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Approaches to particle acceleration in intense laser-matter interaction
JOEL MAGNUSSON

Department of Physics

Chalmers University of Technology

Abstract

In the interaction of ultra-intense laser fields with matter, the target is
rapidly ionized and a plasma is formed. The ability of a plasma to sus-
tain acceleration gradients, orders of magnitude larger than achievable with
conventional accelerators, has led to a great interest in laser-driven plasma-
based particle acceleration and radiation generation, with applications in
materials science, biology and medicine.

In this thesis we consider laser-driven plasma-based particle acceleration
by studying the interaction of intense laser fields with solid density tar-
gets. The basics of such interactions are described and some of the most
common acceleration schemes are presented. We study the effect of adding
microstructures on the illuminated side of a solid target and show how this
affects the resulting distribution of hot electrons.

Furthermore, we discuss how to achieve controllable ion acceleration
through displacement of electrons by standing waves. A recently proposed
laser-driven ion acceleration scheme, called chirped-standing-wave accelera-
tion, is introduced and described in detail. Finally, we analyze the robust-
ness of this acceleration scheme under non-ideal conditions and discuss its
prospects and limitations.

Keywords: plasma, laser, nonlinear dynamics, laser-matter interaction,
particle acceleration, particle-in-cell
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Chapter 1

Introduction

The topic of this thesis is the analysis of particle acceleration in the inter-
action of intense laser fields with matter. It will mainly focus on describing
the concept of chirped-standing-wave acceleration (CSWA), as a means for
controllable ion acceleration. Moreover, it will also give a brief overview of
laser-matter interaction in general, focusing on how energy can be trans-
ferred from the laser to the particles and mentioning a couple of the most
commonly studied acceleration schemes.

Since the advent of the first functioning laser in the year 1960 [1], the
capabilities of lasers have been greatly improved. The research on the in-
teraction between strong laser fields and matter first began in the 1970s,
largely focusing on the topic of atomic physics as well as laser-induced nu-
clear fusion. The maximum achievable laser intensities however stagnated
at relatively moderate levels as it was still intense enough to damage the
gain medium, thereby becoming limited by the size of the lasing crystals. It
was not until after the invention of chirped-pulse amplification (CPA) [2] in
1985 that this limitation was truly overcome and lasers have since then seen
a steady increase in maximum intensity. Modern laser systems are now able
to generate ultra-short laser pulses with durations on the order of tens of
femtoseconds and focus them down to spots of only a few microns in diam-
eter. Despite containing only a modest amount of energy, typically on the
order of 1-100 J, when focused and fully compressed these pulses can reach
intensities up to a staggering 102! — 1022 W /cm?. To fully grasp the sense
of these numbers, such intensities are comparable to focusing all sunlight
caught by the earth down to a spot with the width of a human hair.

In the interaction of ultra-intense laser fields with matter, be it a solid,
liquid or gas, even the leading edge of the laser pulse is intense enough to
rapidly ionize the material, despite being much less intense. As a result,
the study of these interactions is naturally that of a laser field interacting
with a plasma. Consisting of unbound charges, the dynamics of a plasma
is generally complex, highly nonlinear and is characterized by collective be-
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haviour. In their interaction, the intense laser fields will induce relativistic
motion of the charges in the plasma, further complicating the plasma dy-
namics. Such laser induced plasmas have found uses in studies of warm
dense matter, laboratory astrophysics and fusion research. The ability of
a plasma to sustain acceleration gradients orders of magnitude larger than
those achieved by conventional accelerators has also led to a great interest
in laser-driven plasma-based particle acceleration and radiation generation,
with applications in materials science, biology and medicine.

Because of the highly nonlinear and complex dynamics involved in in-
tense laser-matter interactions it is difficult to study these systems ana-
lytically, often requiring large scale numerical simulations. Plasma simula-
tions can be carried out using several numerical methods, solving the fluid
equations for each particle species or the Vlasov-Maxwell equations in the
kinetic description. In simulating intense laser-matter interaction it is how-
ever more common to use single-particle or particle-in-cell (PIC) codes. Be-
cause of its effective sampling of phase space and self-consistent treatment of
the particle-field system, while being relatively easy to parallelize, the PIC
method has become the standard tool for large scale simulations in this field.
In this method, the particle distribution functions are sampled in continuous
phase space and evolved through the equations of motion of the particles.
The fields are solved self-consistently on a discrete computational mesh and
evolved through Maxwell’s equations, where the source terms are computed
as moments of the distribution function. Finally, because of its general sim-
plicity the PIC method allows for substantial modification and extension,
which has made it possible to cover an even wider range of regimes, such as
effects of strong field QED.

The outline of the thesis is as follows. Chapter 2 gives a brief introduc-
tion to plasma theory by presenting basic plasma properties, the governing
equations of electromagnetic fields and finally coupling those equations to
the main equations describing plasmas. Chapter 3 introduces the particle-
in-cell approach and describes how it is used for efficient, large-scale plasma
simulations. Chapter 4 presents the basics of intense laser-matter interac-
tion together with some of the most common acceleration schemes. It goes
on to discussing the irradiation of microstructured solid targets, as studied
in paper I. Chapter 5 introduces the recently proposed laser-driven ion ac-
celeration scheme studied in paper II, CSWA, motivates its use and design
and in detail describes how it works. Chapter 6 contains a summary of the
papers included in this thesis. Appendix A describes how to analytically
define a periodic distribution function, used in for example paper 1.

Finally, the reader should note that the system of units used throughout
this thesis is that of Gaussian CGS, unless explicitly written otherwise. This
includes the two papers covered in this thesis.



Chapter 2

Plasma

A plasma is an ionized gas and it is often referred to as the fourth state
of matter, after solid, liquid and gas, all illustrated in Figure 2.1. Despite
this apparently unremarkable position, it is by far the most abundant phase
of ordinary matter in the universe. This is not less true in our own solar
system in which most of the matter is contained in the sun, which is a
gravitationally confined plasma.

Artificially produced plasmas can be found in a large number of appli-
cations ranging from plasma displays, rocket ion thrusters, gas-discharge
lamps, fusion energy and plasma torches used in for example plasma cutting
and plasma arc welding. These plasmas can exhibit a large number of com-
plex phenomena, and have different properties depending on for example
density and temperature.

2.1 General properties

The fundamental building blocks of a plasma are freely moving and electri-
cally charged particles, usually electrons and (at least partially ionized) ions.
These particles are free in the sense that they are not atomically bound to
each other and the fact that the particles in the plasma are charged gives
it properties that are vastly different from that of a gas. The motion of the
charged particles gives rise to electromagnetic (EM) fields, and these fields
will in turn affect the motion of the particles. As a result, this interplay
between the charged particles and the fields leads to a variety of complex
collective behaviours, which are defining features of the plasma.

Despite being made up of charged particles the plasma is often quasi-
neutral, meaning that it is neutral only on a macroscopic scale. This prop-
erty arises due to the fact that any separation of charge will give rise to a field
that, when acting on the surrounding charges, drives the particles in such
a way as to cancel the field, and thereby making the plasma quasi-neutral.
The characteristic time scale for this to occur is one of the most important

3
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Figure 2.1: Illustration of the four most common states of matter, ordered from
left to right by increasing temperature.

parameters of the plasma. For a non-collisional plasma and neglecting the
motion of the ions, because of their much larger inertia compared to the
electrons, this characteristic time scale can easily be obtained by calculat-
ing the oscillation frequency of an electron slab displaced from equilibrium.
This frequency is called the (electron) plasma frequency, wp,

4 2
wp = || T (2.1)
e

where n, is the unperturbed electron density, e the electron charge and m,
its mass, and it determines the rate at which the plasma responds to local
charge density fluctuations.

