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Finite Length Analysis of Irregular Repetition

Slotted ALOHA in the Waterfall Region
Alexandre Graell i Amat, Senior Member, IEEE, and Gianluigi Liva, Senior Member, IEEE

Abstract—A finite length analysis is introduced for irregular
repetition slotted ALOHA (IRSA) that enables to accurately
estimate its performance in the moderate-to-high packet loss
probability regime, i.e., in the so-called waterfall region. The
analysis is tailored to the collision channel model, which enables
mapping the description of the successive interference cancella-
tion process onto the iterative erasure decoding of low-density
parity-check codes. The analysis provides accurate estimates of
the packet loss probability of IRSA in the waterfall region as
demonstrated by Monte Carlo simulations.

Index Terms—Erasure decoding, finite length scaling, interfer-
ence cancellation, irregular repetition slotted ALOHA, random
access, slotted ALOHA.

I. INTRODUCTION

DURING the past decade, a number of efficient random

access protocols for massive networks of uncoordinated

terminals have been introduced [1]–[8]. Many of the proposed

protocols leverage on successive interference cancellation

(SIC) as a means to improve the throughput with respect to

classical random access techniques. Among them, contention

resolution diversity slotted ALOHA (CRDSA) [1], irregular

repetition slotted ALOHA (IRSA) [2], and its variants [3]–[8]

gained popularity due to their mild demands in terms of signal

processing and their capability to attain substantial throughput

gains over the widespread slotted ALOHA (SA) protocol.

While the benefits of IRSA-like protocols is widely ac-

knowledged, its performance analysis has been historically ad-

dressed by means of simulative approaches, with few notable

exceptions [6], [9], [10]. In [9], an extensive treatment of the

finite length performance of slotted random access protocols

is presented which includes, in the model used for analysis,

physical layer effects such as the performance of the adopted

channel code, capture effects, etc. Due to the ambitious target

of the analysis, the approach relies on a mixture of analytical

and numerical (i.e., simulative) techniques. In this letter, we

take a step back with respect to [9] by addressing the simpler

collision model, as for [5], [6], [10]. The collision model turns

to be accurate when the physical layer implementation does

not rely on robust error correcting codes, and hence decoding

in the presence of interference is hindered (i.e., no capture

effect can be exploited). The collision model has the further
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advantage of allowing a clean analysis of the interference

cancellation process, which enables gaining insights into the

iterative process behavior.

In [5], [6], [10], tight analytical approximations to the packet

loss probability (PLP) of IRSA-like protocols in the error

floor region, i.e., low channel load regime, were derived. In

[11], an exact finite length analysis of frameless ALOHA

was given. However, to the best of our knowledge, analytic

approximations to predict the performance of IRSA in the

so-called waterfall region, i.e., moderate-to-high load regime,

are still missing. In this letter, we address this problem by

providing a way to estimate the PLP of IRSA in this regime,

where the protocol is often operated in practice. The proposed

approach leverages on the connection between the SIC process

and the iterative decoding of low-density parity-check (LDPC)

codes over the binary erasure channel (BEC). In particular, the

finite length scaling analysis of LDPC codes over the BEC

from [12] is adapted to analyze the packet loss probability of

IRSA. We show that the developed analytical approximations

accurately predict the performance of IRSA in the waterfall

region. Together with the error floor predictions of [10], they

can be used to obtain an accurate performance model for IRSA

over a wide range of channel loads.

II. SYSTEM MODEL

We consider an uncoordinated multiple access scenario with

multiple users transmitting to a common receiver based on the

IRSA protocol, where transmission is organized into frames,

each consisting of m slots. We consider a very large (virtually

infinite) population of users, of size n, which become active

sporadically. We denote the set of users as {u1, u2, . . . , un},

and the set of slots as {s1, s2, . . . , sm}. Users are slot- and

frame-synchronous and each user attempts at most one packet

transmission per frame. A user transmitting in a frame is

referred to as active. According to the IRSA protocol, each

active user transmits a number of copies, d, of its packet within

a frame according to a distribution

Λ(x) =
∑

d

Λdx
d

where Λd is the probability that a user transmits d copies. The

d copies are transmitted in d distinct slots chosen uniformly at

random. We denote by n̄a the expected number of users that

are active in a given frame. The expected channel load is then

g = n̄a/m.

