
MAC A verified static information-flow control library

Downloaded from: https://research.chalmers.se, 2024-03-13 10:23 UTC

Citation for the original published paper (version of record):
Vassena, M., Russo, A., Buiras, P. et al (2018). MAC A verified static information-flow control
library. Journal of Logical and Algebraic Methods in Programming, 95: 148-180.
http://dx.doi.org/10.1016/j.jlamp.2017.12.003

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

MAC
A verified static information-flow control library

Marco Vassena a,∗∗, Alejandro Russo a,∗, Pablo Buiras b, Lucas Waye b

a Chalmers University of Technology, Sweden
b Harvard University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2017
Received in revised form 22 September
2017
Accepted 5 December 2017
Available online 14 December 2017

Keywords:
Information Flow Control
Non Interference
Functional Programming
Haskell
Agda

The programming language Haskell plays a unique, privileged role in information-flow
control (IFC) research: it is able to enforce information security via libraries. Many state-of-the-
art IFC libraries (e.g., LIO and HLIO) support a variety of advanced features like mutable
data structures, exceptions, and concurrency, whose subtle interaction makes verification
of security guarantees challenging. In this work, we focus on MAC, a statically-enforced IFC
library for Haskell. In MAC, like other IFC libraries, computations have a well-established
algebraic structure for computations (i.e., monads) responsible to manipulate labeled
values—values coming from an abstract data type which associates a sensitivity label to
a piece of information. In this work, we enrich labeled values with a functor structure and
provide an applicative functor operator which encourages a more functional programming
style and simplifies code. Furthermore, we present a full-fledged, mechanically-verified
model of MAC. Specifically, we show progress-insensitive noninterference for our sequential
calculus and pinpoint sufficient requirements on the scheduler to prove progress-sensitive
noninterference for our concurrent calculus. For that, we study the security guarantees
of MAC using term erasure, a proof technique that ensures that the same public output
should be produced if secrets are erased before or after program execution. As another
contribution, we extend term erasure with two-steps erasure, a flexible novel technique that
greatly simplifies the noninterference proof and helps to prove many advanced features of
MAC.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, many applications (apps) manipulate users’ private data. Such apps could have been written by anyone and
users who wish to benefit from their functionality are forced to grant them access to their data—something that most
users will do without a second thought [40]. Once apps collect users’ information, there are no guarantees about how they
handle it, thus leaving room for data theft and data breach by malicious apps. The key to guaranteeing security without
sacrificing functionality is not granting or denying access to sensitive data, but rather ensuring that information flows only
into appropriate places.

* Corresponding author.

** Second corresponding author.
E-mail addresses: vassena@chalmers.se (M. Vassena), russo@chalmers.se (A. Russo), pbuiras@seas.harvard.edu (P. Buiras), lwaye@seas.harvard.edu

(L. Waye).
https://doi.org/10.1016/j.jlamp.2017.12.003
2352-2208/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2017.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:vassena@chalmers.se
mailto:russo@chalmers.se
mailto:pbuiras@seas.harvard.edu
mailto:lwaye@seas.harvard.edu
https://doi.org/10.1016/j.jlamp.2017.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2017.12.003&domain=pdf

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 149
Fig. 1. Public computation.

Fig. 2. Labeled values.

Language-based Information-Flow Control (IFC) [57] is a promising approach to enforcing information security in soft-
ware. A traditional IFC enforcement scrutinizes how data of different sensitivity levels (e.g., public or private) flows within
a program, detects when an unsafe flow of information occurs and take action to suppress the leakage. To do that, most
IFC tools require the design of new languages, compilers, interpreters, or modifications to the runtime, e.g., [45,50,52,12].
Nonetheless, in the functional programming language Haskell, the strict separation between side-effect free and side-
effectful code enables lightweight security enforcements. Specifically, it is possible to build a secure programming language
atop Haskell, as an embedded domain-specific language that gets distributed and used as a Haskell library [34]. Many of
the state-of-the-art Haskell security libraries, namely LIO [64], HLIO [16], and MAC [53], bring ideas from Mandatory Ac-
cess Control [7] into a language-based setting.1 These libraries promote a secure-by-construction programming model: any
program written against their API does not leak secrets. This model is attractive, because it protects not only against benign
code that leaks accidentally, e.g., due to a software bug, but also against a malicious program designed to do so. Every
computation in such libraries has a current label which is used to (i) approximate the sensitivity level of all the data in
scope and (ii) restrict subsequent side-effects which might compromise security. IFC uses labels to model the sensitivity of
data, which are then organized in a security lattice [17] specifying the allowed flows of information, i.e., �1 � �2 means
that data with label �1 can flow into entities labeled with �2. Although these libraries are parameterized on the security
lattice, for simplicity we focus on the classic two-point lattice with labels H and L to respectively denote secret (high) and
public (low) data, and where H �� L is the only disallowed flow. Fig. 1 shows a graphical representation of a public com-
putation in these libraries, i.e., a computation with current label L. The computation can read or write data in scope, which
is considered public (e.g., average temperature of 17 ◦C in the Swedish summer), and it can write to public (L-) or secret
(H-) sinks. By contrast, a secret computation, i.e., a computation with current label H, can also read and write data in its
scope, which is considered sensitive, but in order to prevent information leaks it can only write to sensitive/secret sinks.
Structuring computations in this manner ensures that sensitive data does not flow into public entities, a policy known as
noninterference [21]. While secure, programming in this model can be overly restrictive for users who want to manipulate
differently-labeled values.

To address this shortcoming, libraries introduce the notion of a labeled value as an abstract data type which protects
values with explicit labels, in addition to the current label. Fig. 2 shows a public computation with access to both public
and sensitive pieces of information, such as a password (pwd). Public computations can freely manipulate sensitive labeled
values provided that they are treated as black boxes, i.e., they can be stored, retrieved, and passed around as long as
its content is not inspected. Libraries LIO and HLIO even allow public computations to inspect the contents of sensitive
labeled values, raising the current label to H to keep track of the fact that a secret is in scope—this variant is known as a
floating-label system.

Reading sensitive data usually amounts to “tainting” the entire context or ensuring the context is as sensitive as the
data being observed. As a result, the system is susceptible to an issue known as label creep: reading too many secrets may
cause the current label to be so high in the lattice that the computation can no longer perform any useful side effects.
To address this problem, libraries provide a primitive which enables public computations to spawn sub-computations that
access sensitive labeled values without tainting the parent. In a sequential setting, such sub-computations are implemented
by special function calls. In the presence of concurrency, however, they must be executed in a different thread to avoid
compromising security through internal timing and termination covert channels [63].

Practical programs need to manipulate sensitive labeled values by transforming them. It is quite common for these oper-
ations to be naturally free of I/O or other side effects, e.g., arithmetical or algebraic operations, especially in applications like
image processing, cryptography, or data aggregation for statistical purposes. Writing such functions, known as pure func-
tions, is the bread and butter of functional programming style, and is known to improve programmer productivity, encourage
code reuse, and reduce the likelihood of bugs [29]. Nevertheless, the programming model involving sub-computations that
manipulate secrets forces an imperative style, whereby computations must be structured into separate compartments that

1 From now on, we simply use the term libraries when referring to LIO, HLIO, and MAC.

150 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
must communicate explicitly. While side-effecting instructions have an underlying algebraic structure, called monad [41],
research literature has neglected studying the algebraic structure of labeled values and their consequences for the program-
ming model. To empower programmers with the simpler, functional style, we propose additional operations that allow pure
functions to securely manipulate labeled values, specifically by means of a structure similar to applicative functors [39]. In
particular, this structure is useful in concurrent settings where it is no longer necessary to spawn threads to manipulate
sensitive data, thus making the code less imperative (i.e., side-effect free).

Additionally, practical programs often aggregate information from heterogeneous sources. For that, programs need to
upgrade labeled values to an upper bound of the labels being involved before data can be combined. In previous incarnations
of the libraries, such relabellings require to spawn threads just for that purpose. As before, the reason for that is libraries
decoupling every computation which manipulate sensitive data—even those for simply relabeling—so that the internal timing
and termination covert channels imposed no threats. In this light, we introduce a primitive to securely relabel labeled values,
which can be applied irrespective of the computation’s current label and does not require spawning threads.

We provide a mechanized security proof for the security library MAC2 and claim our results also apply to LIO and HLIO.
MAC has fewer lines of code and leverages types to enforce confidentiality, thus making it ideal to model its semantics in a
dependently-typed language like Agda. The contributions of this paper are:

1. We develop the first exhaustive full-fledged formalization of MAC, a state-of-the-art library for Information-Flow Con-
trol, in a call-by-need λ-calculus and prove progress-insensitive noninterference (PINI) for the sequential calculus.

2. We enrich the calculus with scheduler-parametric concurrency and prove progress-sensitive noninterference (PSNI) [2]
for a wide-range of deterministic schedulers, by formally identifying sufficient requirements on the scheduler to ensure
PSNI—a novel aspect if compared with previous work [63,25]. We leverage on the generality of our result and prove
that MAC is secure by instantiating our PSNI theorem with a round-robin scheduler, i.e., the scheduler used by GHC’s
runtime system.

3. We corroborate our results with an extensive mechanized proof developed in the Agda proof assistant that counts more
than 4000 lines of code. The mechanization has provided us with stimulating insights and pinpointed problems in
proofs of similar works.

4. We improve and simplify the term-erasure proof technique by proposing a novel flexible technique called two-steps
erasure, which we utilize systematically to prove that many advanced features are secure, especially those that change
the security level of other terms and detect exceptions.

5. We introduce a functor structure, a relabeling primitive and an applicative operator that give flexibility to programmers,
by upgrading labeled values and conveniently aggregating heterogeneously labeled data.

6. We have released a prototype of our ideas in the MAC library.3

Highlights This work builds on our previous papers “Flexible Manipulation of Labeled Values for Information-Flow Con-
trol Libraries” [71] and “On Formalizing Information-Flow Control Libraries” [72], which we have blended and significantly
rewritten and corrected in a few technical inaccuracies. We have integrated these works with several examples and shaped
them into a uniform, coherent and comprehensive story of this line of work. We summarize the novel contributions of this
article as follows:

• Uniform, coherent and comprehensive account of a formal model of MAC;
• Integration of examples in the description of the features of the library;
• Fixed several technical inaccuracies in the semantics of the calculus;
• Simplification and full account of the scheduler-parametric PSNI proof.

In the following, we point out the technical differences between this article and the conference version in footnotes.
This paper is organized as follows. Section 2 gives an overview of MAC. Section 3 formalizes the core of MAC in a

simply-typed call-by-need lambda-calculus. Section 4 presents a secure primitive that regulates the interaction between
computations at different security levels. Sections 5 and 6 extend the calculus with other advanced practical features,
namely exceptions and mutable references. Section 7 proves that the sequential calculus satisfies progress-insensitive nonin-
terference (PINI). Section 8 extends the calculus with concurrency and Section 9 presents functor, applicative, and relabeling
operations. Section 10 gives the security guarantee of the concurrent calculus, which satisfies progress-sensitive noninter-
ference (PSNI). Section 11 gives related work and Section 12 concludes.

2. Overview

In MAC, each label is represented as an abstract data type. Fig. 3 shows the core part of MAC’s API. Abstract data type
Labeled � a classifies data of type a with a security label �. For instance, pwd :: Labeled H String is a sensitive string, while

2 Available at https :/ /bitbucket .org /MarcoVassena /mac-model/.
3 https :/ /hackage .haskell .org /package /mac.

https://bitbucket.org/MarcoVassena/mac-model/
https://hackage.haskell.org/package/mac

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 151
Fig. 3. Core API for MAC. Fig. 4. do-notation.

rating :: Labeled L Int is a public integer. (Symbol :: is used to describe the type of terms in Haskell.) Abstract data type
MAC � a denotes a (possibly) side-effectful secure computation which handles information at sensitivity level � and yields
a value of type a as a result. A MAC � a computation enjoys a monadic structure, i.e., it is built using the fundamental
operations return :: a → MAC � a and (>>=) :: MAC � a → (a → MAC � b) → MAC � b (read as “bind”). The operation return x
produces a computation that returns the value denoted by x and produces no side-effects. The function (>>=) is used
to sequence computations and their corresponding side-effects. Specifically, m >>= f takes a computation m and function
f which will be applied to the result produced by running m and yields the resulting computation. We sometimes use
Haskell’s do-notation to write such monadic computations. For example, the program m >>= λx → return (x + 1), which adds
1 to the value produced by m, can be written as shown in Fig. 4.

2.1. Secure flows of information

Generally speaking, side-effects in a MAC � a computation can be seen as actions which either read or write data. Such
actions, however, need to be conceived in a manner that respects the sensitivity of the computations’ results as well as the
sensitivity of sources and sinks of information modeled as labeled values. The functions label and unlabel allow MAC � a
computations to securely interact with labeled values. To help readers, we indicate the relationship between type variables
in their subindexes, i.e., we use �L and �H to attest that �L � �H. If a MAC �L computation writes data into a sink, the
computation should have at most the sensitivity of the sink itself. This restriction, known as no write-down [7], respects the
sensitivity of the data sink, e.g., the sink never receives data more sensitive than its label. In the case of function label, it
creates a fresh labeled value, which from the security point of view can be seen as allocating a fresh location in memory and
immediately writing a value into it—thus, it applies the no write-down principle. In the type signature of label, what appears
on the left-hand side of the symbol ⇒ are type constraints. They represent properties that must be statically fulfilled about
the types appearing on the right-hand side of ⇒. Type constraint �L � �H ensures that when calling label x (for some x in
scope), the computation creates a labeled value only if �L, i.e. the current label of the computation, is no more confidential
than �H, i.e. the sensitivity of the created labeled value. In contrast, a computation MAC �H a is only allowed to read labeled
values at most as sensitive as �H—observe the type constraint �L � �H in the type signature of unlabel. This restriction,
known as no read-up [7], protects the confidentiality degree of the result produced by MAC �H a, i.e. the result might only
involve data �L which is, at most, as sensitive as �H.

We remark that MAC is an embedded domain specific language (EDSL), implemented as a Haskell library of around 200
lines of code and programs written in MAC are secure-by-construction. What makes it possible to provide strong security
guarantees via a library is the fact that Haskell type-system enforces a strict separation between side-effect free code, which
is guaranteed not to perform side effects, and side-effectful code, where side-effects may occur.4 Specifically side-effects, i.e.,
input–output operations, can only occur in monadic computations of type IO a. Crucially pure computations are inherently
secure, while IO computations are potentially leaky. In MAC, a secure computation of type MAC � a is internally represented
as a wrapper around an IO a computation, that is used to implement side-effectful features, such as references and con-
currency. MAC provides security-by-construction because impure operations, i.e., those of type IO, can only be constructed
using MAC label-annotated API, which accepts only those that are statically deemed secure. Function runTCB extracts the
underlying IO a computation from a secure computation of type MAC � a. Thanks to the secure-by-construction design, the
IO computation so obtained is secure and can be executed directly, without the need of additional protection mechanism,
such as monitors. Note that the function runTCB is part of the Trusted Computing Base (TCB), i.e., it is available only to
trusted code. In what follows, we describe an example which illustrates MAC’s programming model, particularly the use of
label, unlabel.

Example The most common use of label is to classify data to be protected. As an example, consider the Haskell pro-
gram listed in Fig. 5, which prompts the user for a password through the terminal and then passes it to a routine to
check if the password is listed on dictionaries of commonly used passwords. Observe that the program performs input–
output operations: putStrLn :: String → IO () prints to standard output and getLine :: IO String reads from standard input.

4 In the functional programming community, they are also known as pure and impure code respectively.

152 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
p :: IO Bool
p = do

putStrLn "Choose a password:"
pwd ← getLine
return (isWeak pwd)

Fig. 5. The password is exposed in isWeak.

isWeak :: Labeled H String → MAC L (Labeled H Bool)

p :: IO Bool
p = do putStrLn "Choose a password:"

pwd ← getLine
let lpwd = label pwd :: MAC L (Labeled H String)

LabeledTCB b ← runTCB (lpwd >>= isWeak)
return b

Fig. 6. Label H protects the password in isWeak.

impl :: Labeled H Bool →
MAC H (Labeled L Bool)

impl secret = do
bool ← unlabel secret

– H �� L
if bool then label True

else label False

Fig. 7. Implicit flows are ill-typed.

Clearly the content of variable pwd should be handled with care by isWeak :: String → IO Bool. In particular a computa-
tion of type IO Bool can also perform arbitrary output operations and potentially leak the password. One way to protect
pwd is by writing all password-related operations, like isWeak, within MAC, where pwd is marked as sensitive data.
Adjusting the type of isWeak appropriately, MAC prevents intentional or accidental leakage of the password. Several se-
cure designs are possible, depending on how isWeak provides its functionality. For example a secure interface could be
isWeak :: Labeled H String → MAC L (Labeled H Bool), where the outermost computation (MAC L) accounts for reading public
data, e.g., fetching online dictionaries of common passwords, while the labeled result (Labeled H Bool), protects the sensitivity
of this piece of information about the password, namely if it is weak or not. The type isWeak ::Labeled H String → MAC H Bool
is also secure and additionally allows to read from secret channels, e.g., file /etc/shadow, to check that the password is
not reused. Fig. 6 shows the modifications to the code needed to use a secure password strength checker. Observe how label
is used to mark pwd as sensitive by wrapping it inside a labeled expression of type Labeled H String. After that, the labeled
password is passed to function isWeak by bind (>>=), function runTCB executes the whole computation, whose labeled result
is then pattern matched with LabeledTCB , exposing the boolean value, that is finally returned.5

2.2. Implicit flows

The interaction between the current label of a computation and the no read-up and no write-down security policies
makes implicit flow ill-typed. Consider for instance, the ill-typed program in Fig. 7, that attempts to leak the value of
the secret boolean in a public boolean. Unlike other IFC system, the code cannot branch on secret directly, because it is
explicitly labeled, i.e., it has type Labeled H Bool, instead of Bool. In order to branch on sensitive data, the program needs
first to unlabel it, thus incurring in the no read-up restriction that requires the computation to be sensitive as well, that
is the program must have type MAC H a (for some type a). The only primitive that produces labeled data is label, which
according to the no write-down restriction, prevents a sensitive computation from creating a public labeled value. Regardless
of the branch taken, but for that reason, i.e., trying to label a piece of data with L in a computation labeled with H, the
program in Fig. 7 is ill-typed.

