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1 Introduction

During the last years, much research has been devoted to models of gravity together with

other fields, obtained by extending d-dimensional space to some module of a structure group

G. The structure group plays an important rôle for the gauge symmetries of these models,

the generalised diffeomorphisms. Locally, d-dimensional space and the group GL(d) ⊂

G × R
+ are recovered through a section constraint, an algebraic condition on allowed

momenta. In this paper, we let the term extended geometry denote any such model. The

most important classes of extended geometry are double field theory and exceptional field

theory, motivated by dualities in string theory.

Recently, universal expressions for the invariant tensors used in the construction of

extended geometries have been uncovered [1, 2], pointing towards a unified treatment.

These expressions constitute a generalisation of a generic identity fulfilled for elements in a

minimal orbit, that has appeared in the mathematics literature [3]. Although double field

theory [4–28] has a generic form, thanks to the tensor formalism of O(d, d), exceptional

field theory [29–49] has typically relied on a case by case treatment.

It has not been clear what the most general situation is. Some important examples of

exceptional field theory for high rank groups (E8, E9) exhibit the presence of additional

constrained local transformations [2, 42, 45, 46, 49], for which we use the term ancillary

transformations. However, the classifications in refs. [50, 51] rely on the absence of such

transformations, so it is relevant to reconsider the general setting.

In the present paper, we develop a general formalism for extended geometry based on

a choice of a Kac-Moody algebra g and an irreducible highest weight module R(λ). As our

only restrictions on the choice, we require the Cartan matrix of g to be indecomposable

and symmetrisable, and the module R(λ) to be integrable (so that the Dynkin labels of
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the highest weight λ are non-negative integers) [52]. All expressions for generalised diffeo-

morphisms, section constraints etc., are universal, and the formalism allows for a unified

treatment of all extended geometries. We limit ourselves to local properties; it is not clear if

the treatment of global issues may be facilitated by our methods. Our investigation is also

limited to what in a compactification would be the “internal” space, and the fields for which

we formulate the dynamics are those that from an “external” point of view are scalars.

In section 2, the basic concepts of extended coordinates, section constraints and gener-

alised diffeomorphisms are introduced. We use the quadratic Casimir to obtain the general

form of the section constraint, and apply it in the construction of generalised diffeomor-

phisms. The result shows that ancillary transformations occur in many cases. In section 3

we show how the general form of the section constraint may be derived from bosonic and

fermionic extensions of the structure algebra. This alternative approach is then used in sec-

tion 4, where we give a concrete criterion in terms of the structure algebra and coordinate

module for whether ancillary transformations appear or not. A pseudo-action, encoding

the full dynamics for a limited set of cases, is given in section 5. In section 6, examples are

examined, some of which are well known, and some new. We conclude with a summary

and outlook in section 7.

2 Extended space, sections, and generalised diffeomorphisms

We consider models based on a Kac-Moody algebra g, exponentiated to a group G (extend-

ing the structure group GL(d) in ordinary geometry), and an irreducible and integrable

highest weight module R(λ) (extending the ordinary coordinate module). Derivatives will

thus transform in the dual module R(λ).

We denote the Cartan matrix of g by aij (i, j = 1, . . . , r) if it is invertible. Otherwise, if

the corank of the Cartan matrix ism ≥ 1 (in particular if g is affine, m = 1), then we extend

the range of indices to i, j = 1, . . . , n, where n = r +m, and let aij be an invertible n× n

matrix obtained by adding m rows and columns to the Cartan matrix (corresponding to a

“realisation” of it [52]). We will always assume that a is symmetrisable, which means that

there is a diagonal matrix d with nonzero entries dj such that (da)ij is a symmetric matrix.

This gives rise to a non-degenerate symmetric bilinear form on the Cartan subalgebra, and

a corresponding metric on the weight space.1 We use the conventions that d expresses half

the lengths squared of the simple roots, di =
(αi,αi)

2 , and da their mutual inner products,

(da)ij = (αi, αj). Thus aij = (αi
∨, αj), where αi

∨ = 2αi

(αi,αi)
is the coroot of αi. It is often

convenient to symmetrise a from the right with the inverse of d, so that the symmetrised

matrix is âij = (ad−1)ij = (αi
∨, αj

∨). With weights expressed as λ =
∑

i λiΛi, where the

fundamental weights Λi are given by (Λi, α
∨
j ) = δij , the weight space metric is then given

by â−1, so that (λ, λ) =
∑

ij(â
−1)ijλiλj . The Dynkin labels λi of the (highest) weights λ

that we consider are (non-negative) integers. We note that d is not uniquely given by a, but

only up to an overall factor, and that all the entries have the same sign. The (standard)

1If the Cartan matrix is not invertible, m ≥ 1, then the set of simple roots α1, . . . , αr in the weight

space is supplemented by m additional basis elements αr+1, . . . , αn, which strictly speaking are no roots.

However, for simplicity we will refer to all basis elements α1, . . . , αn as simple roots.
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convention is that the longest simple roots have (αi, αi) = 2. Throughout the paper, we

will take the real form of g to be the split one, i.e., the one associated with the weight

space decomposition.

Following ref. [38], we consider generalised diffeomorphisms of the form

LξV
M = ξN∂NV M − ∂NξMV N + Y MN

PQ∂NξPV Q , (2.1)

where Y is a g-invariant tensor that needs to satisfy certain identities in order for the

generalised diffeomorphisms to close into an algebra according to

[Lξ,Lη] = L 1

2
(Lξη−Lηξ)

, (2.2)

and to be covariant with respect to themselves. The first of these identities is simply the

section constraint

Y MN
PQ(∂M ⊗ ∂N ) = 0 (2.3)

and, as shown in ref. [1], all but one of the other identities can be conveniently combined

into the single “fundamental” identity

(ZNT
SMZQS

RP − ZQT
SPZ

NS
RM

− ZNS
PMZQT

RS + ZST
RPZ

NQ
SM )(∂N ⊗ ∂Q) = 0 ,

(2.4)

where ZMN
PQ = Y MN

PQ − δMP δNQ .

Already demanding that the last two terms in the transformation (2.1) represent a

local transformation on V in the structure algebra g⊕ R constrains Y to the form

Y MN
PQ = −kηαβT

αN
PT

βM
Q + βδNP δMQ + δMP δNQ , (2.5)

where TαN
P are the representation matrices for R(λ) in a basis Tα of g and ηαβ is the

inverse of the invariant bilinear form. Then it is easily checked that, for any values of the

constants k and β in (2.5), the condition (2.4) is automatically satisfied if (2.3) is (with

both conditions depending on k and β). This condition is however not sufficient for closure

of the generalised diffeomorphisms, but leads to a remaining term

(
[Lξ,Lη]− L 1

2
(Lξη−Lηξ)

)
V M =

1

2
ZMP

QNY QR
ST ξ

T∂P∂Rη
SV N − (ξ ↔ η) , (2.6)

that vanishes in some cases (e.g., g = Er, r ≤ 7) but not in others (e.g., g = E8). As we will

see later, whether it vanishes or not does not depend on the constants k and β, but is entirely

a property of the Lie algebra g and the module R(λ). What does determine the constants k

and β (although not always fully) is the requirement that the “extended geometry” indeed

is an extension of ordinary geometry, in the sense that we recover ordinary geometry when

we solve the section constraint (2.3). This means that the solutions (“sections”) must be

d-dimensional linear subspaces of R(λ) related to each other by rotations in G, and with

a stability group containing GL(d), such that the generalised diffeomorphisms in a section

reduce to ordinary diffeomorphisms together with transformations of other gauge fields.

