be used. The ones considered in this
paper only include pairwise terms depending on neighbouring pixels. One possible
extension would be to consider longer distance relationships or higher order energy
terms. Also, the pairwise terms could be learned with a trainable CNN in the same
way as for unary terms. A trainable regularization term would surely enable the
model to learn even more sophisticated relationships for the output pixels.

We gratefully acknowledge funding from SSF (Semantic Mapping and Visual
Navigation for Smart Robots) and VR (project no. 2016-04445).

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Adv. Neural. Inf. Process. Syst., 2012.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Conf. on Computer
Vision and Pattern Recognition, 2014.

86 Paper II

Bibliography

[3] A. Giusti, D. Cireşan, J. Masci, L. Gambardella, and J. Schmidhuber, “Fast
image scanning with deep max-pooling convolutional neural networks,” in Int.
Conf. on Image Processing, 2013.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[5] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation,” in Int. Conf. on Computer Vision, 2015.

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected CRFs,”
in Int. Conf. on Learning Representations, 2015.

[7] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected CRFs
with gaussian edge potentials,” in Adv. Neural. Inf. Process. Syst., 2011.

[8] L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep structured
models,” in Int. Conf. on Machine Learning, 2015.

[9] M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. H. S. Torr, “A projected gra-
dient descent method for crf inference allowing end-to-end training of arbitrary
pairwise potentials,” in 11th International Conference on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, (EMMCVPR).
Springer, 2017.

[10] G. Lin, C. Shen, A. van den Hengel, and I. Reid, “Efficient piecewise training
of deep structured models for semantic segmentation,” in Conf. on Computer
Vision and Pattern Recognition, 2016.

[11] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convo-
lutional network and a graphical model for human pose estimation,” in Adv.
Neural. Inf. Process. Syst., 2014.

[12] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr, “Conditional random fields as recurrent neural net-
works,” in Int. Conf. on Computer Vision, 2015.

[13] M. Szummer, P. Kohli, and D. Hoiem, “Learning CRFs using graph cuts,” in
European Conf. on Computer Vision, 2008.

[14] E. Borenstein and S. Ullman, “Class-specific, top-down segmentation,” in Eu-
ropean Conf. on Computer Vision, 2002.

Paper II 87

Max-Margin Learning of Deep Structured Models...

[15] M. Ranzato, P. Taylor, J. House, R. Flagan, Y. LeCun, and P. Perona, “Au-
tomatic recognition of biological particles in microscopic images,” Pattern
Recognition Letters, vol. 28, no. 1, pp. 31–39, 2007.

[16] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis
detection in breast cancer histology images with deep neural networks,” in
MICCAI, vol. 2, 2013, pp. 411–418.

[17] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, “Deep fea-
ture learning for knee cartilage segmentation using a triplanar convolutional
neural network,” in Int. Conf. on Medical Image Computing and Computer-
Assisted Intervention, 2013.

[18] H. Roth, L. Lu, A. Farag, H. Shin, J. Liu, E. Turkbey, and R. Summers,
“Deeporgan: Multi-level deep convolutional networks for automated pancreas
segmentation,” in Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015, ser. Lecture Notes in Computer Science, 2015, vol.
9349, pp. 556–564.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention (MICCAI), ser. LNCS, vol. 9351. Springer, 2015,
pp. 234–241, (available on arXiv:1505.04597 [cs.CV]). [Online]. Available:
http://lmb.informatik.uni-freiburg.de//Publications/2015/RFB15a

[20] T. Brosch, L. Y. W. Tang, Y. Yoo, D. K. B. Li, A. Traboulsee, and R. Tam,
“Deep 3d convolutional encoder networks with shortcuts for multiscale feature
integration applied to multiple sclerosis lesion segmentation,” IEEE transac-
tions on medical imaging, vol. 35, no. 5, pp. 1229–1239, 2016.

[21] V. Kolmogorov and R. Zabin, “What energy functions can be minimized via
graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp.
147–159, 2004.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in Conf. on Computer Vision and
Pattern Recognition, 2009.

[23] A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural networks for
MATLAB,” in Int. Conf. on Multimedia, 2015.

[24] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Mat-
teucci, and A. Courville, “ReSeg: A recurrent neural network-based model for
semantic segmentation,” in Conf. on Computer Vision and Pattern Recogni-
tion Workshops, 2016.

88 Paper II

Bibliography

[25] J. Yang, B. Price, S. Cohen, Z. Lin, and M.-H. Yang, “PatchCut: Data-driven
object segmentation via local shape transfer,” in Conf. on Computer Vision
and Pattern Recognition, 2015.

[26] R. Lang et al., “Recommendations for cardiac chamber quantification by
echocardiography in adults: an update from the american society of echocar-
diography and the european association of cardiovascular imaging,” J. Am.
Soc. Echocardiogr., vol. 28, no. 1, pp. 1–39, 2015.

[27] G. Bergström et al., “The Swedish CArdioPulmonary bioImage Study: Ob-
jectives and design,” J. of Internal Medicine, vol. 278, no. 6, pp. 645–659,
2015.

[28] A. Norlén, J. Alvén, D. Molnar, O. Enqvist, R. Norrlund, J. Brandberg,
G. Bergström, and F. Kahl, “Automatic pericardium segmentation and quan-
tification of epicardial fat from computed tomography angiography,” J. of
Medical Imaging, vol. 3, no. 3, 2016.

Paper II 89

Max-Margin Learning of Deep Structured Models...