5 In Fig. 6, the code in the IO monad is trusted, hence the use of runTCB and LabeledTCB . The function isWeak is not trusted and the password is protected
by MAC secure API.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 153
Types: τ ::= () | Bool | τ1 → τ2

Values: v ::= () | True | False | λx.t
Terms: t ::= v | t1 t2 | if t1 then t2 else t3

(App)

t1 � t′1
t1 t2 � t′1 t2

(Beta)

(λx.t1) t2 � t1 [t2 / x]

(If1)

t1 � t′1
if t1 then t2 else t3 � if t′1 then t2 else t3

(If2)

if True then t1 else t2 � t1

(If3)

if False then t1 else t2 � t2

Fig. 8. Syntax and semantics of the pure calculus.

Features overview Modern programming languages provide many abstractions that simplify the development of complex
software. In the following, we extend MAC with additional primitives that make software development within MAC prac-
tical, without sacrificing security. The list of programming features securely supported in MAC include exception handling
(Section 5), references (Section 6), concurrency (Section 8), functors 9 and synchronization primitives (Appendix B).

3. The core calculus

This section formalizes MAC as a simply typed call-by-name λ-calculus extended with unit and boolean values and
security primitives.

3.1. Pure calculus

Fig. 8 shows the formal syntax of the pure calculus underlying MAC, where meta variables τ , v and t denote respectively
types, values, and terms. The typing judgment �
 t : τ denotes that term t has type τ assuming typing environment �. The
typing rules of the pure calculus are standard and therefore omitted. The small-step semantics of the calculus is represented
by the relation t1 � t2, which denotes that term t1 reduces to t2. Rule [Beta] indicates that the calculus has call-by-name
semantics, because the argument of a function, evaluated to weak-head normal form by rule [App], is not evaluated upon
function application, but rather substituted in the body—we write t1 [x / t2] for capture-avoiding substitution.6 Rule [If1]
evaluates the conditional of an if-then-else expression and rules [If2 , If3] take the appropriate branch.

3.2. Core of MAC

We now extend this standard calculus with the security primitives of MAC as shown in Fig. 9. Meta variable � ranges
over labels, which are assumed to form a lattice (L , �). Labels are types in MAC despite we place them in a different
syntactic category named �—this decision is made merely for clarity of exposition. The new type Labeled � τ represents a
(possibly side-effect free) resource, which annotates with the security level � a value t :: τ wrapped in Labeled. For example,
Labeled 42 :: Labeled L Int is a public integer. In the following, we introduce further forms of labeled resources, in particular
mutable references in Section 6 and synchronization variables in Appendix B. The actual MAC implementation handles more
labeled resources and provides a uniform implementation for them [53].7 The constructor Labeled is not available to the
user, who can only use label and unlabel to create and inspect labeled resources, respectively.

A configuration 〈�, t〉 consists of a store � and a term t describing a computation of type MAC � τ and represents a
secure computation at sensitivity level �, which yields a value of type τ as result. For the moment, we ignore the store in
the configuration (explained in Section 6). In order to enforce the security invariants, functions label and unlabel live in the
MAC monad and the typing rules in Fig. 10 ensure that the label of the resource is compatible with the security level of
the current computation, as explained in the previous section. We explain the relation between those typing rules and their
corresponding type signatures given as Haskell API in Fig. 3 as follows. The typing rules in Fig. 10 are type scheme rules, i.e.,
there is such a judgment for every label �L and �H ∈ L , such that �L � �H, where labels come from either type signatures

6 In the machine-checked proofs all variables are De Bruijn indexes.
7 In our conference version [72,71], we follow the original MAC paper [53] and represent all labeled resources using the same labeled data type Res t ::

Res � τ , where t :: τ determines the kind of resource. For example Res (Id 42) :: Res � (Id Int) is a term representing a public integer. Here, for clarity of
exposition, we use separate data types for each labeled resource. This design choice does not affect our results.

154 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
Label: �

Store: �

Types: τ ::= · · · | MAC � τ | Labeled � τ
Configuration: c ::= 〈�, t〉
Values: v ::= · · · | return t | Labeled t
Terms: t ::= · · · | t1 >>= t2 | label | unlabel t

(Lift)

t � t′

〈�, t〉 −→ 〈�, t′〉

(Bind1)

〈�, t1〉 −→ 〈�′, t′1〉
〈�, t1 >>= t2〉 −→ 〈�′, t′1 >>= t2〉

(Bind2)

〈�, return t1 >>= t2〉 −→ 〈�, t2 t1〉

(Label)

〈�, label t〉 −→ 〈�, return (Labeled t)〉
(Unlabel1)

t � t′

〈�,unlabel t〉 −→ 〈�,unlabel t′〉
(Unlabel2)

〈�,unlabel (Labeled t)〉 −→ 〈�, return t〉

Fig. 9. Core of MAC.

(Label
τ

)

�L � �H �
 t : τ
�
 label t : MAC �L (Labeled �H τ)

(Unlabel
τ

)

�L � �H �
 t : Labeled �L τ

�
 unlabel t : MAC �H τ

(Bind
τ

)

�
 t1 (MAC � τ1) �
 t2 : (τ1 → MAC � τ2)

�
 t1 >>= t2 : MAC � τ2

(Return
τ

)

�
 t : τ
�
 return t : MAC � τ

Fig. 10. Typing rules for the core of MAC.

or explicit type annotations in programs, as we showed in the previous section. The type constraints in the API, i.e., what
appears before the symbol ⇒, is placed as a premise of the corresponding typing rule. We remark that type constrains
are built using type classes, a well-established feature of Haskell type system, therefore we do not discuss them any further
[73]. Besides those primitives, computations are created using the standard monad operations return and >>=. The primitive
return lifts a term in the monad at security level � by means of typing rule [Return

τ]. Unlike the Dependency Core Calculus
(DCC) [1], secure computations at different security levels do not mix in MAC: the typing rule [Bind

τ] prevents that from
happening—note the same label � is expected both in the types of t1 and t2. Just like rules [Label

τ
, Unlabel

τ], the typing
rules [Return

τ
, Bind

τ] are type scheme rules, i.e., there is such a rule for each label � ∈ L . For easy exposition, in the
following we give the type of MAC’s constructs as Haskell APIs.

We explicitly distinguish pure-term evaluation from top-level monadic-term evaluation, similarly to [66]. The extended
semantics is represented as the relation c1 −→ c2, which extends � via [Lift]. The semantics rules in Fig. 9 are fairly
straight-forward and follow the pattern seen in the pure semantics, where some context-rules, e.g. [Bind1 , Unlabel1] reduce
a redex subterm, and then the interesting rule fires, e.g. [Bind2 , Unlabel2]. In particular rule [Bind1] executes the compu-
tation on the left of the bind and rule [Bind2] extracts the result of the computation and feeds it to the right-side argument
of (>>=). Rule [Unlabel1] evaluates the argument to labeled expression and rule [Unlabel2] returns its content. Rule [Label]
creates a labeled expression by wrapping the argument in Labeled and returns it in the security monad. It is worth noting
that thanks to the static nature of MAC, no run-time checks are needed to prevent insecure flows of information in these
rules.

4. Label creep

Let us continue the password example from the introduction. After checking that the password is strong enough, the
program replaces the old password with the new one by updating file /etc/shadow with the new hashed password,
using primitive passwdMAC :: Labeled H String → MAC H ()—note that the label of the computation is H, in order to unlabel the

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 155
savePwd :: Labeled H String → MAC L (MAC H ())

savePwd lpwd = do putStrLnMAC "Saving new password"

return (passwdMAC pwd)

Fig. 11. A nested computation that writes at security level L and H.

join :: �L � �H ⇒ MAC �H τ → MAC �L (Labeled �H τ)

Fig. 12. Primitive join.

do

putStrLnMAC "Saving ..."

passwdMAC lpwd

Fig. 13. Ill-typed (L �≡ H).

password and hash it. (We treat password hashes as confidential data as well, because they could enable offline dictionary
attacks otherwise.) The program should also inform the user that the password is being saved by printing on the screen a
message. We consider printing on the screen as a public write operation, i.e., putStrLnMAC :: String → MAC L (). Fig. 11 shows
the code of the discussed routine. Observe that putStrLnMAC "Saving new password" :: MAC L () and passwdMAC pwd ::
MAC H () belong to different MAC computations. Therefore, both operations cannot coexist together, otherwise secret data,
e.g., the password, could be unlabeled and then leaked on a public channel, e.g., standard output. Specifically the program
in Fig. 13 is rejected as ill-typed. Programs that handle data and channels with heterogeneous labels necessarily involve
nested MAC � a computations in its return type. In this case, the type of savePwd lpwd :: MAC L (MAC H ()) indicates that it
is a public computations, which prints on the screen, and that produces as value a sensitive computation MAC H Int, which
lastly writes to the sensitive file. Obviously having to nest computations complicates the programming model of MAC and
hinders its applicability.8 For example, savePwd lpwd requires to run the public computation to completion first, and then
execute the resulting sensitive computation. We recognize this pattern of returning nested computations as a static version
of a problem known in dynamic systems as label creep [57,15]—which occurs when the context gets tainted to the point
that no useful operations are allowed anymore. In a sequential setting, MAC provides the primitive join,9 which alleviates
this problem by safely integrating more sensitive computations into less sensitive ones.

4.1. Primitive join

Fig. 12 shows the type signature of join. Intuitively, function join runs the computation of type MAC �H τ and wraps
the result into a labeled expression to protect its sensitivity. As we will show in Section 7.5, programs written using the
monadic API, label, unlabel, and join satisfy progress-insensitive noninterference (PINI), where leaks due to non-termination of
programs are ignored. This design decision is similar to that taken by mainstream IFC compilers (e.g., [46,60,23]), where the
most effective manner to exploit termination takes exponential time in the size (of bits) of the secret [2].

In the semantics, Fig. 14 extends terms with the new primitive join t. Rule [Join] formalizes the semantics of join using
big-step semantics—similar to other work [65,53], we restrict ourselves to terminating computations. We write 〈�, t〉 ⇓
〈�′, v〉 if and only if v is a value and 〈�, t〉 −→∗ 〈�′, v〉, where relation −→∗ denotes the reflexive transitive closure of −→.
Rule [Join] executes the secure computation t ⇓ return t′ and wraps the result t in Labeled to protect its sensitivity.10

Revisited example By replacing return with join, we can simplify the program savePwd from the previous section: compare
the two versions of the program in Fig. 11 (using return) and in Fig. 15 (using join). In Fig. 15 the return type of savePwd
does not involve nested computations, therefore the execution of the sensitive computation is not suspended, but rather
follows directly after the public print statement.

8 Remember that Haskell employs lazy evaluation, therefore the inner computations is not automatically evaluated, but needs to be explicitly executed.
Only trusted code, using runTCB can force evaluation of MAC computations.

9 Not to be confused with the monadic join :: Monad m ⇒ m (m a) → m a.
10 We refrain from using label t′ because we will soon add exceptions to secure computations.

156 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
Terms: t ::= · · · | join t

(Join)

〈�, t〉 ⇓ 〈�′, return t′〉
〈�, join t〉 −→ 〈�′, return (Labeled t′)〉

Fig. 14. Calculus with join.

savePwd :: Labeled H String → MAC L ()

savePwd lpwd = do putStrLnMAC "Saving new password"

join (passwdMAC pwd)

putStrLnMAC "Password saved"

Fig. 15. Example revisited with join.

throw :: χ → MAC � τ
catch :: MAC � τ → (χ → MAC � τ) → MAC � τ

Fig. 16. API for exceptions.

5. Exception handling

Exception handling is a common programming language mechanism used to signal some anomalous condition and stop
the execution of a program. It is sometimes possible to recover from such exceptional circumstances and resume execution
afterwards. For instance, consider again the program savePwd in Fig. 15. If primitive passwdMAC fails due to some IO excep-
tion, e.g., file etc/shadow has already been opened or has not been found, the whole program crashes. Not supporting
exceptions in the context of input–output operations, is not only impeding our programming model, but it is also insecure.
In fact, exceptions change the control flow of a program, and an uncaught exception can propagate throughout a program
and eventually crash it, potentially suppressing public events. For example, if passwdMAC throws an exception, the program
aborts before printing "Password saved" on the screen. Observe that, such behavior constitutes a leak, because the
failure comes from a sensitive context, i.e., passwdMAC , and therefore can depend on the value of the secret, i.e., the pass-
word. In this section, we incorporate exception handling primitives in MAC to remedy this situation, see Fig. 16. Intuitively,
catch t1 t2 runs the computation t1 and recovers from a failure by passing the exception to the exception handler t2. Sec-
tion 5.2 discusses some subtleties between exception handling primitives and join, which may propagate exceptions from
sensitive contexts to less sensitive ones, if neglected.

5.1. Calculus

For simplicity, we consider only one exception ξ :: χ , where χ denotes an exception type. In the calculus, we extend
terms with ξ , throw t, and catch t1 t2—see Fig. 17. Term throw t aborts the current MAC computation with exception t, see
rule [Bindχ]. Term catch t1 t2 evaluates computation t1 via rule [Catch1], and either it returns the result, if the computation
succeeds, i.e., rule [Catch2], or it attempts to recover a failure by running exception handler t2, if the computation throws
an exception, i.e., rule [Catch3].

5.2. Join and exceptions

The interplay between exceptions and join is delicate and security might be at stake if these two features were naively
combined [66,28]. Observe that type signatures in Fig. 16 hint that exceptions can be thrown and caught among compu-
tations with the same label—a design decision which does not break security guarantees. Nevertheless, information can be
leaked if exceptions thrown in sensitive computations are propagated to less sensitive ones. From now on, we refer to ex-
ceptions raised in a sensitive MAC computation as sensitive exceptions. In fact, sensitive exceptions can affect the control-flow
of less sensitive computations and thus suppressing observable events, giving place to an implicit flow.11 In our calculus,
join is the only primitive that combines computations with different labels and thus is potentially vulnerable to this attack.

11 We refer interested readers to [53] for further details about this attack.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 157
Types: τ ::= · · · | χ
Values: v ::= · · · | ξ | throw t
Terms: t ::= · · · | catch t1 t2

(Bindχ)

〈�, throw t1 >>= t2〉 −→ 〈�, throw t1〉
(Catch1)

〈�, t1〉 −→ 〈�′, t′1〉
〈�, catch t1 t2〉 −→ 〈�′, catch t′1 t2〉

(Catch2)

〈�, catch (return t1) t2〉 −→ 〈�, return t1〉
(Catch3)

〈�, catch (throw t1) t2〉 −→ 〈�, t2 t1〉

Fig. 17. Exception handling primitives.

Values: v ::= · · · | Labeledχ t

(Joinχ)

〈�, t〉 ⇓ 〈�′, throw t′〉
〈�, join t〉 −→ 〈�′, return (Labeledχ t′)〉

(Unlabelχ)

unlabel (Labeledχ t) � throw t

Fig. 18. Secure interaction between join and exceptions.

In order to close leaks via exceptions, MAC modifies the semantics of join to mask exceptions, preventing them to propagate
to less sensitive computations—this solution is similar to previous work [66,28].

Fig. 18 implements this countermeasure. Firstly it adds a new internal constructor Labeledχ t denoting a labeled value (of
type Labeled � τ) which contains inside the exception (t ::χ). Rule [Joinχ] shows the semantics for join t when exceptions are
triggered: exceptions are not propagated further but rather returned inside a labeled expression. Under this programming model,
it is necessary to inspect the return value of join to determine if the computation terminated abnormally. The attacker must
then unlabel the result to observe the exception, see rule [Unlabelχ]. Observe that, since this operation is subject to no
read-up, sensitive exceptions are not observable from less sensitive computations. As a consequence of this programming
model, only sensitive computations can handle sensitive exceptions. Consider again the program savePwd in the example
from Fig. 15. The program prints "Password Saved" even though passwdMAC might have actually failed: it would be
insecure to do otherwise! The only way to observe and recover from a failure of passwdMAC , without compromising security,
is to explicitly surround it with a catch block, i.e., catch (passwdMAC pwd) handler, and lift that computation with join.

