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Vol. XLVII No 2 2014

Krzysztof Bartoszek, Michał Krzemiński

CRITICAL CASE STOCHASTIC PHYLOGENETIC TREE
MODEL VIA THE LAPLACE TRANSFORM

Abstract. Birth–and–death models are now a common mathematical tool to describe
branching patterns observed in real–world phylogenetic trees. Liggett and Schinazi (2009) is
one such example. The authors propose a simple birth–and–death model that is compatible
with phylogenetic trees of both influenza and HIV, depending on the birth rate parameter.
An interesting special case of this model is the critical case where the birth rate equals
the death rate. This is a non–trivial situation and to study its asymptotic behaviour we
employed the Laplace transform. With this, we correct the proof of Liggett and Schinazi
(2009) in the critical case.

1. Introduction
Different viral types have phylogenetic trees exhibiting different branch-

ing properties, with influenza and HIV being two extreme examples. In the
influenza tree, a single type dominates for a long time with other types dying
out quickly until suddenly a new type completely takes over and the old type
dies out. The HIV phylogeny is the complete opposite, with a large number
of co–existing types.

In [6], a stochastic model is described and depending on the choice of
parameters, it can exhibit both types of dynamics. We briefly describe the
model after [6]. We only keep track of the number of different viral types
at each time point t. Let Nptq denote the number of distinct viral types at
time t. In the nomenclature of phylogenetics, Nptq counts the number of
different species alive at time t. At each time point, the birth rate is λNptq
and the death rate is Nptq. If there is only one type alive then it cannot
die. Clearly Nptq is a Markov chain with discrete state space and continuous
time. Each virus type is described by a fitness value that is randomly chosen
at its birth. If a death event occurs, the type with smallest fitness dies. This
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means that only the fitness ranks matter and so the exact distribution of
a virus’ fitness will not play a role.

The main result of [6] is the asymptotic behaviour of the dominating
type, whether it is expected to remain the same for long stretches of time or
change often. This is summarized in Theorem 1, [6]

Theorem 1.1. (Theorem 1, [6]) Take α P p0, 1q. If λ ≤ 1 then

lim
tÑ8

Ppmaximal types at times αt and t are the sameq “ α,

while if λ ą 1 then this limit is 0.

The proof of this theorem is based on considering successive visits to the
state 1, in particular denote τ1, τ2, . . . to be the (random) times between
visits of the chain to Nptq “ 1 and Tn :“ τ1 ` . . . ` τn. In [6], the latter
random variable is represented as

Tn “
n
ÿ

i“1

Xi `

n
ÿ

i“1

Hi,

where Xi are independent mean 1 exponential random variables and Hi

are the (independent) hitting times of the state 1 conditional on starting
in state 2. Descriptively Hi is the ith return from state 2 to the state of
one virus type alive, since from 1 the chain has to jump to two types. The
Markovian nature of the process ensures that the His are independent and
identically distributed for distinct is. In the proof of Theorem 1, it is stated
that the cumulative distribution function of Hi, F ptq, satisfies

(1.1)

F ptq
ż

0

1

1` s2 ´ 2s
ds “ t,

solved uniquely for

(1.2) F ptq “
t

1` t
.

This gives the asymptotic behaviour (Lemma 3, [6])

(1.3) lim
nÑ8

Tn
n logpnq

“ 1 in probability,

from which the result of Theorem 1 is derived when λ “ 1.
However Eq. (1.1) does not take into account that this model differs from

a classical birth–death model where 0 is the absorbing state. We illustrate
this in Fig. 1. We can easily re–numerate the state values, but the intensity
values will differ between the two models. Correcting for this difference in
intensity values one will still get the same asymptotics as in Eq. (1.3) and
hence the same result as in Theorem 1 but with a more complicated proof.
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Fig. 1. A: Depiction of the Markov chain model described in [6]. B: Depiction of a classical
Markov chain model for which Eq. (1.1) would be correct. The numbers inside the circles
are the states (counting the number of virus type) and the numbers above and below the
arrows are the birth and death rates, respectively, of the state from which they come out.

Below, we present a correct proof of Lemma 3, [6] in the case of λ “ 1,
based on Lemmas 2.1 and 2.2. From this, the statement of Theorem 1 of [6]
follows.

2. Auxiliary lemmas
Lemma 2.1. Let P1ptq ” P pH1 ≤ tq ” F ptq. Then P1ptq solves the renewal
equation

(2.1) P1ptq “
2t

p1` tq3
`

ż t

0

2

p1` pt´ yqq3
P1pyq dy.