We would like to stress that the closure, or “almost closure” according to eq. (2.6), for a
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bad choice of the constant k, is quite uninteresting, as it relies on a section constraint whose

solutions are 1-dimensional sections. This follows from the analysis below. As regards the

constant β, it can be seen as a weight. A field can transform with any weight, but β is

the canonical weight associated with the parameters themselves. We will turn to a closer

inspection of the section constraint, after a brief interlude on notation.

The relations above are written in tensor notation. However, we will often use an

index-free notation, where the derivatives and vector fields are represented by bra and

ket states, respectively. The advantage of using the bra-ket notation is, besides making

many equations less cluttered, that it goes well together with the standard treatment of

highest/lowest weight modules of Lie algebras. Thus, ξM ↔ |ξ〉 and ∂M ↔ 〈∂|. The section

constraint (2.3) takes the index-free form

〈∂| ⊗ 〈∂|Y = 0 , (2.7)

while the expression (2.5) for the Y tensor reads

σY = −kηαβT
α ⊗ T β + β + σ , (2.8)

where σ is the permutation operator, σ|a〉 ⊗ |b〉 = |b〉 ⊗ |a〉, or, on operators, σA ⊗ B =

B ⊗Aσ.

The section constraint can be introduced in two steps. The first one (which sometimes

goes under the name “weak section constraint”) demands that momenta (derivatives) lie

in a minimal orbit under the action of G. This is equivalent to the statement that the

symmetrised product ∂2 only contains the module R(2λ), dual to the highest module in

the tensor product ⊗2R(λ). The term “highest” here refers to the partial ordering of

(highest) weights. The solution of the weak constraint is not a linear space, but a cône.

In the second step, we demand that the product of any two momenta only contains

the lowest symmetric and antisymmetric modules in the tensor product. While obviously

the highest module in the symmetrised product ∨2R(λ) is R(2λ), the highest module in

the antisymmetrised product ∧2R(λ) is in general reducible, and consists of the sum of

all irreducible highest weight modules R(2λ− αi), where the simple roots αi are the ones

with λi = (λ, α∨
i ) 6= 0. This is easily seen from an expansion of R(λ), starting from the

highest weight state |λ〉, followed by the states fi|λ〉 = |λ − αi〉 for λi 6= 0. The highest

antisymmetric highest weight states then are

||2λ− αi〉〉 = |λ〉 ⊗ |λ− αi〉 − |λ− αi〉 ⊗ |λ〉 . (2.9)

As will soon be clear, not all of these should survive for a solution to the section constraint,

but only those with λi = 1 and 2
(αi,αi)

= k for some given k. We denote the corresponding

index set by

Ik ⊂

{
i |λi = 1,

2

(αi, αi)
= k

}
. (2.10)

The section constraint will thus be equivalent to

(∂ ⊗ ∂)
∣∣∣
R2⊕R̃2

= 0 , (2.11)
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where
R2 = ∨2R(λ)⊖R(2λ) ,

R̃2 = ∧2R(λ)⊖
⊕

i∈Ik

R(2λ− αi) .
(2.12)

The modules R2 and R̃2, which do not need to be irreducible, have a natural interpretation

in terms of extended algebras, as explained in section 3.

As we will see, the constant k in Ik is the same as the one in eq. (2.5). To get an as

sensible and less restrictive model as possible, we set k = 2
(αi,αi)

if all simple roots αi have

the same length squared (αi, αi), or if there is only one simple root αi such that λi = 1. If

there is more than one simple root with λi = 1, and they have different lengths, then we

set k = 2
(αi,αi)

for one of them (thus k is not fully determined by g and λ in this case). If

λi 6= 1 for all simple roots αi, then we let k be such that k ≥ 2
(αi,αi)

for all simple roots

αi (i.e., k ≥ 1 with the convention that the longest simple roots αi have (αi, αi) = 2) and

otherwise undetermined.

Let us investigate what the section constraint (2.11) implies in terms of algebraic

conditions. We will use the quadratic Casimir operator, which is well defined on highest

weight modules of any Kac-Moody algebra with a symmetrisable Cartan matrix. It is

C2 =
1

2
ηαβ : TαT β : +(h, ̺) =

∑

α∈∆+

e−αeα +
1

2
(h, h) + (h, ̺) . (2.13)

Here, ̺ is the Weyl vector, defined so that (̺, α∨
i ) = 1. The term (h, ̺) is a normal ordering

term, which for finite-dimensional algebras can be absorbed into a symmetric ordering,

since then ̺ = 1
2

∑
α∈∆+

α. Since C2 takes the same value on all elements in an irreducible

module R(λ), it is enough to evaluate it on the highest weight state, where one gets

C2(R(λ)) =
1

2
(λ, λ+ 2̺) . (2.14)

From this expression we also immediately obtain

C2(R(2λ)) = 2C2(R(λ)) + (λ, λ) ,

C2(R(2λ− αi)) = 2C2(R(λ)) + (λ, λ)− λi(αi, αi) ,
(2.15)

where αi is any simple root such that λi = (λ, αi
∨) > 0.

Now, consider a representative in the minimal orbit of R(λ), which can be chosen pro-

portional to the highest weight state |λ〉 itself. Following section 6.2 of ref. [2], we then have

0 = [C2(R(2λ))− 2C2(R(λ))− (λ, λ)] |λ〉 ⊗ |λ〉

=

[
1

2
ηαβ : TαT β : +(h, ̺)

]
|λ〉 ⊗ |λ〉 −

([
1

2
ηαβ : TαT β : +(h, ̺)

]
|λ〉

)
⊗ |λ〉

− |λ〉 ⊗

[
1

2
ηαβ : TαT β : +(h, ̺)

]
|λ〉 − (λ, λ)|λ〉 ⊗ |λ〉

=
[
ηαβT

α ⊗ T β − (λ, λ)
]
|λ〉 ⊗ |λ〉 .

(2.16)
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Similarly, for i such that λi = 1, we obtain

0 = [C2(R(2λ− αi))− 2C2(R(λ))− (λ, λ) + (αi, αi)] ||2λ− αi〉〉

=
[
ηαβT

α ⊗ T β − (λ, λ) + (αi, αi)
]
||2λ− αi〉〉 .