An example of a frame with n = 10 and m = 5 is depicted

in Fig. 1. Out of the 10 users, 4 users (u2, u4, u5, and u9) are
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Fig. 1. Example of a frame with m = 5 slots and 4 active users transmitting
d = 2 copies of the their respective packets.

active and transmit two copies of their packets in randomly-

selected slots. Each packet is equipped with a pointer to the

position of its copies. We restrict to the collision channel

model. The receiver stores an observation of the full frame

and decodes the packets by iterating the following steps:

i) For each slot containing a single packet, the packet is

decoded; ii) For each decoded packet, the pointer to its copies

is extracted, and the interference contribution caused by the

packet copies is removed from the frame. The SIC process is

iterated until no further packets can be decoded. The model,

despite being simple, can be used to obtain a first estimate

of the performance of IRSA under more realistic assumptions

[1], [2].

III. CONNECTION BETWEEN IRSA AND HIGH-RATE

LDPC CODES

In [13], a link between the IRSA scheme with a large

population of users and high-rate LDPC codes for transmission

over the BEC was highlighted. Here, we exploit the link to

estimate the performance of IRSA in the waterfall region,

borrowing tools for the finite length analysis of LDPC codes.

Consider the bipartite graph representation of IRSA, where

each of the n users is represented by a variable node (VN)

and each of the m slots of a frame is represented by a check

node (CN). Let us denote by {v1, v2, . . . , vn} the set of n
VNs and by {c1, c2, . . . , cm} the set of m CNs. We have that

vj is connected to ci if and only if user uj selects slot si

for the transmission of its packet (copy). The bipartite graph

corresponding to the frame of Fig. 1 is provided in Fig. 2. In

Fig. 2, the VNs associated to active users are depicted as dark

circles, whereas the VNs associated to inactive users are shown

in light gray. Observe that edges are also drawn between

CNs and VNs associated to inactive users. Obviously, inactive

users do not cause any interference in the frame. Nevertheless,

the inclusion of edges connected to their associated VNs

turns to be instrumental to the following observation: The

access scheme described in Section II can be cast in an

equivalent manner by assuming that each of the n users first

picks a repetition degree d according to Λ(x), and then it

selects d slots at random on which the user may transmit d
copies of a packet. If a packet is available at the user, then

the user proceeds with the transmission (becoming active),

otherwise the user remains silent during the frame. Hence,

edges connected to a VN associated to an inactive user refer

to the slot selection performed by the inactive user. Evidently,

the behavior of the SIC algorithm described in Section II

is not affected in any way by the slot selection performed

v10v9v8v7v6v5v4v3v2v1

c5c4c3c2c1

Fig. 2. Bipartite graph representation of the frame depicted in Fig. 1.

by inactive users. Since each users transmits d copies of its

packet according to Λ(x), the resulting bipartite graph has

edge-perspective VN degree distribution

λ(x) =
∑

d

λdx
d−1 (1)

where λd = Λdd/
∑

d Λdd. For large m, the number of

transmissions in a slot follows a Poisson distribution, i.e., the

edge-perspective CN degree distribution is

ρ(x) = exp(−gΛ′(1)(1− x)) (2)

where Λ′(x) denotes the derivative of Λ(x).
It is interesting to observe that the resulting bipartite graph

corresponds to that of a high-rate Poisson LDPC code en-

semble C with code length n, nominal rate R, VN degree

distribution λC(x) = λ(x), and Poisson CN degree distribution

ρC(x) = exp

(−Λ′(1)(1− x)

R

)

where

R = (n−m)/n. (3)

We denote such a Poisson LDPC code ensemble by

C(n, λC(x), R). Note that if for a fixed m the population size

grows very large, i.e., n → ∞, the code rate of the equivalent

Poisson LDPC code ensemble tends to one, R → 1.