Proof. In panel A of Fig. 1, we can see a representation of the studied
Markov chain on the state space S “ 1, 2, 3, . . .. Due to the His being
independent for different is, we can study the distribution of H1 and treat
1 as an absorbing state. Let Pnptq denote the probability of being in state
n at time t, when one starts in state 2 at time 0. The system of differential
equations describing the probabilities is

(2.2)

$

’

&

’

%

P 11ptq “ 2P2ptq,

P 12ptq “ ´4P2ptq ` 3P3ptq,

P 1nptq “ ´2nPnptq ` pn` 1qPn`1ptq ` pn´ 1qPn´1ptq, n ≥ 3,

with initial conditions

(2.3) P1p0q “ 0, P2p0q “ 1, P3p0q “ . . . “ Pnp0q “ . . . “ 0.
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Let P ps, tq denote the generating function of the sequence tPnptqu8n“1, i.e.

P ps, tq “
8
ÿ

n“1

Pnptqs
n.

Taking first derivatives, we get the partial differential equation

(2.4)
BP ps, tq

Bt
“ ´ps´ 1q2P1ptq ` ps´ 1q2

BP ps, tq

Bs
,

with initial conditions

(2.5)
BP ps, tq

Bs

ˇ

ˇ

ˇ

ˇ

s“0
t“t

“ P1ptq, P ps, tq| s“s
t“0

“

8
ÿ

n“1

Pnp0qs
n “ s2.

Following §2.1 [2] and using the substitution zpxq “ P phps, xq, t` xq with

hps, xq :“ 1`
1

x` 1
s´1

, s ‰ 1,

we arrive at

P ps, tq ´

ˆ

s´ ps´ 1qt

1´ tps´ 1q

˙2

“ zp0q ´ z1p´tq “

ż 0

´t
z1pxq dx

“

ż t

0

´1
´

y ´ t` 1
s´1

¯2P1pyq dy.

Evaluating the derivative of both sides with respect to s at 0, we find that the
function P1ptq must satisfy the following integral equation (we can recognize
it as a renewal equation)

(2.6)
BP

Bs
p0, tq “ P1ptq “

2t

p1` tq3
`

ż t

0

2

p1` pt´ yqq3
P1pyq dy.

Lemma 2.2. F ptq ” P1ptq, the solution of the renewal equation p2.1q, has
the following properties

ż h

0
tF 1ptq dt „ logphq as hÑ8,(2.7)

ż h

0
t2F 1ptq dt „ h as hÑ8.(2.8)

Proof. The proof is based on Tauberian theory and we refer the reader to
[3, 4] for details on this. Another approach would be to study the asymptotic
behaviour of F 1ptq by renewal theory results (see e.g. [1, 5]). The Laplace
transform of a density function fpxq, denoted zfpxqpsq is

zfpxqpsq “

ż 8

0
e´xsfpxq dx.

We will use the following theorem from [3], Theorem 2 §XIII.5.
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Theorem 2.3. (Theorem 2 §XIII.5, [3]) If L is slowly varying at infinity
and 0 ≤ ρ ă 8, then each of the relations

yfptqpsq “

ż 8

0
fptq expp´stq dt „ s´ρL

ˆ

1

s

˙

, sÑ 0,(2.9)

F ptq “

ż t

0
fpuq du „

1

Γpρ` 1q
tρLptq, tÑ8(2.10)

implies the other.

F ptq ” P1ptq defined as the solution to the renewal equation (2.1), after
differentiating will satisfy

(2.11) F 1ptq “
2´ 4t

p1` tq4
`

ż t

0

2

p1` t´ yq3
F 1pyq dy.

We calculate the Laplace transforms of F 1ptq, tF 1ptq and t2F 1ptq

zF 1ptqpsq “
{2´ 4t

p1` tq4
psq `

{2

p1` tq3
psq ¨ zF 1ptqpsq,(2.12)

{tF 1ptqpsq “
{p2´ 4tqt

p1` tq4
psq `

{2ptq

p1` tq3
psq ¨ zF 1ptqpsq(2.13)

`
{2

p1` tq3
psq ¨{tF 1ptqpsq,

{t2F 1ptqpsq “
{p2´ 4tqt2

p1` tq4
psq `

{2ptq2

p1` tq3
psq ¨ zF 1ptqpsq(2.14)

`
{4t

p1` tq3
psq ¨{tF 1ptqpsq `

{2

p1` tq3
psq ¨ {t2F 1ptqpsq.

We are interested in the behaviour of the transforms as sÑ 0, and for this,
we will use the well known property (verifiable by the de L’Hôspital rule) of
the exponential integral

ż 8

s

expp´uq

u
du „ ´ logpsq,

to arrive at

{tF 1ptqpsq “

{p2´4tqt
p1`tq4

psq `{2t
p1`tq3

psq ¨ zF 1ptqpsq

1´{2
p1`tq3

psq
„ log

ˆ

1

s

˙

, sÑ 0,(2.15)
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{t2F 1ptqpsq “(2.16)
{p2´4tqt2

p1`tq4
psq `

{2t2

p1`tq3
psq ¨ zF 1ptqpsq `{4t

p1`tq3
psq ¨{tF 1ptqpsq

1´{2
p1`tq3

psq
„

1

s
, sÑ 0,

{tp1´ F ptqqpsq “(2.17)

{t
p1`tq2

psq ´
{2t2

p1`tq3
psq `{2t

p1`tq3
psq ¨ {p1´ F ptqqpsq

1´{2
p1`tq3

psq
„

1

s
, sÑ 0.