6. References

Mutable references are an imperative feature often needed to boost the performance of algorithms. Following the pass-
word example from the previous sections, we might want to reject weak passwords that are vulnerable to dictionary attacks.
To do that, in Fig. 19, function fetchDict fetches a list of words from a dictionary available in the system—we consider the
content of a dictionary to be public information therefore the computation has security level L. Depending on the local
system language, we can tweak the function to pick an appropriate dictionary, for example fetchDict "en" fetches English
words from dictionary "usr/share/dict-en". A password-strength checker application could test a password against
multiple dictionaries, which would require to call fetchDict multiple times. Since dictionaries are seldom changed, it is waste-
ful to fetch the same dictionary multiple times, therefore, using references, we implement a simple caching mechanism that
avoids the overhead. Function fetchCacheDict takes as an extra argument a reference to a table of cached dictionaries, i.e.,
Ref L (Map String [String]). When the language lang dictionary is needed, the function reads the cached table (dicts) from
the reference (read r) and checks if it has already been fetched (lookup lang dicts). If it is a hit (case Just dict), the dictionary
is returned directly without the need of any IO operation. Otherwise (case Nothing), the dictionary is fetched with fetchDict,
the result cached (write (insert dict dicts) r) and returned.

158 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
fetchDict :: String → MAC L [String]
fetchDict lang = readFile "usr/share/dict"++ "-"++ lang

fetchCacheDict : Ref L (Map String [String]) → String → MAC L [String]
fetchCacheDict r lang = do

dicts ← read r
case lookup lang dicts of

Just dict → return dict
Nothing → do

dict ← fetchDict lang
write (insert dict dicts) r
return dict

Fig. 19. fetchCacheDict is a cached version of fetchDict.

data Ref � τ
new :: �L � �H ⇒ τ → MAC �L (Ref �H τ)

read :: �L � �H ⇒ Ref �L τ → MAC �H τ
write :: �L � �H ⇒ τ → Ref �H τ → MAC �L ()

Fig. 20. API for references.

Store: � ::= (� : Label) → Memory �

Memory � ts ::= [] | t : ts

Addresses: n ::= 0 | 1 | 2 | · · ·
Types: τ ::= · · · | Ref � τ
Values: v ::= · · · | Ref n
Terms: t ::= · · · | new t | read t | write t1 t2

(New)

|�(�)| = n

〈�,new t〉 −→ 〈�(�)[n] := t, return (Ref n)〉
(Write1)

t1 � t′1
〈�,write t1 t2〉 −→ 〈�,write t′1 t2〉

(Write2)

〈�,write (Ref n) t〉 −→ 〈�(�)[n] := t, return ()〉
(Read1)

t � t′

〈�, read t〉 −→ 〈�, read t′〉
(Read2)

〈�, read (Ref n)〉 −→ 〈�, return �(�)[n]〉

Fig. 21. MAC with references.

6.1. Calculus

Fig. 21 extends the calculus with mutable references, another feature available in MAC. Memory is compartmentalized
into isolated labeled segments,12 one for each label of the lattice, and accessed exclusively through the store �. A memory in
the category Memory � contains terms at security level �. We use the standard list interface [], t : ts and ts[n] for the empty
list, the insertion of a term into an existing list and accessing the nth-element, respectively. We write �(�)[n] to retrieve the
nth-cell in the �-memory. The notation �(�)[n] := t denotes the store obtained by performing the update �(�)[n �→ t]. Secure
computations create, read and write references using primitives new, read and write respectively. Observe that their types
are restricted according to the no read-up and no write-down rules, like those of label and unlabel—see Fig. 20. A reference
is represented as a value Ref n :: Ref � τ where n is an address,13 pointing to the n-th cell of the �-memory, which contains
a term of type τ . Rule [New] extends the �-labeled memory with the new term and returns a reference to it. The notation

12 A split memory model simplifies the proofs because allocation in one segment does not affect allocation in another. We argue why this model is
reasonable and discuss alternatives in Section 7.
13 MAC’s implementation of labeled reference is a simple wrapper around Haskell’s type IORef . However, we denote references as a simple index into the

labeled memory. This design choice does not affect our results.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 159
t t′

ε�A (t) ε�A (t′)

ε�A
ε�A

Fig. 22. Single-step simulation.

|ts| denotes the length of a list and is used to compute the address of a new reference—memories are zero-indexed. Rule
[Write1] evaluates its first argument to a reference and rule [Write2] overwrites the content of the memory cell pointed by
the reference and returns unit. Similarly, rule [Read2] retrieves the term stored in memory and pointed to by the reference,
which is evaluated via rule [Read1].

7. Soundness

This section formally presents the security guarantees of the sequential calculus. Section 7.1 gives an overview of the
proof technique (term erasure), Section 7.2 describes two-steps erasure, a novel technique that overcomes some shortcom-
ings of vanilla term erasure, Section 7.3 defines the erasure function and Section 7.5 concludes with the progress-insensitive
noninterference theorem (PINI).

7.1. Term erasure

Term erasure is a proof technique to prove noninterference in functional programs. It was firstly introduced by Li and
Zdancewic [35] and then used in a subsequent series of work on information-flow libraries [54,65,66,63,25]. The technique
relies on an erasure function on terms, which we denote by ε�A . This function essentially rewrites data above the attacker’s
security level, denoted by label �A , to the special syntax node •. Once ε�A is defined, the core of the proof technique consists
of proving an essential relationship about the erasure function and reduction steps. The diagram in Fig. 22 highlights this
intuition. It shows that erasing sensitive data from a term t and then taking a step (orange path) is the same as firstly
taking a step and then erasing sensitive data (cyan path), i.e., the diagram commutes. If term t leaks data whose sensitivity
label is above �A , then erasing all sensitive data first and then taking a step might not be the same as taking a step and
then erasing secret values—the sensitive data that has been leaked into t′ might remain in ε�A (t′) after all. From now on,
we refer to this relationship as the single-step simulation between regular terms and erased ones.

7.2. Two steps erasure

Unfortunately, the simulation property is often a too strong requirement: there are primitives of MAC that do not leak
intuitively, and yet there is no definition of ε�A that respects the commutativity of their simulation diagram. Typically, the
erasure function erases either too much and breaks simulation of some other steps, or too little and some secret data
remains after the erased term steps (see Section 10.1 for several concrete examples). To formally prove that those primitives
are in fact secure, we have devised a technique called two-steps erasure, which performs erasure in two steps—a novel
approach if compared with previous papers [64]. Rather than being a pure syntactic procedure, erasure is also performed by
additional evaluation rules, triggered by special constructs introduced by the erasure function. Erasure occurs in two stages
following the orange path in Fig. 22, firstly by rewriting a problematic primitive to an ad hoc construct (along the vertical
solid arrow), secondly through the reduction step of that construct (along the horizontal curly arrow). In the following, we
apply two-steps erasure systematically to gain the extra flexibility needed to prove that several advanced primitives, such
as new, write, join, satisfy single-step simulation.

7.3. Erasure function

We proceed to define the erasure function for the pure calculus. Since security levels are at the type-level, the erasure
function is type-driven. We write ε�A (t :: τ) for the erasure of term t with type τ of data not observable by the attacker.
We omit the type annotation when it is either irrelevant or clear from the context. Ground values (e.g., True) are unaf-
fected by the erasure function and, for most terms, the function is homomorphically applied, e.g., ε�A (t1 t2 :: τ) = ε�A(t1 ::
τ ′ → τ) ε�A(t2 :: τ ′). Fig. 23 shows the definition of the erasure functions for the interesting cases. The content of a resource
of type Labeled �H τ is rewritten to • if the label is sensitive, i.e., it is not visible to the attacker’s label (�H �� �A), otherwise
it is erased homomorphically.14 Similarly the erasure function rewrites the argument of label to •, if it gets labeled with a

14 The special term • can have any type τ . We give the typing rules for the extended calculus in Fig. C.52 in Appendix C.

160 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
ε�A (Labeled t :: Labeled �H τ) =
{

Labeled • if �H �� �A

Labeled ε�A (t) otherwise

ε�A (label t :: MAC �L (Labeled �H τ)) =
{

label • if �H �� �A

label ε�A (t) otherwise

Fig. 23. Term erasure for labeled values.

ε�A (〈�, t :: MAC �H τ 〉) =
{

〈ε�A (�),•〉 if �H �� �A

〈ε�A (�), ε�A (t)〉 otherwise

(a) Erasure for configuration.

ε�A (ts :: Memory �H) =
{

• if �H �� �A

map ε�A ts otherwise

(b) Erasure for memory.

ε�A (Ref n :: Ref �H τ) =
{

Ref • if �H �� �A

Ref n otherwise

ε�A (new t :: MAC �L (Ref �H τ)) =
{

new• ε�A (t) if �H �� �A

new ε�A (t) otherwise

ε�A (write t1 t2) =
{

write• ε�A (t1) ε�A (t2 :: Ref �H τ) if �H �� �A

write ε�A (t1) ε�A (t2) otherwise

(c) Erasure for references and memory primitives.

Fig. 24. Erasure for configuration, store and memory primitives.

sensitive label or otherwise erased homomorphically. Observe that this definition respects the commutativity of the diagram
in Fig. 22 for rule [Label].

Fig. 24 shows the erasure function for configuration, store and memory primitives. A configuration 〈�, t〉 is erased by
erasing the store � and by rewriting term t to •, if it represents a sensitive computation, i.e., if term t has type MAC �H τ ,
where (�H �� �A), and homomorphically otherwise, see Fig. 24a. It is worth pointing out that the erasure of a term
t :: MAC �H τ , where �H �� �A is homomorphic if the term is considered in isolation,15 but aggressively erased to • as
shown in Fig. 24a if paired with a store in a configuration. Intuitively the term alone is just the description of a secure
computation,16 which can be executed only if paired with a store in a configuration. The store � is erased pointwise by
erasing the memories at each security level, i.e., ε�A (�) = λ�.ε�A (�(�)), see Fig. 24b. The erasure function collapses sensitive
memories completely by rewriting them to • and erase non-sensitive ones homomorphically. Fig. 24c shows the erasure
of references, whose address is rewritten to • if sensitive, and primitive new and write, which is non-standard. Observe
that these primitive perform a write effect and due to the no write-down rule they can only affect memories at least as
sensitive as the current secure computation. When these operations constitute a sensitive write, i.e., they involve memories
not visible to the attacker (�H �� �A), we employ our two-steps erasure technique. Specifically the erasure function replaces
constructs new and write with special constructs new• and write• , whose semantics simulates that of the original terms
with a no-operation—see Fig. 25. In particular rule [New•] leaves the store � unchanged (the argument to new• is ignored),
and returns a dummy reference with address •. The same principle applies to write• . Rule [Write•1] evaluates the sec-
ond argument to a reference, simulating rule [Write1] and [Write•2] skips the write and just returns unit, simulating rule
[Write2]. The presence of these rules ensures that any sensitive write operation can be simulated in a lock-step fashion.

15 This is different from the conference version of this work [72], where ε�A (MAC �H τ :: t) = • if �H �� �A . Erasing such terms homomorphically simplifies
the formalization.
16 Observe that in [72] this was not the case, because rule [Unlabel2] and [Bind2] where given as pure reductions (�). By separating the pure semantics

from the top-level monadic semantics, we simplify the formalization of applicative functors, see Section 10.1.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 161
Address: a ::= · · · | •
Terms: t ::= · · · | new• t | write• t1 t2 | •

New•
〈�,new• t〉 −→ 〈�, return (Ref •)〉

Write•1
t2 � t′2

〈�,write• t1 t2〉 −→ 〈�,write• t1 t′2〉
Write•2
〈�,write• t1 (Ref t2)〉 −→ 〈�, return ()〉

(Hole)

• � •

Fig. 25. Semantics of •, new• and write• .

Terms: t ::= · · · | join• t

ε�A (join t :: MAC �L (Labeled �H τ)) =
{

join• ε�A (t) if �H �� �A

join ε�A (t) otherwise

ε�A (Labeledχ t :: Labeled �H τ) =
{

Labeled • if �H �� �A

Labeledχ ε�A (t) otherwise

(Join•)

〈�, join• t〉 −→ 〈�, return (Labeled •)〉

Fig. 26. Erasure of join and Labeledχ and semantics of join• .

Note that the semantics of new• and write• correctly captures the unchanged observational power of an attacker performing
sensitive write operations. We remark that •, new• and write• and their semantics rules are introduced in the calculus due
to mere technical reasons (as explained above)—they are not part of the surface syntax nor MAC.

Fig. 26 shows the erasure function for the remaining terms of the sequential calculus, that is join and Labeledχ . Using the
same technique that we have described previously, we replace join with special term join• , when it is used to run a sensitive
computation (�H �� �A). Erasure is then performed by means of rule [Join•], which immediately returns a dummy labeled
value (Labeled •) and the store unchanged. The rule captures the observational power of an attacker that runs a terminating
sensitive computation. Observe in particular that the rule does not need to run the sensitive computation: the store can only
be changed in sensitive memories (no write-down), which are not visible to the attacker, and the result of the computation
is irrelevant—the attacker cannot unlabel it (no read-up), because it is marked as sensitive. What about computations that
fail with an exception? In Fig. 26, the erasure function not only rewrites the content of a sensitive exception to •, as
expected, but it also masks its exceptional nature, by replacing the constructor Labeledχ with Labeled, thus ensuring that
rule [Join•] simulates rule [Joinχ] as well. Crucially, we have the freedom of choosing this definition without breaking
simulation, because no other construct can detect, either explicitly or implicitly, the difference. For instance, rule [Unlabelχ]
operates on labeled expressions containing exceptions. In this case, if the labeled exception is not visible to the attacker,
then unlabel must be performed in a non-visible computation as well, due to the typing rules. Operation unlabel then gets
rewritten to • and the step is then simulated by rule [Hole] instead. As a result of that, and unlike the approach taken by
Stefan et al. in [66], there are no sensitive labeled exceptions in erased terms.

7.4. Discussion

Term erasure We prove the single-step simulation directly over the small-step reduction relation. Instead, other works
[35,54,65,66,63,25] prove the simulation by relating operational semantics step reductions (upper part in Fig. 22) with
reductions on a �A-indexed small-step relation of the form c −→� ε�A (c′), i.e., a relation which applies erasure at every
reduction step. The reason for that is wired deeply in the dynamic nature of the enforcement. For instance, LIO considers
labels as terms, which makes difficult to know what data is sensitive until run-time. In contrast, MAC does not need such
an auxiliary construction because, due to its static nature, labels are not terms but rather type-level entities and therefore
known before execution. In this light, our erasure function can safely erase any sensitive information found in labeled terms
according to their type. Our small-step semantics satisfies type-preservation, i.e., reduction does not change types of terms,
therefore labels are unaffected by execution—freeing us from the need to use a special small-step relation like −→� .

162 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
Masking sensitive exceptions In previous work, labeled exceptions are erased by erasing their content according to their
label, but always preserving their exceptional state [66]. In contrast, we mask sensitive exceptions in erased programs. More
specifically, erasing sensitive exceptions always results in erased unexceptional values—in other words, there are no sensitive
exceptions in erased programs. Note that the simulation between terms and their erased counterparts guarantees that this
rewriting is sound. In particular sensitive exception handling routines, the only routines which can distinguish exceptional
from unexceptional sensitive values, gets also erased and do not occur in erased programs.

Memory It is known that dealing with dynamic allocation of memory makes it challenging to prove noninterference (e.g.,
[4,24]). One manner to tackle this technicality is by establishing a bijection between public memory addresses of the two
executions we want to relate and considering equality of public terms up to such notion [4]. Instead, and similar to other
work [25,64], we compartmentalize the memory into isolated labeled segments, one for each label of the lattice. This way,
allocation in one segment does not affect the others. The fact that GHC’s memory is non-split, does not compromise our
security guarantees, because references are part of MAC’s internals and they cannot be inspected or deallocated explicitly.
However, this memory model assumes infinite memory, since reference allocation never fails. This assumption is not realistic
for actual systems, where physical resources such as memory are finite.17 We conjecture that this gap between MAC and
the model presented here, i.e., memory exhaustion, constitutes a covert channel that can be used to leak secrets with the
same bandwidth as the termination covert channel [2]. In the conference version of this work [72], we have explored an
alternative way to prove single-step simulation for terms new and write consists in extending the semantics of memory
operations to node •, i.e., by defining | • | = • and •[• �→ t] = •. Thanks to two-steps erasure, we can prove simulation as
we did here, without recurring to a non-standard memory semantics. A non split-memory model requires some care when
proving noninterference, and in fact, we have identified problems with the proofs in manuscripts and articles related to LIO
[65,66]. We refer interested readers to Appendix B of our conference version [72] for details.

7.5. Progress-insensitive noninterference

The sequential calculus that we have presented satisfies progress-insensitive noninterference. The proof of this result is
based on two fundamental properties: single-step simulation and determinancy of the small step semantics. In the following,
we assume well-typed terms.

Proposition 1 (Single-step Simulation). If c1 −→ c2 then ε�A(c1) −→ ε�A (c2).

Proof (Sketch) By induction on the reduction steps and typing judgment. Sensitive computations are simulated by transition
〈�, •〉 −→ 〈�, •〉, obtained by lifting rule [Hole] with [Pure]. Non-sensitive computations are simulated by the same rule
that performs the non-erased transition, except when it involves some sensitive write operations, e.g., in rules [New, Write1 ,
Write2 , Join, Joinχ], which are simulated by rules [New• , Write•1 , Write•2 , Join•].

Proposition 2 (Determinancy). If c1 −→ c2 and c1 −→ c3 then c2 ≡ c3 .

Proof By standard structural induction on the reductions.18

Before stating progress-insensitive noninterference, we define low-equivalence for configurations.