Consider a graph G with n VNs and m CNs drawn ac-

cording to (1), (2). Assume the graph to represent an instance

of transmission with IRSA, and denote by Sa the set of the

indices of the active users. The iterative recovery process of the

users with indices in Sa is equivalent to the erasure decoding of

an LDPC code with the same bipartite graph G, where the VNs

associated to erased codeword bits have indices in Sa. Hence,

the analysis of the iterative SIC process for IRSA with edge-

perspective degree distribution λ(x) over a frame with m slots

and n users can be cast as the analysis of the iterative erasure

decoding for an LDPC code picked from C(n, λC(x), R) (with

R given by (3)) over the BEC with erasure probability ǫ. The

channel load of the IRSA system can be written as a function

of the erasure probability of the BEC as

g =
n̄a

m
=

ǫn

m
=

ǫ

1−R
. (4)

In the asymptotic regime of infinitely large number of slots,

m → ∞, the iterative decoding performance of IRSA shows

a threshold behavior. We denote by g∗ the belief propagation

(BP) decoding threshold of IRSA, i.e., g∗ is the maximum

channel load for which the probability of not resolving a

user is vanishing small in the limit of infinitely large pop-

ulation size and frame length (with constant ratio). Let ǫ∗R



be the BP threshold of the equivalent LDPC code ensemble

C(n, λC(x), R). Following (4), the decoding threshold of IRSA

can then be expressed in terms of ǫ∗R as

g∗ =
ǫ∗Rn

m
=

ǫ∗R
1−R

. (5)

IV. FINITE LENGTH SCALING

Exploiting the analogy between IRSA and LDPC code

ensembles discussed in the previous section, in the following

we provide approximations to the frame error probability

(FEP) and PLP of IRSA in the waterfall region. In particular,

we adapt the finite-length scaling framework of [12] to IRSA.

A. Frame Error Probability

The waterfall region performance of an LDPC code ensem-

ble C(n, λC(x), R) over the BEC can be characterized using

the finite-length scaling framework of [12]. In particular, the

FEP, denoted by P C

F
, can be expressed as a function of n and

the channel erasure probability ǫ as [12, eq. (7)]

P C

F ≈ Q

(√
n
(

ǫ∗R − βRn
−2/3 − ǫ

)

αǫ,R

)

(6)

where αǫ,R =
√

α2
R + ǫ(1− ǫ) is a parameter that depends

on the code rate R and the channel erasure probability ǫ,
whereas βR and αR are constants that depend only on the code

rate (i.e., they are independent of ǫ). In (6) Q(x) is the tail

probability of the standard normal distribution. Furthermore,

ǫ∗R, αǫ,R, and βR can be expressed as [12]

ǫ∗R = (1 −R)ǫ∗0 (7)

αR = (1 −R)1/2α0 (8)

βR = (1 −R)1/3β0 (9)

where ǫ∗0 is the BP threshold and α0 and β0 scaling parameters

for the zero-rate ensemble C(n, λC(x), R = 0). The values of

ǫ∗0, α0, and β0 can be found in [12, Table II] for regular VN

degree distribution λC(x) = xd−1 and several values of d.

Using the analogy between IRSA and LDPC code ensem-

bles, we can use (6) with some modifications to predict the

finite length performance of IRSA in the waterfall region. First,

note that by using (7) in (5) it follows that g∗ = ǫ∗0, i.e., the BP

threshold of the IRSA scheme is equal to the BP threshold of

the ensemble C(n, λC(x), 0) with λC(x) = λ(x). Now, using

n = m/(1 − R) (from (3)) together with (7), (8), and (9) in

(6), the FEP of IRSA can be written in terms of m, g∗, and

g as

P IRSA

F ≈ Q

(√
m
(

g∗ − β0m
−2/3 − g

)

αg,0

)

where αg,0 =
√

α2
0 + g(1− (1−R)g). Letting n → ∞, we

have R → 1 and it follows that αg,0 =
√

α2
0 + g, yielding

P IRSA

F ≈ Q

(√
m
(

g∗ − β0m
−2/3 − g

)

√

α2
0 + g

)

. (10)

The value of g∗ and the scaling parameters α0 and β0 for

Λ(x) = xd (i.e., CRDSA) and d = 3, 4, and 5, and for

TABLE I
SCALING PARAMETERS FOR IRSA

Λ(x) g∗ α0 β0 γ

x3 0.818469 0.497867 0.964528 0.783499

x4 0.772280 0.409321 0.827849 0.906054

x5 0.701780 0.375892 0.760593 0.961253

Λ1(x) 0.661090 0.404986 0.849037 0.982040

Λ2(x) 0.851325 0.496301 1.50477 0.835418

Λ1(x) = 0.5x4 + 0.5x8 and Λ2(x) = 0.86x3 + 0.14x8 are

given in Table I. For the irregular distributions, the scaling

parameters have been computed using the method in [14].