The tendency of a plasma to cancel out electric fields, and thereby estab-
lish quasi-neutrality, can further be described by the fundamental plasma
property of Debye shielding. Because of this tendency, the electric potential
of a test charge located inside the plasma would effectively be screened by
the surrounding plasma over some characteristic length scale. This length
scale is called the Debye length [3] and is, again assuming immobile ions,

given by
k;BTe
AD =4/ 2.2
D 47Tne€2 ) ( )

where kp is Boltzmann’s constant and 7¢ is the electron temperature. The
effective potential of the screened test charge thereby becomes proportional
to exp(—r/Ap)/r, decaying exponentially faster than when unscreened. To-
gether, equations (2.1) and (2.2) define the temporal and spatial scales of the
interactions in a simple, non-collisional plasma and must be considered when
modelling the plasma, in order to correctly capture its collective behaviour.

Studies of plasmas generally look at how a plasma behaves under various
conditions or responds to external influence. For the interaction of a plasma




2.2. ELECTROMAGNETIC FIELDS 5

with laser radiation the response of the plasma can be separated into two
major regimes, depending on the frequency of the plasma compared to that
of the incoming radiation. If the plasma frequency w, is smaller than the
frequency of the radiation wgy then the characteristic time scale of the plasma
is longer than the optical period of the incoming radiation. The plasma can
therefore not respond quickly enough to stop the propagation of the electro-
magnetic wave and is thus transparent to it, or underdense. In the opposite
case, when the plasma frequency is greater than that of the incoming ra-
diation, the characteristic time scale of the plasma is short enough for it
to respond to the incoming wave. This response is generally such that it
cancels the field in the bulk of the plasma, typically leading to the reflection
of the external radiation at the plasma boundary. The plasma thus appear
opaque to this radiation and is said to be overdense. The natural separation
of these two regimes occur when the plasma frequency is equal to that of
the incoming radiation and the corresponding critical density can, through
equation (2.1), be defined as

mewd
dme?

Ner (2.3)
Plasmas with densities close to this critical density generally exhibit strong
resonance effects in their interaction with the incoming radiation and are
typically referred to as near-critical.

2.2 Electromagnetic fields

The classical theory of electrodynamics has been one of the most successful
areas of not only physics, but science in general, since its birth around the
start of the nineteenth century. It rests on Mazwell’s equations, describing
the evolution and generation of electric and magnetic fields by charges and
currents, and the Lorentz force, describing the force acting upon charged
particles by the electric and magnetic fields.

Maxwell’s equations read [4]

V-E=4mp (2.4)
V-B=0 (2.5)
10B

E=--2" 9.

V x o (2.6)
47 10E

B="J4+-2" 9.

V x cJ+cé?t (2.7)

where E and B are the electric and magnetic fields, J and p are the current
and charge densities and c is the speed of light. Separately, equations (2.4),
(2.6) and (2.7) are named Coulomb’s law (or Gauss’ law), Ampere’s law
and Faraday’s law respectively. The remaining equation (2.5) is typically
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referred to as the absence of (free) magnetic charge (but occasionally also
called Gauss’ law for magnetism). Similarly, the Lorentz force is given by

F:q@+%xB) (2.8)

where F is the force, due to the electromagnetic fields, acting on a particle
of charge ¢ and moving with velocity v.

The electromagnetic fields store energy and the transfer of this energy
and transformation into other forms is often of great interest. The energy
stored in the fields is described by the electromagnetic energy density

_ 1 e, g2
U= (E* + B?), (2.9)

and the directional flux of electromagnetic energy is similarly given by the
Poynting vector [5]

c
S=—E xB. 2.1
4m 8 (2.10)

The electromagnetic energy density and the Poynting vector can further be
related through a statement of energy conservation of the electromagnetic
fields known as Poynting’s theorem,

ou

at—i-V-S——J-E, (2.11)
which relates the flux of electromagnetic energy to the work done on electric
charges.

The total energy content of a localized electromagnetic pulse, at a given
instance, can therefore be obtained by simple integration of equation (2.9)
over space. While this tells us a global property of the fields, it gives little
information about the strength of the fields or the flux of energy. It is there-
fore often more important to know the intensity of the fields, or their power.
The intensity of the electromagnetic fields is simply the (cycle-averaged)
magnitude of the Poynting vector,

I={8S]), (2.12)

describing the flux of energy per unit time and unit area. It can also be
defined along a given direction nn as I = (S -n). The power of the fields, on
the other hand, describe the flux of energy through some surface S per unit
time, and is therefore related to the Poynting vector through integration
over this surface,

P—AS@A (2.13)
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2.3 Plasma descriptions

There are several ways in which a plasma can be modelled and which de-
scription is the most appropriate generally depend on the physical scenario.
The most commonly used are the kinetic and fluid descriptions. These two
are usually complemented by the single-particle description, in which the in-
teraction between individual particles are neglected. While this description
is not technically that of a plasma, it is often used for back-of-the-envelope
calculations and can still provide valuable information, especially when deal-
ing with particles in strong background fields.

2.3.1 Kinetic description

In kinetic theory the plasma is described by a set of (single-particle) distribu-
tion functions fs(r, v,t) representing the distribution of particles of species
s, at position r and with velocity v. The set of all positions r and velocities
v (or, alternatively, particle momenta p) is called the phase space of the
system and is in general six-dimensional. More formally, fs(r,v,t) gives the
probability of finding a particle of species s in a neighbourhood of (within
the phase space volume d®rd3v) the phase space point (r,v), at time ¢.
The dynamics of such a system can be described by the Boltzmann equa-

tion
dfs  Ofs Ly Ofs +£ Ofs  (Ofs
dt ot or ~mg ov  \ ot ).

(2.14)

where fs = fs(r,v,t), F is the force acting upon the particle and my is its
mass. The right hand side describes the effect of collisions between particles
and can be quite complex, requiring additional knowledge of the statistics
obeyed by the particles, and can make the Boltzmann equation difficult to
solve.

In weakly coupled plasmas where the effect of collisions is small compared
to the collective plasma effects, the right hand side of equation (2.14) can be
neglected. We thus obtain one of the most important equations in plasma
physics, the Viasov equation [6, 7],

‘ Ofs(r,v,t)
ov

Ofs(e.v.t) o 0fu(r,vit) | ds (E+ M B)
C

= 2.1
ot Or M 0, (2.15)

where the Lorentz force from equation (2.8) has now been written out ex-
plicitly. The Vlasov equation can be solved self-consistently together with
Maxwell’s equations, (2.4)—(2.7), where the charge density p and current
density J are given by

plr,t) = g / fs(r,v,t)d3v (2.16)
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and

J(r,t) = qu/vfs(r,v,t) d3v, (2.17)

respectively.

2.3.2 Fluid description

In the fluid description the plasma is modelled as a set of interpenetrating
fluids, one for each particle species in the plasma, by looking at macroscopic
quantities. The fluid equations can be derived from kinetic theory by taking
velocity moments of the governing kinetic equation (e.g. the Boltzmann
or Vlasov equation) and where the n-th moment of fs; can be found by
integrating v" fs over velocity space to obtain macroscopic quantities such
as the particle number density ns; and mean velocity v, of species s. These
macroscopic quantities are functions of coordinate space and time, and the
fluid description is therefore a simplification of the kinetic description, as
the resulting fluid equations are three-dimensional.

