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Real and complexMonge-Ampère equations, statisticalmechan-
ics and canonical metrics
Jakob Hultgren

Abstract

Recent decades has seen a strong trend in complex geometry to study canon-

ical metrics and the way they relate to geometric analysis, algebraic geometry

and probability theory. This thesis consists of four papers each contributing

to this field. The first paper sets up a probabilistic framework for real Monge-

Ampère equations on tori. We show that solutions to a large class of realMonge-

Ampère equations arise as the many particle limit of certain permanental point

processes. The framework can be seen as a real, compact analog of the prob-

abilistic framework for Kähler-Einstein metrics on Kähler manifolds. The sec-

ond paper introduces a variational approach in terms of optimal transport to

real Monge-Ampère equations on compact Hessian manifolds. This is applied

to prove existence and uniqueness results for various types of canonical Hes-

sian metrics. The results can, on one hand, be seen as a first step towards a

probabilistic approach to canonical metrics on Hessian manifolds and, on the

other hand, as a remark on the Gross-Wilson and Kontsevich-Soibelmann con-

jectures in Mirror symmetry. The third paper introduces a new type of canon-

ical metrics on Kähler manifolds, called coupled Kähler-Einstein metrics, that

generalises Kähler-Einstein metrics. Existence and uniqueness theorems are

given as well as a proof of one direction of a generalised Yau-Tian-Donaldson

conjecture, establishing a connection between this new notion of canonical met-

rics and stability in algebraic geometry. The fourth paper gives a necessary and

sufficient condition for existence of coupled Kähler-Einstein metrics on toric

manifolds in terms of a collection of associated polytopes, proving this gener-

alised Yau-Tian-Donaldson conjecture in the toric setting.

Keywords: Real Monge-Ampère equations, Complex Monge-Ampère equa-
tions, Kähler-Einstein metrics, Kähler Geometry, Canonical metrics, Hes-
sian manifolds, Optimal Transport, Point Processes, Statistical Mechanics





Preface

This thesis consists of the following papers:

� Jakob Hultgren
“Permanental Point Processes on Real Tori, Theta
Functions and Monge–Ampère Equations”
To appear in Annales de la faculté des sciences
de Toulouse

� Jakob Hultgren and Magnus Önnheim
“An optimal transport approach toMonge-Ampère
equations on compact Hessian manifolds”
Preprint

� Jakob Hultgren and David Witt Nyström
“Coupled Kähler-Einstein metrics”
International Mathematics Research Notices
rnx298
https://doi.org/10.1093/imrn/rnx298

� Jakob Hultgren
“Coupled Kähler-Ricci solitons on toric Fano man-
ifolds”
Preprint

The second and third paper are based on collaborations where both au-
thors partook on equal terms. The original idea for the third paper is
due to David Witt Nyström.
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Introduction

1. The Einstein Field Equations

Although this is not a thesis in physics, a good starting point for it is
the Einstein Field Equations. Probably one of the most famous systems
of equations in history, it appeared in Einstein’s publication about gen-
eral relativity in 1915. The purpose of these equations is to describe the
curvature of space time. Solutions constitute components of a metric
tensor. As such, they allow us to measure the length of tangent vec-
tors. Together with the geodesic equation they define paths of shortest
distance and thus the trajectories of freely moving (or falling) particles.

Simply put, the Einstein field equations uses geometry to describe
gravity and they have given rise to a very active research area in math-
ematical physics. What is perhaps more surprising, though, is the theo-
ries they have inspired in mathematics. Taking them out of the four di-
mensional context of space-time they have turned out to be a very useful
tool in geometry. Here, a manifold endowed with a metric satisfying the
Einstein Field Equations in vacuum is called an Einstein manifold. The
resulting equations, and the less restrictive equations achieved by tak-
ing trace of both sides (defining metrics of constant scalar curvature),
has during the last decades been studied extensively in complex geome-
try. Here, they define canonical choices of metrics: Kähler-Einstein met-
rics and constant scalar curvature Kähler (cscK) metrics. Such canonical
choices of metrics have turned out to provide an intersection point be-
tween several very different point of views in geometry. Perhaps most
famous is the connection between Geometric Invariant Theory in alge-
braic geometry and differential geometry that is given by the Yau-Tian-
Donaldson conjecture. Another one is the connection to probability the-
ory given by probabilistic constructions of Kähler-Einstein metrics using
determinantal point processes.

This thesis consists of four contributions to this field. While most
of the tools that are used come from geometric analysis (Paper II-IV)
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Introduction

and probability theory (Paper I), the main motivation is given by the
connections between the different points of view in geometry mentioned
above.

From the perspective of geometric analysis, Kähler-Einstein metrics
are studied in terms of certain nonlinear elliptic scalar equations called
complex Monge-Ampère equations. On n-dimensional Kähler mani-

folds with an (S1)n-symmetry, these equations reduce to so called real
Monge-Ampère equations. All the papers in the thesis are concerned
with either complex or real Monge-Ampère equations.

2. The Uniformization Theorem

The Uniformization Theorem might be the first historical instance
of canonical metrics. The theorem was proved by Poincaré and Koebe in
1917 and says that any complete, simply connected Riemannian surface
is conformally equivalent to one of the following three: The Riemann
sphere with its standard metric, the complex plane with the Euclidean
metric or the unit disc with the Poincaré metric. Two Riemannian sur-
faces are comformally equivalent if there is an angle-preserving diffeo-
morphism from one to the other and the significance of the three Rie-
mannian surfaces above is that they are the unique simply connected
Riemannian surfaces of constant curvature 1, 0 and -1 respectively.

If we instead look at the more general class of complete Riemannian
surfaces, X, then this theorem has an interesting consequence. The uni-
versal covering space of X satisfies the assumptions of the Uniformiza-
tion Theorem and is thus conformally equivalent to one of the three op-
tions above. Moreover, the deck transformations of this covering will
form a discrete group of conformal (angle-preserving) maps on the cov-
ering space. The amount of conformal maps on these three spaces is
rather restricted and by doing a case by case examination you can show
that:

• Any discrete group of conformal maps on one of the three Rie-
mannian surfaces above consists of isometries.