(2.17)

Next, consider two vectors in a section. Without loss of generality, take one of them to

be |λ〉 and the other one |q〉 =
∑

ℓ≥0 |q〉ℓ, with components given by (h, λ)|q〉ℓ = ((λ, λ) −

ℓ)|q〉ℓ in the grading induced by λ. If the right hand side of eq. (2.16) annihilates symmetric

products of vectors in a section, we must have
[
ηαβT

α ⊗ T β − (λ, λ)
]
(|λ〉 ⊗ |q〉+ |q〉 ⊗ |λ〉) = 0 . (2.18)

Since the equation is linear in |q〉, we can treat the terms in the grading decomposition

separately. We get
[
ηαβT

α ⊗ T β − (λ, λ)
]
(|λ〉 ⊗ |q〉ℓ + |q〉ℓ ⊗ |λ〉)

= (1 + σ)

(
∑

α∈∆+

eα|q〉ℓ ⊗ e−α|λ〉 − ℓ|λ〉 ⊗ |q〉ℓ

)
.

(2.19)

This shows that, for ℓ ≥ 1, we must have |q〉ℓ ∝ e−α|λ〉, for some positive root α. In order

for the sum to give a single term, we must have eα′ |q〉ℓ = 0 or e−α′ |λ〉 = 0 for all positive

roots α′ 6= α. The root α must thus be αi + β, where αi is a simple root with λi 6= 0 and

(λ, β) = 0. Eq. (2.18) is then satisfied if ℓ = λi.

We also need to verify that |q〉 itself satisfies the symmetric constraint, i.e., that it lies

in the minimal orbit. This condition is not linear, and terms with different degree may

mix. Therefore, we consider the maximal value of ℓ. For simplicity, we only display the

calculation for α = αi. Then
[
ηαβT

α ⊗ T β − (λ, λ)
]
|q〉ℓ ⊗ |q〉ℓ

= λi

[
|λ〉 ⊗ f2

i |λ〉+ f2
i |λ〉 ⊗ |λ〉

]
+ [(λ− αi, λ− αi)− (λ, λ)] fi|λ〉 ⊗ fi|λ〉 ,

(2.20)

and thus fi|λ〉 is in the minimal orbit only if f2
i |λ〉 = 0 and (λ− αi, λ− αi) = (λ, λ). Both

conditions give λi = 1. The same holds for |q〉1 = e−αi−β|λ〉 as above. This consideration

shows why the antisymmetric highest weight modules R(2λ − αi) are allowed to be non-

vanishing if λi = 1. Note that this condition is obtained by demanding that the symmetric

constraint is satisfied by vectors in a linear subspace.

Continuation of this construction yields a linear subspace, a section, of R(λ) that

behaves as a GL(d) module. Both the symmetric and antisymmetric products of vectors

in the section contain a single irreducible module, R(2λ) and R(2λ − αi), respectively,

depending on the choice of simple root with λi = 1. The possible (representatives of)

sections are immediately read off from the Dynkin diagram: in addition to |λ〉, one chooses

a fi|λ〉 with λi = 1. Then the section is sequentially enlarged with a neighbouring node

(here labelled i + 1) as fi+1fi|λ〉 as long as λi+1 = 0, and so on. If a branching in the

Dynkin diagram is encountered, one chooses one branch to proceed along. The process
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stops at an end of the diagram, or before one encounters another node j with λj 6= 0, or

before one encounters a node with a multiple connection. This corresponds to choosing

a maximal (i.e., non-extendable) line of d simply connected nodes of equal length in the

extended Dynkin diagram (see section 3), an “extended gravity line”.

From this, it follows that a representative of the section is identified as the states in

R(λ) at degree 0 in the grading with respect to the node (or one of the nodes) lying next to

the gravity line in the Dynkin diagram. Call this node number j. The degree of a weight µ

in this grading is given by 2
(αj ,αj)

(Λj , µ). The representative section is specified by Λj , and

other sections by elements in the orbit of Λj . It follows that a section is specified by an

element in the minimal orbit of Λj [38], i.e., a φ ∈ R(Λj) such that φ2 ∈ R(2Λj). A familiar

example is the parametrisation of isotropic subspaces in the fundamental representation of

Dr (sections in double field theory) in terms of pure spinors.

All vectors |p〉, |q〉 in a section thus satisfy the universal constraint

Y |p〉 ⊗ |q〉 = 0 , (2.21)

where

σY = k
[
−ηαβT

α ⊗ T β + (λ, λ)
]
+ σ − 1 , (2.22)

which is (the index-free version of) the expression (2.5) with β = k(λ, λ) − 1. In all

situations where there is a section of dimension larger than 1, the constant k has the fixed

value k = 2
(αi,αi)

, where λi = 1.

Note that it is enough to consider the symmetric part of the condition, the antisymmet-

ric is then automatically satisfied (for a given choice of section). The Y tensor commutes

with σ, which means that it can be decomposed as Y MN
PQ = Y (MN)

(PQ) + Y [MN ]
[PQ].

The section constraint is imposed on derivatives as in eq. (2.7).

In ref. [2] this necessary form of the Y tensor was shown for the cases where λ is a

fundamental weight dual to a coroot to a long simple root (i.e., (αi, αi) = 2); the present

treatment holds for arbitrary Kac-Moody groups with a symmetrisable Cartan matrix and

arbitrary coordinate modules R(λ). Many cases seem quite uninteresting. Any highest

weight with all λi 6= 1 leads to a 1-dimensional section, spanned by |λ〉. Most of these

should be unphysical or uninformative. An exception is SL(2) with the adjoint as coor-

dinate module. This corresponds to the Ehlers symmetry arising on reduction of gravity

from 4 to 3 dimensions, and the section should indeed be 1-dimensional. It also seems

like “gravity lines” containing short roots ((αi, αi) < 2) typically do not correspond to

interesting situations. The typical example would be when the coordinate module is the

fundamental of an algebra Cr. This example is mentioned in section 6. In section 4, we

will further investigate the consequences of different possible choices.

Let us now come back to the generalised diffeomorphisms (2.1), which in index-free

notation take the form

Lξ|V 〉 = 〈∂V |ξ〉 ⊗ |V 〉+ 〈∂ξ|(−kηαβT
α ⊗ T β + k(λ, λ)− 1)|ξ〉 ⊗ |V 〉 . (2.23)
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Commuting two such transformations leads to the remainder term (2.6) (antisym-

metrised in ξ and η), which after some standard calculation becomes

(
[Lξ,Lη]− L 1

2
(Lξη−Lηξ)

)
|V 〉 = ΣαT

α|V 〉 , (2.24)

where the element Σ = ΣαT
α ∈ g is given as

Σα =
k

2
〈∂η| ⊗ 〈∂η|S

α|ξ〉 ⊗ |η〉 − (ξ ↔ η) ,

with Sα = −kfα
βγT

β ⊗ T γ + Tα ⊗ 1− 1⊗ Tα
(2.25)

(adjoint indices raised and lowered with η). The operator Sα has the symmetry σSα =

−Sασ, meaning that it decomposes as SαMN
PQ = Sα(MN)

[PQ]+Sα[MN ]
(PQ). Only the first

term contributes in Σα. Without indices it can be written 1+σ
2 Sα = Sα 1−σ

2 , and obtained as

1 + σ

2
Sα =

1 + σ

2
[1⊗ Tα, Y ] . (2.26)

Therefore, it follows that (in Σα) the operator Sα may be replaced by

Sα → (1⊗ Tα)Y− , (2.27)

where Y− = Y 1−σ
2 .