Supplementary Material

Constraint Derivatives

In this section we derive the derivatives of the constraints in (8) in the main paper.
This is needed to calculate ∂γ

∂zi
, i.e. the derivative of the objective with respect to

the CNN output. We start off by rewriting all constraints on the form hk ≤ 0,

E(y(n))− E(y) + ∆(y(n),y)− ξn ≤ 0 (16)
−ξn ≤ 0 (17)

−w2,−w3 ≤ 0. (18)

Note that, to clarify notation, we have not included all dependencies for the ener-
gies here. We divide the constraints into three categories; energy constraints (16),
slack constraints (17) and weight constraints (18). As mentioned in Section 2.3,
for the constraints that are active (hi = 0) we add the equation ∂hi

∂zj
= 0 to our

linear system. Hence we need to derive ∂hi
∂zj

for the different types of constraints.

In addition, in (12)-(15) we also need ∂hi
∂w1

, ∂hi
∂w2

, ∂hi
∂w3

and ∂2hi
∂w2∂zj

. Note that all other
second order derivatives equal zero.

Energy Constraints.

The energy constraints are formulated as follows

hi(x;w,θ) = w1

∑
j∈V

(− log(Φj(y
(n)
j ,x;θ)) + log(Φj(yj,x;θ)))+

w2

∑
(j,k)∈ε

(1
y
(n)
j 6=y

(n)
k
− 1yj 6=yk) + w3

∑
(j,k)∈ε

(1
y
(n)
j 6=y

(n)
k
− 1yj 6=yk)e

(
−

(xj−xk)2

2

)
+

+ ∆(y(n), y)− ξn = w1

∑
j∈V

Ui(zj) + C
(i)
2 w2 + C

(i)
3 w3 + ∆(y(n), y)− ξn,

(19)

where the index n denotes the ground truth instance that the energy is coupled
with. Note that there are several of these constraints per training instance, one
for each y ∈ S(n). To simplify notation we have introduced C(i)

2 and C(i)
3 which are

constants given a low energy labeling y ∈ S(n) and a ground truth labeling y(n).
In addition we have introduced Ui(zj) which equals

Ui(zj) =

0 if yj = y

(n)
j

log(zj)− log(1− zj) if yj = 1, y
(n)
j = 0

log(1− zj)− log(zj) if yj = 0, y
(n)
j = 1

(20)

90 Paper II

Supplementary Material

with the derivative

∂U(zj)

∂zj
=

0 if yj = y

(n)
j

1
zj

+ 1
1−zj if yj = 1, y

(n)
j = 0

− 1
zj
− 1

1−zj if yj = 0, y
(n)
j = 1

We now calculate the needed derivatives, excluding the ones equal to zero
∂hi
∂zj

=
∂w1

∂zj

∑
k∈V

Ui(zj) +
∂Ui(zj)

∂zj
w1

+ C
(i)
2

∂w2

∂zj
+ C

(i)
3

∂w3

∂zj
− ∂ξn
∂zj

∂hi
∂w1

=
∑
j∈V

Ui(zj)

∂hi
∂w2

= C
(i)
2

∂hi
∂w3

= C
(i)
3

∂hi
∂ξn

=

{
−1 if yi ∈ S(n)

0 else
∂2hi
∂w1∂zj

=
∂Ui(zj)

∂zj
.

(21)

Here yi ∈ S(n) means that that the energy constraint hi is related to image and
labeling {(x(n),y(n))}. Note that the term Ui(zj) is the only explicit dependence
on the network output in our optimization problem. Looking at the definition
of Ui(zj) in (20) we see that it will be zero for a lot of pixels. The derivative
for all those pixel will be the same and can hence be calculated by solving one
linear system. However, for the pixels where Ui(zj) 6= 0, the derivative needs to
be calculated for each pixel.

Slack and Weight Constraints.

The slack constraints are formulated as follows

hi = −ξi.
Calculating the needed derivatives, excluding the ones equal to zero gives

∂hi
∂ξi

= −1

∂hi
∂zj

= − ∂ξi
∂zj

.

Note that the weight constraints are identical (switch ξi for w2 or w3).

Paper II 91

Max-Margin Learning of Deep Structured Models...

Final Explicit Linear System

The variables for the linear system of equations are as previously mentioned
∂wi

∂z
, ∂ξi
∂z
, λi,

∂λi
∂z

. To compute these quantities, we set up and solve a linear sys-
tem Ax = b where

x =

∂w1

∂z...
∂wD

∂z
∂ξ1
∂z...
∂ξn
∂z

λ1
...
λN
∂λ1
∂z...
∂λN
∂z

. (22)

Note that A and b are calculated from the equations satisfied at the optimum.
Following the derivations in Section 2.3 and the previous section, we are now
ready to explicitly state these equations. Call the set of indices corresponding
to the energy constraint IE and the indices corresponding to the positive slack
constraint IS. For the first part of (12) we get

∂L

∂w1

= w1 +
∑
i∈IE

λi
∑
j∈V

Ui(zj) = 0

∂L

∂w2

= w2 +
∑
i∈IE

λiC
(i)
2 − λw2 = 0

∂L

∂w3

= w3 +
∑
i∈IE

λiC
(i)
3 − λw3 = 0,

(23)

where λw2 and λw3 are the Lagrangian multipliers corresponding to the weight
constraints. For the second part of (12) we get

∂L

∂ξn
=
C

N
−
∑
k∈I(n)

E

(λk)− λ(n) = 0,

92 Paper II

Supplementary Material

where I(n)
E is the set containing the indices for the energy constraints for train-

ing instance (n) and λ(n) is the lagrangian multiplier corresponding to the slack
constraint of instance (n). For (13) we get

∂2L

∂w1∂zj
=
∂w1

∂zj
+
∑
i∈IE

(
∂λi
∂zj

∑
k∈V

(Ui(zk)) + λi
∂Ui(zj)

∂zj

)
= 0

∂2L

∂w2∂zj
=
∂w2

∂zj
+
∑
i∈IE

(
∂λi
∂zj

C
(i)
2

)
− ∂λw2

∂zj
= 0

∂2L

∂w3∂zj
=
∂w3

∂zj
+
∑
i∈IE

(
∂λi
∂zj

C
(i)
3

)
− ∂λw3

∂zj
= 0.