• On the Riemann sphere any discrete group of conformal maps
is trivial, on the complex plane any discrete group of confor-
mal maps is abelian and on the unit disc any discrete group of
conformal maps is non-abelian.

The first point means that the metric on the covering spaces defines
a metric on X, thus any complete Riemannian surface is conformally

4



Introduction

equivalent to a Riemannian surface of constant curvature. The second
point means that the fundamental group of X determines whether this
metric is of curvature 1, 0 or -1. Put differently: Existence of metrics
with certain properties (or canonical metrics) hold topological informa-
tion about the surface. Knowing this it should not be surprising that
existence of canonical metrics has consequences in other areas of geom-
etry as well.

3. Complex projective manifolds

The original setting for the Kähler-Einstein problem and the cscK
problem is given by a complex projective manifold. A complex projec-
tive manifold is a submanifold of complex projective space Pn cut out
by homogenous polynomials. A good example is given by

(1) X =
{
(x : y : z) ∈ P2, x3y + y3z + z3x = 0

}
.

There are many different approaches to study complex projective
manifolds. In the complex geometric approach one would focus on the
fact that X is a complex manifold, in other words it is possible cover X
with complex valued coordinate charts such that the transition functions
are holomorphic. Moreover, the standard (Fubini-Study) metric on Pn

restricts to a metric on X. This means X is a so called Kähler manifold
(see Section 5). However, which metric you get this way depends on the
embedding of X in Pn and there is no reason to believe that this metric
has good properties. In a nutshell, the Kähler-Einstein problem and the
cscK problem consists in deforming this metric (in a suitable sense) into
a Kähler-Einstein metric or a cscK metric.

When studying X from the point of view of algebraic geometry, one
would focus on the spaces of regular functions on X. For example, re-

stricting to the set {z � 0} ⊂ P2, we get a ring of polynomials

C[x,y]/(x3y + y3 + x)

defined on X∩{z � 0}. Similarly, you get a coordinate ring for any Zariski
open subset of X. From the algebraic point of view, there is a stability
condition in terms of Geometric Invariant Theory that is closely related
to the Kähler-Einstein problem and the cscK problem (see Section 8).

From a third and more recent perspective, the metric acquired by
restricting the Fubini-Study metric to X determines a volume form on
X. This defines a way of randomly sampling points on X. Similarly
as the metric, this volume form depends on the embedding. However,
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in the case when the embedding of X is canonical (this is true for the
example above), the homogenous functions on Pn defines n-forms on X
and these can be used to define canonical point processes on X. In other
words, there is a canonical way of randomly sampling sets of points on
X. As will be explained in Section 15, the many particle limit of these
point processes gives a direct connection to Kähler-Einstein metrics.

Often you want a more intrinsic way than (1) to describe a projec-
tive manifold. This can be attained by considering the pair (X,L) where
X is the abstract complex manifold (or algebraic variety) defined by (1)
and L is the line bundle over X given by the restriction of the the hyper

plane bundle over PN . By construction, the space of holomorphic sec-
tions of this bundle will be spanned by the pullback of the coordinate

functions in PN . This means we can reconstruct the embedding (up to

linear transformations on CN+1) using only the space of holomorphic
sections of L.

Finally, from an analytical point of view, the pair (X,L) is often re-
placed by (X,α) where α is the (1,1)-Dolbeault cohomology class given
by the first Chern class of L.

4. Complex structures and one of their features

A complex n-dimensional manifold is a smooth manifold of real di-
mension 2n with a holomorphic coordinate system, i.e. a coordinate
system with coordinate charts in Cn and holomorphic transition func-
tions. Each choice of coordinates induce an isomorphism between the
tangent space of the manifold and the tangent space of Cn. This gives
an operation on the tangent space of the manifold that is analogous to

multiplying by
√−1. This operation, which is called the complex struc-

ture, is usually denoted by J . While different choices of coordinates gives
different isomorphisms between the tangent space of the manifold and
the tangent space of Cn, the fact that the transition functions are holo-
morphic ensures J is well-defined.

Using J lets us express many concepts on a complex manifold in a
convenient way. First of all, the derivative df of a smooth complex val-
ued function f at a point p on a complex manifold is by definition a real
linear map from the tangent space at p to the tangent space of C. The
function is holomorphic if this map is also complex linear. Moreover, by
elementary linear algebra, any real linear map between complex vector
spaces can be written as a sum of one complex linear map and one com-
plex anti-linear map (meaning L(iv) = −iL(v)). This means df , can be
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decomposed into one part that captures its complex linear part, ∂f , and
one part that captures its complex anti-linear part, ∂̄f .

Incidentally, this gives a compact way of writing that a function is
holomorphic, namely that the complex anti-linear part of its derivative
vanishes:

∂̄f = 0.

What is perhaps more surprising, though, is what happens if we com-

pose these two operators. It turns out that
√−1∂∂̄ is a non-trivial second

order differential operator that is invariant under holomorphic changes

of coordinates. Usually, one considers
√−1∂∂̄ for real valued functions

f . When n = 1 it takes the following form in complex coordinates (z) =
(x +
√−1y):

(2)
√−1∂∂̄f =

(
∂2f

∂2x
+
∂2f

∂2y

)
dx∧ dy.

In the general case it is a 2-form that encodes the Laplacian type expres-
sion (2) of f |Y for any smooth complex curve Y in X. This means we
have an operator which (in some sense) captures the second derivative
of a function. It is interesting to compare this to the Laplace-Beltrami
operator which is only defined after fixing a Riemannian metric.

In the next section we will show how this operator is used when
studying Riemannian geometry on X.