As both the constant function ps0q and logp1{sq are slowly varying functions
for sÑ 0, the Tauberian theorem allows us to conclude that

ż h

0
tF 1ptq dt „ logphq,(2.18)

ż h

0
t2F 1ptq dt „ h.(2.19)

3. Proof of Lemma 3, [6]
We will now use Lemmas 2.1 and 2.2 to prove Lemma 3 from [6]. Define

as there

mn :“

ż ρn

0
tF 1ptq dt

and

sn :“

ż ρn

0
t2F 1ptq dt,

with ρn :“ n
a

logpnq. By Lemma 2.2, we know that

mn „ logpρnq „ logpnq and sn „ ρn.

We now need to check how np1´F pρnqq behaves asymptotically. We do not
know what F pρnq is, but using the Tauberian theorem and Eq. (2.17) from
the proof of Lemma 2.2, we get that

(3.1)
ż t

0
up1´ F puqq du „ t, tÑ8.

Therefore, using integration by parts and Eq. (2.19)

1 „

şt
0 up1´ F puqqdu

t
“

t2

2 p1´ F ptqq

t
`

şt
0
u2

2 F
1puq du

t
, tÑ8,

1 „
1

2
ptp1´ F ptqqq `

1

2
, tÑ8,
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and so we arrive at

(3.2) lim
tÑ8

tp1´ F ptqq Ñ 1.

The rest of the proof is a direct repeat of the one in [6] and so we get (as
in [6]) that Tn{pn logpnqq tends to 1 in probability implying Theorem 1, [6]
for λ “ 1.

If we applied the same chain of reasoning to the model of panel B in
Fig. 1, starting off with the system of differential equations, the analogue of
Eq. 2.4) would be a homogeneous partial differential equation

(3.3)
BP ps, tq

Bt
“ ps´ 1q2

BP ps, tq

Bs
,

with initial conditions

(3.4)
BP ps, tq

Bs

ˇ

ˇ

ˇ

ˇ

s“0, t“t

“ P1ptq, P ps, tq|s“s, t“0 “ s,

in agreement with P1ptq “ t{pt ` 1q. It would therefore be an interesting
problem to see what conditions are necessary on the nonhomogeneous part
of Eq. (2.4) to still get the same asymptotic behaviour of the Markov chain
and what underlying model properties do these conditions imply.

Acknowledgments. We are grateful to Wojciech Bartoszek and Joa-
chim Domsta for many helpful comments, insights and suggestions. K. B.
was supported by the Centre for Theoretical Biology at the University of
Gothenburg, Stiftelsen för Vetenskaplig Forskning och Utbildning i Matem-
atik (Foundation for Scientific Research and Education in Mathematics),
Knut and Alice Wallenbergs travel fund, Paul and Marie Berghaus fund,
the Royal Swedish Academy of Sciences, Wilhelm and Martina Lundgrens
research fund and Östersjösamarbete scholarship from Svenska Institutet
(00507/2012).

References

[1] P. Embrechts, E. Omey, Functions of power series, Yokohama Math. J. 32 (1984),
77–88.

[2] L. C. Evans, Partial Differential Equations, AMS, 1998.
[3] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley,

New York, 1971.
[4] J. Korevaar, Tauberian Theory: a Century of Developments, Springer, 2004.
[5] T. M. Liggett, Total positivity and renewal theory, in Probablity, Statistics and Mathe-

matics, Papers in Honor of Samuel Karlin, Academic Press, 1989.
[6] T. M. Liggett, R. B. Schinazi, A stochastic model for phylogenetic trees, J. Appl. Probab.

46 (2009), 601–607.



Critical case stochastic phylogenetic tree model via the Laplace transform 481

K. Bartoszek
MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY AND THE UNIVERSITY OF GOTHENBURG
412 96 GÖTEBORG, SWEDEN
E-mail: krzbar@chalmers.se

M. Krzemiński
DEPARTMENT OF PROBABILITY THEORY AND BIOMATHEMATICS
FACULTY OF APPLIED MATHEMATICS AND TECHNICAL PHYSICS
GDAŃSK UNIVERSITY OF TECHNOLOGY
80-233 GDAŃSK, POLAND
and
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
00-956 WARSZAWA, POLAND
E-mail: mkrzeminski@mif.pg.gda.pl

Received March 7, 2012; revised version April 17, 2013.

Communicated by J. Wesołowski.