Unless truncated by the use of some additional information, taking the
moments of the kinetic equation would produce an infinite series of equa-
tions. Instead, the moments are closed using a constitutive relation that
further ties the moments together, often limiting the number of moment
equations to two or three. As an example, integrating the Vlasov equation
over all of velocity space gives us the zeroth order moment equation, the
continuity equation,

ong

ot

which with the vanishing right-hand side describes that the fluid is con-

served, meaning it can neither be created nor destroyed. Instead multiplying

the Vlasov equation by v and again integrating over velocity space gives us
the first order moment equation, the momentum equation,

avS+(vS.V)v5:£(E+%xB>—V'PS, (2.19)

ot My MM

+ V- (ngvg) =0, (2.18)

where P is the pressure tensor, representing the equation of motion of the
fluid of species s. Assuming f, is isotropic, the last term can be simplified
to V-Ps = Vp,s where p; is the scalar pressure. The fluid equations are then
often truncated by for example assuming an adiabatic flow, thus turning the
second order moment equation into an equation of state for the pressure

psng '* = const, (2.20)

where v, is the adiabatic index.

So far, we have described each particle species of the plasma in terms of
a separate fluid. By making additional assumptions on the particle distribu-
tion functions and scale lengths of the plasma, for example being dominated
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by collisions, it can instead be modelled as a single fluid. This one-fluid
model is also referred to as the magnetohydrodynamic (MHD) model and
describes the plasma as a single conducting medium, represented by com-
bined macroscopic quantities like the mass density p,,, charge density p,
center-of-mass velocity V, and the electric current density J. The MHD
theory is widely used for modelling and describing interstellar plasmas and
astrophysical phenomena, magnetically confined fusion plasmas as well as
stellar and planetary interiors.

While the fluid description provides a set of equations of reduced di-
mensionality compared to the kinetic description, making studies of large
scale systems more tractable, the simplifications unavoidably also make it
restricted in scope. Because the dependence on the velocity distribution is
fully neglected, fluid theory can not correctly capture the physics in sys-
tems with strong kinetic effects, such as Landau damping [8]. In such cases,
solving the kinetic equations of kinetic theory is usually the only reliable
option.
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Chapter 3

Particle-in-cell scheme

Since the equations describing the interaction of plasmas and electromag-
netic fields are inherently complex and nonlinear the possibility of studying
these systems with analytical tools is very limited. For relativistic plasmas,
such as those induced by ultra-intense laser fields, this possibility is reduced
even further. This is especially true when considering problems of more
dimensions than one, where geometrical considerations can be of great im-
portance. The need for numerical tools for studying these systems should
therefore be apparent.

The numerical solution of the Vlasov-Maxwell system of equations pro-
vides one of the most detailed description of a collisionless plasma. However,
such a simulation would in the general case have to be solved in the fully
six-dimensional phase space. Most codes of this type are as a result only
employed for studying problems of greatly reduced dimensionality and are
therefore restricted in scope. To improve the computational efficiency so-
phisticated numerical methods such as adaptive mesh refinement can be
used, but the implementation of such techniques become increasingly com-
plex for higher dimensions.

Alternatively, plasmas may be studied in the fluid description by solving
the fluid equations. This is preferable to solving the kinetic equations when
studying large systems as the fluid equations are only three-dimensional.
However, the fluid description is a simplification of the kinetic description
and can of course only be applied in regimes where its simplifying assump-
tions are valid. For example, because the dependence of the velocity distri-
bution is lost in the fluid description it becomes inherently unsuitable for
the study of systems with strong kinetic effects. This is often the case for
plasmas interacting with ultra-intense laser fields.

Instead, the standard tool for large scale relativistic plasma simulations
is the particle-in-cell (PIC) scheme [9]. It is a general approach to the nu-
merical solution of partial differential equations such as the Vlasov-Maxwell
equations and achieves a much more favourable scaling, than direct solu-

11
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tion of the kinetic equation, by effectively sampling the particle distribution
functions. This is done by tracing an ensemble of particles, representing the
plasma, in continuous phase space and simultaneously calculating moments
of the distribution function on a mesh, representing the simulated coordinate
space. The system is advanced in time by self-consistently solving Maxwell’s
equations for the electromagnetic fields on the mesh as well as the equations
of motion for the particles.

3.1 Classical particle-in-cell scheme

At its core the classical PIC method [10] consists of advancing the fields
on a computational mesh in the field solver and advancing the particles in
phase space in the particle pusher. In the two intermediate stages the fields
are interpolated from the field mesh to the position of the particles and the
currents produced by the particles are deposited on the mesh, respectively.
The main blocks of the classical PIC method is diagrammatically shown in
Figure 3.1. For each iteration, the position and velocity of each particle are
used to compute the current density J(r) using a weighting scheme. This
source term is then used in Maxwell’s equations in order to advance the
electric and magnetic fields E and B. The charge density p(r) can also be
calculated, but Coulomb’s law (Eq. 2.4) is typically only required as an
initial condition. The field values are then interpolated to the position of
each particle and the equations of motion are then solved in the particle
pusher, where the position and velocity of each particle are updated.

There are several numerical methods which can be employed in the field
solver such as FDTD, FEM, and spectral methods, with FDTD being the
most commonly used. The mesh is allowed to be very complicated and the
individual field components are not required to be co-located, as is the case
for the FDTD method in which the mesh is that of a spatially staggered
grid known as the Yee grid [11]. What is however universal for all of these
methods is that the fields are calculated on a discrete mesh.

In the particle pusher the dynamics of the particles are computed ac-
cording to the Lorentz force (2.8) and similarly to the field solver this can
be done in several different ways. The de facto standard in plasma physics is
the Boris pusher [12] in which the particle position and velocity is computed
in a leapfrog-like manner and where the latter is most commonly updated
in several steps. First, half of the electric impulse is added, then a rotation
due to the magnetic field is performed before finally adding the remainder
of the electric impulse.

As the physical systems can be very large in terms of the number of
particles, with typical number densities of 10'® cm™3 and above, it is often
not feasible to simulate the system in its entirety. The workaround used
in PIC schemes is to have every simulated particle represent a collection
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Interpolate fields ar Deposit p and J
to particle positions on the mesh

r),J(r
Advance fields plr), I(r)

Figure 3.1: Diagrammatic representation of the classical PIC scheme. The vector
r represents grid positions whereas the subscripted vectors, r; and v;, represent
positions and velocities of particles.

of real particles of the same type, called a super-particle. This is possible
because a super-particle in a given field follows a path identical to that of
its corresponding real particles, as their charge to mass ratios are the same.
Furthermore, the super-particles are treated as being of finite size and are
weighted to the mesh according to their shape, or form factor. These shapes
can most easily be described by B-splines of varying degree, giving an in-
crease in smoothness, but with a trade-off in computational speed. The most
commonly used shapes are nearest grid point (NGP), cloud-in-cell (CIC) and
triangle shaped cloud (TSC) corresponding to zeroth, first and second order
interpolation, respectively. By employing the same weighting scheme for
both the current deposition and field interpolation the PIC scheme can be
made to conserve momentum. More advanced weighting schemes [13] also
exist in order to further guarantee for example charge conservation, but they
are in general more computationally intensive.