5. Kähler geometry

In this section f will always be a smooth real valued function. The

2-form ωf =
√−1∂∂̄f can (by construction) be written as a sum of tensor

products of a complex linear form and a complex anti-linear form (this
is usually referred to as having bi-degree (1,1)). Using this one can show
that the bilinear form on the tangent space

gf = ωf (·, J ·)
is symmetric. For some f , gf is also positive definite and thus defines

a Riemannian metric. Those f that satisfies this are called plurisubhar-
monic functions, the 2-forms ωf that (locally) arise in this manner are

called Kähler forms and the associated Riemannian metrics gf are called
Kähler metrics.
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In fact, the Kähler metrics are precisely the Riemannian metrics that
”respect the complex structure” in the sense that g(J ·, J ·) = g and J is
parallell with respect to the connection determined by g .

When studying Kähler metrics you often work with the Kähler form
rather than the Kähler metric itself. The Kähler form is necessarily a
closed form. As such it defines a de Rham cohomology class on X. This
class is often referred to as the cohomology class of the Kähler metric.
Conversely, any de Rham class which contains at least one Kähler form
is called a Kähler class.

Not all complex manifolds admit a Kähler metric. While you can al-
ways construct a Kähler metric locally, patching together the local pieces
is a non-trivial problem. Manifolds that admit Kähler metrics are called
Kähler manifolds and existence of Kähler metrics have some striking

implications. One is that the cohomology of the ∂̄-operator (the Dol-
beault cohomology) on a Kähler manifold is a refinement of the deRahm
cohomology. One implication of this is the following crucial fact in Käh-
ler geometry: two Kähler forms ω1 and ω2 represent the same de Rham

class if and only if ω1 = ω2 +
√−1∂∂̄f for some smooth function f . This

means that, fixing a Kähler form ω, the Kähler forms that define the
same de Rham class as ω can be studied in terms of the space of Kähler
potentials

{f : ω +
√−1∂∂̄f is a Kähler form}.

6. Canonical Kähler metrics

The two types of canonical metrics most studied in Kähler geometry
are Kähler-Einstein metrics and cscK metrics. As mentioned above, the
first of these comes from considering the Einstein Field Equations in
vacuum on a Kähler manifold. In this case the equations reduce to the
following

(3) Ricω = λω

where ω is the Kähler form of the metric, Ricω is the Ricci curvature
form of the metric and λ ∈ R. By homogenity of Ricω with respect to
ω, it suffices to consider the cases λ ∈ {−1,0,1}. The Ricci curvature
form of a Kähler metric always represents the first Chern class c1(X)
of the manifold. This provides a necessary topological condition on X
for existence of Kähler-Einstein metrics, namely that (corresponding to
the cases λ = 1, λ = −1 and λ = 0) either c1(X) or −c1(X) contains a
Kähler form or c1(X) vanishes. In the first two cases any solution of (3)
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represents λ−1c1(X). Fixing a Kähler form ω in the appropriate class, we
may represent any Kähler form in this class by an ω-plurisubharmonic
function f . With respect to this, (3) reduces to the following differential
equation in f :

(4) ωnf = e
−λf +hωn

where ωnf = ω + i∂∂̄f and h is a smooth function determined by ω. This
is a complex Monge-Ampère equation. The left hand side of this is the
complex Monge-Ampère operator. It is fully non-linear and of second
order in f .

The solvability of (4) for λ = 0 was proved by Yau and solvability in
the case of λ = −1 was proved independently by Aubin and Yau (see [2],
[15], [16]). The case λ = 1 turned out to be more difficult. It was quickly

understood that there are obstructions to this problem. For example, P2

blown up in one point has positive first Chern class (thus corresponds
to the case λ = 1) but does not admit a Kähler-Einstein metric. Over
time it was realised that the obstructions to Kähler-Einstein metrics on
manifolds with positive first Chern class are subtle and deep. It turned
out that one had to look towards Geometric Invariant Theory in alge-
braic geometry to find the right conditions. This will be explained in
Section 8.

The other type of canonical metrics widely studied in Kähler geom-
etry, cscK metrics, are defined by the equation

(5) s(ω) = c

where s is the scalar curvature ofω and c is a constant (the average scalar
curvature of the class of ω). This is the equation you get if you apply
the trace operator to both sides of (3), hence any Kähler-Einstein metric
is a cscK metric. Moreover, Equation (5) does not imply a topological
condition like the one above, in other words it makes sense to look for
cscKmetrics in any Kähler class. However, it can be shown that any cscK
metric in a class proportional to c1(X) is also a Kähler-Einstein metric.
This means (5) has two uses: It gives an alternative way of characterising
Kähler-Einstein metrics when the class of ω is proportional to c1(X) and
it provides a good generalisation of Kähler-Einstein metrics when the
topological condition above does not hold.

In terms of a complex projective manifold (X,L) (see Section 3), the
associated cscK problem is to determine whether the Kähler class c1(L)
on X contains a cscK metric.

9
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Themain purpose of Paper III is to introduce a new type of canonical
metrics: coupled Kähler-Einstein metrics. These provide a different gen-
eralisation to Kähler-Einstein metrics than cscK metrics and has much
in common with Kähler-Einstein metrics in terms of the tools used to
study them.

7. Quotients in algebraic geometry

Consider the action by C∗ on C2 given by λ.(z1, z2) = (λz1,λz2). Now,

a naive way to construct a coordinate ring for the quotient of C2 by this
action would be to consider the invariant elements of the coordinate ring

of C2. However, the only elements in C[x,y] that are invariant under
this action are the constant polynomials, which suggests an orbit space
consisting of just one point. However, the true orbit space is much bigger

than that. In particular, each punctured line through the origin in C2 is
a distinct orbit.

The example above is naive, but it illustrates that taking quotients in
algebraic geometry is a subtle problem. One way to approach this prob-
lem is through Geometric Invariant Theory, a set of ideas developed by
Mumford and published in his 1965 bookwith the same name. Hismoti-
vation was to construct moduli spaces in algebraic geometry as quotients
of algebraic varieties. Any details about this is beyond the scope of this
thesis but the main idea is to differentiate between points depending on
their properties with respect to the action. Building on works of Hilbert,
Mumford defines three loci of points, the stable points the semi-stable
points and the unstable points (where the first is a subset of the second)
and proposes forming moduli spaces of the semi-stable points. Ideally,
the quotient will have good properties on the stable locus and the rest of
the semi-stable locus will serve to compactify the quotient space.