Definition 1 (�A-equivalence). Two configurations c1 and c2 are indistinguishable from an attacker at security level �A , written
c1 ≈�A c2, if and only if ε�A (c1) ≡ ε�A (c2).

Using Proposition 1 and 2, we show that our semantics preserves �A-equivalence.

Proposition 3 (≈�A Preservation). If c1 ≈�A c2 , c1 −→ c′
1 , and c2 −→ c′

2 , then c′
1 ≈�A c′

2 .

By repeatedly applying Proposition 3, we prove progress-insensitive noninterference.

Theorem 1 (PINI). If c1 ≈�A c2 , c1 ⇓ c′
1 and c2 ⇓ c′

2 , then c′
1 ≈�A c′

2 .

17 Unrestricted access to shared resources often constitutes a covert channel in concurrent systems. The resources can be either hardware (e.g., physical
memory, caches [62] and multi-core processors) or software, such as components of the run-time system of a high-level language. These include the
scheduler [55,56] and the garbage collector [48] or the language evaluation strategy such as lazy evaluation [70,14].
18 Symbol ≡ denotes equivalence up to alpha equivalence in the calculus with named variables. In our mechanized proofs we use Bruijn indexes and we

obtain syntactic equality.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 163
leak :: Int → Labeled H Secret → MAC L ()

leak n secret = do

joinMAC (do bits ← unlabel secret
when (bits !! n) loop
return True)

printMAC n

Fig. 27. Termination leak.

magnify :: Labeled H Secret → MAC L ()

magnify secret =
for [0 . . |secret|]

(λn → fork (leak n secret))

Fig. 28. Attack magnification.

fork :: �L � �H ⇒ MAC �H () → MAC �L ()

Fig. 29. API for concurrency.

8. Concurrency

Every day, millions of users around the world use concurrent applications, such as email, chat rooms, social networks,
e-commerce platforms etc. These services are normally designed concurrently so that multithreaded servers can handle a
large number of user requests simultaneously by running multiple instances of the same application. MAC features concur-
rency and synchronization variables, which shows that the secure-by-construction programming model that we propose is
possible even in a concurrent setting. The extension is non-trivial: the possibility to run simultaneous MAC � computations
provides attackers with new means to bypass security checks.

8.1. Termination attack

In Section 7, we have proved that the sequential calculus satisfies progress-insensitive noninterference, a security condi-
tion that is too weak for concurrent systems. The key observation is the fact that a non-terminating sensitive computation
at security level �H embedded in a non-sensitive one at security level �L via join, will suppress public side-effects that fol-
lows join.19 Since the embedded computation is sensitive, the suppressed public events may depend on a secret, therefore
revealing a bit of secret information. To illustrate this point, we present the attack in Fig. 27. We assume that there exists a
function printMAC which prints an integer on a public channel. Observe how function leak may suppress subsequent public
events with infinite loops.

Unfortunately concurrency magnifies the bandwidth of the termination covert channel to be linear in the size (of bits)
of secrets [63],20 which permits to leak any secret systematically and efficiently. If a thread runs leak 0 secret, the code pub-
lishes 0 only if the first bit of secret is 0; otherwise it loops (see function loop) and it does not produce any public effect—see
Fig. 28. Similarly, a thread running leak 1 secret will leak the second bit of secret, while a thread running leak 2 secret will
leak the third bit of it and so on. An attacker might then leak the whole secret by spawning as many threads as bits in
the secret, i.e., |secret|, where each thread runs the one-bit attack described above and n matches the bit being leaked (e.g.,
n = 0 for the first bit, n = 1 for the second one, etc.).

To securely support concurrency, MAC forces programmers to decouple MAC computations with sensitive labels from
those performing observable side-effects—an approach also taken in LIO [63]. As a result, non-terminating computations
based on secrets cannot affect the outcome of public events. To achieve this behavior, MAC replaces join by fork—see Fig. 29.
Informally, it is secure to spawn sensitive computations (of type MAC �H ()) from non-sensitive ones (of type MAC �L ())
because that decision depends on data at level �L, which is no more sensitive (�L � �H). From now on, we call sensitive

19 If the physical execution time of a program depends on the value of the secret, then an attacker with an arbitrary precise stopwatch can deduce
information about the secret by timing the program. This covert channel is known as the external timing covert channel [10,20]. This article does not address
the external timing covert channel, which is a harder problem and for which mitigation techniques exist [3,75,76].
20 Furthermore, the presence of threads introduce the internal timing covert channel [61], a channel that gets exploited when, depending on secrets, the

timing behavior of threads affect the order of events performed on public-shared resources.
Since the same countermeasure closes both the internal timing and termination covert channels, we focus on the latter.

164 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
Scheduler state: ω
Pool Map : � ::= (� : Label) → (Pool �)
Thread Pool �: ts ::= [] | t : ts

Configuration: c ::= 〈ω,�,�〉
Sequential Event �: s ::= ∅ | fork(t)
Concurrent Event �: e ::= Step | Stuck | Done | Fork � n
Terms: t ::= · · · | fork t

(a) Syntax of concurrent calculus.

�(�)[n] = t1 〈�1,�(�)〉 −→s 〈�2, t2〉 ω1
(�,n,e)−−−−→ ω2

〈ω1,�1,�〉 ↪→ 〈ω2,�2,�(�)[n] := t2〉

(b) Scheme rule for concurrent semantics.

Fig. 30. Calculus with concurrency.

(SFork)

〈�, fork t〉 −→fork(t) 〈�, return ()〉
(Bind1)

〈�, t1〉 −→s 〈�′, t′1〉
〈�, t1 >>= t2〉 −→s 〈�′, t′1 >>= t2〉

(Catch1)

〈�, t1〉 −→s 〈�′, t′1〉
〈�, catch t1 t2〉 −→s 〈�′, catch t′1 t2〉

Fig. 31. Decorated Sequential Semantics (interesting rules).

(non-sensitive) threads those executing MAC computations with a label non-observable (observable) to the attacker. In the
two-point lattice, for example, threads running MAC H () computations are sensitive, while those running MAC L () are
observable by the attacker.

8.2. Calculus

Fig. 30 extends the calculus from Section 3 with concurrency. It introduces global configurations of the form 〈ω, �, �〉
composed by an abstract scheduler state ω, a store � and a pool map �, see Fig. 30a. Threads are secure computations of
type MAC � () and are organized in isolated thread pools according to their security label. A pool ts in the category Pool �

contains threads at security level � and is accessed exclusively through the pool map. We use the same notation for thread
pools and pool maps that we have defined to manipulate and extend stores and memories. Term fork t spawns thread t
and replaces join in the calculus. Without join, constructor Labeledχ becomes redundant and is also removed. Our calculus
includes also synchronization primitives [53], we refer to Appendix B for details.

Relation c1 ↪→ c2 denotes that concurrent configurations c1 steps to c2. Fig. 30b shows the scheme rule for c1 ↪→ c2 and
highlights the top-level common aspects to all the rules, which we detail later on. The relation ω1

(�,n,e)−−−−→ ω2 represents
a transition in the scheduler, that depending on the initial state ω1, decides to run thread identified by (�, n), which is
retrieved from the configuration (�(�)[n]) and executed. Concurrent events inform the scheduler about the evolution of the
global configuration, so that it can realize concrete scheduling policies and update its state accordingly. Event Step denotes
a single sequential step, event Fork � n informs the scheduler that the current thread has forked a new thread identified
by (�, n), event Done is generated when a thread has terminated and event Stuck denotes that a thread is stuck, e.g., on
a synchronization variable. Note that the scheduled thread determines, with its execution and with sequential event s,
triggered by the decorated sequential step, i.e., 〈�, t1〉 −→s 〈�, t2〉, which concurrent event e should be passed to the
scheduler. Lastly, the final configuration is composed by the updated scheduler state, i.e., ω2, the updated memory, i.e., �2
and the pool map updated with the executed thread, i.e., �(�)[n] := t2.

Decorated semantics Fig. 31 shows the interesting rules of the decorated semantics. Rule [SFork] is the only rule that
explicitly generates event fork(t) and context rules [Bind1 , Catch1] propagate the same event generated by the premise
step. All the other rules generate the empty event ∅. Note that, without context rules we could have given the semantics
of fork in the concurrent semantics directly.

Concurrent semantics Fig. 32 shows the actual semantics of the concurrent calculus, where each rule generates the appro-
priate event for the scheduler depending on the state of the thread scheduled and the sequential event. Concurrent rule

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 165
(Step)

ω
(�,n,Step)−−−−−→ ω′ 〈�,�(�)[n]〉 −→∅ 〈�′, t′〉

〈ω,�,�〉 ↪→ 〈ω′,�′,�(�)[n] := t′〉
(CFork)

ω
(�L,n,Fork �H m)−−−−−−−−−→ ω′ |�(�H)| = m 〈�,�(�L)[n]〉 −→fork(t::MAC �H ()) 〈�, t′〉 �′ = �(�H)[m �→ t]

〈ω,�,�〉 ↪→ 〈ω′,�,�′(�L)[n] := t′〉
(Done)

ω
(�,n,Done)−−−−−−→ ω′ �(�)[n] = v

〈ω,�,�〉 ↪→ 〈ω′,�,�〉

(Stuck)

ω
(�,n,Stuck)−−−−−−→ ω′ 〈�,�(�)[n]〉 �−→

〈ω,�,�〉 ↪→ 〈ω′,�,�〉

Fig. 32. Concurrent Semantics.

ω ::= (�,n) : ω | []

(�,n) : ω (�,n,Step)−−−−−→R R ω ++ [(�,n)]

(�,n) : ω (�,n,Stuck)−−−−−−→R R ω ++ [(�,n)] (�,n) : ω (�,n,Done)−−−−−−→R R ω

(�L,n1) : ω (�L,n1,Fork �H n2)−−−−−−−−−−→R R ω ++ [(�H,n2), (�L,n1)]

Fig. 33. Round-robin scheduler.

fmap :: (a → b) → Labeled � a → Labeled � b
(〈∗〉) :: Labeled � (a → b) → Labeled � a → Labeled � b
relabel :: �L � �H ⇒ Labeled �L a → Labeled �H a

Fig. 34. API of Flexible labeled values.

[Step] sends event Step to the scheduler, because the thread generates sequential event ∅, and then updates the store and
the thread pool accordingly. Rule [CFork] generates concurrent event Fork �H m, because the scheduled thread, identified
by label �L and number n, spawns a child thread with type t :: MAC �H (), generating event fork(t :: MAC �H ()). Observe
that the spawned thread is uniquely identified by the label �H and number m and placed in pool �(�H) in the free posi-
tion m = |�(�H)|. The extended pool map �′ is lastly updated with the parent thread. In rule [Done], �(�)[n] = v denotes
that the scheduled thread is a value, i.e. the computation has terminated, then the rule sends event Done to the scheduler
and leaves the store and pool map unchanged—terminated threads remain in pool map �. In rule [Stuck], the notation
�(�)[n]〉 �−→ denotes that the thread is stuck, i.e., it is not a value nor a redex. The scheduler is then informed by event
Stuck and the store � and pool map � are left unchanged.

8.3. Round-robin scheduler

Fig. 33 shows a round-robin scheduler with time-slot of one step, as an example of a scheduler that can be securely
employed in our concurrent calculus. The state of the scheduler is a queue that tracks the identifiers of alive threads
in the global configuration. A thread is uniquely identified by a pair consisting of a label, i.e., its security level, and a
thread identifier, i.e., its position in the corresponding thread pool. The queue is concretely represented by a list of thread
identifiers, whose first element identifies the next thread in the schedule. After executing one step (event Step), the current
thread has used up its time slot and is enqueued. If the scheduled thread cannot execute (event Stuck), it is skipped and
enqueued as well. When the current thread has terminated (event Done), the thread is not alive anymore and hence removed
from the queue. Message (�L, n1, Fork �H n2) informs the scheduler that thread (�L, n1) has spawned thread (�H, n2), which
is then enqueued with the current thread.

9. Flexible labeled values

In this section we extend the API of labeled values with new operations that allow to perform pure (side-effect free)
computations with labeled data—see Fig. 34. Observe that these primitives operate on labeled data without using label
and unlabel, thus avoiding incurring in the no read-up and no write-down restrictions and irrespectively of their security level.

166 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
isShort :: Labeled H String → Labeled H Bool
isShort = fmap (λpwd → |pwd| ≤ 5)

Fig. 35. A pure computation on a password.

For instance, a non-sensitive computation at security level �L can operate on sensitive labeled data at security level �H
using fmap, without forking threads in a concurrent setting, thus introducing flexibility when data is processed by pure
functions. We remark that, depending on the evaluation strategy of the host language (i.e. call-by-value or call-by-name),
a naive implementation of these primitives is vulnerable to leaks via non-termination—we elaborate on this point later, in
Section 9.3. Section 9.1 gives a broad description of these primitives, Section 9.2 shows their flexibility with an example,
and Section 9.3 formalizes them in our calculus.

9.1. Functors and relabeling

Intuitively, a functor is a container-like data structure which provides a method called fmap that applies (maps) a function
over its contents, while preserving its structure. Lists are the most canonical example of a functor data-structure. In this case,
fmap corresponds to the function map, which applies a function to each element of a list, e.g. fmap (+1) [1, 2, 3] ≡ [2, 3, 4].
A functor structure for labeled values allows to manipulate sensitive data without the need to explicitly extract it—see
Fig. 34. For instance, fmap (+1) d, where d :: Labeled H Int stores the number 42, produces the number 43 as a sensitive
labeled value.

To aggregate data at possibly different security levels MAC provides primitives relabel and (〈∗〉). Primitive relabel upgrades
the security level of a labeled value, which is useful to “lift” data to an upper bound of all the data involved in a computation
prior to combining them. Infix operator (〈∗〉) supports function application within a labeled value, i.e. it allows to feed
functions wrapped in a labeled value (Labeled � (a → b) with arguments also wrapped (Labeled � a), where aggregated
results get wrapped as well (Labeled � b).

Discussion In functional programming, operator (〈∗〉) is part of the applicative functors [39] interface, which in combination
with fmap, is used to map functions over functors. Note that if labeled values were full-fledged applicative functors, our
API would also include the primitive pure :: a → Labeled � a. This primitive brings arbitrary values into labeled values, which
might break the security principles enforced by MAC. Instead of pure, MAC centralizes the creation of labeled values in the
primitive label. Observe that, by using pure, a programmer could write a computation m :: MAC H (Labeled L a) where the
created labeled information is sensitive rather than public. We argue that this situation ignores the no-write down principle,
which might bring confusion among users of the library. More importantly, freely creating labeled values is not compatible
with the security notion of clearance, where secure computations have an upper bound on the kind of sensitive data they
can observe and generate. This notion becomes useful to address certain covert channels [74] as well as poison-pill attacks
[28]. While MAC does not yet currently support clearance, it is an interesting direction for future work.

9.2. Examples

The functor API of labeled values, i.e., fmap, is a handy tool that functional programmers use to code simple concise
functions elegantly. In Fig. 35, the 1-line function isShort checks whether the password is weak because it is too short. In the
anonymous function, pwd is the unlabeled password, and the expression |pwd| ≤ 5 checks if the password contains less than
5 characters. Observe that what the function computes is an attribute of the password, therefore it should be considered
sensitive. The API of fmap ensures that by preserving the label of the labeled argument, i.e., Labeled H String, in the resulting
labeled value, i.e., Labeled H Bool. Compare the program in Fig. 35 with the homonym program in Fig. 36 written without
fmap, but using join instead. Firstly, note that the imperative program has a different signature: it must necessarily involve
MAC computation in order to perform unlabel. Since the password lpwd is sensitive, i.e., it has type Labeled H String, only a
sensitive computation can unlabel it. Then, the program employs join to convert the sensitive computation into a sensitive
labeled value, which then gets wrapped in a non-sensitive computation, i.e., MAC L (Labeled H Bool). In a concurrent setting,
where join is not available, the whole program must be completely restructured, because threads have type MAC H () and
may not return any other result in a non-sensitive computation.

The strength of a password is often estimated by combining several syntactic aspects, such as its length or the presence
and number of special characters and digits. Suppose now that some third-party API function provides such syntactic checks
in the form of a MAC labeled pure function isWeak, see Fig. 37a. The type system guarantees that the function is secure,
because it has type String → Bool, however the third party has labeled it with its own label L′ , because it wants to strictly
control who can use it and under what terms. In order to keep the code of our password-checker isolated from that of the
third party, while still providing functionality to the user, we incorporate the new label L′ into the system and modify the
lattice as shown in Fig. 37c. The lattice reflects our mistrust over the third-party code by making L and L′ incomparable
elements. Thanks to MAC’s security guarantees, we can safely run third-party mistrusted code, i.e., isWeak, with the user’s

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 167
isShort :: Labeled H String → MAC L (Labeled H Bool)
isShort lpwd = do

join (do
pwd ← unlabel lpwd
return (|pwd| ≤ 5))

Fig. 36. Without fmap pure sensitive computations have an impure type.

isWeak :: Labeled L′ (String → Bool).

(a) Third party API.

f :: Labeled H String → Labeled H Bool
f pwd = (relabel isWeak) 〈∗〉 pwd

(b) Embedding mistrusted code.

H

L L′

(c) 3-Points Lattice.

Fig. 37. Combining heterogeneously labeled data.