(24)

And finally for (14)

∂2L

∂ξn∂zj
= −

∑
k∈I(n)

E

(
∂λk
∂zj

)
−
∂λ(n)

∂zj
= 0.

In addition to these equations we also get one equation for each active constraint,
∂hi
∂zj

= 0 and two equations for each passive constraint, see (15). All of these
equations make up A and b of our linear system. Solving it we get x as defined
in (22).

Additional Results

In this section we present some additional results for the different datasets. For
the Weizmann Horse dataset results from the joint training process can be seen
in Fig. 3 and some qualitative results can be seen in Fig. 4. For the Cardiac
Ultrasound dataset qualitative results can be seen in Fig. 5 and for the Cardiac
CTA dataset the results on the axial, coronal and sagittal slices can be seen in
Fig. 6, Fig. 7 and Fig. 8 respectively.

Paper II 93

Max-Margin Learning of Deep Structured Models...

25 50 75 100 125 150

epoch

0.85

0.86

0.87

0.88

0.89

J
a
c
c
a
rd

25 50 75 100 125 150

epoch

4000

4200

4400

4600

4800

O
b

je
c
ti

v
e

Figure 3: Joint training results for the Weizmann Horse dataset. The left figure
shows the mean Jaccard index versus epochs for the training images (blue upper
graph) and the validation images (red lower graph). The right figure shows the
max-margin objective, γ, from (8) versus epochs.

87.33 88.45 93.25

66.85 70.85 80.43

80.83 82.12 93.90

Image

58.32

CNN only

53.79

Piecewise

69.66

Joint Ground Truth

Figure 4: Qualitative results on the Weizmann Horse dataset. "Piecewise" de-
notes "CNN + CRF (piecewise)" and "Joint" denotes "CNN + CRF (joint)". The
red number shown in the upper right corner is the Jaccard index (%). The figure
is best viewed in color.

94 Paper II

Supplementary Material

78.94 77.13 83.59

87.25 87.33 89.61

85.87 90.70 92.49

85.04 86.57 88.28

Image

83.56

CNN only

82.71

Piecewise

85.95

Joint Ground Truth

Figure 5: Qualitative results on the Cardiac ultrasound dataset. "Piecewise"
denotes "CNN + CRF (piecewise)" and "Joint" denotes "CNN + CRF (joint)".
The red number shown in the upper right corner is the Jaccard index (%). The
figure is best viewed in color.

Paper II 95

Max-Margin Learning of Deep Structured Models...

77.69 78.48 84.69

90.82 90.29 92.05

94.31 94.65 95.59

94.35 94.46 95.34

Image

94.71

CNN only

94.79

Piecewise

95.62

Joint Ground Truth

Figure 6: Qualitative results on the Cardiac CTA dataset for the axial slices.
"Piecewise" denotes "CNN + CRF (piecewise)" and "Joint" denotes "CNN +
CRF (joint)". The red number shown in the upper right corner is the Jaccard
index (%). The figure is best viewed in color.

96 Paper II

Supplementary Material

91.52 89.62 92.89

93.05 93.82 95.35

89.33 88.76 90.73

29.00 0.00 22.44

Image

90.37

CNN only

90.62

Piecewise

92.02

Joint Ground Truth

Figure 7: Qualitative results on the Cardiac CTA dataset for the coronal slices.
"Piecewise" denotes "CNN + CRF (piecewise)" and "Joint" denotes "CNN +
CRF (joint)". The red number shown in the upper right corner is the Jaccard
index (%). The figure is best viewed in color.

Paper II 97

Max-Margin Learning of Deep Structured Models...

69.26 68.45 77.10

85.29 85.89 90.33

93.41 93.59 95.79

85.99 85.19 89.32

Image

82.52

CNN only

80.60

Piecewise

85.32

Joint Ground Truth

Figure 8: Qualitative results on the Cardiac CTA dataset for the sagittal slices.
"Piecewise" denotes "CNN + CRF (piecewise)" and "Joint" denotes "CNN +
CRF (joint)". The red number shown in the upper right corner is the Jaccard
index (%). The figure is best viewed in color.

98 Paper II

Paper III

Robust Abdominal Organ Segmentation Using
Regional Convolutional Neural Networks

M. Larsson, Y. Zhang and F. Kahl

Submitted to Applied Soft Computing

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Robust Abdominal Organ Segmentation Using
Regional Convolutional Neural Networks

M. Larsson, Y. Zhang and F. Kahl

Abstract

A fully automatic system for abdominal organ segmentation is pre-
sented. As a first step, an organ localization is obtained via a robust
and efficient feature registration method where the center of the or-
gan is estimated together with a region of interest surrounding the
center. Then, a convolutional neural network performing voxelwise
classification is applied. Two convolutional neural networks of differ-
ent architecture are compared. The first one has a structure similar to
networks used for classification and is applied using a sliding window
approach. The second one has a structure allowing it to be applied in a
fully convolutional manner reducing computation time. Despite limited
training data, our experimental results are on par with state-of-the-art
approaches that have been developed over many years. More specifi-
cally the method is applied to the MICCAI2015 challenge “Multi-Atlas
Labeling Beyond the Cranial Vault” in the free competition for organ
segmentation in the abdomen. The method performed well for both
types of convolutional neural networks. For the fully convolutional net-
work a mean Dice coefficient of 0.767 was achieved, for the network
applied with sliding window this number was 0.757.