The PIC approach has proven to be an indispensable tool for advanced
studies of plasma dynamics and has turned out to be applicable in a large
number of regimes. As it is based on particle dynamics, it is straightforward
to relate it to not only classical mechanics, but to quantum mechanical scat-
tering processes as well. This allows the classical PIC scheme to be extended
such that it can, to within certain limitations, account for particle collisions
[14], ionization [15], radiation reaction [16, 17| and various quantum effects
[18—22].
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Chapter 4

Laser-plasma interactions

In the following chapter we present basic particle dynamics in intense elec-
tromagnetic fields as well as common particle acceleration mechanisms of
intense laser-plasma interaction. The main focus of the text is on the ques-
tion of how laser energy can be transferred to charged particles. In relation
to this, we summarize the results of paper I [23], where we study the inter-
action of an intense laser and a plasma slab with periodic surface structures.

4.1 Single-particle motion in intense fields

Before discussing the interaction of intense laser fields with plasmas it is
instructive to first study single-particle dynamics in such fields, as well as
define what we actually mean by intense. In doing so we will derive some
basic properties of importance for the subsequent discussion, following the
lines of common textbooks on the topic [4, 24-26].

4.1.1 Non-relativistic motion in a plane wave

We begin by looking at the simple case of a charged particle oscillating non-
relativistically in a propagating plane wave field. Assuming that the wave is
propagating in the z-direction we may write the electric and magnetic fields
as

E(z,t) = Egée’*>=wt)  B(z,t) = % x E(x, 1), (4.1)

where Ej is the field amplitude, w the frequency, k = w/c the wavenumber
and € the polarization vector. The equations of motion for a non-relativistic
charged particle under the influence of such fields is simply obtained through
the Lorentz force (2.8),

dv v dr
7mgzq@@ﬁ+EXMnm,ga:m (4.2)
where m and ¢ is the mass and charge of the particle, respectively, and
both its position r and velocity v are functions of time. For non-relativistic
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particle motion the speed of the particle is much smaller than the speed of
light, |v| < ¢, and the v x B term can therefore be neglected. The solution
to equation (4.2) in this limit is then

v=g r=--—LE (4.3)
mw mw

In order for our assumption of non-relativistic particle motion to hold
true we must now require that |v| = |¢|Eyp/mw < ¢, which puts restric-
tions on the field amplitude FEy. Defining the dimensionless parameter
ap = |q|Eo/mcw, our assumption holds true for ap < 1, and particle motion
generally becomes relativistic and non-linear for ag = 1, defining what we
call the relativistic regime. Electrons (and positrons), which have the largest
charge-to-mass ratio among the charged particles, will therefore reach this
relativistic regime for the lowest field amplitudes. For intense laser pulses
this dimensionless parameter is therefore generally defined in terms of the
charge and mass of the electron and is called the normalized laser amplitude,

€E0
MewoC’

(4.4)

ag =

where wy is the laser frequency.

In order to relate the normalized laser amplitude to something more
tangible we can further calculate the intensity of the plane wave using equa-
tion (2.12). Assuming that the wave is linearly polarized the cycle-averaged
intensity is

c c C [ MewpC\ 2
1= S(E B:—ﬁ:—(e) 2 45
B x Bl) = B = = (M) a3 (45)

which when rewritten in terms of more common physical units becomes

aw=08% () (1) (45)

When speaking of laser fields, the word intense is therefore used to describe
the ability to reach the relativistic regime for electrons. Comparing with
present state-of-the-art laser systems, capable of reaching 102! W/cm? and
with a typical wavelength of 0.81 ym, it is currently possible to achieve
ao ~ 10, which is well into the relativistic regime.

4.1.2 Relativistic motion in a plane wave

We now turn to the motion of an electron in an intense field (i.e. in the rel-
ativistic regime), in which we can no longer make use of the approximations
of the previous section. Instead we set out to derive the exact solution for
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arbitrary field intensities. In doing so, instead of working with the electro-
magnetic fields directly, we will work with the field potentials,

B=VxA, E:—ng—la—A,
c Ot

(4.7)
where ¢ and A is the scalar and vector potential, respectively. Moreover, we
will make use of the Lagrangian and Hamiltonian formalisms to derive the
constants of motion of the system, instead of directly solving the equations
of motion through the Lorentz force.

The Lagrangian L of a relativistic electron in the electromagnetic field,
expressed by its potentials, is given by [4, 26-28]

9 vZ e

We begin by determining the canonical momentum p of the electron,

_ 0L e
P v = ymv — EA’ (4.9)

where v = (1 — v?/¢?)~%/2 is the Lorentz factor and the first term on the
RHS is simply the linear momentum of the electron, p = ymv. For a
propagating monochromatic plane wave the potentials can be expressed as
functions of the longitudinal coordinate 7| and time ¢, and because they
obey the wave equation the potentials can be strictly written as functions
of the phase ¢ — | /c. Moreover, because of gauge invariance the potentials
can be chosen such that

¢=0, V-A=0, (4.10)

and so the plane wave can be fully described by A = A (t — 7| /c) [26]. As
a result, the Lagrangian becomes independent of the transverse coordinate
r; (OL/0r; = 0) and the transverse canonical momentum p is therefore
conserved (dp, /dt = 0).

Another constant of motion can be found for the electron by using the
relation dH/dt = —0L/0t between the Hamiltonian and the Lagrangian.
The Hamiltonian is given by [27, 28]

H(r,p,t) =v-p— L =ymc?, (4.11)
and describes the energy of the electron. Through the aforementioned rela-

tion we obtain

dH 9L 9L  d oL  dp

e = 4.12
de at 687“” Cdt a’UH ¢ dt ’ ( )
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where the second equality comes from the fact that A is a function of the
phase. Our constants of motion can therefore be summarized as

ymec — p| = const, P = const. (4.13)

If we now wish to proceed, we must first determine these constants from
a particular choice of initial conditions. We therefore choose to look at the
motion of an electron that in a distant past was at rest (p = 0) and not
subject to any field (A = 0). From these conditions, together with equation
(4.9) we obtain the linear momentum of the electron

e
py = —1me, pL= EA’ (4.14)
and using the relativistic energy-momentum relation the momentum com-
ponents can be shown to be related through

2
by
The equations of motion can therefore be summarized as
o2
2m2ct

1 e 2 e
pi=5—(SA), pi=SA y=1+
2me \c c

AZ, (4.16)

Finally, we note that for a plane wave of frequency wg the amplitude of the
vector potential Ay and the amplitude of the field Ey are related through
Ey = wpAp/c, (Eq. 4.7). Using this relation, the normalized laser amplitude
(Eq. 4.4) can also be expressed as ag = eAg/ mec? and is therefore sometimes
called the normalized vector potential. Thus, after normalizing the vector
potential a = eA/m.c?> we finally write down the equations of motion in
normalized units

2

—a, 7:1+%. (4.17)

ydry _a®  ydry

c dt 27 ¢ dt

We now solve the equations of motion for a linearly y-polarized plane
wave of frequency wgy propagating in the x-direction, simply given by the
vector potential a = (0, ag, 0) cos(wot —woz/c). By changing the integration
variable to 7 =t — x/c, we have
(y—=1me 1

d v
S -, (4.18)
dt c yme yme ¥

making equation (4.17) easily solvable. Explicitly, we have that

Ldr

cdr

2
_% 1dy _ 1dz _
= (14 cos2wopT), L, — G0CoSwoT,  —o— = 0, (4.19)
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which upon integration yields

2

a c c

z=-L(¢er + —sin 2wyt , Yy =agp—sinwyT, 2z = const. (4.20)
4 2wq wo

The motion of the electron is thus seen to be composed of two parts, the

first of which is a constant drift in the longitudinal direction. From the

cycle-averaged motion, the drift velocity vg is readily obtained to be

2
Qg

= c.
4+ a3

Vg (4.21)
This drift is superimposed by a figure-of-eight oscillation, as the electron is
oscillating with frequency wg in the polarization direction and with frequency
2wq in the longitudinal direction. This figure-of-eight motion can be seen in
a frame moving in the longitudinal direction with the drift velocity vy and,
by performing an appropriate Lorentz boost to this frame, the corresponding
longitudinal motion can be shown to be described by [25]

at ¢

' = % — sin 2w, (4.22)

870 wo
where v9 = 1 + a% /4 and where 2’ is the longitudinal position in the drift
frame.