Terms: t ::= · · · | fmap t1 t2 | t1 〈∗〉 t2 | relabel t

(Fmap)

fmap t1 t2 � (Labeled t1) 〈∗〉 t2

(〈∗〉1)

t1 � t′1
t1 〈∗〉 t2 � t1 〈∗〉 t2

(〈∗〉2)

t2 � t′2
(Labeled t1) 〈∗〉 t2 � (Labeled t1) 〈∗〉 t′2

(〈∗〉3)

(Labeled t1) 〈∗〉 (Labeled t2) � Labeled (t1 t2)

(Relabel1)

t � t′

relabel t � relabel t′

(Relabel2)

relabel (Labeled t) � Labeled t

Fig. 38. Calculus with flexible labeled values.

secret password, as shown in Fig. 37b. In particular relabel upgrades the function to isWeak to security level H (observe that
L′ � H in the lattice), and then applies the function to the password (pwd) using the applicative functor operator, i.e., 〈∗〉,
which protects the final result with label H.

9.3. Calculus

In Fig. 38, we extend our calculus with the primitives for flexible manipulation of labeled values, discussed in the
previous section. Firstly we add terms fmap t1 t2, t1 〈∗〉 t2 and relabel t, whose types correspond to those given in Fig. 34.
Primitive fmap is implemented in terms of 〈∗〉 in rule [Fmap], where the function is simply lifted to labeled value (every
applicative functor is also a functor). Rules [〈∗〉1 , 〈∗〉2] evaluate the first and second argument to a labeled value respectively,
which are then combined by rule [〈∗〉3], which applies the function to the argument and wraps the result in a labeled
value. Rule [Relabel1] evaluates its argument to weak-head normal form and rule [Relabel2] upgrades its label. Observe
that since labels are types relabel leaves the content of Labeled unchanged. We remark that these primitives are secure both
in the concurrent and sequential calculus, where their semantics must be adjusted to handle exceptional values as well, i.e.,
constructor Labeledχ , which is not present in the concurrent calculus. We refer to Appendix A for more details.

Discussion The API of flexible labeled values shown in Fig. 34 might seem insecure at first sight. In particular, it might
be counter-intuitive that a public computation might be able to manipulate a secret with an arbitrary function without
introducing potential leaks. Fig. 39 shows an attack that attempts to leak via non-termination the n-th bit of a secret.
Function leak applies function loopOn on the secret using fmap and then performs a non-sensitive side-effect, i.e., publish n,
which outputs the number n on a public channel. Interestingly, depending on the evaluation strategy of the language,
the attack might succeed. Specifically, under a call-by-value evaluation strategy, function loopOn passed to fmap is eagerly
applied to the secret, which might introduce a loop depending on the value of the n-th bit of the secret suppressing

168 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
leak :: Int → Labeled H Secret → MAC L ()

leak n secret = let result = fmap loopOn secret in publish n
where loopOn = λbits → if (bits !! n) then loop else bits

Fig. 39. Function leak attempts to leak the n-th bit of secret.

ε�A (〈ω, �, �〉) = 〈ε�A (ω), ε�A (�), ε�A (�)〉

a Erasure for concurrent configuration.

ε�A (ts :: Pool �H) =
{

• if �H �� �A

map ε�A ts otherwise

(b) Erasure for thread pool.

ε�A (fork t) =
{

fork• ε�A (t :: MAC �H ()) if �H �� �A

fork ε�A (t) otherwise

(c) Erasure of fork.

ε�A (fork(t :: MAC �H ())) =
{

fork•(ε�A (t)) if �H �� �A

fork(ε�A (t)) otherwise

(d) Erasure for sequential fork event.

ε�A (Fork �H n) =
{

Step if �H �� �A

Fork �H n otherwise

(e) Erasure for concurrent fork event.

Fig. 40. Erasure function for concurrent calculus.

the subsequent public action publish n. Under a call-by-name evaluation strategy, however, function loopOn does not get
immediately evaluated since result is not needed for computing publish n. Therefore, publish n gets executed independently
of the value of the secret, i.e., no termination leaks are introduced. Instead, loopOn gets evaluated when and only if result is
unlabeled and its content inspected—something that is possible only in a computation at security level at least as sensitive as
H because of the no-read up policy, where it is secure to do so. We remark that it is possible to close this termination channel
under a call-by-value semantics by defining Labeled with an explicit suspension, e.g. data Labeled � a = Labeled (() → a), and
corresponding forcing operation, so that fmap behaves lazily as desired.

10. Soundness of concurrent calculus

The concurrent calculus that we have presented satisfies progress sensitive noninterference. Section 10.1 extends the erasure
function for the concurrent calculus and for flexible labeled values. To obtain a parametric proof of noninterference, we
assume certain properties about the scheduler. Specifically, our proof is valid for deterministic schedulers which fulfill
progress and noninterference themselves, i.e., schedulers cannot leverage sensitive information in threads to determine
what to schedule next. Section 10.2 formalizes the requirements for such suitable schedulers. In Section 10.3 we prove a
scheduler-parametric progress-sensitive noninterference theorem for our calculus and we constructively obtain a proof that
MAC is secure with a round-robin scheduler by simply instantiating our main theorem.

10.1. Erasure function

Fig. 40 shows the erasure function for the concurrent calculus. A concurrent configuration 〈ω, �, �〉 is erased by erasing
each component, where the erasure of the scheduler state ω is scheduler specific (Fig. 40a). Similarly to store �, pool map

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 169
Seq. Effect: s ::= · · · | fork•(t)
Terms: t ::= · · · | fork• t

(SFork•)

〈�, fork• t〉 −→fork•(t) 〈�, return ()〉
(CFork•)

ω
(�L,n,Step)−−−−−−→ ω′ 〈�,�(�L)[n]〉 −→fork•(t) 〈�, t′〉

〈ω,�,�〉 ↪→ 〈ω′,�,�(�L)[n] := t′〉

Fig. 41. Sequential and concurrent semantics of fork• .

� is erased pointwise, i.e., ε�A (�) = λ�.ε�A (�(�)), and sensitive thread pools are rewritten to • and erased homomorphically
otherwise, just like memories (see Fig. 40b). Observe that primitive fork performs a write effect because it adds a new thread
to a thread pool, therefore we employ our two-steps erasure technique, just like we did for memory primitives. Specifically,
the erasure function replaces fork with fork• whenever it spawns a sensitive thread, which would write to a sensitive thread
pool (�H �� �A), see Fig. 40c. Sequential fork-events are erased similarly in order to ensure simulation, i.e., the erasure
function rewrites fork(t) to fork•(ε�A (t)) when t is sensitive—see Fig. 40d. Sequential event ∅ is not affected by the erasure
function. The erasure function masks spawning sensitive threads from the scheduler as well by erasing concurrent events
accordingly (Fig. 40e). In this case it rewrites event Fork �H n to Step whenever �H �� �A—the other events are not affected
by the erasure function. In the sequential calculus fork• is reduced by rule [SFork•], defined in Fig. 41, which simulates the
decorated reduction of fork. A new concurrent rule [CFork•] detects the sequential event fork•(t) and skips spawning the
thread, i.e., it does not insert it in the thread pool, and sends concurrent event Step to the scheduler, therefore simulating
precisely rule [CFork] when a non-sensitive thread of type MAC �L () forks a sensitive thread MAC �H ().

Context-aware erasure function A common challenge when reasoning about security of IFC libraries is that the sensitivity of
a term may depend on context where they are used. Consider for instance the primitive relabel, which upgrades the security
level of a labeled term. A public number, e.g., Labeled 42 :: Labeled L Int, should be treated as secret when in the context of
relabeling, e.g., relabel (Labeled 42) ::Labeled H Int. Doing otherwise, i.e., erasing the term homomorphically, breaks simulation
because sensitive data produced by relabel remains after erasure. For example relabel (Labeled 42) is homomorphically erased
to relabel εL(Labeled 42 :: Labeled L Int) which reduces on the orange path in Fig. 22 to Labeled 42 �≡ Labeled •, obtained on
the cyan path by εL(Labeled 42 :: Labeled H Int), thus breaking commutativity of rule [Relabel2].

Then, one might be tempted to stretch the definition of the erasure function to accommodate for the problematic
cases shown above. Unfortunately, this approach does not work, because it will necessary break simulation for other
cases. We support this statement by showing that this is the case for any arbitrary erasure function that is suitable for
relabel t :: Labeled H τ , where t :: Labeled L τ . Observe that we need a different behavior for our erasure function for public
labeled values when embedded in relabel, which we will capture in a different auxiliary erasure function ε′

L . Suppose we
defined εL(relabel t :: Labeled H τ) = relabel ε′

L(t :: Labeled L τ), for some suitable ε′
L that exhibits the desired behavior, e.g.,

ε′
L(Labeled 42 :: Labeled L Int) = Labeled •. Alas, while this definition respects simulation for step [Relabel2], introducing a

different erasure function in a context-sensitive way is fatal for simulation of beta reductions. More precisely, the original
erasure function is no longer homomorphic over substitution, i.e., ε�A([x / t1] t2) �≡ [x / ε�A (t1)] ε�A(t2)—an essential property
of the erasure function [35,54,65,66,25], without which step [Beta] does not commute anymore. Essentially, function ε�A is
oblivious to the context in which some term will be substituted inside the body of a function, thus breaking simulation.
As a counterexample, consider term (λx.relabel x) t, which is erased homomorphically, that is (λx.relabel x) εL(t), and then
beta-reduces on the orange path to relabel εL(t). On the cyan path term (λx.relabel x) t beta-reduces to relabel t and then
is context-sensitively erased to relabel ε′

L(t). Observe that relabel εL(t) �≡ relabel ε′
L(t) in general because ε′

L captures a dif-
ferent behavior than that exposed by εL , specifically for public labeled values, e.g., when t = Labeled 42 :: Labeled L Int. To
the best of our knowledge, this work is the first to point out this issue. Furthermore, we identify problematic cases in the
formalization of previous work on LIO [65,63] which lead to breaking the one-step simulation—see details in Appendix A
of [72]. By using the two-step erasure technique, we can craft a sound erasure function that is homomorphic over substitution
and is context-aware. The erasure function replaces relabel with relabel• , rule [Relabel•1] simulates rule [Relabel1] and rule
[Relabel•2] performs context-sensitive erasure by producing Labeled •, see Fig. 43. Even though the actual erasure is done by
rule [Relabel•2], we still have to erase the argument of relabel, or else the erasure function would not be homomorphic over
substitution. Simulation of the context rule [Relabel•] follows then by inductive hypothesis.

Primitive 〈∗〉 raises a similar problem. To illustrate this point, consider the term (Labeled t1) 〈∗〉 (Labeled t2) of type
Labeled H Int, which reduces to Labeled (t1 t2) according to rule [〈∗〉3].21 Following the orange path and applying the erasure

21 In our conference version [71], rule [〈∗〉3] raises a problem also for public labeled values, because the erasure function is not homomorphic over
function application, in particular εL(t1 t2 :: MAC H τ) = • �≡ εL(t1) εL(t2). To avoid this problem, we replace function application with substitution, i.e.

170 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
ε�A (fmap t1 t2 :: Labeled �H τ) =
{

fmap• ε�A (t1) ε�A (t2) if �H �� �A

fmap ε�A (t1) ε�A (t2) otherwise

ε�A (t1 〈∗〉 t2 :: Labeled �H τ) =
{
ε�A (t1) 〈∗〉• ε�A (t2) if �H �� �A

ε�A (t1) 〈∗〉 ε�A (t2) otherwise

ε�A (relabel t :: Labeled �H τ) =
{

relabel• ε�A (t) if �H �� �A

relabel ε�A (t) otherwise

Fig. 42. Erasure of flexible labeled values.

Terms: t ::= | fmap• t1 t2 | t1 〈∗〉• t2 | relabel• t

(Fmap•)

fmap• t1 t2 � (Labeled •) 〈∗〉• t2

(〈∗〉•1)

t1 � t′1
t1 〈∗〉• t2 � t′1 〈∗〉• t2

(〈∗〉•2)

t2 � t′2
(Labeled t1) 〈∗〉• t2 � (Labeled t1) 〈∗〉• t′2

(〈∗〉•3)

(Labeled t1) 〈∗〉• (Labeled t2) � Labeled •
(Relabel•1)

t � t′

relabel• t � relabel• t′

(Relabel•2)

relabel• (Labeled t) � Labeled •

Fig. 43. Semantics of fork• , 〈∗〉• and relabel• .

function homomorphically, we get that εL(Labeled t1) 〈∗〉 εL(Labeled t2), that is (Labeled •) 〈∗〉 (Labeled •) which reduces to
Labeled (• •) �≡ Labeled •, obtained instead by first reducing the term and then erasing following the cyan path. Observe that
rule [〈∗〉3] produces a function application within a Labeled constructor, therefore it cannot possibly commute for sensitive
labeled values, which always rewrite the content of a labeled value to •. We then prove simulation using two-steps erasure
again. Specifically, the erasure function replaces 〈∗〉 with 〈∗〉• , see Fig. 42, and erasure is then performed by means of its
semantics rules [〈∗〉•1 ,〈∗〉•2 , 〈∗〉•3], listed in Fig. 43, which simulate rules [〈∗〉1 ,〈∗〉2 , 〈∗〉3] respectively. Observe that [〈∗〉•3]
ignores the content of the labeled values and simply yields Labeled • to enforce the simulation property. Since fmap is
defined in terms of 〈∗〉, we likewise replace it with new node fmap• and give its semantics in terms of 〈∗〉• , see rule
[Fmap•]. We remark that fmap• , 〈∗〉• and relabel• and their semantics rules are introduced in the calculus as a device to
prove simulation (they only occur in erased programs), they are not part of the surface syntax nor MAC.

10.2. Scheduler requirements

We take advantage of the level of abstraction of our concurrent semantics and make our proof parametric in the sched-
uler state and its semantics. For this reason, we study what are the sufficient requirements of a scheduler to guarantee PSNI
in our calculus. We evaluate our characterization of schedulers by formalizing a round-robin scheduler, similar to that used
by GHC’s run-time system [38], and show that it satisfies the requirements listed in this section.

Our proof is valid for schedulers which are (i) deterministic, (ii) fulfill a restricted variant of single-step simulation
from Fig. 22, i.e., schedulers may not leverage on sensitive information to determine what observable thread should be
scheduled next, (iii) do not leak secret information when scheduling a sensitive threads and (iv) guarantee progress of
observable threads, i.e., execution of observable threads cannot be indefinitely deferred by sensitive ones. In the following,
we use labels �L and �H to denote a security level that is visible resp. invisible to the attacker, i.e., �L � �A and �H �� �A .
Furthermore, we call a scheduler step that runs a non-sensitive thread, e.g., ω1

(�L,n,e)−−−−→ ω2, public or low step. Similarly we
refer to a run of a sensitive thread, e.g., ω1

(�H,n,e)−−−−−→ ω2, as secret or high step. We formally characterize schedulers for which
our security guarantees apply.

(Labeled (λx.t1)) 〈∗〉 (Labeled t2) � Labeled (t1 [x / t2]), at the price of having a non-standard stricter semantics for 〈∗〉. The erasure function presented here
is homomorphic over function application and the semantics of 〈∗〉 is standard.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 171
Requirement 1.

i) Determinancy: if ω1
(�,n,e)−−−−→ ω2 and ω1

(�′,n′,e)−−−−−→ ω′
2 , then � ≡ �′ , n ≡ n′ and ω2 ≡ ω′

2 .

ii) Restricted Simulation: if ω1
(�L,n,e)−−−−→ ω2 then ε�A(ω1)

(�L,n,ε�A (e))−−−−−−−→ ε�A (ω2).

iii) No Observable Effect: if ω1
(�H,n,e)−−−−−→ ω2 then ω1 ≈�A ω2 .

iv) Progress: If ω1
(�L,n,e)−−−−→ ω′

1 and ω1 ≈�A ω2 then ω2 will schedule thread (�L, n) eventually.

Observe that determinancy of the scheduler is essential for determinancy of the concurrent semantics—after all, the
scheduler state is part of the concurrent configuration. As it is expected from the concurrent calculus, we assume that
the abstract scheduler satisfies a variant of the single-step simulation restricted to low steps.22 “No observable effect”, i.e.,
Requirement (iii), ensures that high steps do not leak sensitive information in the scheduler state—we extend �A-equivalence
to scheduler states, that is ω1 ≈�A ω2 if and only if ε�A (ω1) ≡ ε�A (ω2). Observe that the erasure function of the scheduler
state is scheduler specific, and thus we leave it unspecified. Requirement (iv) avoids revealing sensitive data by observing
progress of non-sensitive threads via public events. Intuitively, a concurrent program might reveal sensitive information by
forcing a sensitive thread to induce starvation of a non-sensitive thread, thus potentially suppressing subsequent public
events. The formal definition of eventually is technically interesting. Since we wish to make our proof modular, our model is
parametric in the scheduler, which is considered in isolation from the thread pool. In this situation, we cannot predict
how long the high threads are going to run, because the scheduler is decoupled from the thread pool. We overcome
this technicality by indexing the �A-equivalence relation between scheduler states. We then use the indexes to encode a
single-step progress principle, i.e., Requirement 2 (explained below), and to exclude starvation, by making the progress
principle a well-founded induction principle, i.e., Requirement 3 (explained below).