1 Introduction

Segmentation is a key problem in medical image analysis, and an automated
method for organ segmentation can be crucial for numerous applications in medical
research and clinical care such as computer aided diagnosis and surgery assistance.
The high variability of the shape and position of abdominal organs makes segmen-
tation a challenging task. Previous work done on segmentation of abdominal
organs includes, among others, multi-atlas methods [1], patch-based methods [2],
and methods based on a probabilistic atlas [3, 4]. These techniques achieve great
results for several abdominal organs but struggle with the segmentation of organs
where the anatomical variability is large such as the gallbladder.

During the last few years, deep convolutional neural networks have shown great
performance and achieved state of the art results in many computer vision applica-
tions [5,6]. This fact can be partly attributed to the constant increase in available

101

Robust Abdominal Organ Segmentation Using Regional...

computing power, most notably GPU computing solutions, and the availability
of large annotated datasets. In the field of medical image analysis this develop-
ment has led to an increased interest in methods based on deep convolutional
neural networks with promising results [7,8]. Recently, more intricate deep learn-
ing approaches have been proposed in the field of image analysis. Ronneberger et
al [9] proposed the U-Net, a network based on the idea of “fully convolutional net-
works” [6]. This work was extended to a network utilizing 3D convolutional filters
by Çiçek et al [10]. A similar network structure was also proposed by Brosch et
al [11]. Another example is Kamnitsas et al [12] that used an 11-layer deep 3D
convolutional network for brain lesion segmentation with good results.

In this paper, instead of designing larger and more complicated network struc-
tures we propose a two-step method, simplifying the task the convolutional neural
network need to solve. In summary, an automatic system for the segmentation of
abdominal organs in contrast enhanced CT images is presented. Our main contri-
bution is to show that despite limited training data (compared to other successful
deep learning approaches), it is possible to design a system that achieves on par
with state-of-the-art for very challenging segmentation tasks with high anatomi-
cal variability. Another contribution is that we develop a computationally efficient
framework that allows for a fully integrated 3D approach to multi-organ segmenta-
tion. To our knowledge, this is the first attempt on using 3D CNNs for multi-organ
abdominal segmentation.

The presented method is trained and tested on the MICCAI2015 challenge
“Multi-Atlas Labeling Beyond the Cranial Vault” [13] where it achieved state of
the art results in the free competition for organ segmentation in the abdomen.

2 Proposed Solution

Our system segments each organ independently and can be divided into three
steps:

1. Localization of region of interest using a multi-atlas approach.

2. Voxelwise binary classification using a convolutional neural network.

3. Postprocessing by thresholding and removing all positive samples except the
largest connected component.

Each step will now be described in detail.

102 Paper III

2. Proposed Solution

2.1 Localization of region of interest

This part provides a robust initialization of the segmentation. The goal is to
locate the center voxel of the organ in the target image. When this has been
done a prediction mask is placed centered around the predicted organ center. The
prediction mask later defines the region of interest where the convolutional neural
network is initially applied. The use of an initialization method enables us to train
more specialized, or regional, networks that only need to differentiate between a
certain organ and the background. This means that the classification task that
the network needs to perform is simplified and computationally less demanding
networks can be applied.

The location of the organ center in the target image is obtained using a feature-
based multi-atlas approach. Each atlas image is registered to the target using the
method described in [14]. The method is computationally efficient compared to
traditional intensity-based registration methods. More importantly though, this
approach provides a robust and reliable estimate for organ locations which have
been demonstrated for many different settings and modalities. In our framework,
the registration is performed individually for each organ and atlas image. Affine
transformations are computed and then used to transform each organ center point
from an atlas image to the target image. The median of the transformed center
points provides us with an estimate of the center point for the region of interest in
the target image. The reason for using the median, and not for instance the mean
operator, is that it provides a robust estimate of the center point, that is, it is not
affected by a few, spurious outliers.

The prediction mask is estimated using the ground truth segmentations of the
atlas images. Let the ground truth segmentations be represented by a binary
image of the same dimension as the atlas image G(l), where l is the image id, and
G

(l)
ijk = 1 if and only if voxel with index i, j, k in image with id l is foreground (or

organ). Further, define D(l) as the binary image formed by dilating G(l) by a cube
of size 25 × 25 × 25 voxels and translating it so that the center of the organ is
located at the center of the image. The prediction mask P is then defined as the
binary image where each element Pijk is

Pijk =

{
1 if 1

N

∑N
l=1 D

(l)
ijk ≥ δ

0 otherwise
(1)

where N is the number of atlas images and δ is a threshold set to δ = 0.5 for the
majority of the organs. Finally, the region of interest R is defined as the prediction
mask centered around the estimated center point. An example of a localization of
region of interest is shown in Figure 1.

Paper III 103

Robust Abdominal Organ Segmentation Using Regional...

Figure 1: Example of region of interest localization for the Spleen. The green
sphere is the estimated center point, the red mask describes the ground truth and
the blue mask describes the estimated region of interest.