8. The Yau-Tian-Donaldson conjecture

The definitions of Mumford inspired Tian [13] and Donaldson [10]
to develop a stability notion in Kähler geometry: K-stability. As ex-
plained in Section 3, the basic object here is a pair (X,L). The definition
of K-semistability and K-stability involves so called test configurations.
Loosely speaking, a test configuration for (X,L) is a family π : X → C

such that the generic fiber π−1(τ) for τ � 0 is isomorphic to X, together
with a line bundle L over X such that its restriction to a generic fiber
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is L and a C∗-action on L that respects the standard action on C. As-
sociated to each test configuration is an invariant called the Donaldson-
Futaki invariant DF(X ,L). The pair (X,L) is defined to be K-semistable if
DF(X ,L) ≥ 0 for all test configurations and K-stable if it is K-semistable
and DF(X ,L) = 0 implies a certain triviality condition on (X ,L).

The Yau-Tian-Donaldson conjecture states that (X,L) admits a canon-
ical metric (a Kähler-Einsteinmetric if L is the canonical or anti-canonical
line bundle and a general cscK metric otherwise) if and only if (X,L) is
K-stable.

One importantmotivation for this conjecture is the Kobayashi-Hitchin
correspondence (also called the Donaldson-Uhlenbeck-Yau Theorem), stat-
ing that a hermitian vector bundle with trivial determinant bundle over
a compact Kähler manifold admits a Einstein-Hermitian metric if and
only if it is K-semistable in the sense of Geometric Invariant Theory. The
Yau-Tian-Donaldson conjecture is sometimes described as a non-linear
version of this.

The Yau-Tian-Donaldson conjecture was proven in the case when L
is the anti-canonical line bundle by Chen, Donaldson and Sun in 2013
[7]. This constituted a major breakthrough in the field. However, the
general case remains open.

In Paper III, we adapt the the definition of K-stability to the setting
of coupled Kähler-Einstein metrics and formulate a generalised Yau-
Tian-Donaldson conjecture. We also prove one direction of this con-
jecture, namely that existence of coupled Kähler-Einstein metrics imply
K-stability.

9. Variational approaches

Both Equation (3) and Equation (5) have variational interpretations.
These are in terms of two functionals: the Ding functional and theMabuchi
K-energy. Their significance is that (3) and (5) arise as the Euler-Lagrange
equations of these functionals, i.e. Kähler-Einstein metrics are station-
ary points of the Ding functional and constant scalar curvature Kähler
metrics are stationary points of the Mabuchi K-energy.

The important terms in these functionals are essentially given by
fixing a reference ω0 and integrating the relevant differential operator
along a curve in the space of ω-plurisubharmonic functions. We get

(6) E(f ,ω0) =

∫ 1

t=0

∫
X
((1− t)ω0 + tωf )

nf dt

11
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and

(7) K(f ,ω0) =

∫ 1

t=0

∫
X

(
c − s

(
(1− t)ω0 + tωf

))(
(1− t)ω0 + tωf

)n
f dt

Here we are integrating along straight lines from ω0 to ωf . However, it

can be shown that the integrals are independent of the choices of curves.
It follows that if ft is a curve in the space of Kähler potentials defined
for t near 1, then

dE(ft ,ω0)

dt

∣∣∣∣∣
t=1

=

∫
X

˙f1ω
n
f1

and
dK(ft ,ω0)

dt

∣∣∣∣∣
t=1

=

∫
X

˙f1
(
c − s

(
ωf1

))
ωnf1 .

The functional given by (7) is the Mabuchi K-energy and its stationary
points are cscK metrics. The Ding functional is

(8) D(f ) = E(f ,ω0) +
1

λ
log

∫
X
e−λf +hωn0

and its stationary points are Kähler-Einstein metrics.
Both E and K can be rewritten into expressions that are easier to

work with (see for example Equation (2.2) in Paper III and Equation 4.41
in [9]) and they play a major role in the study of Kähler-Einstein metrics
and cscK metrics.

One way to understand the new type of metrics introduced in Pa-
per III is to compare its generalised Ding functional (see Definition 113
in Paper III) to (8).

10. Toric geometry and beyond

An n-dimensional toric manifold is an n-dimensional complexmani-
fold with a (C∗)n-action that admits an open, dense and free orbit. When
studying these from the point of view of Kähler geometry you often re-
strict attention to those Kähler metrics that are invariant under the ac-
tion of the subgroup (S1)n ⊂ (C∗)n. When doing this, much of the com-
plex analytic framework described above reduces to convex analysis on

Rn. For example, an (S1)n-invariant plurisubharmonic function f on
(C∗)n can be represented by a convex function φ on Rn. Moreover, in
this case the complex Monge-Ampère operator can be expressed by the

12
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Hessian determinant of φ:

(9) (
√−1∂∂̄f )n = det

(
∂2φ

∂xi∂xj

)
dV ol,

where (x1, . . . ,xn) are the standard coordinates on Rn and dV ol is the
Euclidean volume form on Cn. The right hand side of this is the real
Monge-Ampère operator. Using this, equation (4) can, on a toric mani-
fold, be reduced to the real Monge-Ampère equation on Rn

(10) det

(
∂2φ

∂xi∂xj

)
= e−λφ,

subject to a certain boundary condition determined by the toric man-
ifold. This convex analytic framework has been successfully used to
study both Kähler-Einstein metrics and cscK metrics on toric manifolds.
In Paper IV we use it to study the new type of canonical metrics intro-
duced in Paper III, coupled Kähler-Einstein metrics, on toric manifolds.

A real torus is a quotient of Rn by a rank n lattice. There is a simi-
lar procedure as the one for toric manifolds to reduce complex Monge-
Ampère equations on Abelian manifolds to real Monge-Ampère equa-
tions on real tori. In Paper I we study real Monge-Ampère equations
on real tori and one motivation for this is their relationship to complex
Monge-Ampère equations on Abelian manifolds.