Definition 2 (Annotated Scheduler �A-equivalence). Two states are (i, j)-�A-equivalent, written ω1 ≈(i,j)
�A

ω2 if and only if ω1 ≈�A

ω2 and i and j are upper bounds over the number of sensitive threads scheduled before the next common non-sensitive
thread in ω1 and ω2, respectively.

The relation ω1 ≈(i,j)
�A

ω2 captures an alignment measure of two �A-equivalent states and how close they are to schedule
the next common non-sensitive thread. Informally, our noninterference proof excludes starvation of observable threads, that
can leak information to the attacker, by ensuring that two �A-equivalent schedulers will eventually align and schedule the
same non-sensitive thread, regardless of how the global configuration evolves. Specifically, our calculus requires that the
indexes in ω1 ≈(i,j)

�A
ω2 strictly decreases after every reduction. We capture the interplay between the (i, j)-�A-equivalent

relationship and the evolution of schedulers by establishing unwinding-like conditions [22].

Requirement 2 (Progress). Given ω1
(�L,n,e)−−−−→ ω′

1 , and ω1 ≈(i,j)
�A

ω2 then:

• If j = 0, then ∀ e′ ∃ ω′
2: ω2

(�L,n,e′)−−−−−→ ω′
2 .

• If j > 0, then there exists �H, n′ such that ∀ e′ ∃ ω′
2: ω2

(�H,n′,e′)−−−−−→ ω′
2 .

If a scheduler runs a public thread, then a (i, j)-�A-equivalent scheduler runs at most j secret threads before the same
public thread. In particular, if j = 0 then the two schedules align and the threads generate �A-equivalent events,23 otherwise
a secret thread is run (j > 0). In the second case the scheduler cannot predict what event will be triggered by thread (�H, n′),
therefore, as a conservative approximation, the step may involve any possible event e′ , which in addition determines the final
state ω′

2. Conceptually, by repeatedly applying Requirement 2, Requirement (iii) and by transitivity of ≈�A , we could build
the chain of high steps that precedes the common low-step. However, this recursion scheme is not well founded in general,
because it does not exclude starvation, e.g., for non-preemptive schedulers [25]. The following requirement guarantees instead
that such chain is finite, i.e., that public threads cannot starve indefinitely due to secret threads.

Requirement 3 (No Starvation). Given ω1
(�L,n,e)−−−−→ ω′

1 , ω2
(�H,n′,e′)−−−−−→ ω′

2 , such that ω1 ≈(i,j)
�A

ω2 , then there exist j′ such that j′ < j

and ω′
1 ≈(i,j′)

�A
ω′

2 .

22 Different to our conference version [72], we do not require lock-step simulation for high scheduler steps, i.e., when �H �� �A , for which is instead
sufficient to show indistinguishability. This choice gives the same security guarantees and simplifies the formalization of a non-interfering scheduler.
23 In our conference version [72], the requirement expects the same event e in the other step, which is too strict. Intuitively an event Fork �H n contains

a bit of secret information, namely the number n of secret threads, which could differ in the other run. It follows from restricted simulation, i.e., Require-
ment 1.ii, that the two events are in fact �A-equivalent, i.e., e ≈�A e′ , defined as ε�A (e) ≡ ε�A (e′). Note that �A-equivalence captures this scenario precisely:
Fork �H n ≈�A Fork �H n′ , because ε�A (Fork �H n) ≡ ε�A (Fork �H n′) ≡ Step.

172 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
ω ω′

ω0 ω1 · · · ω j ω′
j1 2 j

Fig. 44. Two (i, j)-�A-equivalent schedulers align in at most j steps.

[] ≈(0,0)
�A

[] ω1 ≈(i,j)
�A

ω2

(�L,n) : ω1 ≈(0,0)
�A

(�L,n) : ω2

ω1 ≈(i,j)
�A

ω2

(�H,n) : ω1 ≈(i+1,j)
�A

ω2

ω1 ≈(i,j)
�A

ω2

ω1 ≈(i,j+1)
�A

(�H,n) : ω2

Fig. 45. Annotated �A-equivalence (Round-robin).

Intuitively, the combination of Requirement 2 and 3 ensures that the two schedules will align eventually.24 Fig. 44
highlights this intuition. The colored scheduler steps denote running either a secret (red for �H) or a public (blue for �L)
thread respectively and the dashed line links �A-equivalent states. Given two initial scheduler states such that ω0 ≈(i,j)

�A
ω,

where ω runs a public thread, progress, i.e., Requirement 2, guarantees that ω0 steps to ω1, running a secret thread. By
Requirement 3, it follows that ω1 ≈(i,j′)

�A
ω, where j′ < j. After repeating this mechanism at most j times (j is strictly smaller

after each step), we obtain ω j ≈(i,0)
�A

ω, from which it follows that ω j runs the same thread, stepping to ω′
j . We conclude

that ω′
j ≈�A ω′ by low-simulation and determinism, i.e., Requirements (i) and (ii).

Definition 3 (Non-interfering Scheduler). A scheduler is non-interfering if it is satisfies Requirements 1, 2, and 3.

Round robin We show that round-robin fulfills all the requirements and hence is an eligible candidate scheduler for our
calculus. Firstly, it is immediately evident from the reductions that round-robin is deterministic, i.e., it fulfills scheduler
requirement (i). We define the erasure function to filter out the identifiers of threads non observable to the attacker, i.e.,
ε�A(s) = filter (λ(�, n) → � � �A) s. By induction on the scheduler reduction, it follows that round-robin satisfies restricted
simulation, no observable effect, i.e., scheduler requirements (ii) and (iii). Before proving progress Fig. 45 defines annotated
�A-equivalence. In particular, if ω1 ≈(0,0)

�A
ω2 for non-empty states ω1 and ω2, then round-robin will schedule the same low

thread in the next reduction. Lastly round-robin is starvation-free because it has a finite time-slot and is preemptive.

Proposition 4 (RR non-interfering). Round-robin is non-interfering.

10.3. Progress-sensitive Noninterference

The proof of progress-sensitive noninterference relies on lemmas similar to those listed in Requirement 1. In the fol-
lowing, we write c1 ↪→(�,n) c2 to denote that configuration c1 steps to c2 executing thread (�, n) and we use �L and �H
to denote �L � �A and �H �� �A respectively. As usual, we write ↪→
 for the reflexive transitive closure of ↪→. We write
c1 ≈�A c2 if and only if ε�A (c1) ≡ ε�A (c2), to denote �A-equivalence between configurations and we lift scheduler annotations,
i.e., c1 ≈(i,j)

�A
c2 if and only if c1 ≈�A c2 and ω1 ≈(i,j)

�A
ω2.

Proposition 5.

i) Determinancy: if c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3 .
ii) Restricted Simulation: if c1 ↪→(�L,n) c2 then ε�A(c1) ↪→(�L,n) ε�A (c2).

iii) No Observable Effect: if c1 ↪→(�H,n) c2 then c1 ≈�A c2 .

Using Proposition 5, we show that the concurrent semantics preserves �A-equivalence.

Proposition 6 (≈�A Preservation). If c1 ≈�A c2 and c1 ↪→(�,n) c′
1 , then

24 In our conference version [72], Requirements 2 and 3 are combined, but technically we need to split these two requirements. Progress of the concurrent
configuration requires the former, while the latter ensures a well-founded inductive principle.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 173
c1 c′
1

ε�A (c1) ε�A (c′
1)

ε�A (c2) ε�A (c′
2)

c2 c′
2

(�L,n)

≡ ≡

(�L,n)

Fig. 46. 1-Step Progress.

• If � �� �A, then c′
1 ≈�A c2 .

• If � � �A and c2 ↪→(�,n) c′
2 , then c′

1 ≈�A c′
2 .

Progress sensitive noninterference requires to prove that �A-equivalence is preserved between two �A-equivalent config-
urations, even if only one steps. When a secret thread steps, the theorem follows easily by Proposition 6 and transitivity.
The interesting case of the proof consists in showing progress of a public thread, which is simulated by the execution of
multiple high threads followed by the same public thread, which corresponds to the diagram in Fig. 44. Intuitively we prove
progress by firstly simulating the secret threads that precede the public thread in the schedule (scheduler progress), then by
simulating the common public thread under erasure (restricted simulation) and lastly reconstructing from the erased step the
original step in the other public thread. Before proving this proposition, we have to restrict configurations c1 and c2 to be
valid—we explain why we need this assumption later on.

Definition 4 (Valid Configuration). A concurrent configuration c is valid if and only if it does not contain any invalid memory
reference, node • and terms new• , write• , fork• , fmap• , 〈∗〉• , relabel• .

Assuming valid configurations, we can prove 1-Step simulation, i.e., the reconstruction of the other public step.

Proposition 7 (1-Step Progress). If c1 ≈(i,0)
�A

c2 , c1 ↪→(�L,n) c′
1 and c2 is valid, then there exists c′

2 such that c2 ↪→(�L,n) c′
2 .

The diagram in Fig. 46 shows our proof technique. Since the initial configurations are �A-equivalent, i.e., c1 ≈(i,0)
�A

c2, then
the erased initial configurations are equivalent, i.e., ε�A (c1) ≡ ε�A(c2). Furthermore, since the schedulers in c1 and c2 are
aligned (the second index in the annotated �A-equivalence is 0), the fact that the first scheduler runs thread (�L, n), implies
that the second runs it as well (Proposition 2). Given c1 ↪→(�L,n) c′

1 we obtain the erased reduction step ε�A (c1) ↪→(�L,m)

ε�A(c′
1), by restricted simulation and we then reconstruct c′

2 and the other step c2 ↪→(�L,n) c′
2 from the step ε�A (c1) ↪→(�L,m)

ε�A(c′
1), ε�A(c1) ≡ ε�A(c2) and the assumption that c1 and c2 are valid.

Validity We explain by means of an example why we need to assume that the configurations c1 and c2 are valid. The
fact that non-sensitive threads can write to sensitive resources, such as memories, complicates the reconstruction of a
non-erased reduction step from an erased one, because, intuitively, too much information has been erased. For instance,
since the erasure function rewrites secret memories and addresses to •, we need to assume that the other program is in a
“consistent state” in order to replay sensitive write memory-operations. Concretely, consider a public thread performing a
secret write, i.e., 〈�, write (Ref n) t〉 −→ 〈�(�H)[n] := t, return ()〉. A low-equivalent program will be 〈�′, write (Ref n′) t′〉, for
some store �′ , address n′ and term t′ such that � ≈�A �′ , Ref n ≈�A Ref n′ and t ≈�A t′ . Unfortunately, there is no guarantee
that n′ is a valid address in memory �′(�H). Observe that the erasure function maps is non-injective: it maps both valid
and invalid references to Ref •, therefore knowing that n is defined in �(�H) does not guarantee that n′ is valid in �′(�H).
Before proving progress, we show that our semantics preserves validity.

Proposition 8 (Valid Preservation). If c1 is valid and c1 ↪→ c2 then c2 is valid.

Proposition 9 (Progress). If c1 ≈(i,j)
�A

c2 , c1 ↪→(�L,n) c′
1 , and c1 , c2 are valid configurations, then there exists c′

2 and c′′
2 such that c2 ↪→

c′
2 ↪→(�L,n) c′′

2 .

Proof (Sketch) The proof is driven by scheduler progress, i.e. Requirement 2, which determines what thread is scheduled
next.

174 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
• (j > 0) The scheduler runs a secret thread, which is executed leading to the next intermediate configuration c′
2, i.e.

c2 ↪→(�H,n′) c′
2. By no starvation, i.e., Requirement 3, and no observable effect, i.e. Proposition 5.iii, it follows that c1 ≈(i,j′)

�A
c′

2
for some j′ < j and we then apply induction.

• (j = 0) The scheduler runs public thread (�L, n) and the proposition follows from Proposition 7.

By combining progress, i.e., Proposition 9 and �A-equivalence preservation, i.e., Proposition 6, we prove PSNI.

Theorem 2 (Progress-sensitive noninterference). Given valid global configurations c1, c′
1 , c2 , and a non-interfering scheduler, if c1 ≈�A

c2 and c1 ↪→ c′
1 , then there exists c′

2 such that c2 ↪→
 c′
2 and c2 ≈�A c′

2 .

We conclude with a corollary that asserts that MAC satisfies PSNI.

Corollary 1. MAC satisfies PSNI.

Proof By applying Theorem 2 and Proposition 4.

11. Related work

Mechanized proofs Russo presents the library MAC as a functional pearl and relies on its simplicity to convince readers
about its correctness [53]. This work bridges the gap on MAC’s lack of formal guarantees and exhibits interesting insights on
the proofs of its soundness. LIO is a library structurally similar to MAC but dynamically enforcing IFC [65]. The core calculus
of LIO, i.e., side-effect free computations together with exception handling, has been modeled in the Coq proof assistant [66].
Different from our work, these mechanized proofs do not simplify the treatment of sensitive exceptions by masking them in
erased programs. In parallel to [66], Breeze [28] is a pure programming language that explores the design space of IFC and
exceptions, which is accompanied with mechanized proofs in Coq. Bichhawat et al. develop an intra-procedural analysis for
JavaScript bytecode, which prevents implict leaks in presence of exceptions and unstructured control flow constructs [9].

Parametricity Parametric polymorphism prevents a polymorphic function from inspecting its argument. In a similar manner,
a non-interferent program cannot change its observable behavior depending on the secret. Researchers have explored further
this deep and subtle connection by obtaining a translation from DCC [1] to System F in order to leverage on parametricity
[69]. Shikuma and Igarashi [59] points out an error on such translation and gives a counterexample of a leaked translation.
Recently, Bowman and Ahmed [11] provide a sound translation from DCC into System F.

Concurrency Considering IFC for a general scheduler could lead to refinements attacks. In this light, Russo and Sabelfeld
provide termination-insensitive noninterference for a wide-class of deterministic schedulers [55]. Barthe et al. adopt this
idea for Java-like bytecode [5]. Although we also consider deterministic schedulers, our security guarantees are stronger
by considering leaks of information via abnormal termination. Heule et al. describe how to retrofit IFC in a programming
language with sandboxes [25]. Similar to our work, their soundness proofs are parametric on deterministic schedulers and
provide progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out
formal requirements on schedulers capable to guarantee thread progress. A series of work for π -calculus consider non-
deterministic schedulers while providing progress-sensitive noninterference [26,32,27,49]. Mantel and Sudbrock propose a
novel scheduler-independent trace-based information-flow control property for multi-threaded programs and identify the
class of robust scheduler, which satisfy that condition [37]. While there are some similarities between the requirements
of those robust schedulers and those discussed here in Section 10.2, that work assumes terminating threads, while our
progress-sensitive noninterference theorem does not.

Security libraries Li and Zdancewic’s seminal work [34] shows how the structure arrows can provide IFC as a library in
Haskell. Tsai et al. extend that work to support concurrency and data with heterogeneous labels [68]. Russo et al. implement
the security library SecLib using a simpler structure than arrows [54], i.e. monads—rather than labeled values, this work
introduces a monad which statically label side-effect free values. The security library LIO [64,63] enforces IFC for both
sequential and concurrent settings dynamically. LIO presents operations similar to fmap and 〈∗〉 for labeled values with
differences in the returning type due to LIO’s checks for clearence—this work provides a foundation to analyze the security
implications of such primitives. Mechanized proofs for LIO are given only for its core sequential calculus [64]. Inspired by
SecLib and LIO’s designs, MAC leverages Haskell’s type system to enforce IFC [53] statically. Unlike LIO, data-dependent
security policies cannot be expressed in MAC, due to its static nature. This limitation is addressed by HLIO, which provides
a hybrid approach by means of some advanced Haskell’s type-system features: IFC is statically enforced while allowing
the programmers to defer selected security checks until run-time [16]. Several works have also investigated the use of
dependent types to precisely capture the nature of data-dependent security policies [36,44,47,42].

Our work studies the security implications of extending LIO, MAC, and HLIO with a rich structure for labeled values.
Devriese and Piessens provide a monad transformer to extend imperative-like APIs with support for IFC in Haskell [18].

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 175
Jaskelioff and Russo implements a library which dynamically enforces IFC using secure multi-execution (SME) [30]—a tech-
nique that runs programs multiple times (once per security level) and varies the semantics of inputs and outputs to protect
confidentiality. Rather than running multiple copies of a program, Schmitz et al. provide a library with faceted values [58],
where values present different behavior according to the privilege of the observer. Different from the work above, we
present a fully-fledged mechanized proof for our sequential and concurrent calculus which includes references, synchro-
nization variables, and exceptions.

IFC tools IFC research has produced compilers capable of preserving confidentiality of data: Jif [46] and Paragon [12] (based
on Java), and FlowCaml [60] (based on Caml). The SPARK language presents a IFC analysis which has been extended to
guarantee progress-sensitive non-inference [51]. JSFlow [23] is one of the state-of-the-art IFC system for the web (based
on JavaScript). These tools preserve confidentiality in a fine-grained fashion where every piece of data is explicitly label.
Specifically, there is no abstract data type to label data, so our results cannot directly apply to them.