2.2 Voxel classification using a convolutional neural network

Two different types of CNNs are compared for this step. The first one, from now on
referred to as CNN-sw, has similar structure as a CNN used for classification and is
applied using a sliding window approach. For each voxel to be segmented two cubes
of different resolutions centered around said voxel are extracted and used as input
features to the network. The network in return outputs a probability, denoted
pijk, of the voxel being organ. The second type of CNN, from now on referred to
as FCN, has a structure allowing it to be applied in a fully convolutional manner,
hence the probability of several voxels can be calculated in the same forward pass.
The specific structure for both networks are presented in Sections 2.2 and 2.2,
respectively.

As previously mentioned, the CNN-sw outputs the probability for one voxel
being organ each forward pass. To speed up the voxel classification process the
network is not applied to every voxel in the area that is being segmented, denoted
S. Instead, it takes steps of three in each dimension over S. The probabilities
output by the network are then interpolated to every voxel in S. All voxels in
S that have been assigned an interpolated probability neither close to zero nor
close to one (voxels with a probability between 0.1 and 0.9 to be specific) will be
classified by the network once more. The idea behind this approach is that for
easily classified regions the network is only applied to a grid of the voxels while for
regions where classification might be harder, such as the boundaries of organs, the
network classifies every voxel explicitly. For the FCN, this approach is unnecessary

104 Paper III

2. Proposed Solution

since the network can be applied to several voxels in one forward pass, calculating
the probabilities for each voxel in a rectangular cuboid.

To reduce the dependency on the quality of the initial region of interest where
the convolutional neural network is applied, a region growing algorithm is used.
Call the set of voxels that should be segmented S. Further, call the set of voxels
already classified by D and the set of voxels with an assigned probability larger
than 0.5 by O. The region growing algorithm is then described by Algorithm 4.
The use of a region growing algorithm means that even though the initial region
may only cover part of the organ, a successful segmentation is still possible, see
Figure 5.

Initialize:
• S as the region of interest R
• D as ∅
• O as ∅.

while S 6= ∅ do

• Classify voxels in S
• Set D = D ∪ S, and O as the set of voxels with an assigned

probability larger than 0.5

• Let O+ be the set O dilated by a cube of size 12× 12× 4 voxels
• Set S = O+ \D

end
Output: O

Algorithm 4: Region growing algorithm for efficient classification.

CNN-sw Setup

The CNN-sw performs voxelwise binary classification. The input features for the
network are two image cubes, one with a fine resolution similar to the original CT
image and the other with a coarse resolution. The fine resolution input feature is
meant to provide the network with local information ensuring local precision while
the coarse resolution input feature is meant to ensure global spatial consistency.
The inputs are processed in separate pipelines and the aggregated features from
both pipelines are then merged for the last part of the network. A schematic of
the network is shown in Figure 2.

Paper III 105

Robust Abdominal Organ Segmentation Using Regional...

Fine

Coarse

Fine
 1x1x3 mm3

Conv + ReLU
 4x4x3

27x27x12x1 Max Pool
 3x3x2

24x24x10x32 Conv + ReLU
 3x3x2

8x8x5x32 Max Pool
 2x2x2

6x6x4x32

Flatten

3x3x2x32

Coarse
 5x5x15 mm3

Conv + ReLU
 4x4x3

27x27x12x1 Max Pool
 3x3x2

24x24x10x32 Conv + ReLU
 3x3x2

8x8x5x32 Max Pool
 2x2x2

6x6x4x32

3x3x2x32
FC + ReLU1152 FC200 Softmax2 Output

Figure 2: Structure of the CNN-sw. Both type and kernel size of each layer are
shown, in addition the size of the features are shown at each edge. The following
abbreviations are used, Conv: Convolutional layer, ReLU: Rectified Linear Unit
and FC: Fully Connected. Both inputs are rectangular cuboids centered around the
voxel to be classified, the resolutions are shown in the figure. Best viewed in color.

Implementation and training.

For the implementation of the CNN-sw the framework Torch7 was used [15]. For
each network, the training and validation sets were extracted from the region of
interest calculated as previously described as well as the area around the organ in
the image (which in some cases might not be included in the region of interest).
This was done for each image in the training set. For the majority of the organs
a balanced training set was used, meaning that there was an equal amount of
foreground and background samples in the training set. However, since some of
the organs are quite small this leads to a relatively small training set. Several
methods, listed below, were used to deal with this problem.

1. For organs present in pairs, kidneys and adrenal glands, training samples
from both the left and the right organs were used. Note that this does not
pose a problem during inference since the initialization part of the method
will separate the organs.

2. Expansion of the training set by adding slightly distorted CT images, trans-
forming them using a random affine transformation similar to the identity
transformation. The transformation matrix T was randomized as

T =

1 + δ11 δ12 δ13 0
δ21 1 + δ22 δ23 0
δ31 δ32 1 + δ33 0
0 0 0 1

where δij are independently and uniformly randomized numbers between
−0.25 and 0.25 for i = 1, 2, 3 and j = 1, 2, 3.

3. Including a greater number of background samples than foreground samples
in the training set. This leads to a larger but unbalanced training set.