11. Optimal transport

The real Monge-Ampère operator is part of a historical context that
precedes the complex Monge-Ampère operator and Kähler geometry. It
is related to a certain optimisation problem figuring in the 1781 mem-
oirs of Gaspard Monge, namely optimal transport. This problem is de-
fined by two probability measures on Rn, one source measure μ and one
target measure ν, together with a cost function c(·, ·) on Rn × Rn. The
problem is then to minimise the cost

(11) C(T ) =

∫
Rn
c(x,T (x))dμ

over all maps T : Rn→ Rn that ”transports” μ to ν in the sense that the
push forward of μ under T is ν.

This problem has been revisited several times in history. Important
contributors are Kantorovich, who in the 1940’s reformulated it into a
linear problem with respect to certain probability measures on Rn ×Rn

13



Introduction

and determined its dual in terms of linear programming, Wasserstein

who in 1979 used the optimal values of (11) to define a metricW (·, ·)2 on
the space of probability measures on Rn and Knott and Smith in 1984
and Brenier in 1987 who showed that, in the case when the cost func-
tion is the squared distance function on Rn, the optimal map T arise as
the gradient map of a solution to a certain real Monge-Ampère equation.
Given this, and the connection between Kähler-Einstein metrics and real
Monge-Ampère equations explained in the previous section, it is not sur-
prising that there are links between Kähler-Einstein metrics and optimal
transport. One of these links is that if φ is a solution to (10), then the
real Monge-Ampère measure of φ minimises the following functional
defined on the space of probability measures on Rn:

(12) G(μ) = −λC(μ) +Ent(μ).
where

C(μ) =W (dp,μ)2 −
∫
Rn
|x|2μ− c.

Here, dp is a certain measure on Rn determined by the toric manifold, c
is a constant and Ent(μ) is the entropy of μ. A connection to the varia-
tional approaches in Section 9 is given by the following: If μ is the vol-
ume form of a Kähler metric in the first Chern class of a toric manifold,
then G is the Mabuchi K-energi of this Kähler metric.

Variants of G play a crucial role in both Paper I and Paper II.

12. Hessian manifolds

A Kähler manifold is a complex manifold with a Riemannian metric
that, loosely speaking, can be expressed locally as the second derivative

of a function. On a toric manifold with a (S1)n-invariant plurisubhar-
monic function f , and the associated convex function φ on Rn we have
that the Kähler metric gf is essentially given by extending the metric

(13)
∑
ij

∂2φ

∂xi∂xj
dxi ⊗ dxj .

on Rn. In other words, on toric manifolds many Kähler metrics can be
expressed using the (real) Hessian of a convex function on Rn. Turn-
ing this around, a natural question to ask is what extra structure on a
smooth manifold is needed for the tensor (13) to be well-defined. Do-
ing this we arrive at so called affine manifolds. An affine manifold is
a smooth manifold with a distinguished atlas such that the transition
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functions are affinemaps onRn. Indeed, it is easy to verify that (13) is in-
variant under affine transformations. A Riemannian metric on an affine
manifold that locally can be expressed as (13) is called a Hessian metric
and an affine manifold that admits a Hessian metric is called a Hessian
manifold. Hessian manifolds provide a real analog of Kähler manifolds.
Interest in these comes from questions in Mirror Symmetry and tropical
geometry, in particular in the framework of the Strominger-Yau-Zaslow,
Gross-Wilson and Kontsevich-Soibelman conjecures (see [1]). Here they
appear as ”large complex limits” of complex manifolds and in this con-
text, solutions to real Monge-Ampère equations on Hessian manifolds
are expected to appear as limits of Kähler-Einstein metrics on complex
manifolds.

13. Hessian metrics and Monge-Ampère equations (Paper II)

AHessian manifold is called special if the transition functions in the
distinguished atlas are volume preserving. It is easy to verify that in this
case the corresponding real Monge-Ampère measure

(14) det

(
∂2f

∂xi∂xj

)
dx1 ∧ . . .∧ dxn

is well defined.
Motivated by the conjectures in Mirror Symmetry mentioned in the

previous section, Paper II, which is written together withMagnus Önnheim,
sets up a variational framework for real Monge-Ampère equations on
compact special Hessian manifolds and use it to prove various existence
and uniqueness results. This generalises results by Cheng and Yau [8] to
a very singular setting (in fact, the results of Paper II can be applied to
homogenous real Monge-Ampère equations where the right hand side is
given by a sum of Dirac masses). We also show that there is a natural
extension of the definition of the Monge-Ampère measure (14) to gen-
eral (not necessarily special) Hessian manifolds and provide existence
and uniqueness results for the resulting equation. This extension can
be interpreted in terms of optimal transport and the main technical tool
we develop for this is a type of Legendre transform that is invariant un-
der affine coordinate transformation. The definition of this generalised
Legendre transform is inspired by constructions in [1] and [12].

The approach provide a conceptually interesting picture in the same
spirit as many of the results about canonical metrics in Kähler geometry
since, starting with an object analogous to a polarisation of a projective
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variety in algebraic geometry, we use this data to define a corresponding
”cost function” in terms of optimal transport (an object which is nor-
mally associated with analysis and probability).

A natural but challenging continuation of this work would be to ex-
tend it to the singular and possibly non-compact settings of the conjec-
tures in Mirror Symmetry above.

14. N -particle point processes

The main background for the probabilistic part of this thesis, i.e. Pa-
per I, is Berman’s work on Kähler-Einstein metrics and determinantal
point processes. Berman shows how a projective manifold (X,L) where
L is either KX or −KX defines a sequence of point processes on X. Point
processes on X are ways of randomly sampling points on X. Formally,
the point processes will be defined by symmetric probability measures

μN on the configuration space XN where N is the number of points. The
word symmetric means that the probability measures are invariant un-

der permutations of the coordinates in XN . If the points are though of as
the positions of particles on X, then the symmetry property reflects the
fact that the particles considered have identical properties. Moreover,
the fact that the point processes can be defined in terms of probability

measures on the configuration space XN means we are considering point
processes where the number of points in each outcome is fixed (as N ).
This is what we mean by N -particle point processes.