The electron dynamics described in equations (4.20) and (4.22) are pre-
sented in Figure 4.1. Moreover, it is interesting to note that for a circularly
polarized plane wave a = ag(0, cos(woT), sin(wo7))/v/2 the square of the vec-
tor potential becomes constant, a® = a% /2. Therefore, we have that v = 7o
is also constant, making the equations of motion (Eq. 4.17) easily solvable.
The resulting electron motion is also presented in Figure 4.1, and is again
composed of a constant longitudinal drift with velocity vq given by equa-
tion (4.21). However, there is no longitudinal oscillation in this field and
the electron is instead performing a simple circular motion in the transverse
plane.

The longitudinal motion of a charged particle in a plane wave field comes
from the v x B term of the Lorentz force. However, in spite of this longi-
tudinal motion, and by simply considering the constants of motion, we can
see that if the field was to slowly decay over time and eventually vanish,
the particle should simply come to a halt. Fortunately, because realistic
laser fields are of finite extent and energy, they unavoidably contain spa-
tial gradients which allows for a net energy transfer from the laser field
to a particle. Moreover, in the interaction of a laser field with a plasma,
the response of the plasma, and the field it generates, is non-negligible and
provides further ways of transferring energy. Even so, this simplified treat-
ment provides important insights into charged particle dynamics in intense
fields by illuminating several aspects that remain relevant to more complex
scenarios.
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Figure 4.1: The universal trajectory of an electron in a plane wave field of ar-
bitrary intensity. The electron motion in a linearly y-polarized field is presented
both: (a, ¢) in the lab frame and; (b) in the drift frame moving with velocity vg.
(¢) Further shows the electron trajectory in a circularly polarized plane wave field.
The color scale shows the electron kinetic energy as seen in the lab frame.

4.1.3 Ponderomotive force

A charged particle in an oscillating electromagnetic field will be displaced in
the polarization direction by the transverse electric field. If the field is inho-
mogeneous the displacement of the particle may be to a region of a different
field intensity. In such a case, the integrated force in the first and second half
of the oscillation cycle will not be equal. As a result the oscillation center
of the particle with drift away from regions of higher intensity and toward
regions of lower intensity, gaining kinetic energy in the process. This drift
motion of the oscillation center can be described by an effective force called
the ponderomotive force, obtained from the cycle-averaged Lorentz force.
We will here present the standard perturbative derivation of the pondero-
motive force, by studying the non-relativistic motion of a charged particle
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in an inhomogeneous oscillating field given by
E(r,t) = Eo(r) coswyt. (4.23)

The equation of motion for the particle in this field is the Lorentz force (2.8),

d
md—: =q (Eo(r) cos wot — AN [V x Eo(r)] sinwot) , (4.24)
wo

where the magnetic field has been obtained through Faraday’s law (2.6),

B(r,t) = —wiov x Eo(r) sin wyt. (4.25)

First, we separate the motion of the particle into two parts, a slow cycle-

averaged motion and a rapid oscillation, described by the vectors rs and

r,, respectively. Furthermore, assuming that the spatial variation of the

field envelope is small over one oscillation cycle, more strictly expressed as

(v-V)Eg < woEy, the electric field can be expanded around the oscillation
center as

E(r,t) = E(ry + 1, t) ~ E(rs,t) + (r, - V)E(rs, 1), (4.26)

where we have used that r = r; + r,. Keeping only the lowest order terms

now gives us that
dv,

m

dt
where the v x B is left out as it is of first order, because of |v| < ¢. For the
rapid oscillatory motion we thus obtain

= qEy(rs) coswot, (4.27)

v, = . Eo(rs)sinwot, r, = —73

Eo(rs) coswot, (4.28)
wom wgm

equivalent to equation (4.3).

Next, we turn to the equation of motion for the oscillation center of the
particle. By construction we have that vy < v, and to lowest remaining
order we obtain the cycle-averaged equation of motion

2
m <dv5> = —w%—m ((Eo - V)Eo(cos? wot) + Eq x (V x Eg)(sin? wot))

dt 5
(4.29)
where the solutions of equation (4.28) for the rapid motion have been sub-
stituted in and where we have written Eq = Eg(r;) for brevity. Evalu-
ating the cycle-averages and using the vector relation Eg x (V x Ey) =
V(E3)/2 — (E¢ - V)Eq, we obtain

dvg q2 9
=————VE:=F 4.
m< dt > 4w8mv 0 P (4.30)
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where the final equality defines the ponderomotive force F,,. The force can
be shown to retain this form also for propagating fields and is seen to always
point away from regions of higher intensity (I ~ E2) [24, 25]. Interestingly
the force can also be seen to be proportional to the square of the charge
and inversely proportional to the mass of the particle, as a result affecting
charges of opposite sign equally but heavier particles more weakly. For an
electron, written in normalized units according to equation (4.4), the force
can also be put into the following form

a2

F, = —mec®V 1 e

02V<a22>, (4.31)

where a is the normalized laser amplitude. Finally, we note that the pon-
deromotive force also can be derived through a completely relativistic treat-
ment [24, 29], but the calculations become much more involved and the
details will therefore not be given here.

The ponderomotive force allows for charged particles to gain kinetic en-
ergy through interaction with an intense laser field. While its effects, despite
its simplicity, are conceptually significant, it is important to remember that
the ponderomotive force is merely an effect of the average motion due to
the underlying Lorentz force. As such, there are natural limitations to its
applicability and since it formally only concerns the motion of the oscillation
center, it will naturally be unable to fully capture the particle dynamics.

4.2 Plasma-based acceleration

So far we have only discussed the acceleration of charged particles by intense
fields in vacuum. While we have shown such acceleration to be possible, it
is often impractical for most applications. The total charge which can be
accelerated in such a way is often insufficient and without exact control over
parameters such as the laser pulse shape it becomes difficult to accelerate
particles into a collimated, monoenergetic beam. Furthermore, because laser
fields in vacuum propagate with the speed of light, the particles can not stay
perfectly in phase with the field. Together with the fact that intense laser
fields in general are very short in duration this limits the total time a particle
can spend in this field, in turn severely limiting the total acceleration.

These difficulties can be overcome by instead considering the particles
as part of a plasma, in which a laser field can induce collective acceleration
through its response to the field. Something very reminiscent of this was
proposed as early as 1957 by Veksler [30], in which he envisaged acceleration
of charged particles through coherent motion. Such “coherent acceleration”
is achieved in the many plasma acceleration schemes existing today.