We see that, in the generic situation, the generalised diffeomorphisms will not close

among themselves when acting on a vector. There will be additional transformations

present, which are local transformations in g of a restricted type. We use the term “ancillary

transformations” for these extra gauge symmetries. Such transformations have already

been shown to be important in a number of situations [2, 42, 45, 46, 49]. Eq. (2.25)

provides a very simple expression for the generated ancillary transformation. The usual

(previous) form of the extra remaining term on the right hand side of eq. (2.24) contains

the Y tensor quadratically as Y Z (see eq. (2.6)). The new form (2.25) is only quadratic

in generators, and should be much easier to deal with. It will appear naturally in the

variations of the action of section 5.

We will examine the remainder term closer in section 4, where a simple criterion for its

presence or absence will be given. The derivation relies in part on the concept of extended

algebras, which are introduced in the following section.

3 Extended algebras

From the coordinate module R(λ) as R1 and R̃1, and from R2 and R̃2 defined in (2.12),

representations Rp and R̃p can be defined for all positive integers p (possibly trivial for all

but finitely many p) by extending the Lie algebra g in a certain way, and then decomposing

the adjoint representation of the extended algebra under g. In the case of exceptional

geometry, the sequence Rp was in ref. [38] shown to encode the infinite reducibility of the

generalised diffeomorphisms, and it agrees with tensor hierarchies in gauged supergravity

and exceptional field theory [43–45, 53].
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The form of the Y tensor in exceptional geometry was constructed from the extended

algebras in ref. [1]. In this section we review the construction, but for the general Kac-

Moody algebra g rather than explicitly for Er. The generalisation from Er to g is straight-

forward as long as the Cartan matrices of g and of the fermionic and bosonic extensions

A and B below are invertible. We will assume this until the end of the section, where we

briefly describe the general case.

First we extend the Cartan matrix aij (i, j = 1, . . . , r) of g to the Cartan matrix BIJ

(I, J = 0, 1, . . . , r) of a contragredient Lie superalgebra [54] B by another row and column

such that

B00 = 0 , Bi0 = −λi , Bij = aij , (3.1)

and such that (DB)IJ is a symmetric matrix, where D is a diagonal matrix with entries

D0 = 1/k and Di = di. Thus B0i = kdiBi0 = −kdiλi.

In the construction of B from the Cartan matrix B one starts with the Lie superalgebra

generated by two odd elements e0, f0 and 3r+1 even elements ei, fi, hI modulo the relations

[hI , eJ ] = BIJeJ , [hI , fJ ] = −BIJfJ , [eI , fJ ] = δIJhJ , (3.2)

and factors out the maximal ideal that intersects the Cartan subalgebra (spanned by the

hI) trivially. In this case the resulting contragredient Lie superalgebra B is a Borcherds

superalgebra, and the ideal is generated by the additional (Serre) relations [55]

[e0, e0] = [f0, f0] = 0, i 6= J ⇒ (ad ei)
1−BiJ (eJ) = (ad fi)

1−BiJ (fJ) = 0 . (3.3)

The Lie superalgebra B can be decomposed as B =
⊕

p∈Z Bp, where e0 ∈ B1 and

f0 ∈ B−1, and all other generators belong to B0. This is a (consistent) Z-grading, which

means [Bp,Bq] ⊆ Bp+q. The even subalgebra B0 is (as a Lie algebra) the direct sum of

g and a one-dimensional center spanned by an element c. With a normalisation such that

[c, e0] = e0, the components of c in the basis hI are given by c =
∑

I(B
−1)0IhI .

The subspaces B±1 are irreducible g-modules under the adjoint action of B0, and f0
is a highest weight vector of B−1 since [ei, f0] = 0. The Dynkin labels are given by

[hi, f0] = −Bi0f0 = λif0 . (3.4)

Thus g acts on B−1 and B1 in the representations R(λ) and R(λ), respectively. With

bases EM and FM of B1 and B−1, respectively, this means

[Tα, EM ] = −TαM
NEN , [Tα, FM ] = TαN

MFN . (3.5)

In general, we denote the representation of g corresponding to B−p by Rp. Thus R1 = R(λ),

and it follows from the Serre relations (3.3), which set the highest weight vector [f0, f0] of

R(2λ) to zero, that R2 = ∨2R(λ)⊖R(2λ).

The additional row and column in the Cartan matrix correspond to an additional (odd)

simple root β0 in an extended weight space with metric given by (DB)IJ = (βI , βJ), where

βi = αi. In particular β0 is a null rot, (β0, β0) = 0. The corresponding invariant bilinear

form on B is given by (hI , hJ) = (βI
∨, βJ

∨) on the Cartan subalgebra, where β0
∨ = kβ0. It
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is not symmetric on the whole of B, but has a Z2-graded symmetry, consistent with the Z2-

grading of B. In particular, (e0, f0) = −(f0, e0) = k. We choose a relative normalisation

of the bases of B1 and B−1 such that (EM , FN ) = −(FN , EM ) = δMN . On g we have

(Tα, T β) = ηαβ as before. The length squared of the element c is (c, c) = k(B−1)00. Now

we have

[EM , FN ] = −ηαβT
αM

NT β +
1

k(B−1)00
δMN c (3.6)

and

fM
N

P
Q ≡ ([[EM , FN ], EP ], FQ) = ηαβT

αM
NT βP

Q +
1

k(B−1)00
δMN δPQ . (3.7)

Consider now the matrix AIJ given by A00 = 2, and AIJ = BIJ otherwise, i.e., if not

I = J = 0. In the same way as the contragredient Lie superalgebra B is constructed from

B, we can construct a contragredient Lie algebra [56] A from A. We thus replace BIJ

by AIJ in the relations (3.2), and let all generators be even. For example, if g = Er, and

λ is the highest weight of the coordinate module in exceptional geometry, then A is the

Kac-Moody algebra Er+1.

Similarly to B, the Lie algebra A can be decomposed as A =
⊕

p∈Z Ap, where, as g-

modules, Ap is isomorphic to Bp for p = 0,±1. However, since we need to distinguish them

from each other we denote the basis elements of A1 and A−1 by ẼM and F̃M , respectively.