Note that (10) is capable of modeling the performance of

IRSA down to a moderate FEP (i.e., in the so-called waterfall

region of the FEP curve, at moderate-to-high channel loads).

At low FEP (i.e., low channel load), the performance of

IRSA exhibits a typical error floor phenomenon which may be

predicted through combinatorial analysis methods as shown in

[5], [6], [10]. We will see in Section V how the combination

of the two approaches can provide a tight estimate of the FEP

over the whole range of channel loads.

B. Packet Loss Probability

In [12], the bit error probability (BEP) of LDPC codes was

approximated as

P C

b ≈ ν∗P C

F (11)

where ν∗ is the fraction of VNs that cannot be decoded at

the BP threshold, in the limit of an asymptotically large block

length n. Thus, ν∗ is a constant that does not depend on ǫ, and

P C

b
is simply obtained by scaling P C

F
. Our numerical results

suggest that the heuristic approximation in (11) is accurate

for relatively large block lengths but does not predict well

the performance for very short block lengths. Since IRSA

is typically operated with frames composed by a few tens

(or hundreds) of slots, the scaling law (11) shall be suitably

modified. Indeed, there is no evidence that (11) accurately

predicts well the expected BEP of LDPC code ensembles

for short block lengths.1 Here, we propose the following

approximation of the PLP of IRSA,

P IRSA

P ≈ γP IRSA

F ≈ γQ

(√
m
(

g∗ − β0m
−2/3 − g

)

αg,0

)

(12)

where γ is the PLP for g → 1 computed via density evolution

[2]. The value of γ for several distributions Λ(x) is given in

Table I.

V. NUMERICAL RESULTS

In Fig. 3, we plot the FEP estimate for IRSA according

to (10) and the parameters in Table I (dashed curves) as a

function of the channel load g, together with simulation results

for the frame error rate (FER) (solid curves) for m = 200 and

the distributions Λ(x) = xd with d = 3, 4, and 5, Λ1(x),
and Λ2(x). As can be observed, the FEP estimates predict

very accurately the performance of IRSA in the waterfall

1The only result on the BEP in [12] is unfortunately not correct, in the
sense that the reported figure is in fact a reproduction of the FEP result.
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Fig. 3. Finite length approximation (10) (dashed lines), simulation results
(solid lines), and error floor approximation (dotted lines) of the frame error
probability of IRSA for m = 200.
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Fig. 4. Finite length approximation (12) (dashed lines), simulation results
(solid lines), and error floor approximation (dotted lines) of the packet loss
probability [5], [10] of IRSA for m = 50.

region. At a certain channel load, the simulated curves diverge

from the analytical curves. This corresponds to the region of

channel load values where the slope of the FER changes and

the FER approaches the error floor. In the figure, we plot the

approximation to the error floor derived in [5], [6], [10].2

In Figs. 4 and 5, we plot the PLP estimate for IRSA obtained

using (12) and the parameters in Table I (dashed curves) as a

function of the channel load g together with simulation results

(solid curves) for m = 50 and m = 200, respectively. The

analytical curves slightly overestimate the PLP in the region

where the curve bends down to the waterfall. However, there

is a significant agreement with the simulation results, even for

small m. On the same charts, the approximation to the error

floor performance derived in [5], [6], [10] is provided again.

VI. CONCLUSION

We derived analytical approximations to the packet loss

probability of IRSA in the medium-to-high load regime. The

derived approximations give tight predictions of the perfor-

mance of IRSA in this region. Together with the approxima-

tions for the error floor previously derived, they allow for an

accurate characterization of the performance of IRSA over a

wide range of channel loads and can be used to optimize the

2In [5], [6], [10], analytical expressions to accurately predict the error floor
of the PLP were derived. The analysis can be extended to the FEP in a
straightforward manner.
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Fig. 5. Finite length approximation (12) (dashed lines), simulation results
(solid lines), and error floor approximation (dotted lines) of the packet loss
probability [5], [10] of IRSA for m = 200.

degree distribution for a given frame length and PLR. The

proposed analysis is also applicable to CRDSA, which can be

seen as an instance of IRSA with regular VN degree.
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