4.2. PLASMA-BASED ACCELERATION 23

4.2.1 Electron acceleration

Laser-driven plasma-based acceleration of electrons is based on the concept
of laser wakefield acceleration (LWFA), in which an intense laser pulse is
made to propagate through an underdense plasma, typically formed from
a gaseous target. As the pulse propagates through the plasma it sets up
collective plasma oscillations through which electrons can be accelerated
[31, 32].

The most successful variation of LWFA is the so called bubble regime
[33, 34], in which the ponderomotive push (Eq. 4.30) on the electrons is
strong enough to create a cavity, completely evacuated of all electrons. As
the electrons are pulled back by the charge separation field this sets up a
strong wakefield trailing the evacuated region. The electrons can gain a sig-
nificant amount of energy through this process and since the group velocity
of the laser field in the plasma is lower than the speed of light, phase match-
ing between the accelerated electrons and the laser-driven cavity becomes
possible. Furthermore, there are several ways through which electrons can
be injected into the cavity and when accelerated in this way have been shown
to provide monoenergetic beams of electrons [35, 36]. This has allowed for
the acceleration of ultra-short (femtosecond duration) electron bunches to
above 1 GeV, over a few centimeters of acceleration distance [37].

4.2.2 Ion acceleration

For laser-driven acceleration of ions, where protons are the lightest and
therefore the most mobile, the equations of motion are the same as for the
much lighter electrons. However, because of the large difference in mass,
myp/me ~ 1836, where my, is the proton mass, we see from the definition of
the normalized laser amplitude (Eqs. 4.4 and 4.6) that the intensity of the
laser field would have to be more than six orders of magnitude greater in
order to induce an equivalent relativistic motion of protons. This implies a
lower limit of 1024 W /cm? in laser intensity, and for heavier ions the situation
gets even more challenging. Furthermore, because ions are much less mobile,
the acceleration gradients set up in an underdense plasma by ultra-short
laser fields typically fade away well before ions can gain any appreciable
amount of energy. This makes ion acceleration by laser wakefields difficult.

This however does not spell the end of laser-driven ion acceleration and
there is in fact a whole range of laser-plasma acceleration schemes specifically
addressing ion acceleration [38, 39]. Common for most of these schemes
is that they concern the interaction of intense laser fields with overdense
(or at least near-critical) targets, allowing for the generation of more long-
lived acceleration gradients. Furthermore, the ions are generally accelerated
indirectly, with the energy of the laser field being passed to the ions via the
electrons.
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The most common ion acceleration schemes include target normal sheath
acceleration (TNSA) [40-46], Coulomb explosion (CE) of clusters [47-49],
double-layered targets [50-52], hole boring [53], collisionless shock accelera-
tion [54, 55], magnetic vortex acceleration [56, 57] and light sail or radiation
pressure acceleration [58-61]. Out of these, the most extensively studied and
experimentally accessible scheme is TNSA, wherein a thin foil is illuminated
by an intense laser pulse. The electrons in the target are heated by the laser
on the illuminated side and then travel through the target to the rear side,
where they due to charge separation create an electrostatic acceleration field
through which the ions can be accelerated. The scheme gets its name from
the fact that the direction of this field is generally normal to the rear surface
of the target, where an expanding sheath of plasma containing high-energy
ions is formed.

Since the energy of the laser pulse is transferred to the ions in multiple
stages, which we in general have little control over, a considerable amount
of the total energy is “lost” through a number of side channels. For exam-
ple, parts of the laser radiation is simply reflected at the plasma-vacuum
boundary and because of the transverse motion of the hot electrons, some
of the absorbed energy can not be transferred to the ions. As a combined
result, this has made TNSA insufficient for a number of potential applica-
tions. Considerable efforts have therefore been put into improving upon the
shortcomings of the basic scheme. Recently, there have been several stud-
ies investigating how microstructures on the target surface can be used to
increase the maximum energy of the ions [62-70] as well as improve the colli-
mation of the beam [71, 72]. However, most of these studies focus primarily
on how much of the laser energy can be transferred to the target and, by
extension, to the ions. Since an absorption of practically 100 % has been
shown to be possible this leaves little room for further improvement, and it
instead becomes important to more fully understand the dynamics of the
intermediaries; the hot electrons.

With this in mind, in paper I [23] we analyse how periodic structures af-
fect the spectral properties of the generated hot electrons, further presented
in Figure 4.2. How such structures can be defined analytically, for simula-
tion purposes, is covered in Appendix A. For a flat plasma slab illuminated
at an angle 6 by an intense laser field and in the absence of surface struc-
tures, the angular distribution of the hot electrons follows (see Ref. [23] for

details):
_ sinf Y

where both the momentum transverse (p) ) and parallel (p)) to the target
normal lies in the plane of incidence. We show that the addition of these
structures makes the angular distribution much wider and centers it closer
the target normal direction. Furthermore, the increase in absorbed laser
energy due to these structures is shown to translate into an increased normal
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Figure 4.2: (a) The setup consists of a p-polarized Gaussian laser pulse with
amplitude a9 = 6.3 and duration 7pwpum = 40fs, incident on a microstructured,
semi-infinite and overdense plasma at an angle to the target normal of 8. A virtual
surface (dashed line), at which hot electron distributions are collected, is placed
inside the plasma at a distance of 1 um from the surface, not counting the height
of the microstructures. The cumulative momentum space distribution of electrons
transiting the virtual surface is shown for: (b, ¢) a flat foil and; (d, e) a foil with
square microstructures with a period equal to the laser wavelength; when irradiated
by a laser pulse incident at 45°. The momentum relation predicted by conservation
of generalized momenta for an idealized flat foil (Eq. 4.32) is indicated with a red
line (b, ¢). The distributions are shown for two time instances, ¢ = 225fs (b, d)
and t = 500fs (¢, e). The peak of the pulse reaches the surface at ¢ = 250 fs.

motion of the electrons. For applications such as TNSA, this potentially
reduces the relative energy losses due to transverse electron motion.
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Chapter 5

Chirped-standing-wave
acceleration

In the following chapter the theoretical basis for the novel acceleration
scheme originally proposed in Ref. [73], and further studied in paper II [74]
is presented and discussed.

5.1 Motivation

Due to their natural robustness the most experimentally accessible ion ac-
celeration schemes are based on plasma heating as the primary stage in
transferring laser energy to the kinetic energy of ions. Despite being ex-
perimentally accessible and sufficient for some applications, these schemes
have intrinsic limitations that preclude meeting the requirements of more
advanced applications. One of the fundamental reasons behind this is a lack
of temporal control over the various acceleration stages, thereby providing
us with no advanced means for a controlled conversion of laser energy into
kinetic energy of ions moving in a chosen direction and with given energy.

The concept of chirped-standing-wave acceleration (CSWA) [73] was pro-
posed in an attempt to overcome these difficulties and rests on the idea that
in order to control the ion acceleration one must first control the motion
of the electrons. This can be achieved by using one or several laser pulses
to form a standing wave in which electrons can be trapped. The trapping
occurs at the electric field node of the standing wave due to the pondero-
motive potential and if this node were to move, the trapped electrons would
move with it. Thus, by placing an ultra-thin foil in such a field, the ions
in the foil can be accelerated by the charge separation field formed between
the electrons and ions as the electrons are continuously displaced by the
movement of the node.