We also denote the generators of A corresponding to e0 and f0 in B by ẽ0 and f̃0. For

the other generators ei, fi, hI there is no need to make this distinction. We thus have an

isomorphism B±1 → A±1 mapping a general element U = UMEM to Ũ = UM ẼM , and

V = V MFM to Ṽ = V M F̃M . Note that whereas the elements U, V are odd (fermionic)

in the Lie superalgebra B, the corresponding elements Ũ , Ṽ are ordinary even (bosonic)

elements in the Lie algebra A . Accordingly, the invariant bilinear form is now symmetric,

like in g, so that (ẼM , F̃N ) = (F̃N , ẼM ) = δMN .

In the same way as for B we can now compute

[ẼM , F̃N ] = −ηαβT
αM

NT β +
1

k(A−1)00
δMN c (3.8)

and

f̃M
N

P
Q ≡ ([[ẼM , F̃N ], ẼP ], F̃Q) = ηαβT

αM
NT βP

Q +
1

k(A−1)00
δMN δPQ . (3.9)

We also define tensors

gMN
PQ = ([EM , EN ], [FP , FQ]) , g̃MN

PQ = ([ẼM , ẼN ], [F̃P , F̃Q]) , (3.10)

which, by invariance of the bilinear form and the Jacobi identity, can be related to (anti-)

symmetrisations of f and f̃ as

gMN
PQ = −2f (M

P
N)

Q , g̃MN
PQ = 2f̃ [M

P
N ]

Q . (3.11)

The weight λ is an element in the weight space of the original Kac-Moody algebra g, and

can be written in the basis of simple roots as

λ =
∑

j

(B−1)j0

(B−1)00
αj ⇒ (αi

∨, λ) =
∑

j

Bij
(B−1)j0

(B−1)00
= −Bi0 = λi . (3.12)
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For its length squared we then get

(λ, λ) =
∑

ij

diBij
(B−1)i0

(B−1)00
(B−1)j0

(B−1)00
= −

∑

i

diBi0
(B−1)i0

(B−1)00

= −
∑

i

B0i(B
−1)i0

k(B−1)00
= −

1

k(B−1)00
.

(3.13)

Also (A−1)00 can be related to (B−1)00, by

1

(A−1)00
=

detA

det a
=

2det a+ detB

det a
= 2 +

detB

det a
= 2 +

1

(B−1)00
. (3.14)

Inserting (3.14) into (3.9), and using (3.13) and (3.11) now gives

k

2
(gMN

PQ − g̃MN
PQ) = −kηαβT

αM
PT

βN
Q + k(λ, λ)δMP δNQ − δMP δNQ + δNP δMQ , (3.15)

or, in index-free notation,

k

2
(g − g̃) = −kηαβT

α ⊗ T β + k(λ, λ)− 1 + σ . (3.16)

We see that this expression has the form (2.5), and agrees with eq. (2.22). Thus the Y

tensor can be derived as

σY =
k

2
(g − g̃) . (3.17)

In the general case, when possibly any of the involved Cartan matrices is not invertible,

it is convenient to go one step further and extend the (invertible) matrix aij (i, j = 1, . . . , n,

where n ≥ r, see the beginning of section 2) by two rows and columns to a symmetrisable

matrix CIJ (I, J = −1, 0, 1, . . . , n) such that

C(−1)0 = C0(−1) = 1 , Ci0 = −λi , C0i = −kdiλi , Cij = aij , (3.18)

and all other entries are zero. Note that detC = − det a. Let C be the Lie superalgebra

constructed from C in the same way as B is constructed from B, with odd generators

e−1, e0, f−1, f0 and even generators ei, fi, hj , where i = 1, . . . , r and j = 1, . . . , n. Like

B, it can be decomposed as C =
⊕

p∈Z Cp, where e0 ∈ C1 and f0 ∈ C−1 and all other

generators belong to C0. However, this is not a consistent Z-grading; C±1 is the direct sum

of an even and an odd subspace, which can be identified with A±1 and B±1, respectively,

by ẼM = −[e−1, E
M ] and F̃M = [f−1, FM ]. We then get

([[EM , FN ], EP ], FQ) = ηαβT
αM

NT βP
Q −

(C−1)(−1)(−1)

k
δMN δPQ ,

([[ẼM , F̃N ], ẼP ], F̃Q) = ηαβT
αM

NT βP
Q +

2− (C−1)(−1)(−1)

k
δMN δPQ ,

(3.19)

and similarly to eq. (3.13) we have

(C−1)(−1)(−1)

k
= −

∑

i

C0i(C
−1)i(−1)

k(C−1)0(−1)
= −

∑

i

diCi0
(C−1)i(−1)

(C−1)0(−1)

=
∑

ij

diCij
(C−1)i(−1)

(C−1)0(−1)

(C−1)j(−1)

(C−1)0(−1)
= (λ, λ) .

(3.20)
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Figure 1. Dynkin diagrams for the extended (super)algebras A, B and C. The box represents the

Dynkin diagram of g.

Thus (3.17) holds also in the general case.

In figure 1 the Dynkin diagrams of the extended algebras A , B and C are displayed,

where the odd simple roots of zero length squared are represented by “gray” nodes. It is

obvious from the figure that B is a subalgebra of C . By performing an “odd reflection”

with respect to the outermost gray node in the Dynkin diagram of C one can obtain an

equivalent Dynkin diagram, where instead the embedding of A into C is manifest [1].

4 Ancillary transformations

We will now show how the formalism of ref. [1], reviewed and generalised in section 3,

can be used to determine in which cases the ancillary transformations appear or not. As

explained in the end of section 2, the ancillary transformations vanish if and only if the

operator 1+σ
2 (1 ⊗ Tα)Y− does when it acts from the right on derivatives. With indices,

using the results in the preceding section, it can be written

(
1 + σ

2
(1⊗ Tα)Y−

)
MN

PQ = Tα(M
Rδ

N)
SY

RS
− PQ =

k

2
Tα(M

Rδ
N)

S g̃
RS

PQ

=
k

2
([[Tα, Ẽ(M ], ẼN)], [F̃P , F̃Q]) .

(4.1)

If this expression is nonzero, and the indices M and N have any part in R(2λ) for any Tα,

then it will not vanish when contracted with two derivatives, since the section constraint

only removes the part in R2 = ∨2R(λ) ⊖ R(2λ). Since indices M and N of the anti-

commutator [EM , EN ] in B are automatically projected on R2, a necessary and sufficient

condition for the presence of ancillary transformations is the existence of an element x ∈ g

and a symmetric tensor XMN such that XMN [EM , EN ] = 0 but XMN [ẼM , [ẼN , x]] 6= 0,

or equivalently, a set S of pairs (U, V ) of elements U, V ∈ B1 such that

∑

(U,V )∈S

[U, V ] = 0 and
∑

(U,V )∈S

(
[Ũ , [Ṽ , x]] + [Ṽ , [Ũ , x]]

)
6= 0 (4.2)

in B2 and A2, respectively.
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Since [e0, e0] is always zero in B, it is sufficient to find an x such that [ẽ0, [ẽ0, x]] 6= 0.