106 Paper III

2. Proposed Solution

Fine

Mid

Coarse

input
1x1x3mm3 Crop92x92x52x1

Crop

92x92x52x1

Max Pool
 4x4x4

92x92x52x1

Conv + ReLU
 3x3x3
 (1,1,1)

 50x
 50x
 28x

 1

Concat

Upsample

Conv + ReLU
 3x3x3
 (2,4,4)

 36x
 36x
 20x
 75 Conv + ReLU

 3x3x3
 (2,4,4)

Conv + ReLU
 3x3x3
 (2,4,4)

Conv + ReLU
 3x3x3
 (1,2,2)

 48x
 48x
 26x

 25

Conv + ReLU
 3x3x3
 (2,4,4)

 44x
 44x
 24x

 25

36x36x20x25

Max Pool
 2x2x2

 64x
 64x
 36x

 1

Conv + ReLU
 3x3x3
 (1,1,1)

 32x
 32x
 18x

 1

Conv + ReLU
 3x3x3
 (1,2,2)

 30x
 30x
 16x

 25

Conv + ReLU
 3x3x3
 (2,4,4)

 26x
 26x
 14x

 25

 18x
 18x
 10x
 25

Conv + ReLU
 3x3x3
 (1,1,1)

 23x
 23x
 11x

 1

Conv + ReLU
 3x3x3
 (1,2,2)

 21x
 21x
 11x

 25

Conv + ReLU
 3x3x3
 (2,4,4)

 17x
 17x
 9x
 25

Upsample
9x9x5x25

Output

36x36x20x25

36x36x20x25

 28x28x16x75

Conv + ReLU
 3x3x3
 (2,4,4)

Conv + ReLU
 3x3x3
 (1,1,1)

Softmax

 20x20x12x100

 12x
 12x
 8x
 100

 4x4x4x100

 4x4x4x2

 4x
 4x
 4x
 2

Figure 3: Structure of the FCN. Type of layer, kernel size and dilation rate of
each layer are shown, in addition the size of the features are shown at each edge.
Note that the feature size can be changed, the ones shown in the figure are the ones
used for training. The following abbreviations are used, Conv: Convolutional layer
and ReLU: Rectified Linear Unit. Best viewed in color.

The choice of what method to use was empirically decided individually for each
organ. The evaluation used for the decision was how well the network performed
on the validation set. The networks were trained in mini batches using stochastic
gradient descent with Nesterov’s momentum [16] and weight decay. The training
parameters were set to: batch size 100, learning rate 5 · 10−3, momentum weight
0.9, weight decay 10−5. The error function used was negative log likelihood and
the weights were randomly initialized. When an unbalanced training set was used
the loss was multiplied by a factor k for foreground samples where k is the ratio
between background and foreground samples. To avoid overfitting, dropout was
applied during training [17]. The networks were trained for 10 epochs or more.
The network that obtained the highest validation score was finally picked for the
segmentation of the test images (see experimental section for different network and
data settings).

FCN Setup

The FCN network takes an input box of varying size and hence also outputs the
organ probability of all voxels in a box. During training the size of the input box
is 92x92x52 giving an output of size 4x4x4. However, during inference the input
size is changed to 120x120x64 giving an output size of 32x32x16. The network
has three separate pipelines processing the information at three different scales
(fine, middle and coarse). The features from the three pipes are then merged
and processed jointly through several dilated convolution layers [18]. The network
is designed to allow for a large receptive field while still being able to process
information at the image original resolution. A schematic of the network is shown
in Figure 3.

Paper III 107

Robust Abdominal Organ Segmentation Using Regional...

Implementation and training.

For the implementation of the FCN the framework keras [19] with Tensorflow [20]
backend was used. The samples for the training and validation set is created by di-
viding the area inside and around the organ into seven different areas. A schematic
of these areas is shown in Figure 4. The voxels inside the organ are divided into
two regions. Region one contains all voxels further than α = 3 mm away from
the organ boundary and region two contains all voxels closer than α away from
the boundary. The voxels outside the organ are divided into five regions, the first
one contains all voxels closer than α to the organ boundary. Each other region
are also characterized by the distance to the organ boundary and has a thickness
of β = 10 mm. Each region is sampled with a specific probability. For the seven
regions, from inside out, these probabilities are 25%, 25%, 15%, 12.5%, 12.5%, 5%
and 5%.

Due to creating the training set by random sampling there might be a lot
of voxels difficult to classify not included. To overcome this, the training set is
altered during the training process, enabling us to extract so called hard examples.
This is done by, every 10 epochs of training, the current network is applied to
all voxels in the training set images. The incorrectly classified voxels are saved
as hard examples. Then 20% of the training set used for the next 10 epochs are
chosen from the hard examples. This is repeated for five times or until no further
improvement can be seen.

2.3 Postprocessing

As a final step the probabilities from the convolutional neural network are thresh-
olded, with a organ specific value estimated from data, in order to create a binary
image. Everything but the largest connected component is set to zero producing
the final segmentation.

3 Experimental Results

Our system was evaluated by submitting two entries to the MICCAI 2015 challenge
“Multi-Atlas Labeling Beyond the Cranial Vault” in the free competition for organ
segmentation in the abdomen [13]. In this challenge, there are 30 CT images
coupled with manual segmentations of 13 organs, listed in Table 1. These 30
images and segmentations are available for method development and validation.
Out of the 30 images 20 were used for training and 10 for validation.

In addition to these images, training data from the VISCERAL challenge [21]
was also used for training. The VISCERAL training data consists of 20 unenhanced
whole body CT images and 20 contrast enhanced CT images over the abdomen

108 Paper III

3. Experimental Results

1
2
3

4
5

6
7

α α β β β β

Figure 4: Sampling strategy for stochastic training. Given an organ (the orange
region inside the bold line), the image volume is divided into seven different regions,
depending on the distance to the organ boundary. The different regions are then
sampled at different rates.

and thorax. In these images, organ ids 1, 2, 3, 4, 6, 8, 11, 12 and 13 were
manually segmented. The unenhanced whole body CT images were excluded from
the training set for organs with organ ids 1, 2, 6, 8, 10, 11 and 12 since they differed
too much from the enhanced CT images. All images were resampled to the same
resolution of 1 mm × 1 mm × 3mm. For the right kidney, networkk parameters
were set based on on a training set formed by samples from both the right and
the left kidney. For the stomach, the data set was expanded with distorted CT
images and for the left adrenal gland, an unbalanced data set was used with twice
as many background samples as foreground samples.

