Recommendations for Routes to Sustainable Exploitation of CFRP Materials

Review of Life Cycle Assessments of Carbon Fibre Reinforced Materials

Frida Hermansson, Matty Janssen & Magdalena Svanström

Chalmers University of Technology
Agenda

• Literature review
• Results: Comparing results for climate impact from different studies
• Results: Transitioning from PAN to lignin as precursor for carbon fibres in CFRP
• Results: Energy savings from reusing carbon fibres
• Conclusion and future work
Literature review

- 33 LCAs of CFRP was found
 - Only one study (Das, 2011) assessed lignin based carbon fibres
 - The literature review was expanded to also include LCA of lignin (10)
Literature review
Results: Light weighting climate impact

- For light weighting a longer use phase is beneficial from a life cycle perspective
- The manufacturing of CFRP has a large share in the total life cycle environmental impact
• **Results: Materials and manufacturing climate impact**

 - Most obvious way to decrease the environmental impact of CFRP is to decrease the amount of carbon fibre in matrix
 - might not be possible due to structural requirements
 - Two other concepts of reducing the environmental impacts of CFRP manufacturing:
 - Use a bio-based raw material for the carbon fibre production (for example lignin)
 - Use recycled carbon fibres rather than primary carbon fibres
• Results: Materials and manufacturing – Replacing PAN with lignin

Depending on the allocation method, replacing PAN with lignin as a precursor could decrease the climate impact.
Results: Demonstrated gains from recycling

Shifting to using recycled carbon fibres shows a large potential to decrease the climate impact.

What would happen if we recycled lignin based carbon fibres?

(Includes only 2 PAN-CFRP studies)
Conclusions

• Three main aspects need to be considered to decrease the environmental impact of CFRPs
 • Decrease amount of carbon fibre in matrix
 • Prolong the life time of the product (mileage in light weighting)
 • Decrease the environmental impact of the production for the CF by for example shifting to a bio based precursor
 • Look into recycling opportunities to reuse carbon fibres/CFRP
Future work

• Life Cycle Assessment of lignin based carbon fibres
 • Comparing different lignin and polymer blends
• Carbon fibre=> CFRP=> in applications
 • Addressing challenges in going assessments in early stages of material development
• By this review we have mined the literature from whatever we can learn for or own LCA. Three methodological challenges are:
 • Allocation of lignin: Waste or a by-product?
 • Allocation when including recycling of CFRP
 • Comparing a fossil-based material to a bio-based material
Acknowledgment

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720707.

Thank you all for your attention!