If there is a positive root α of g such that (α0
∨, α) < −1, then this condition is satisfied

by a corresponding root vector, x = eα, since

[f̃0, [ẽ0, eα]] = −[h0, eα] = −(α0
∨, α)eα 6= 0 , (4.3)

implying that [ẽ0, eα] 6= 0, and then

[f̃0, [ẽ0, [ẽ0, eα]]] = −[h̃0, [ẽ0, eα]]− [ẽ0, [h̃0, eα]] = (−2− 2(α0
∨, α))[ẽ0, eα] 6= 0 , (4.4)

implying that [ẽ0, [ẽ0, eα]] 6= 0. To find a root α such that (α0
∨, α) < −1, we set α =

∑
i aiαi

so that

(α0
∨, α) =

∑

i

(α0
∨, αi)ai =

∑

i

k
(αi, αi)

2
(αi

∨, α0)ai = −
∑

i

k
(αi, αi)

2
λiai . (4.5)

If λ is not a fundamental weight (that is, if
∑

i λi ≥ 2), then −
∑

i k
(αi,αi)

2 λiai < −aj for

some j such that λj ≥ 1, and we can choose α = αj . Thus ancillary transformations appear

in this case.

Let us now assume that λ is a fundamental weight, λi = δij for some j. Then we

have −
∑

i k
(αi,αi)

2 λiai = −aj , and ancillary transformations will again appear if there is a

root α =
∑

i aiαi of g with aj ≥ 2. This includes all infinite-dimensional cases. For finite-

dimensional g, we can consider the highest root θ =
∑

i ciαi where ci are the Coxeter labels,

and it follows that if the ancillary transformations are absent, then we must have cj = 1.

Conversely, if cj = 1, then [ẽ0, [ẽ0, eθ]] = 0, and by the adjoint action of the raising operators

ei (which commute with eθ) we get XMN [ẼM , [ẼN , eθ]] = 0 for all symmetric tensors XMN

such that XMN [EM , EN ] = 0, since these correspond to an irreducible representation with

lowest weight −2λ. Acting with the lowering operators fi we can then step down again

from eθ to any x ∈ g and show that XMN [ẼM , [ẼN , x]] = 0. Thus the condition cj = 1 is

not only necessary for the absence of ancillary transformations, but also sufficient. (This

can also be shown by studying the involved tensor product decompositions in all cases

with λ = Λj and cj = 1. In many cases, A2 is zero- or one-dimensional, and it follows

immediately that there is no room for ancillary transformations.)

We conclude that the ancillary transformations vanish if and only if g is finite-

dimensional, λ is a fundamental weight Λj, and the corresponding Coxeter label cj is equal

to 1.

Note that this can never happen at a node corresponding to a short root, since the

Coxeter label of a short root αi always is larger than 1. The complete list of situations

where ancillary transformations are absent is thus:

• g = Ar, λ = Λp, p = 1, . . . , r (p-form representations);

• g = Br, λ = Λ1 (the vector representation);

• g = Cr, λ = Λr (the symplectic-traceless r-form representation);

• g = Dr, λ = Λ1,Λr−1,Λr (the vector and spinor representations);
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• g = E6, λ = Λ1,Λ5 (the fundamental representations);

• g = E7, λ = Λ1 (the fundamental representation).

The commutator between a generalised diffeomorphism with parameter ξ and an ancil-

lary transformation with parameter Σ = ΣαT
α is trivially given by an ancillary transforma-

tion with parameter LξΣ. Commuting two ancillary transformations does not manifestly

give a new transformation of the form (2.25). It is however easy to give another argument

for their closure. In at least one of the possible section-adapted gradings (see section 2),

the highest root vectors in A−2 appear at degree −p, where p > 0. Thus the lower indices

in Y RS
− PQ = k

2 g̃
RS

PQ correspond to degree −p or lower. Since at the same time, by the

section constraint, derivatives are nonzero only at degree 0, the degree of the parameter

Σ is also −p or lower, and the commutator will be of degree −2p or lower. We will see

examples of this in section 6.

5 Dynamics

We now want to investigate if it is possible to write a pseudo-action for fields in G/K×R
+.

Due to the section constraint, we do not yet consider the “actions” obtained here and earlier

as proper actions, unless integration is performed over some specified section. They provide,

however, an efficient means of encoding the classical dynamics. In this section, we limit

ourselves to transformations obtained by normalisation of the Y tensor corresponding to a

long root, since all interesting cases are obtained this way (see section 6). We thus use

σY = −ηαβT
α ⊗ T β + (λ, λ)− 1 + σ . (5.1)

The fields in the coset G/K×R
+ are parametrised by a generalised metric GMN , which

is at the same time a group element in G×R
+ and a symmetric matrix. The inverse metric

will be denoted GMN . Let GMN transform as a tensor density with a weight −2w, which

does not necessarily equal −2((λ, λ)− 1), the canonical weight of a tensor with two lower

indices. We are looking for a density L, containing two derivatives, that is invariant under

generalised diffeomorphisms, up to total derivatives. The weight w will be determined.

The result should be compared to known cases.

The introduction of a metric implies a preferred involution on g, i.e., a local choice of

embedding of the maximal compact subalgebra k. Acting on generators in R(λ), it is

Tα 7→ −T ⋆α = −(GTαG−1)t . (5.2)

The local generators in k and g⊖ k are T − T ⋆ and T + T ⋆, respectively. Let

(G−1∂MG)NP = ΠMαT
αN

P +ΠMδNP . (5.3)

When checking the transformations under generalised diffeomorphisms, it is enough to

check the inhomogeneous part, ∆ξX ≡ δξX − LξX. Using the form of the generalised

diffeomorphism above (with the appropriate weight), we obtain

∆ξΠM = −2w∂M∂NξN ,

∆ξΠαM = ηαβ(T
β + T ⋆β)NP∂M∂NξP .

(5.4)
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It is often convenient to use the fact that the Killing metric is invariant under the

involution, so that ηαβT
α ⊗ T β = ηαβT

⋆α ⊗ T ⋆β , and that the adjoint index in ΠMα takes

values in g⊖ k, i.e.,

ΠMαT
α = ΠMαT

⋆α . (5.5)

This immediately implies that the invariant tensors Y and Z fulfil

GMM ′GNN ′ZM ′N ′

P ′Q′GP ′PGQ′Q = ZPQ
MN , (5.6)

and the corresponding identity for Y . A calculation then shows that the combination

L0 =
1

2
A−B − 2C −

(λ, λ)

(λ, λ)− 1
2

D , (5.7)

is necessary for the cancellation of various terms, where

A = GMNηαβΠαMΠβN ,

B = GPQTαM
PT

βN
QΠαNΠβM ,

C = (TαG−1)MNΠαMΠN ,

D = GMNΠMΠN .

(5.8)

Note that the terms A and B, which are the ones not containing the scale variation ΠM ,

have a universal relative coefficient. In previous formulations, based on traces in the fun-

damental rather than using the Killing metric, the relative coefficient has been determined

on a case by case basis.