Before we outline Berman’s work we will explain some basic con-
cepts related to convergence of point processes. We will be interested in
what happens when the number of points N tend to infinity. Since each
probability measure, μN , is defined on a separate space, it is not imme-
diately clear how to speak about the limit of μN as N → ∞. One way
to deal with this is to consider the marginals of μN . Let d be a positive

integer. The d’th marginal of μN is a probability measure on Xd . It is
denoted (μN )d and it is defined by

(μN )d(E) = μN (E ×XN−d )
for any measurable E ⊂ Xd . Loosely speaking, the first marginal de-
scribes what happens if we sample points according to μN and restrict
attention to the first particle. Similarly, the second marginal describes
what happens if we restrict attention to the first two particles. The point

is that (μN )d ∈M1(X
d ) for every N . Hence, given a probability measure
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μ∗ on X which we believe in some sense describes the ”limit” of μN , there
are two natural questions to ask:

• Does (μN )1→ μ∗?
and more generally, given any integer d ≥ 1,

• Does (μN )d → μ⊗d∗ ?

The convergence here is in terms of the weak* topology on the space of

probability measures on X and XN respectively. If the first point holds,
then sampling a large number of points and restricting our attention to
the first point is close to sampling a point according to μ∗. If the second
point holds, then sampling a large number of points and restricting our
attention to the first d points is close to sampling d points independently
and according to μ∗. If the second point holds for all positive d, then {μN }
is said to be μ∗-chaotic.

One way of thinking about convergence of the first marginal is that
it encodes the limiting behaviour of the points as a ”cloud” but ignores
any interaction between the particles. A good example to consider is the

sequence of probability measures on {−1,1}N defined by

μN = δ(−1,...,−1)/2+ δ(1,...,1)/2.

In words, this can be described as an experiment where, at each level
N , the outcome is either N particles at −1 or (with the same probabil-
ity) N particles at 1. These point processes exhibits high dependence
between the variables. There is a strong attracting interaction between
the particles. Now, μN satisfies

(μN )1 = δ−1/2+ δ1/2

for eachN , thus we have convergence of the first marginal to δ−1/2+δ1/2.
However, the second marginal takes the form

(μN )2 = δ(−1,−1)/2+ δ(1,1)/2

for each N , which is different from

(δ−1/2+ δ1/2)⊗2 = δ(−1,−1)/4+ δ(−1,1)/4+ δ(1,−1)/4+ δ(1,1)/4,

in other words the second marginals of μN don’t converge to (δ−1/2 +

δ1/2)
⊗2. The example above shows that convergence of first and second

marginals are not equivalent.
An alternative way to deal with the problem that μN are defined on

different spaces is to map the spaces XN into the space of probability
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measures on X, M1(X). As mentioned above, we may think of an ele-

ment x = (x1, . . . ,xN ) in X
N as representing the position of N particles.

Since we don’t care about the order of the particles we might just as well
represent them by the measure

δ(N )(x) =
1

N

N∑
i

δxi

on X. We get a map δ(N ) : XN →M1(X). Each probability measure μN
defines a random variable x(N ) on XN and we can think of δ(N )(x(N )) as
a random measure on X. It is called the empirical measure. The law of

δ(N )(x(N )) is given by the push-forward measure

Γ(N ) =
(
δ(N )

)
∗μN ∈M1(M1(X)).

Since Γ(N ) ∈M1(M(X)) for all N , we can ask the following question with
respect to a possible ”limit” μ∗:

• Does Γ(N )→ δμ∗ .

Here δμ∗ denotes the Dirac measure at μ∗ and the convergence is in terms

of the weak* topology onM1(M1(X))), i.e. the space of probability mea-
sures on the space of probability measures on X. In terms of the random

measure 1
N

∑
δxi , this convergence means 1

N

∑
δxi converges in law to-

wards the deterministic measure μ∗.
It is easy to show that convergence of the d’th marginal implies con-

vergence of the j’th marginal for any j < d. On the other hand, by the
example above, convergence of the first marginal is strictly weaker than
convergence of the second marginal. In addition to this, the relation-
ship between the different types of convergence discussed here is sum-
marised in the following proposition:

Proposition 1 (See Proposition 2.2 in [11]). In the notation above, the fol-
lowing are equivalent:

• The random measure 1
N

∑
δxi converges in law to the deterministic

measure μ∗, i.e. ΓN → δμ∗
• {μN } is μ∗-chaotic, i.e. (μN )d → μ⊗d∗ for all integers d ≥ 1

• (μN )2→ μ⊗2∗

15. Canonical determinantal point processes

In a series of papers (see in particular [3] and [4]) Berman presents
a method to construct canonical point processes in various settings of
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Kähler geometry (for example Fano, anti-Fano, log-Fano etc). We will
outline this in the (anti-Fano) case of (X,L) where L is the canonical line
bundle KX . Here it follows from the Aubin-Yau theorem that X admits a
unique Kähler-Einstein metric.

A crucial observation in Berman’s framework is the following: If we

let Nk , for k ∈N, be the dimension of the space H0(X,kKX ) of holomor-
phic sections of kKX , then a generator det(sj ) of the top exterior prod-

uct ∧NkH0(X,kKX ) defines (up to a multiplicative constant) a symmetric

measure on XNk by

(15) μ(Nk ) = |det(sj )|2/k .
One concrete way of seeing that this defines ameasure is that, using local
coordinates (z1, . . . , zNk ) and local holomorphic representations of a basis

s1, . . . , sNk of H
0(X,kKX ), the right hand side of (15) can be expressed as

|det(si(zj ))|2/k
where each si transforms as the k’th power of an (n,0)-form. It fol-

lows that (15) transforms as a volume form on xNk . Since it is sym-
metric it defines (after normalisation) a symmetric probability measure

on XNk . In other words, for each k ∈ N we get a canonical Nk-particle
point process on X. As explained in the previous section, by identifying

a point (x1, . . . ,xNk ) in X
Nk with the corresponding normalised sum of

point masses we get a random measure 1
Nk

∑
δxj .