Operating systems MAC borrows ideas from Mandatory Access Control (MAC) [7,8] and phrases them into a programming
language setting. Although originated in the 70s, there are modern manifestations of this idea [74,33,43], applied to di-
verse scenarios, like the web [67,6] and mobile devices [31,13]. Due to its complexity, it is not surprising that OS-based
MAC systems lack accompanying soundness guarantees or mechanized proofs—seL4 being the exception [43]. The level of
abstractions handled by MAC and OSes are quite different, thus making uncertain how our insights could help to formalize
OS-based MAC systems. MAC systems [7] assign a label with an entire OS process—settling a single policy for all the data
handled by it. In principle, it would be possible to extend such MAC-like systems to include a notion of labeled values
with the functor structure as well as the relabeling primitive proposed by this work. For instance, COWL [67] presents the
notion of labeled blob and labeled XHR which is isomorphic to the notion of labeled values, thus making possible to apply
our results. Furthermore, because many MAC-like system often ignore termination leaks [19,74], there is no need to use
call-by-name evaluation to obtain security guarantees.

12. Conclusion

We present a full-fledged formalization of MAC in Agda, where noninterference is proven by term erasure. To the best of
our knowledge, this is the first work of its kind for IFC libraries in Haskell, both for completeness and number of features
included in the model. Thanks to our mechanized proofs, we identify challenges arising from erasing terms depending on
the context where they appear and propose two-steps erasure—an effective technique to systematically deal with such cases.
We present an extension of MAC that provides labeled values with an applicative functor-like structure and a relabeling
operation, enabling convenient and expressive manipulation of labeled values using side effect-free code and saving pro-
grammers from introducing unnecessary sub-computations, e.g., forking a thread. We have proved this extension secure
both in sequential and concurrent settings, using two-steps erasure. This work bridges the gap between existing IFC libraries
(which focus on side-effecting code) and the usual Haskell programming model (which favors pure code), with a view to
making IFC in Haskell more practical. Our mechanized proofs also make explicit sufficient scheduler requirements to guaran-
tee PSNI—something that has been only treated informally before [63,25]. As a result, our security proofs for the concurrent
calculus are valid for a wide-range of deterministic schedulers. It is our hope that the insights gained by this work will help
to formally verify other IFC programming languages.

Appendix A. Flexible labeled values in sequential calculus

In this section, we extend the semantics of flexible labeled values described in Section 9 for the sequential setting, where
labeled values have an additional constructor, namely Labeledχ . This constructor is used to prevent sensitive exceptions from
leaking into a non-sensitive context, when embedding a secret computation in a public one using join. The semantics of the
primitives relabel and 〈∗〉 handle exceptional values, by propagating the exceptions, which is exactly what happens in rule
[Relabelχ]—see Fig. A.47. Rule [Relabel•χ] simulates rule [Relabelχ] in the sequential setting, specifically when a public
exceptional labeled value gets relabeled with a sensitive label (note that the resulting erased, i.e., Labeled •, is sensitive and
contains no exception). Rules [〈∗〉χ 1 , 〈∗〉χ 2 , 〈∗〉χ 3 , 〈∗〉χ 4] yield (propagate) the first exception observed when 〈∗〉 is applied
to exceptional values. In particular, rule [〈∗〉χ 3] applies when both arguments are exceptions and returns the first one
triggered during evaluation, i.e., the left one. Rules [〈∗〉χ 1 , 〈∗〉χ 2 , 〈∗〉χ 3] are somewhat unusual. In particular, even though
our language is non-strict, the rules give a strict semantics to 〈∗〉—note that they reduce unnecessarily the second term,
even though it is not used in the final result. It would have been more natural, in this context, to replace them by a single
rule Labeledχ t1 〈∗〉 t2 � Labeledχ t1, that does not evaluate the second term. The two alternative semantics are equivalent,
except for abnormal non-terminating terms, that we denote with ⊥. With strict semantics, the term (Labeledχ t1) 〈∗〉 ⊥
results in ⊥, because it loops due to rule [〈∗〉χ 1], instead it terminates with a non-strict semantics, i.e., (Labeledχ t1) 〈∗〉 ⊥ �
(Labeledχ t1). We remark that the two semantics are equivalent for terminating programs and therefore security is not at
stake: the sequential calculus is already termination insensitive. Technically, we give a strict definition of 〈∗〉, because erasing
sensitive exceptions are replaced by non-exceptional values, i.e., εL(Labeledχ t :: Labeled H τ) = Labeled •. Therefore, we could
not prove simulation for a non-strict applicative functor, since, crucially, it is sensitive to exceptions. While these behavior

176 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
(Relabelχ)

relabel (Labeledχ t) � Labeledχ t

(Relabel•χ)

relabel• (Labeledχ t) � Labeled •
(〈∗〉χ 1)

t2 � t′2
(Labeledχ t1) 〈∗〉 t2 � (Labeledχ t1) 〈∗〉 t′2

(〈∗〉χ 2)

(Labeledχ t1) 〈∗〉 (Labeled t2) � Labeledχ t1

(〈∗〉χ 3)

(Labeledχ t1) 〈∗〉 (Labeledχ t2) � Labeledχ t1

(〈∗〉χ 4)

(Labeled t1) 〈∗〉 (Labeledχ t2) � Labeledχ t2

Fig. A.47. Semantics of flexible labeled values with exceptions.

data MVar � τ

newMVar :: �L � �H ⇒ MAC �L (MVar �H τ)

takeMVar :: MVar � τ → MAC � τ

putMVar :: MVar � τ → τ → MAC � ()

Fig. B.48. API of synchronization primitives.

could be simulated by an erasure function that preserves sensitive exceptions, i.e., εL(Labeledχ τ :: Labeled H τ) = Labeledχ •,
it is an open question how to prove single-step simulation for join, specifically for rules [Join, Joinχ].

Appendix B. Synchronization primitives

In this section we extend our calculus with synchronization primitives, an essential feature for concurrent programs.
Using synchronized mutable variables (MVar) users can implement simple inter-thread communication mechanisms such as
binary semaphores and channels.

The type MVar � τ denotes a labeled mutable location that is either empty or full and contains a term of type τ of
security level τ . Fig. B.48 shows the API of basic synchronization primitives, based on MVar. Specifically, function newMVar
creates an empty MVar. Function takeMVar empty a full MVar and returns its content or blocks otherwise. Function putMVar
fills an empty MVar or blocks otherwise. Primitive newMVar performs a write operation, therefore its type is restricted to
comply with the no write-down policy, just like the type of new for memory. Interestingly, and unlike memory primitives
read and write, the type of takeMVar and putMVar accepts only one security level. Intuitively, that is the case because MVar’s
primitives perform both read and write side-effects, therefore both no read-up and no write-down security policies apply. For
instance, to execute putMVar, it is necessary to observe (read) if the MVar is empty. We show how those security policy
guide our design and lead us to give the API shown in Fig. B.48 as the only secure option. Assume that primitive takeMVar
had a completely unrestricted type, i.e., ∀ �1 �2. MVar �1 τ → MAC �2 τ . Since takeMVar returns the content of the MVar—a
read effect that is secure only if �2 is at least as sensitive as �1, i.e., �1 � �2. Observe however that takeMVar empties the
MVar as well, after returning its content—a write effect that is secure only if �1 is at least as sensitive as �2, i.e., �2 � �1. By
the antisymmetry of the security lattice, it follows that the interaction between computations and synchronization variables
is secure only when they have the same security level, i.e., �1 ≡ �2. The same principle applies for putMVar.

B.1. Calculus

Fig. B.49 extends the concurrent calculus with synchronization primitives. A synchronization variable is represented as a
value MVar n ::MVar � τ where n is an address,25 pointing to the n-th cell of the �-memory, which contains a term of type τ .
We adjust our memory model to work with synchronization variables.26 We introduce a new syntactic category, memory
cell c, which can be either empty, i.e., ⊗, or full with some term t, i.e., �t�. Rule [NewMVar] evaluates term newMVar by
adding an empty memory cell to the �-labeled memory, i.e., �(�)[n] := ⊗ and returning a reference to it, i.e., MVar n. Rule

25 In MAC a MVar is just a wrapper around unlabeled synchronization variables from the standard library. Here we denote synchronization variables as an
index, just like we did for memory references.
26 We model mutable references as a special case of synchronization variables that are always full.

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 177
Memory � ts ::= [] | c : ts

Cell c ::= ⊗ | �t�
Types: τ ::= · · · | MVar � τ
Values: v ::= · · · | MVar n
Terms: t ::= · · · | newMVar | takeMVar t | putMVar t1 t2

(NewMvar)

|�(�)| = n

〈�,newMVar〉 −→ 〈�(�)[n] := ⊗, return (MVar n)〉
(PutMVar1)

t1 � t′1
〈�,putMVar t1 t2〉 −→ 〈�,putMVar t′1 t2〉

(PutMVar2)

�(�)[n] = ⊗
〈�,putMVar (MVar n) t〉 −→ 〈�(�)[n] := �t�, return ()〉

(TakeMVar1)

t � t′

〈�, takeMVar t〉 −→ 〈�, takeMVar t′〉
(TakeMVar2)

�(�)[n] = �t�

〈�, takeMVar (MVar n)〉 −→ 〈�(�)[n] := ⊗, return t〉

Fig. B.49. MAC with synchronization primitives.

ε�A (⊗) = ⊗ ε�A (�t�) = �ε�A (t)�

(a) Erasure for memory cells.

ε�A (newMVar :: MAC �L (MVar �H τ)) =
{

newMVar• if �H �� �A

newMVar otherwise

ε�A (MVar n :: MVar �H τ) =
{

MVar • if �H �� �A

MVar n otherwise

b Erasure for newMVar and MVar.

Fig. B.50. Erasure function for memory cells and synchronization primitives.

[PutMVar1] evaluates the reference and rule [PutMVar2] fills the empty cell it refers to with the term, i.e., �(�)[n] := �t� and
returns unit. Rule [TakeMVar1] evaluates the reference and rule [TakeMVar2] returns the content of the non-empty cell it
refers to, i.e., �(�)[n] = �t� for some term t, and empties it, i.e., �(�)[n] :=⊗. Observe that the premise of rules [PutMVar2]
and [TakeMVar2] accounts for the blocking behavior of the synchronization primitives by making the configuration stuck. In
particular, primitive putMVar blocks if the cell is non-empty, i.e., 〈�, putMVar (MVar n) t〉 �−→ if �(�)[n] �≡ ⊗ and similarly
takeMVar blocks if the cell is empty, i.e., 〈�, takeMVar (MVar n)〉 �−→ if �(�)[n] ≡ ⊗.

B.2. Erasure function

Proving that synchronization primitives are secure is straightforward in our setting. The primitives are clearly determinis-
tic and showing single-step simulation is simpler than for references because primitives putMVar and takeMVar work within
the same security level. Memory cells are erased homomorphically (Fig. B.50a). Applying the two-steps erasure technique, the
erasure function replaces term newMVar with newMVar• , when it creates a sensitive synchronization variable—see Fig. B.50b.
The erasure function rewrites the address of a synchronization reference to • if it points to a sensitive memory. Fig. B.51
shows rule [NewMVar•], which reduces term newMVar• , returns a dummy reference, i.e., MVar •, and skips the write effect,
leaving the store � unchanged. Observe that we do not need to replace takeMVar with a special term takeMVar• , because

178 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
Terms: t ::= · · · | newMVar•

(NewMvar•)

〈�,newMVar•〉 −→ 〈�, return (MVar •)〉

Fig. B.51. Semantics of newMVar• .

(Hole)

�
 • : τ
(New•)

�L � �H �
 t : τ
�
 new• t : MAC �L (Ref �H τ)

(Write•)

�L � �H �
 t1 : τ �
 t2 : Ref �H τ

�
 write• t1 t2 : MAC �L ()

(Join•)

�L � �H �
 t : MAC �H τ

�
 join• t : MAC �L (Labeled �H τ)

(Fork•)

�L � �H �
 t : MAC �H ()

�
 fork• t : MAC �L ()

(Fmap•)

�
 t1 : τ1 → τ2 �
 t2 : (Labeled � τ1)

�
 fmap• t1 t2 : Labeled � τ2

(〈∗〉•)

�
 t1 : Labeled � (τ1 → τ2) �
 t2 : (Labeled � τ1)

�
 t1 〈∗〉• t2 : Labeled � τ2

(Relabel•)

�L � �H �
 t : (Labeled �L τ)

�
 relabel• t : Labeled �H τ

(NewMVar•)

�L � �H

�
 newMVar• : MAC �L (MVar �H τ)

Fig. C.52. Typing rules for the extended calculus.

the primitive can only write to a memory at the same security level as the computation, therefore either they are both
sensitive and the computation rewritten to • or both non-sensitive and erased homomorphically.

Appendix C. Typing rules

Fig. C.52 gives the typing rules for the extended calculus, i.e., term • and other •-annotated terms used when applying
two-steps erasure. The special term • can assume any type thanks to the typing rule [Hole]. The typing rule of each
•-annotated term corresponds exactly to the typing rule of the unannotated terms. As a consequence of these typing rules,
the erasure function is type-preserving, i.e., if �
 t : τ then ε�A (�)
 ε�A (t) : τ .

References

[1] M. Abadi, A. Banerjee, N. Heintze, J. Riecke, A core calculus of dependency, in: Proc. ACM Symp. on Principles of Programming Languages, Jan. 1999,
pp. 147–160.

[2] A. Askarov, S. Hunt, A. Sabelfeld, D. Sands, Termination-insensitive noninterference leaks more than just a bit, in: Proc. of the European Symposium on
Research in Computer Security, ESORICS ’08, Springer-Verlag, 2008.

[3] A. Askarov, D. Zhang, A.C. Myers, Predictive black-box mitigation of timing channels, in: Proc. of the 17th ACM Conference on Computer and Commu-
nications Security, ACM, 2010.

[4] A. Banerjee, D.A. Naumann, Stack-based access control and secure information flow, J. Funct. Program. 15 (March 2005) 131–177.
[5] G. Barthe, T. Rezk, A. Russo, A. Sabelfeld, Security of multithreaded programs by compilation, ACM Trans. Inf. Syst. Secur. (Aug. 2009).
[6] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, Y. Tian, Run-time monitoring and formal analysis of information flows in chromium, in: Proc. of the

Annual Network & Distributed System Security Symposium, Internet Society, 2015.
[7] D.E. Bell, L. La Padula, Secure Computer System: Unified Exposition and Multics Interpretation, Tech. Rep. MTR-2997, Rev. 1, MITRE Corporation, Bedford,

MA, 1976.
[8] K.J. Biba, Integrity considerations for secure computer systems, 1977, ESD-TR-76-372.
[9] A. Bichhawat, V. Rajani, D. Garg, C. Hammer, Information Flow Control in WebKit’s JavaScript Bytecode, Springer, Berlin Heidelberg, 2014.

[10] A. Bortz, D. Boneh, Exposing private information by timing web applications, in: Proc. of the 16th World Wide Web, ACM, 2007.

http://refhub.elsevier.com/S2352-2208(17)30069-X/bib41626164692B3A436F7265s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib41626164692B3A436F7265s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib41736B61726F763A32303038s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib41736B61726F763A32303038s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib41736B61726F763A32303130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib41736B61726F763A32303130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib42616E65726A65653A32303035s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib42617274686552525330374As1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib62726F777365722D696E666F2D666C6F773A6E6473733135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib62726F777365722D696E666F2D666C6F773A6E6473733135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib62656C6C3A62656C6C2D6C61706164756C61s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib62656C6C3A62656C6C2D6C61706164756C61s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib42696368686177617432303134s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib426F72747A3A32303037s1

M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180 179
[11] W.J. Bowman, A. Ahmed, Noninterference for free, in: Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, Vancouver, BC, Canada, September 1–3, 2015, 2015, pp. 101–113.

[12] N. Broberg, B. van Delft, D. Sands, Paragon for practical programming with information-flow control, in: APLAS, in: Lecture Notes in Computer Science,
vol. 8301, Springer, 2013, pp. 217–232.

[13] S. Bugiel, S. Heuser, A.-R. Sadeghi, Flexible and fine-grained mandatory access control on Android for diverse security and privacy policies, in: Proc. of
the 22nd USENIX Conference on Security, SEC’13, USENIX Association, 2013.