This node movement can be achieved in several ways, but the original
idea of CSWA was to generate the standing wave using a single laser pulse

27
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Figure 5.1: Schematic representation of the general scenario of the CSWA concept.
(a) A chirped laser pulse incident on a high-density mirror with a thin overdense
layer fixed in a position some distance from the mirror. (b) The pulse penetrates the
thin layer as it becomes relativistically transparent, forming a standing wave which
compresses and locks the electrons to the electric field node. (c) As the frequency
of the standing wave decreases the field nodes move away from the mirror and
the locked electrons are consequently pulled along, setting up an electrostatic field
between them and protons of the thin layer. (d) The electrons are released as the
pulse leaves the mirror and the standing wave disappears. The protons, having
obtained a significant amount of energy, is travelling away from the mirror.

reflected from a dense mirror, see Figure 5.1. By introducing a chirp to the
pulse the position of the node can be made to move with respect to the
mirror. Since the frequency is one of the most stable laser parameters, and
the chirp of the pulse is relatively easy to control, this results in a tunable
acceleration scheme. Furthermore, the locking of the electrons keeps insta-
bilities from forming, which is a major hindrance for many other acceleration
schemes. Finally, the laser pulse is circularly polarized in order to drive the
electrons in a stable, circular motion. Compared to linear polarization, this
restricts the motion of the electrons in the transverse plane, thereby further
preventing the formation of instabilities.
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5.2 Modelling the chirped laser pulse

Since the chirp of the laser pulse is central to the acceleration scheme, we
begin by describing a simple model for a chirped laser pulse with a Gaussian
temporal envelope. Assuming that we start out with an unchirped pulse of
frequency wy, the longitudinal shape can be described by

¥(n) = 9 (n) exp(iwon), (5.1)

where the phase is given by won = wo(t — z/c), and where 1(n) defines the
longitudinal envelope. In frequency space, the oscillating term amounts to
nothing but a shift of the spectrum

U(w) = ¢(w — wo), (5.2)
where the hat symbolizes the Fourier transform of the function. Describing
the envelope as a Gaussian, ¥(n) = exp(—an?), the frequency spectrum of
our pulse is given by

T (w) = \/jexp[—(w — wp)?/4a] (5.3)

where a can be related to the duration 7y of the laser pulse, or alternatively
its bandwidth Aw. For laser pulses, these are most commonly expressed in
terms of the full-width at half-maximum (FWHM) of their intensity

2In2 Aw?
=—, 0= .
75 8In2

(5.4)

A chirp can now be introduced by for example passing the pulse through
a setup of gratings, similarly to how intense laser pulses can be stretched and
recompressed using the chirped-pulse amplification technique. Physically,
this introduces a frequency-dependent time delay that alters the relative
phase between different frequencies. As an effect, the pulse becomes longer
but, more importantly to us, it also obtains a time-variable frequency. To
lowest order, this can be achieved with a simple linear chirp, in which the
instantaneous time delay varies linearly with frequency. Since the instanta-
neous delay is simply the frequency derivative of the phase, t4(w) = d¢/dw,
the linear chirp is introduced by an additional phase component ¢, which
will have to be quadratic in frequency. Assuming that we also wish to have
no time delay of the central frequency we may choose

P(w) = C(w — wp)?/4a, (5.5)

where C is a dimensionless chirp parameter. With this choice, the chirped
pulse is simply described by

A

T (w) = U(w) exp|—ip(w)] = \/Zexp[—(l +iC)(w — w0)2/4a] ,  (5.6)
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Figure 5.2: Waveform of a Gaussian pulse with bandwidth Aw = 0.5wy, for three
different values of the dimensionless chirp parameter C, according to equation (5.7).

and after transforming it back to the time domain it can finally be expressed

as
U.(n) =, exp[—om2 + i(won + kn® + 5)] , (5.7)
where we have defined
1 1 C w? arctanC
Py = = — (S = —0 _
4 v1+c?’ Tt "Tirye® AIaCJr 2
(5.8)

After studying this expression it can be noted that the constant term in the
phase, 4, could have been completely avoided through a different choice of
¢(w) in equation (5.5). Furthermore, that the pulse is now linearly chirped
can be inferred from the presence of the n?-term in the phase of equation
(5.7), as it allows us to write the instantaneous frequency as a linear function
of 1,

w(n) = wo + 2K17. (5.9)

Finally, the peak amplitude of the pulse is seen to decrease for increasing
values of |C|, while the pulse also becomes longer, as expected. The amount
of stretching of the pulse is related to the dimensionless chirp parameter as

T./70 =V 1+ C?, (5.10)

where 7. is the FWHM duration of the chirped pulse. The waveform of an
example pulse with bandwidth Aw = 0.5wq is visualized in Figure 5.2 for
different values of chirp.

5.3 Chirped standing wave

By illuminating a dense plasma slab with a laser pulse described by equation
(5.7), a chirped standing wave can be formed. For a pulse travelling in the
positive z-direction, with the mirror located at x = 0, and assuming perfect
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reflection, this standing wave will (for z < 0) be described by two counter-
propagating pulses of equal and opposite amplitude. We define n_ =t—x/c
and ny = t + x/c for a pulse propagating in the positive and negative -
direction, respectively. By describing the pulse as the real part of equation
(5.7) and assuming the intensity gradient to be small, |a(n? —n%)| < 1, the
standing wave can be expressed as

USW (2, t) = Uo(n_) — Uo(ny) & =20 exp(—an? ) sin(A) sin(B),  (5.11)
where we have defined
Az, t) = wot + k(2 + 22 /c*) +6, B(x,t) = (wo + 26t)x/c.  (5.12)

Studying the case of zero chirp, for which A(z,t) = wot and B(z,t) = woz/c,
allows us to identify that the argument of the first sine defines the temporal
oscillation and the argument of the second defines the node positions of the
standing wave. The nodes of the chirped standing wave is therefore given
by B(x,t) = nm, for some integer n, or

—1
T = n& <1 + 2%15) , (5.13)

where \g = 2mwc/wy is the laser central wavelength. At ¢ = 0 the nodes
can be seen to be located at half-wavelength steps from the mirror. For
x < 0 and for the nodes to move away from the mirror we further note
that a negative chirp is required, C < 0, meaning that the frequency is
decreasing (wavelength is increasing) with time. Furthermore, the speed of
the node can be obtained through differentiation and shows that higher order
nodes (larger |n|) will move proportionally faster. It is however important
to remember the approximation that |a(n? — n?)| = |datz/c| < 1, which
restricts the validity for the higher order nodes. In reality such nodes will
not be very stable due to beating oscillations.

5.4 Relativistic self-induced transparency

This far we have only considered the formation of the chirped standing wave.
However, in order to accelerate ions using this field, we must also be able to
place the ions and electrons in one of the nodes. This is achieved through an
effect called relativistic self-induced transparency (RSIT), by which a plasma
becomes transparent to a sufficiently intense laser field. This effect is simply
a result of the limiting speed of light, as this also imposes a limit on the
current that can be produced by a finite number of charges. For a plasma
slab of areal density ¢ = n.L, where L is the thickness of the slab, the
maximum possible current is

Jmax = oce, (5.14)



32 CHAPTER 5. CHIRPED-STANDING-WAVE ACCELERATION

assuming that only electrons are contributing. Through Faraday’s law (2.7)
we further obtain that there is a maximum field strength that this current
can produce, which would be necessary in order for the plasma slab to
reflect the incoming radiation. Assuming circular polarization we get that
the threshold intensity that can be reflected by the plasma slab is

Iy, = mee?o?. (5.15)

Further defining the critical areal density as o = Agner, the threshold
intensity can be expressed as

Ity 2 < g >2
—=7"—] , (5.16)
Lol Ocr

where I,¢ corresponds to an ag of unity.