An illuminating example which is not from this setting but the Fano

setting isX = P1. Choosing the standard coordinates excluding the point

at infinity,H0(X,kKX ) can be represented by the space of polynomials on
C of degree at most Nk − 1 = 2k. The density of (15) with respect to the

Euclidean volume form on CNk is then given by the −2/k′th power of the
Vandermonde determinant

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 z0 . . . z
Nk−1
0

1 z1 . . . z
Nk−1
1

...
. . .

...

1 zNk−1 . . . z
Nk−1
Nk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One of the main results of Berman is:

Theorem 2 ([4]). Assume X is a compact Kähler manifold and KX is ample.
Then the random measure defined by (15) converges in law towards (ωKE)

n

where ωKE is the unique Kähler-Einstein metric on X.
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In other words, for large k, these point processes approximate the
volume form of the unique Kähler-Einstein metric on X.

16. Point processes on real tori (Paper I)

One development of the work in the previous section is a paper by
Berman where he, by looking at the toric case, develops a correspond-
ing probabilistic framework for real Monge-Ampr̀e equations on Rn. As
explained in Section 10, in the toric setting Kähler-Einstein metrics are
given by solutions to certain realMonge-Ampère equations onRn. More-
over, the point processes considered by Berman in this case are not de-
terminantal but given by so called permanents.

The purpose of Paper I is to set up a probabilistic framework for real
Monge-Ampère equations on compact toriRn/Λ, whereΛ is a rank n lat-
tice in Rn. The main result of the paper says that if the Monge-Ampère
equations admits a unique solution, then the associated point processes
converge to (the Monge-Ampère measures of) this solution. The pa-
per elaborates further on a special case analogous to a certain com-
plex Monge-Ampr̀e equation defining twisted Kähler-Einstein metrics
on Abelian varieties with positive curvature everywhere except along a
divisor. This is because one advantage with this setting compared to
that of toric geometry is that the case of positive curvature (which in
the probabilistic setting corresponds to negative temperature) can be ap-
proached in a more straight forward manner.

17. Large deviation principles

Both Paper I and Bermans original papers on the subject use a tool
called Large Deviation Principles. We will explain it here since it ties in
well with the tools from geometric analysis used in the thesis. In fact,
large deviation principles can be thought of as a probabilistic analog of
the variational approach to partial differential equations.

Essentially, a large deviation principle for a sequence of probabil-
ity measures consists of bounds on how fast the probability of ”unlikely
events”, or events that deviates a lot from what is expected, tends to
zero. In our setting an example of an ”unlikely event” is when the ran-

dom measure 1
N

∑
δxi deviates a lot from its expected limit μ∗. These

bounds are encoded in a rate and a rate function. The rate is a sequence
of real numbers that tend to ∞ and the rate function is a non-negative
real valued function on the sample space. A good but somewhat im-
precise way of thinking of a large deviation principle for a sequence of
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measures {ΓN } is that, for large N , the probability measures ΓN behave
roughly as the densities

ΓN ∼ e−rNG
where rN is the rate and G is the rate function. This captures the impor-
tant fact that ΓN is, for large N , concentrated around the minimisers of
G.

The precise definition is as follows:

Definition 3. Let χ be a topological space, {ΓN } a sequence of probabil-
ity measures on χ, G a lower semi continuous function on χ and rN a
sequence of numbers such that rN → ∞. Then {ΓN } satisfies a large de-
viation principle with rate function G and rate rN if, for all measurable
E ⊂ χ,

(16) − inf
E◦
G ≤ liminf

N→∞
1

rN
logΓN (E) ≤ limsup

N→∞
1

rN
logΓN (E) ≤ − inf

Ē
G

where E◦ and Ē are the interior and the closure of E.

Note that putting E = χ in (16) gives

− inf
χ
G ≤ 0 ≤ − inf

χ
G

hence infχG = 0. Assume G admits a unique minimiser, μ∗. In other
words, μ∗ is the unique point where G = 0. Then an ”unlikely event” is

a subset E of χ such that μ∗ � E. By the lower semi-continuity of G we
get infE G > 0. A large deviation principle then provides a bound on the
probability of the event E in the sense that for any δ < infE G we get

1

rN
logΓN (E) ≤ −δ,

or equivalently

ΓN (E) ≤ e−rNδ,
for large enough N .

As explained above, a large deviation principle with rate function G
guarantees that for large N the probability measures are concentrated
around the minimisers of G. In fact, if G admits a unique minimiser
μ∗ and {ΓN } satisfies a large deviation principle with G as rate function
then the convergence ΓN → δμ∗ follows, which in our setting means the

random measure 1
N

∑
δxi converges in law to μ∗.
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In Equation (12) we defined a functional closely related to theMabuchi
K-energy whose minimisers are the Monge-Ampère measures of solu-
tions to real Monge-Ampère equations. The main result of Paper I is
derived from a large deviation principle where the rate function is given
by this functional.

18. A new type of canonical metrics (Paper III and Paper IV)

The problem of cscK metrics in complex geometry was originally
proposed by Calabi in 1982 [6]. Given a compact Kähler manifold X
with a Kähler class α Calabi suggested looking for a Kähler metric of
constant scalar curvature ωcscK (i.e. a cscK metric) in α. As explained
above, in 2013 it was shown, as a major breakthrough, that a compact
complex manifold with an anti-canonical polarisation (X,−KX ) admits a
Kähler-Einstein metric if and only if (X,−KX ) is stable in the appropriate
sense [7].