[14] P. Buiras, A. Russo, Lazy programs leak secrets, in: Proc. Nordic Conference in Secure IT Systems, NORDSEC, Springer-Verlag, 2013.
[15] P. Buiras, D. Stefan, A. Russo, On dynamic flow-sensitive floating-label systems, in: Proceedings of the 2014 IEEE 27th Computer Security Foundations

Symposium, CSF ’14, IEEE Computer Society, Washington, DC, USA, 2014, pp. 65–79.
[16] P. Buiras, D. Vytiniotis, A. Russo, HLIO: mixing static and dynamic typing for information-flow control in Haskell, in: Proc. of the ACM SIGPLAN

International Conference on Functional Programming, ICFP ’15, ACM, 2015.
[17] D.E. Denning, P.J. Denning, Certification of programs for secure information flow, Commun. ACM 20 (7) (Jul. 1977) 504–513.
[18] D. Devriese, F. Piessens, Information flow enforcement in monadic libraries, in: Proc. of the ACM SIGPLAN Workshop on Types in Language Design and

Implementation, TLDI ’11, ACM, 2011.
[19] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, R. Morris, Labels and event processes in the asbestos

operating system, in: Proc. of the Twentieth ACM Symp. on Operating Systems Principles, SOSP ’05, ACM, 2005.
[20] E.W. Felten, M.A. Schneider, Timing attacks on web privacy, in: Proc. of the 7th ACM Conference on Computer and Communications Security, CCS ’00,

ACM, 2000.
[21] J. Goguen, J. Meseguer, Security policies and security models, in: Proc of IEEE Symposium on Security and Privacy, IEEE Computer Society, 1982.
[22] J.A. Goguen, J. Meseguer, Unwinding and inference control, in: IEEE Symposium on Security and Privacy, April 1984, 1984.
[23] D. Hedin, A. Birgisson, L. Bello, A. Sabelfeld, JSFlow: tracking information flow in JavaScript and its APIs, in: Proc. of the ACM Symposium on Applied

Computing, SAC ’14, ACM, Mar. 2014.
[24] D. Hedin, D. Sands, Noninterference in the presence of non-opaque pointers, in: Proc. of the 19th IEEE Computer Security Foundations Workshop, IEEE

Computer Society Press, 2006.
[25] S. Heule, D. Stefan, E.Z. Yang, J.C. Mitchell, A. Russo, IFC inside: retrofitting languages with dynamic information flow control, in: Conference on

Principles of Security and Trust, POST, Springer, April 2015.
[26] K. Honda, V.T. Vasconcelos, N. Yoshida, Secure information flow as typed process behavior, in: Proc. of the 9th European Symposium on Programming

Languages and Systems, Springer-Verlag, 2000.
[27] K. Honda, N. Yoshida, A uniform type structure for secure information flow, ACM Trans. Program. Lang. Syst. (Oct. 2007).
[28] C. Hritcu, M. Greenberg, B. Karel, B.C. Peirce, G. Morrisett, All your IFCexception are belong to us, in: Proc. of the IEEE Symposium on Security and

Privacy, IEEE Computer Society, 2013.
[29] J. Hughes, Why functional programming matters, Comput. J. 32 (1984).
[30] M. Jaskelioff, A. Russo, Secure multi-execution in Haskell, in: Proc. Andrei Ershov International Conference on Perspectives of System Informatics, in:

LNCS, Springer-Verlag, Jun. 2011.
[31] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima, S. Kiyomoto, Y. Miyake, Run-time enforcement of information-flow properties on

Android (extended abstract), in: Computer Security—ESORICS 2013: 18th European Symposium on Research in Computer Security, Springer, Sep. 2013.
[32] N. Kobayashi, Type-based information flow analysis for the π -calculus, Acta Inform. 42 (4) (Dec. 2005).
[33] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M.F. Kaashoek, E. Kohler, R. Morris, Information flow control for standard OS abstractions, in: Proceedings of

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, ACM, 2007.
[34] P. Li, S. Zdancewic, Encoding information flow in Haskell, in: Proc. of the IEEE Workshop on Computer Security Foundations, IEEE Computer Society,

2006.
[35] P. Li, S. Zdancewic, Arrows for secure information flow, Theor. Comput. Sci. 411 (19) (2010) 1974–1994.
[36] L. Lourenço, L. Caires, Dependent information flow types, SIGPLAN Not. 50 (1) (Jan. 2015).
[37] H. Mantel, H. Sudbrock, Flexible Scheduler-Independent Security, Springer, Berlin Heidelberg, 2010, pp. 116–133.
[38] S. Marlow, Parallel and Concurrent Programming in Haskell, O’Reilly, July 2013.
[39] C. Mcbride, R. Paterson, Applicative programming with effects, J. Funct. Program. (2008).
[40] S. Meurer, R. Wismüller, Apefs: an infrastructure for permission-based filtering of Android apps, in: A. Schmidt, G. Russello, I. Krontiris, S. Lian (Eds.),

Security and Privacy in Mobile Information and Communication Systems, vol. 107, Springer, Berlin Heidelberg, 2012.
[41] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1) (1991) 55–92.
[42] J. Morgenstern, D.R. Licata, Security-typed programming within dependently typed programming, in: Proc. of the 15th ACM SIGPLAN International

Conference on Functional Programming, ACM, 2010.
[43] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao, G. Klein, seL4: from general purpose to a proof of information

flow enforcement, in: 2012 IEEE Symposium on Security and Privacy 0, 2013.
[44] T. Murray, R. Sison, E. Pierzchalski, C. Rizkallah, Compositional verification and refinement of concurrent value-dependent noninterference, in: IEEE

Computer Security Foundations Symposium, Lisbon, Portugal, Jun. 2016, pp. 417–431.
[45] A.C. Myers, JFlow: practical mostly-static information flow control, in: Proc. ACM Symp. on Principles of Programming Languages, Jan. 1999,

pp. 228–241.
[46] A.C. Myers, L. Zheng, S. Zdancewic, S. Chong, N. Nystrom, Jif: Java information flow, http://www.cs.cornell.edu/jif, 2001.
[47] A. Nanevski, A. Banerjee, D. Garg, Verification of information flow and access control policies with dependent types, in: Proceedings of the 2011 IEEE

Symposium on Security and Privacy, SP ’11, IEEE Computer Society, 2011.
[48] M.V. Pedersen, A. Askarov, From trash to treasure: timing-sensitive garbage collection, in: 2017 IEEE Symposium on Security and Privacy, SP 2017, San

Jose, CA, USA, May 22–26, 2017, 2017, pp. 693–709.
[49] F. Pottier, A simple view of type-secure information flow in the π -calculus, in: Proc. of the 15th IEEE Computer Security Foundations Workshop, 2002,

pp. 320–330.
[50] F. Pottier, V. Simonet, Information flow inference for ML, in: Proc. ACM Symp. on Principles of Programming Languages, Jan. 2002, pp. 319–330.
[51] W. Rafnsson, D. Garg, A. Sabelfeld, Progress-sensitive security for SPARK, in: Proceedings of the Engineering Secure Software and Systems – 8th

International Symposium, ESSoS 2016, London, UK, April 6–8, 2016, 2016.
[52] I. Roy, D.E. Porter, M.D. Bond, K.S. McKinley, E. Witchel, Laminar: practical fine-grained decentralized information flow control, in: Proceedings of the

2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’09, ACM, 2009.
[53] A. Russo, Functional pearl: two can keep a secret, if one of them uses Haskell, in: Proc. of the 20th ACM SIGPLAN International Conference on

Functional Programming, ICFP 2015, ACM, 2015.
[54] A. Russo, K. Claessen, J. Hughes, A library for light-weight information-flow security in Haskell, in: Proc. ACM SIGPLAN Symposium on Haskell, HASKELL

’08, ACM, Sep. 2008.
[55] A. Russo, A. Sabelfeld, Securing interaction between threads and the scheduler, in: Proc. IEEE Computer Sec. Foundations Workshop, Jul. 2006,

pp. 177–189.

http://refhub.elsevier.com/S2352-2208(17)30069-X/bib426F776D616E413135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib426F776D616E413135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib636F6E662F61706C61732F42726F6265726744533133s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib636F6E662F61706C61732F42726F6265726744533133s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib42756769656C3A323031333A46464D3A323533343736362E32353334373738s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib42756769656C3A323031333A46464D3A323533343736362E32353334373738s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib42756972617332303133s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4275697261733A323031343A4446463A323730383434392E32373038363839s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4275697261733A323031343A4446463A323730383434392E32373038363839s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4275697261733A32303135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4275697261733A32303135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib44656E6E696E673A44656E6E696E673A43657274696669636174696F6Es1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib44657672696573653A32303131s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib44657672696573653A32303131s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib456673746174686F706F756C6F733A32303035s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib456673746174686F706F756C6F733A32303035s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib46656C74656E3A32303030s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib46656C74656E3A32303030s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib476F6775656E3A4D657365677565723A4E6F6E696E746572666572656E6365s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib36323334383132s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib686564696E323031346A73666C6F77s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib686564696E323031346A73666C6F77s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib486564696E3A53616E64733A435346573036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib486564696E3A53616E64733A435346573036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib6865756C653A323031353A6966632D696E73696465s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib6865756C653A323031353A6966632D696E73696465s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib486F6E64613A323030303A534946s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib486F6E64613A323030303A534946s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib486F6E64613A323030373A504F504Cs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib31302E313130392F53502E323031332E3130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib31302E313130392F53502E323031332E3130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib487567686573383477687966756E6374696F6E616Cs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4A61736B656C696F66663A534D45s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4A61736B656C696F66663A534D45s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib616E64726F69643A65736F726963733133s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib616E64726F69643A65736F726963733133s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4B6F626179617368693A323030353A544946s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4B726F686E3A323030373A4946433A313239343236312E31323934323933s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4B726F686E3A323030373A4946433A313239343236312E31323934323933s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4C694353463037s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4C694353463037s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4C692B3A323031303A6172726F7773s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4C6F7572656E636F3A32303135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D616E74656C32303130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D61726C6F7732303133s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D6362726964653A32303038s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4150454653s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4150454653s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib6D6F6767693A6D6F6E616473s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D6F7267656E737465726E3A32303130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D6F7267656E737465726E3A32303130s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73654C344946s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73654C344946s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D75727261792D5350522D3136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D75727261792D5350522D3136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D796572733A504F504C3939s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4D796572733A504F504C3939s1
http://www.cs.cornell.edu/jif
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4E616E6576736B693A32303131s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib4E616E6576736B693A32303131s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib506564657273656E413137s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib506564657273656E413137s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib506F747469657230326173696D706C65s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib506F747469657230326173696D706C65s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib506F74746965723A53696D6F6E65743A504F504C3032s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib44424C503A636F6E662F6573736F732F5261666E73736F6E30533136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib44424C503A636F6E662F6573736F732F5261666E73736F6E30533136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib526F793A32303039s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib526F793A32303039s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F3A32303135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F3A32303135s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F2B3A4861736B656C6C3038s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F2B3A4861736B656C6C3038s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F3A536162656C66656C643A435346573036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F3A536162656C66656C643A435346573036s1

180 M. Vassena et al. / Journal of Logical and Algebraic Methods in Programming 95 (2018) 148–180
[56] A. Russo, A. Sabelfeld, Security for multithreaded programs under cooperative scheduling, in: Proc. Andrei Ershov International Conference on Perspec-
tives of System Informatics, in: LNCS, Springer-Verlag, Jun. 2006.

[57] A. Sabelfeld, A.C. Myers, Language-based information-flow security, IEEE J. Sel. Areas Commun. 21 (1) (Jan. 2003) 5–19.
[58] T. Schmitz, D. Rhodes, T.H. Austin, K. Knowles, C. Flanagan, Faceted dynamic information flow via control and data monads, in: F. Piessens, L. Viganò

(Eds.), POST, in: Lecture Notes in Computer Science, vol. 9635, Springer, 2016.
[59] N. Shikuma, A. Igarashi, Proving noninterference by a fully complete translation to the simply typed lambda-calculus, in: Advances in Computer

Science – ASIAN 2006. Secure Software and Related Issues, in: 11th Asian Computing Science Conference, Tokyo, Japan, December 6–8, 2006, 2006,
pp. 301–315, Revised Selected Papers.

[60] V. Simonet, The flow Caml system, software release at http://cristal.inria.fr/~simonet/soft/flowcaml/, 2003.
[61] G. Smith, D. Volpano, Secure information flow in a multi-threaded imperative language, in: Proc. ACM Symposium on Principles of Programming

Languages, POPL ’98, 1998.
[62] D. Stefan, P. Buiras, E.Z. Yang, A. Levy, D. Terei, A. Russo, D. Mazières, Eliminating cache-based timing attacks with instruction-based scheduling, in:

Proc. European Symp. on Research in Computer Security, in: LNCS, Springer-Verlag, 2013.
[63] D. Stefan, A. Russo, P. Buiras, A. Levy, J.C. Mitchell, D. Maziéres, Addressing covert termination and timing channels in concurrent information flow

systems, in: Proc. of the ACM SIGPLAN International Conference on Functional Programming, ICFP ’12, ACM, 2012.
[64] D. Stefan, A. Russo, J.C. Mitchell, D. Mazières, Flexible dynamic information flow control in Haskell, in: Proc. of the ACM SIGPLAN Haskell Symposium,

HASKELL ’11, 2011.
[65] D. Stefan, A. Russo, J.C. Mitchell, D. Mazières, Flexible dynamic information flow control in Haskell, in: Proceedings of the 4th ACM Symposium on

Haskell, ACM, New York, NY, USA, 2011, pp. 95–106.
[66] D. Stefan, A. Russo, J.C. Mitchell, D. Mazières, Flexible dynamic information flow control in the presence of exceptions, Arxiv preprint arXiv:1207.1457,

J. Funct. Prog., in press Cambridge University Press.
[67] D. Stefan, E.Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, D. Mazières, Protecting users by confining JavaScript with COWL, in: 11th USENIX

Symposium on Operating Systems Design and Implementation, OSDI 14, USENIX Association, Oct. 2014.
[68] T.C. Tsai, A. Russo, J. Hughes, A library for secure multi-threaded information flow in Haskell, in: Proc. IEEE Computer Security Foundations Symposium,

CSF ’07, Jul. 2007.
[69] S. Tse, S. Zdancewic, Translating dependency into parametricity, in: Proc. of the Ninth ACM SIGPLAN International Conference on Functional Program-

ming, ACM, 2004.
[70] M. Vassena, J. Breitner, A. Russo, Securing concurrent lazy programs against information leakage, in: Proc. IEEE Computer Sec. Foundations Symposium,

CSF ’17, 2017.
[71] M. Vassena, P. Buiras, L. Waye, A. Russo, Flexible manipulation of labeled values for information-flow control libraries, in: Proceedings of the 12th

European Symposium on Research in Computer Security, Springer, Sep. 2016.
[72] M. Vassena, A. Russo, On formalizing information-flow control libraries, in: Proceedings of the 2016 ACM Workshop on Programming Languages and

Analysis for Security, PLAS ’16, ACM, New York, NY, USA, 2016, pp. 15–28, http://doi.acm.org/10.1145/2993600.2993608.
[73] P. Wadler, S. Blott, How to make ad-hoc polymorphism less ad hoc, in: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’89, ACM, New York, NY, USA, 1989, pp. 60–76, http://doi.acm.org/10.1145/75277.75283.
[74] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, D. Mazières, Making information flow explicit in HiStar, in: Proc. of the 7th USENIX Symp. on Operating

Systems Design and Implementation, USENIX, 2006.
[75] D. Zhang, A. Askarov, A.C. Myers, Predictive mitigation of timing channels in interactive systems, in: Proc. of the 18th ACM Conference on Computer

and Communications Security, ACM, 2011.
[76] D. Zhang, A. Askarov, A.C. Myers, Language-based control and mitigation of timing channels, in: Proc. ACM Conference on Programming Language

Design and Implementation, ACM, 2012.

http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F3A536162656C66656C643A5053493036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib527573736F3A536162656C66656C643A5053493036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib736D2D6A736163s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib636F6E662F706F73742F5363686D69747A52414B463136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib636F6E662F706F73742F5363686D69747A52414B463136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5368696B756D61493036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5368696B756D61493036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5368696B756D61493036s1
http://cristal.inria.fr/~simonet/soft/flowcaml/
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib536D6974683A566F6C70616E6F3A4D756C74695468726561646564s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib536D6974683A566F6C70616E6F3A4D756C74695468726561646564s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A323031333A656C696D696E6174696E67s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A323031333A656C696D696E6174696E67s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib53746566616E3A32303132s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib53746566616E3A32303132s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A6C696Fs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A6C696Fs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A323031313A6C696Fs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A323031313A6C696Fs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A323031323A61727869762D666C657869626C65s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib73746566616E3A323031323A61727869762D666C657869626C65s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib434F574Cs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib434F574Cs1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib547361693A527573736F3A4875676865733A4353463037s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib547361693A527573736F3A4875676865733A4353463037s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5473653A5A64616E63657769633A494346503034s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5473653A5A64616E63657769633A494346503034s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib56617373656E6132303137s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib56617373656E6132303137s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib56617373656E613A45534F524943533A32303136s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib56617373656E613A45534F524943533A32303136s1
http://doi.acm.org/10.1145/2993600.2993608
http://doi.acm.org/10.1145/75277.75283
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5A656C646F766963683A32303036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5A656C646F766963683A32303036s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5A68616E673A32303131s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5A68616E673A32303131s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5A68616E673A32303132s1
http://refhub.elsevier.com/S2352-2208(17)30069-X/bib5A68616E673A32303132s1

	MAC A veriﬁed static information-ﬂow control library
	1 Introduction
	2 Overview
	2.1 Secure ﬂows of information
	2.2 Implicit ﬂows

	3 The core calculus
	3.1 Pure calculus
	3.2 Core of MAC

	4 Label creep
	4.1 Primitive join

	5 Exception handling
	5.1 Calculus
	5.2 Join and exceptions

	6 References
	6.1 Calculus

	7 Soundness
	7.1 Term erasure
	7.2 Two steps erasure
	7.3 Erasure function
	7.4 Discussion
	7.5 Progress-insensitive noninterference

	8 Concurrency
	8.1 Termination attack
	8.2 Calculus
	8.3 Round-robin scheduler

	9 Flexible labeled values
	9.1 Functors and relabeling
	9.2 Examples
	9.3 Calculus

	10 Soundness of concurrent calculus
	10.1 Erasure function
	10.2 Scheduler requirements
	10.3 Progress-sensitive Noninterference

	11 Related work
	12 Conclusion
	Appendix A Flexible labeled values in sequential calculus
	Appendix B Synchronization primitives
	B.1 Calculus
	B.2 Erasure function

	Appendix C Typing rules
	References