The remaining inhomogeneous transformation, modulo total derivatives, is

∆ξL0 = −2SαMN
PQG

PSΠSα∂M∂NξQ , (5.9)

where S is the tensor of eq. (2.25). This shows that L0 gives the complete dynamics in all

cases where ancillary transformations are absent.

By cancellations of inhomogeneous transformations, the weight w is also determined

to be w = (λ, λ)− 1
2 . Note that this implies that the total weight of L is

− 2((λ, λ)− 1) + 2

(
(λ, λ)−

1

2

)
= 1 , (5.10)

where the first term comes from the two derivatives and the second one from an inverse

metric. This is the correct weight for partial integration, in the sense that a divergence

formed with a naked derivative is covariant. Namely, consider a vector V M with weight

w+, Using the section constraint, it is straightforward to show that

∂MLξV
M = ξN∂N∂MV M + (w+ − (λ, λ) + 1)∂NξN∂MV M

+ (w+ − (λ, λ))∂M∂NξNV M .
(5.11)

If w+ = (λ, λ), the ∂2ξ term vanishes, and this equals Lξ∂MV M . The divergence ∂MV M

then is a scalar density of weight w+ − (λ, λ) + 1 = 1.
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We do not know if it is possible in general to add terms to the Lagrangian in order to

cancel the remainder in eq. (5.9). It was done for E8 in ref. [45]. That construction can be

extended to the class of models where R(λ) is the adjoint of a finite-dimensional Lie algebra

(finite dimension is needed for the adjoint to be a highest weight representation). Such

extended geometries are relevant in connection with compactification to 3 dimensions, and

provide geometrisations of extensions of Ehlers symmetry.

In the adjoint cases, using the generic form of the Y tensor with Tαβ
γ = −fαβ

γ ,

the symmetry (5.5) of Π can be expressed as follows. Let Gαβ = φG̃αβ , where G̃−1dG̃

takes values in g (i.e., det G̃ = 1), and φ is a scalar density of the same weight as G (i.e.,

φ = (detG)1/ dim g). Then,

G̃αγΠγβ = ηαγΠγβ . (5.12)

The remainder term of eq. (5.9) can in these cases be simplified using the section constraint

of the form

ηκλf
κγ

αf
λδ

β∂(γ∂δ) = 2∂(α∂β) . (5.13)

Using the Jacobi identity in the operator Sα then gives

Sα
δǫ
βγ∂(δ∂ǫ) = f δ

βγ∂(α∂δ) , (5.14)

where the two derivatives act on the same (suppressed) parameter. The remainder term is

∆ξL0 = −4fβ
γδG

γǫΠǫ
α∂α∂βξ

δ , (5.15)

where, as earlier, indices (except on G) are raised and lowered with η, and only the presence

of G or its inverse are indicated explicitly. It is cancelled by the variation of

L1 = GαβηγδΠαγΠδβ . (5.16)

This gives a complete (local) description of the dynamics in these cases.

The characterisation of the ancillary transformations in cases where g is an affine

algebra [2] also relied on a specific rewriting of them, in those cases using the coset Virasoro

generator Lcoset
−1 . If some L1 is to be formed, it seems likely that it will rely on that

rewriting. We have no further insight in how to obtain an invariant Lagrangian in other

infinite-dimensional, e.g. hyperbolic, algebras.

A comment on unimodular versus non-unimodular generalised metrics: in e.g. refs [43–

45], unimodular generalised metrics are used. The density is provided by the “external”

metric, and any invariant expression will contain derivatives of (at least the determinant

of) the external metric. This scale can, if one wants, be absorbed in the definition of a

non-unimodular metric as above. In the present context, we prefer to include the scale in

the generalised metric, since we are in a general situation where we do not want to commit

to a specific number of “external” coordinates. This applies as long as the generalised

metric, as defined here, carries a non-trivial weight, i.e., as long as (λ, λ) 6= 1
2 .
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r−41 2 r−1

r

r−2r−3

Figure 2. The Dynkin diagram for Er.

6 Examples

We will take the opportunity to give some examples, some connecting to known models,

and some illustrating how our formalism goes beyond already investigated cases.

The first example is the E series, with λ = Λ1. The series contains the well-known

exceptional geometries up to E8, and continues with E9, where generalised diffeomorphisms

have been constructed [2] but the dynamics remains to be given. The cases of E10 and E11

are of special interest.

The highest irreducible module in ∧2R(Λ1) is R(2Λ1−α1) = R(Λ2). It is obvious that

no other highest weight module occurs at the same height. The next to highest one appears

(for r ≥ 7) at highest weight 2Λ1 − β, where β =
∑n

i=1 biαi, bi = (2, . . . , 2, 3, 4, 5, 6, 4, 2, 3)

is the lowest root at level 2 with respect to node 1 (for r ≥ 8). The state

||2Λ1 − β〉〉 = |Λ1〉 ∧ e−α1
e−β+α1

|Λ1〉 − e−α1
|Λ1〉 ∧ e−β+α1

|Λ1〉 (6.1)

in ∧2R(Λ1) consists of two terms which are both annihilated by all ei, i = 2, . . . , r. The

relative coefficient assures that also e1||2Λ1 − β〉〉 = 0. This is the highest weight state in

the next-to-highest module R(2Λ1 − β) ∈ ∧2R(Λ1). (This may be refined by stating the

actual multiplicities of 2Λ1 − β in ∧2R(Λ1) and in R(Λ2), and show that they differ by 1,

but it is not necessary for demonstrating that R(2Λ1 − β) ⊂ ∧2R(Λ1).)

This means that ancillary transformations begin at degree −3 in the M-theory grading,

and at degree −4 in the type IIB grading, since (β,Λr) = 3 and (β,Λr−2) = 4. This

illustrates how the local transformations close for e.g. E10, although we lack an action.

As a second example, take g = Ar, λ = Λp. The case λ = Λ2 was described in

refs. [50, 57]. We only need to consider p ≤ [ r+1
2 ], higher p are related to lower by an

outer automorphism. There are (generically) two possible sections, one (p+1)-dimensional

(p ≥ 2) and one (r − p + 2)-dimensional, arising from following a gravity line to the left

and to the right. If we decide going to the right (the (r − p + 2)-dimensional section), all

cases are covered by also including higher p. There is an R-symmetry Ap−2 when p ≥ 3.

The field content is obtained by inspecting the grading of the adjoint with respect to

node p− 1, i.e., its branching under Ap−2 ⊕Ar−p+1 ⊂ Ar. In addition to gravity, the fields

are scalars in the R-symmetry coset SL(p − 1)/SO(p − 1) and (p − 1) (r + 1 − p)-form

potentials. The Lagrangians2 are given by eq. (5.7).