The test set of the MICCAI challenge consists of 20 CT images. The submitted
segmentations are evaluated by calculating the Dice coefficient for each organ. The
final results are given in Table 1 with the currently two best competitors:

• IMI - algorithm name: IMI_deeds_SSC_jointCL submitted by Mattias
Heinrich at the Institute of Medical Informatics, Lübeck, Germany.

• CLS - algorithm name: CLSIMPLEJLF_organwise submitted by Zhoubing
Xu at the Vanderbilt University, Nashville, TN, USA.

• Other - this column contains results from other competitors. The score is
only shown if they are the highest for that organ.

Paper III 109

Robust Abdominal Organ Segmentation Using Regional...

GT

Region of Interest

GT

Segmentation

Figure 5: Example of the resulting segmentation of the spleen for a CT slice.
Note that even though the initial region of interest did not contain the entire organ
the final result still does. This is due to region growing.

3.1 Runtimes

The organ center estimation took about 20 seconds. For the voxelwise classification
using a CNN, the runtimes between using the CNN-sw and FCN are compared for
each organ. The results for these are shown in Table 2. All CNN computations
were performed on a GeForce GTX TITAN X GPU with Maxwell architecture.
The FCN network have a shorter runtime for most of the organs, this was expected
since it has the ability to classify several voxels in each forward pass. However,
due to the region growing algorithm used during inference, the total number of
voxels classified may differ between the two methods. That is why the FCN have
a longer runtime for some of the organs.

110 Paper III

3. Experimental Results

Slice ID: 50
GT

Segmentation

Slice ID: 53
GT

Segmentation

Slice ID: 56
GT

Segmentation

Slice ID: 60
GT

Segmentation

Figure 6: Example of the resulting segmentation of the gallbladder. This is one
of many images where our method achieved good results. For this image we got a
Dice coefficient of 0.90.

Paper III 111

Robust Abdominal Organ Segmentation Using Regional...

Table 1: Final results measured in Dice metric for organ segmentation in CT
images. Our approach gives the best results for 3 out of the 13 organs. Here ’-’
means that one of the specified methods achieved best result.

Organ IMI CLS Other CNN-swour FCNour

Spleen 0.919 0.911 0.964 0.930 0.936

Right Kidney 0.901 0.893 - 0.866 0.897

Left Kidney 0.914 0.901 0.917 0.911 0.911

Gallbladder 0.604 0.375 - 0.624 0.613

Esophagus 0.692 0.607 - 0.662 0.588

Liver 0.948 0.940 - 0.946 0.949

Stomach 0.805 0.704 - 0.775 0.764

Aorta 0.857 0.811 - 0.860 0.870

Inferior Vena Cava 0.828 0.760 - 0.776 0.758

Portal and Splenic Vein 0.754 0.649 0.756 0.567 0.715

Pancreas 0.740 0.643 - 0.602 0.646

Right Adrenal Gland 0.615 0.557 - 0.631 0.630

Left Adrenal Gland 0.623 0.582 - 0.583 0.631

Average 0.790 0.723 - 0.757 0.767

112 Paper III

3. Experimental Results

Table 2: Runtime results for the voxelwise classification comparing the CNN-sw
to the FCN network archiectures. The results show the average runtime in seconds
of the complete voxelwise classification process (including all the region growing
iterations) for the test set.

Organ CNN-sw [s] FCN [s]

Spleen 118 49

Right Kidney 89 25

Left Kidney 92 23

Gallbladder 108 19

Esophagus 83 22

Liver 234 88

Stomach 336 107

Aorta 139 201

Inferior Vena Cava 129 72

Portal and Splenic Vein 321 256

Pancreas 111 61

Right Adrenal Gland 47 17

Left Adrenal Gland 49 32

Paper III 113

Robust Abdominal Organ Segmentation Using Regional...

Slice ID: 77
Segmentation

Figure 7: Example of the resulting segmentation of the right kidney for a CT slice
from the test set. The final segmentation is marked in blue. This segmentation
was one of the examples where the method performed poorly.

4 Discussion

During evaluation of our method we noticed a substantial difference in performance
for the validation set and the test set. Using the CNN-sw the mean Dice coefficient
on the validation set was 0.790 while the same measure on the test set was 0.757.
This difference was most apparent for some organs such as the right kidney where
the Dice coefficient dropped from 0.940 to 0.866 and the inferior vena cava where
the Dice coefficient dropped from 0.823 to 0.775. This means that our networks do
not generalize well to the test set for these organs which might be an indication of
overfitting and that the input features and the structure of our network is not ideal
to learn high order information that generalize to all other CT images. However,
since the validation data has not been used for the actual training, only for the
decision on when to stop the training, these differences might not be only due to
overfitting. Instead it might be due to the existence of anatomical variations in
the test set that differ too much from anything seen in the training and validation
images for the network to perform well. A specific example of where our method
performed poorly on the test data, for an organ with good validation results, is
shown in Figure 7. Here, the network has classified most of the right kidney
correctly. However, it has also classified a lot of surrounding organs or tissues as
right kidney as well.