As we have shown, for a given areal density there is a threshold intensity
above which the plasma slab becomes transparent. By placing an ultra-thin
foil in front of a mirror we can therefore get the ions and electrons into the
standing wave. When irradiated by the intense laser pulse, the thin foil will
become relativistically transparent as the intensity surpasses the threshold.
Assuming that the mirror is sufficiently dense, the standing wave will then
quickly form as the pulse is reflected from the mirror. In order to optimize
the acceleration distance of the ions we can therefore place the ultra-thin
foil such that its position coincides with the initial position of one of the
standing-wave nodes.

5.5 Ion acceleration

As the electrons are displaced by the movement of the electric field nodes of
the standing wave, the resulting charge separation will give rise to a micron-
sized capacitor-like longitudinal field. Since the maximum strength of this
field is proportional to the areal charge density of the thin foil, we want this
areal density to be as large as possible, while still allowing for relativistic
transparency.

In Ref.[73], these two conditions are considered when estimating the
maximum achievable energy of the ions. This is mainly done through an
estimate of the total acceleration time of the ions. The study further demon-
strates the tunability of the scheme through variation of the chirp, and shows
that it is possible to accelerate protons in excess of 100 MeV. Even more im-
portantly, the resulting ion beam is collimated, of high charge and displays
a peaked energy spectrum. A typical 2D simulation of proton acceleration
using CSWA can be seen in Figure 5.3.

In paper II [74] we discuss standing-wave acceleration (SWA) from a
more general perspective, not necessarily relying upon chirp to move the
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Figure 5.3: A 2D PIC simulation of CSWA for a laser energy g = 80J, spot
size w = 10 pm, bandwidth Aw = 0.5wy and chirp C = —4 is shown for three time
instants: (a, b) before the interaction between the laser pulse and the thin foil; (c, d)
during the CSWA stage when the electrons are locked to the standing wave formed
by the reflected radiation; (e, f) and some time after the pulse has been reflected and
the electrons released. (a, ¢, €) Magnitude of the transverse electric field E, (blue),
electron density (green), proton density (red), and ion density (grey) as functions
of 2D coordinates. (b, d, f) A 1D cut additionally showing the longitudinal electric
field E, (purple) and transverse electric field E, (blue), with fields obtained for
y = 0 and densities averaged over the range |y| < w/2.

locked electrons. We also demonstrate that CSWA, as a particular imple-
mentation of SWA, performs well also under non-ideal conditions and is
robust against the effects of limited contrast, misalignment and elliptical
polarization. Finally, we discuss the prospects and limitations of CSWA
and show that its main limitation lies in the maximum acceleration distance
of the ions, which is determined by the bandwidth of the laser pulse. For
more details, see Refs. [73, 74].
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Chapter 6

Summary of papers

Paper 1

Energy partitioning and electron momentum distributions in in-
tense laser-solid interactions

In this paper we demonstrate and assess the effect on the generated
hot electrons of adding micro- and nanoscale structures to a plasma slab,
illuminated with an intense laser field. We show that the addition of the
structures not only increases the absorption of the laser radiation, but also
drastically changes the angular distribution of the generated hot electrons.

My contribution to this paper was to develop the numerical diagnostics
tools used for tracking the partitioning of energy between different energy
channels, perform the simulations and write the paper.

Paper 11

Prospects for laser-driven ion acceleration through controlled dis-
placement of electrons by standing waves

In this paper we discuss and elaborate on how controllable laser-driven
ion acceleration can be achieved by controlling the electron dynamics using
standing waves. We further analyse the robustness of this approach against
field structure imperfections, such as those caused by misalignment, elliptical
polarization and limited contrast. This is done by focusing on a particular
implementation of this approach, Chirped-Standing-Wave Acceleration, and
also identify the prospects and limitations of this implementation.

My contribution to this paper was to perform the simulations, obtain the
estimates on the laser parameters for when CSWA performs efficiently and
write the paper.
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Appendix A

Periodic structures

As it is common to define target geometries using only analytic expressions,
we will here work out how to construct a periodic structure from an arbitrary
distribution function, f(x), serving as the unit element to be repeated. This
can for example be a function defining the plasma density in some region of
phase space.

Since the goal is to repeat some general geometry defined in a limited
region of space, we start by identifying how to periodically map a variable
onto a closed range. This can be done using a sawtooth function, defined as

sawtooth(z) = x — |z ], (A.1)

which periodically maps x onto the range [0,1] and where |z| is the floor
function. For the more general case, in multiple dimensions and where we
only want to repeat the distribution in a subset of the dimensions, we may
expand upon this and define the function

P(x) =x— P|x], (A.2)

where P is an orthogonal projection matrix, with elements

Pp) =P T A3
5 (p) {0’ 2 (A3)
and where p; takes on the values 1 or 0 depending on if x; is repeated or
not.

Now, lets say we have an N-dimensional distribution f(x) defined in
coordinate system S, which we would like to periodically repeat along a few
arbitrary directions. We then assume that the region to be repeated is finite
and contained within a unit cell spanned by the vectors a;, i = 1,2, ..., N.
These vectors will now define the directions in which the unit cell may be
repeated. Our first course of action is then to transform our distribution
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function to the coordinate system &', in which the unit cell vectors form the
basis. We may go between the two systems with the transforms defined by

x = Ax/, x' = A"'x, (A.4)
where
A= (ay,...,an). (A.5)

In &’ the unit cell is instead contained within the region 2} € [0,1], i =
1,2, ..., N. However, we may further allow for the origin of the unit cell to
be placed at xp, which in the &’ basis is easily obtained from equation (A.4)

as
x) = A xq. (A.6)

From equation (A.4) we can also easily obtain the distribution function in
the primed coordinate system, f/(x’),

f'(x') = f(AX), (A7)

which we will now periodically repeat according to equation (A.2). However,
if we wish to place the origin of the unit cell in x{, we first note that

x — P|x—x0] =P(x —x0) + X0 (A.8)

maps z; to the range [z ;,zo; + 1]. Our periodic distribution function in &’
can thus be written

fpx) = (P —x5) +x0), (A.9)
which can be transformed back onto S using
fo(x) = f(A7%). (A.10)

From equations (A.7) through (A.10) we thus obtain the final expression for
our periodic distribution function

fo(x)=f(x— AP [A ' (x —x0)]). (A.11)

The procedure is demonstrated in Figure A.1 for a 2-dimensional distri-
bution function with a shape defined by

2242 —r(p) <0, r(p)=1-cos3p, tany=y/x, (A.12)

wor(D)e w b () e (D).

The distribution function is seen to be periodically repeated along the unit
cell vectors, however, all features not enclosed by the unit cell have been
discarded. It is therefore important to choose an appropriate unit cell in
order to reproduce all of the desired features of the original distribution
function.
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Figure A.1: Demonstration of the steps involved in creating a periodic distribution
function. (a) The initial distribution function f(x) with a shape defined by equation
(A.12), together with the unit cell defined in equation (A.13). (b) The distribution
function f’(x’) in the coordinate space S’, spanned by the unit cell vectors. (¢) The
periodic distribution function f;(x') in &’. (d) The periodic distribution function
fp(x), transformed back to the original coordinate system S.
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