2We note that the case r = 3, p = 2 was excluded in the analysis of ref. [57]. For these values, one has

(λ, λ) = 1, implying that the canonical weight of a vector is 0. Therefore, if one starts from a generalised

metric transforming as a tensor, it is not possible to form a density with non-zero weight for integration. We

do not experience this problem, since we start from a generalised metric which carries a non-tensorial weight.
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Figure 3. The Dynkin diagram of A for g = Ar, λ = Λp, with the subdiagram corresponding to

one of the two sections.

Another example where ancillary transformations are absent is g = Cr, λ = Λr. The

section is 2-dimensional. The R-symmetry, obtained by deleting node r − 1 and including

the affine node, is Cr−1. The field content in the coset is, apart from 2-dimensional gravity,

scalars in the coset Sp(2(r−1))/SU(r−1) and 2(r−1) 1-form potentials in the fundamental

of Sp(2(r − 1)).

A word on solutions to the section constraint obtained as a gravity line of short roots.

Among such cases, there is no situation where ancillary transformations are absent. The

simplest example is when g = Cr and λ = Λ1, so that R(λ) is the fundamental repre-

sentation. There is an r-dimensional section. This section is at degree 0 in the grading

with respect to node r, which is the decomposition into GL(r) modules. Since cr = 1, this

is a 3-grading. Ancillary transformations will appear already at degree −1, and remove

everything except gravity from the coset Sp(2r)/SU(r). This seems uninteresting.

The cases where the coordinate module is the adjoint of a finite-dimensional Lie algebra

are the only ones where ancillary transformations are present and a Lagrangian is known.

Given a choice of section corresponding to a gravity line, both the gauge parameters and

the fields are deduced from the corresponding grading. This grading is defined by the node

or nodes outside of, but connected to, the gravity line. As in section 2, call this node (or one

of them) number j. The relevant next-to-highest module in ∧2R(λ), with λ = θ, is R(θ)

itself. Ancillary transformations appear at degree −cj , where cj is the degree of θ in the

grading, i.e., the Coxeter label of the grading node j. This is also the lowest degree appear-

ing in the adjoint representation, which implies that ancillary transformations commute.

The ancillary transformations are then always a 1-form (with respect to the section), which

is equivalent to a section-constrained adjoint element. The corresponding element in a (lin-

earised) coset can always be shifted away by an ancillary transformation. The parameters of

generalised diffeomorphisms at degree 0 and lower become irrelevant; such transformations

can always be absorbed in an ancillary transformation. The pattern from E8 exceptional

geometry [45, 46] is repeated. The precise content of “matter” fields depends on details.

For example, the E7 theory with the 7-dimensional section (the same gravity line as

ordinary exceptional E7 geometry, but with the coordinate module in the opposite end)

contains a 4-form gauge potential in addition to gravity. Since the grading of the adjoint

with respect to the exceptional node is a 5-grading, there are no other physical fields.

– 18 –
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7 Conclusions

We have presented a unified formalism for dealing with extended geometry, only relying

on the choice of structure group and coordinate module. The treatment is so far local.

Inclusion of an “external” space with ordinary diffeomorphisms has intentionally been

left out, since the actual field content depends on other input, e.g. supersymmetry or a

knowledge of the duality group present in a certain compactification. Other fields than

the ones described here (for dimension of the external space D ≥ 4) would then be intro-

duced through a tensor hierarchy in cases where ancillary transformations are absent. The

techniques are straightforward.

The generalisation of the formalism to include supergeometries [58] should be straight-

forward. The Dynkin diagram is replaced by the Dynkin diagram of a superalgebra, which

plays the rôle of structure algebra for the generalised superdiffeomorphisms. A super-

section constraint restrict the super-section to a “supergravity line” corresponding to the

structure superalgebra gl(d|s) of ordinary supergeometry. However, to be concrete about

field content and symmetries, information from the representation theory of Kac-Moody su-

peralgebras will be needed, and not much seems to be known even concerning the (infinite-

dimensional) super-extensions of Er. Neither is it clear how dynamics should be formulated.

Many questions remain to be investigated. Among the most pressing ones is to deter-

mine the dynamics, if not in all cases, at least in some important ones, such as affine and

hyperbolic cases. It is also desirable to obtain a better understanding of finite transforma-

tions, which in double field theory are reasonably well understood [22, 24–26], but which

have been elusive in the exceptional cases, for fundamental or technical reasons. A generic

treatment is desirable.

In section 5, we noted that there seems to be a singularity for (λ, λ) = 1
2 . In general,

this is not serious, but only a sign that the generalised metric (defined as a density, as in

section 5) carries no weight. If some external space is present, a density may be introduced

that compensates, and (part of) an action may be written. A peculiar observation is that

this happens precisely for the case E11, where no external space should be present. The

interpretation is not clear to us, but may point towards a difficulty with formulating an

action in that case.

The treatment in the present paper has its focus on transformations and their closure,

together with invariant dynamics in some cases. Closure of the algebra of generalised dif-

feomorphisms (i.e., absence of ancillary transformations) ensures covariance [46], but when

ancillary transformations are present tensors cannot be defined unless the transformations

are made field-dependent. This was done for E8 in ref. [46], and can easily be extended to

all the finite-dimensional adjoint cases with the methods of the present paper. We do not

know if this is possible in general. Without a concept of covariance, it is not possible to

define truly geometric entities like torsion, curvature etc., which would be desirable. Again,

the most urgent cases are Er, r ≥ 9.

Our formalism is based on the weight space decomposition of modules of the Lie algebra

g, which provides a real basis when g is of split real form. This is the real form typically used

in double and exceptional field theory. We have not tried to analyse in detail what happens
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for other choices of real form, like the orthogonal groups in ref. [49]. For a real representa-

tion there should be no problems with the definition of the generalised diffeomorphisms and

the section constraint, which are built using real invariant tensors. The solution of the sec-

tion constraint in terms of a real gravity line seems to demand that the real form is obtained

from the split one through redefinitions of generators not affecting the gl(d) subalgebra.

The dynamics must be completely reconsidered when the compact subgroup is changed.

The fermionic extensions of the Kac-Moody algebra g used in the present work contain

g itself at level 0, the coordinate module R(λ) = R1 at level −1, and the section constraint

module R2 at level −2. They are contragredient (in particular, Borcherds superalgebras),

which means that the modules at the positive levels are dual to those at the corresponding

negative levels. Alternative extensions, essentially agreeing at positive levels, but with

different (larger) modules at negative levels, are the tensor hierarchy algebras [59, 60].

These algebras seem to have a deeper connection to extended geometry. A peculiar aspect

of the tensor hierarchy algebras corresponding to infinite-dimensional extended geometries

is the appearance of certain additional elements at level 0, i.e., together with the algebra

g. They have already been demonstrated to be important [2, 61]. It is quite possible that

such transformations should be considered part of the structure algebra, when generalised

diffeomorphisms are constructed, and there might be a subtle connection between these

elements and the ancillary transformations. Issues like these have been ignored in the

present work, but seem to point towards interesting potential development.
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