The ideal solution to this problem would be to include more images in the
training set. This however, requires more manually segmented CT images which
are not always easy to acquire. Other approaches to solve this problem would be to
train a network on several organs, and then fine tune the network weights for each

114 Paper III

5. Conclusion

specific organ. This could enable the network to learn higher order features that
differentiates well between all organs in the CT image, not only between the organs
located closest to the organ that is currently being segmented. Other future work
would be to add a postprocessing step using a Conditional Random Field (CRF).
Recently, methods for training CRFs and CNNs jointly have been proposed for
medical images [22].

5 Conclusion

In this paper, an efficient system for abdominal organ segmentation was presented.
Our approach first uses a robust localization algorithm for finding the region of
interest. As a second step a convolutional neural network is applied performing
voxelwise classification. Two convolutional neural networks of different architec-
ture are compared for this task. The method was evaluated by submitting two
entries to the MICCAI2015 challenge “Multi-Atlas Labeling Beyond the Cranial
Vault” in the free competition for organ segmentation in the abdomen. The entries
achieved on par with state-of-the-art for a majority of the organs with a mean Dice
coefficient of 0.757 and 0.767 for CNN-sw and FCN, respectively.

Bibliography

[1] R. Wolz, C. Chu, K. Misawa, M. Fujiwara, K. Mori, and D. Rueckert, “Auto-
mated abdominal multi-organ segmentation with subject-specific atlas gener-
ation,” Medical Imaging, IEEE Transactions on, vol. 32, no. 9, pp. 1723–1730,
2013.

[2] Z. Wang, K. K. Bhatia, B. Glocker, A. Marvao, T. Dawes, K. Misawa, K. Mori,
and D. Rueckert, “Geodesic patch-based segmentation,” in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2014, ser. Lecture
Notes in Computer Science, 2014, vol. 8673, pp. 666–673.

[3] H. Park, P. H. Bland., and C. R. Meyer, “Construction of an abdominal prob-
abilistic atlas and its application in segmentation,” Medical Imaging, IEEE
Transactions on, vol. 22, no. 4, pp. 483–492, April 2003.

[4] C. Chu, M. Oda, T. Kitasaka, K. Misawa, M. Fujiwara, Y. Hayashi,
Y. Nimura, D. Rueckert, and K. Mori, “Multi-organ segmentation based on
spatially-divided probabilistic atlas from 3D abdominal CT images,” in Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI), 2013,
pp. 165–172.

Paper III 115

Robust Abdominal Organ Segmentation Using Regional...

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25. Curran Associates, Inc., 2012, pp. 1097–1105.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[7] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis
detection in breast cancer histology images with deep neural networks,” in
MICCAI, vol. 2, 2013, pp. 411–418.

[8] H. Roth, L. Lu, A. Farag, H. Shin, J. Liu, E. Turkbey, and R. Summers,
“Deeporgan: Multi-level deep convolutional networks for automated pancreas
segmentation,” in Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015, ser. Lecture Notes in Computer Science, 2015, vol.
9349, pp. 556–564.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention (MICCAI), ser. LNCS, vol. 9351. Springer, 2015,
pp. 234–241, (available on arXiv:1505.04597 [cs.CV]). [Online]. Available:
http://lmb.informatik.uni-freiburg.de//Publications/2015/RFB15a

[10] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, 3D
U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.
Cham: Springer International Publishing, 2016, pp. 424–432. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-46723-8_49

[11] T. Brosch, L. Y. W. Tang, Y. Yoo, D. K. B. Li, A. Traboulsee, and R. Tam,
“Deep 3d convolutional encoder networks with shortcuts for multiscale feature
integration applied to multiple sclerosis lesion segmentation,” IEEE transac-
tions on medical imaging, vol. 35, no. 5, pp. 1229–1239, 2016.

[12] K. Kamnitsas, L. Chen, C. Ledig, D. Rueckert, and B. Glocker, “Multi-scale 3d
convolutional neural networks for lesion segmentation in brain mri,” Ischemic
Stroke Lesion Segmentation, p. 13, 2015.

[13] Z. Xu, “Multi-atlas labeling beyond the cranial vault - workshop and
challenge,” 2016, [Online; accessed 10-January-2017]. [Online]. Available:
https://www.synapse.org/#!Synapse:syn3193805/wiki/217752

116 Paper III

Bibliography

[14] F. Kahl, J. Alvén, O. Enqvist, F. Fejne, J. Ulén, J. Fredriksson, M. Land-
gren, and V. Larsson, “Good features for reliable registration in multi-atlas
segmentation,” in VISCERAL Anatomy3 Segmentation Challenge, 2015, pp.
12–17.

[15] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like envi-
ronment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[16] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the 30th
international conference on machine learning (ICML-13), 2013, pp. 1139–
1147.

[17] N. Sivastava, G., A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[18] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” in ICLR, 2016.

[19] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.

[20] J. Allaire, D. Eddelbuettel, N. Golding, and Y. Tang, ten-
sorflow: R Interface to TensorFlow, 2016. [Online]. Available:
https://github.com/rstudio/tensorflow

[21] A. Hanbury, H. Müller, G. Langs, and B. H. Menze, The Future Internet:
Future Internet Assembly 2013: Validated Results and New Horizons, Berlin,
Heidelberg, 2013, ch. Cloud–Based Evaluation Framework for Big Data, pp.
104–114.

[22] M. Larsson, J. Alvén, and F. Kahl, “Max-margin learning of deep structured
models for semantic segmentation,” in 20th Scandinavian Conference Image
Analysis, (SCIA 2017). Springer International Publishing, 2017.

117