Paper III, which is written together with David Witt Nyström, in-
troduces a new type of canonical metrics, providing a ”hybrid” between
general cscK metrics and the more understood Kähler-Einstein metrics,
namely coupled Kähler-Einstein metrics. While the data defining Cal-
abi’s problem of constant scalar curvature is given by a pair (X,α) where
α is a Kähler class, the data defining the problem of coupled Kähler-
Einstein metrics is a compact Kähler manifold X together with a k-tuple
of Kähler classes (αi ) = (α1, . . . ,αk) such that

∑
αi equals plus or mi-

nus the first Chern class of X. We look for k-tuples of Kähler metrics
ω1, . . . ,ωk representing these classes and satisfying

(17) Ricω1 = . . . = Ricωk = ±
∑
i

ωi .

Loosely speaking, the motivation for this is to bring some of the tools
that is available for the Kähler-Einstein problem, and which played a
major role in [7], to a more general setting. Without being too techni-
cal, it is worth mentioning that the regularity theory developed for the
Kähler-Einstein problem can be applied to coupled Kähler-Einstein met-
rics as well. Moreover, Cheeger-Colding theory and its implications for
Kähler-Einstein metrics, resting on positive lower bounds on the Ricci
curvature, has a good chance of extending to coupled Kähler-Einstein
metrics and the Ding functional, providing a useful alternative in the
Kähler-Einstein case to the more general Mabuchi functional used for
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general cscK metrics, extends in a straight forward manner to coupled
Kähler-Einstein metrics.

In Paper III we also extend a number of uniqueness and existence
results for classical Kähler-Einstein metrics to the coupled setting and,
perhaps most importantly, we prove that if a k-tuple of Kähler classes
(αi ) as above admits a coupled Kähler-Einstein metric, then it satisfies
a stability condition similar to the one in the Yau-Tian-Donaldson con-
jecture. This shows that the deep connection between canonical metrics
and algebraic geometry is manifested through coupled Kähler-Einstein
metrics and motivated by this, we made a similar conjecture as the one
for cscK metrics, namely that a k-tuple of Kähler classes (αi ) as above
admits a coupled Kähler-Einstein metric if and only if it is stable in the
appropriate sense.

Paper IV, confirms this generalised Yau-Tian-Donaldson conjecture
in the toric case. Here, as is the case for both Kähler-Einstein metrics
(see [14]) and cscK metrics (see [10]), the algebraic stability condition
in question simplifies to a concrete condition in terms of the associated
polytopes inRn. More precisely, a k-tuple of Kähler classes (αi ) on a toric
manifold X such that

∑
i αi = c1(X) defines a set of polytopes P1, . . . ,Pk

in Rn such that their (Minkowski) sum
∑
Pi equals the polytope P−KX

associated to −KX . Given a polytope P in Rn, let b(P) be its normalized
barycenter

b(P) =
1

Vol(P)

∫
P
pdp,

where dp is the standard volume form in Rn and Vol(P) is the volume of
P with respect to dp. The main result in Paper IV is that on a toric Fano
manifold, existence of coupled Kähler-Einstein metrics with respect to a
given k-tuple of Kähler classes (αi ) is equivalent to the following condi-
tion on the associated polytopes:∑

i

b(Pi ) = 0.

Moreover, both of these are equivalent to the appropriate notions of sta-
bility of (αi ). Aside from strengthening the plausibility of the general
conjecture, this provides a good source of example and opens up for
comparisons with the stability conditions for Kähler-Einstein metrics
and general cscK metrics. The first of these is given by

b(P−Kx ) = 0,
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and the second is (at least in the surface case) also given by a barycenter
condition, but this time involving a certain measure on the boundary of
the polytope (see [10] for details).

19. A coupled probabilistic framework (future project)

As explained in Section 15, Berman showed that Kähler-Einstein
metrics can be given a probabilistic interpretation. It turns out that
from this perspective, coupled Kähler-Einstein arise in a very natural
way. This is one the projects I have in mind for the nearest future and to
tie up this introduction wewill outline it in the case whenKX is ample. It
is proven in Paper III, as a generalisation of the Aubin-Yau theorem, that
any k-tuple of Kähler classes such that

∑
i αi = −c1(X) admits a unique

coupled Kähler-Einstein metric. In other words, (17) has a unique solu-
tion (ωi ) such that [ωi ] = αi for all i. Moreover, an important observation
is that if (ωi ) is a coupled Kähler-Einstein metric, then

(ω1)
n = . . . = (ωk)

n.

Fixing a k-tuple of line bundles (or more generally, R-line bundles)

L1, . . . ,Lk over X such that
∑
Li = KX , we let Ni

m for each i ∈ {1, . . . , k} and
m ∈N, be the dimension of the space H0

(
X,

⌊
m
ci

⌋
Li

)
where ci = Vol(Li )

1/n

and �·� is the standard floor function. It follows that the quantities

N1
m, . . . ,N

k
m grows with the same speed when m→∞. Moreover, we let

det(sj )i be a generator of the top exterior product

Ni
m∧
H0

(
X,

⌊
m
ci

⌋
Li

)

over XN
i
m . Assuming for simplicity that N1

m = . . . = Nk
m =: Nm for infin-

itely many m (I am confident that the general case can be handled by
scaling and approximation arguments) one may verify that for these m

(18) μ(Nm) =
k∏
i=1

|det(sj )i |2/
⌊
m
ci

⌋

defines (up to a multiplicative constant) a symmetric measure on XNm .
Normalising, we get a canonical symmetric probability measure on XNm .
This defines a canonical point process on X with Nm points. Equiva-

lently, by identifying a point (x1, . . . ,xNm) in X
Nm with the corresponding

24



Introduction

normalised sum of point masses gives a random measure 1
Nm

∑
j δxj . I

believe the following is true:

Conjecture 4. Assume X is a compact Kähler manifold such that KX is am-
ple and L1, . . . ,Lk are R-line bundles over X such that

∑
Li = KX , then the

random measure defined by (18) converge in law towards the volume form

μcKE = (ω1)
n = . . . = (ωk)

n

where (ωi ) is the unique coupled Kähler-Einstein metric on X such that
[ωi ] = c1(Li ) for all i.
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