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To shed light on the deuteron radius puzzle we analyze the theoretical uncertainties of the nuclear 
structure corrections to the Lamb shift in muonic deuterium. We find that the discrepancy between the 
calculated two-photon exchange correction and the corresponding experimentally inferred value by Pohl 
et al. [1] remain. The present result is consistent with our previous estimate, although the discrepancy is 
reduced from 2.6 σ to about 2 σ . The error analysis includes statistic as well as systematic uncertainties 
stemming from the use of nucleon–nucleon interactions derived from chiral effective field theory at 
various orders. We therefore conclude that nuclear theory uncertainty is more likely not the source of 
the discrepancy.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The charge radius of the deuteron (d), the simplest nucleus con-
sisting of one proton and one neutron, was recently determined 
to be rd = 2.12562(78) fm [1] using several Lamb shift (LS) transi-
tions in muonic deuterium (μ −d). This result provides three times 
the precision compared with previous measurements. Furthermore, 
the μ − d value is 7.5 σ or 5.6 σ smaller than the world aver-
aged CODATA-2010 [2] or CODATA-2014 [3] values, respectively, 
and 3.5 σ smaller than the result from ordinary deuterium spec-
troscopy [4]. One can also combine the measured radius squared 
difference r2

d − r2
p obtained from isotope shift experiments on or-

dinary hydrogen and deuterium [5] with the absolute determina-
tion of the proton radius from muonic hydrogen experiments [6,7]
(dubbed as “μp + iso”) to obtain rd = 2.12771(22) fm, which is 
much closer to the μ − d result, but still differs from it by 2.6 σ
(see Ref. [1] for details). Altogether, these significant discrepancies 
have been coined “the deuteron radius puzzle”.
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Unlike with the proton-radius puzzle [6], rd from μ − d Lamb 
shift measurements is consistent with the electron–deuteron (e–d) 
scattering data due to the large uncertainty in the scattering ex-
periments. Ongoing efforts to improve the precision in electron 
scattering will provide further information [8]. However, these dis-
crepancies, compounded with the 7 σ (5.6 σ ) discrepancy be-
tween the CODATA-2010 (CODATA-2014) and the muonic hydrogen 
proton radius [6,7], highlight the need to pinpoint the source of 
the differences. While the very recent 2S − 4P spectroscopy on 
ordinary hydrogen supports the small proton radius [9], the co-
nundrum of the proton and deuteron radius puzzles is not yet fully 
solved and further experimental and theoretical investigations are 
clearly required.

The deuteron charge radius rd is extracted from the LS mea-
surement through

�ELS = δQED + δTPE + mrα
4

12
r2

d , (1)

which is valid in an α expansion up to 5th order, where α is 
the fine structure constant. The term mr in Eq. (1) is the re-
duced mass of the μ − d system. The LS energy difference, �ELS, 
is directly measured through pulsed laser spectroscopy experi-
ments described in detail in [1,6,7,10]. The quantum electrody-
namic (QED) corrections δQED are obtained from highly accurate 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Feynman diagram of the two-photon exchange between the muon and the 
deuteron.

theoretical calculations [11,12]. In the extraction of rd from LS 
measurements the main source of uncertainty is due to nuclear 
structure corrections coming from a two-photon exchange (TPE) 
diagram, δTPE depicted in Fig. 1. Because the latter is obtained from 
theoretical computations it is of paramount importance that all 
theoretical uncertainty contributions are thoroughly investigated.

Several groups have calculated δTPE with different methods 
[13–18]. The two most recent and most precise computations, 
Ref. [17] and Ref. [18], are consistent within 0.6%. All theoretical 
calculations have been summarized by Krauth et al. [19] which re-
sulted in a recommended value of δTPE = −1.7096(200) meV. This 
value was also used by Pohl et al. [1] to extract rd using Eq. (1).

On the other hand, measuring �ELS and knowing δQED, Eq. (1)
enables the extraction of δTPE from an experimentally determined 
radius. Using rd from “μp + iso” leads to an experimental value 
δTPE = −1.7638(68) meV [1], which differs from the theoretical 
one by 2.6 σ . This disagreement motivates a reassessment of the 
theoretical calculation, and in particular of its assigned uncertain-
ties.

Finally, from the radii of light nuclei, such as hydrogen and 
deuterium, it is possible to determine the Rydberg constant R∞
and consequently the radius puzzle can be turned into a “Rydberg 
constant puzzle”. In Ref. [4] two values of R∞ were calculated 
using the muonic hydrogen and muonic deuterium charge radii 
separately and the results were found to disagree by 2.2 σ . This 
difference was attributed to the δTPE contribution used to extract 
rd from the Lamb shift.

The purpose of this letter is to revisit our calculations of the 
nuclear structure corrections in μ − d and exploit chiral effective 
field theory and statistical regression analysis to systematically im-
prove the theoretical uncertainty estimation in δTPE and shed light 
on the deuteron radius puzzles.

State-of-the-art calculations of δTPE in Refs. [16,18] as well as in 
this work, employ nucleon–nucleon (NN) potentials derived from a 
low-energy expansion of quantum chromodynamics called chiral 
effective field theory (chiral EFT). Within this approach, which also 
constitutes the modern paradigm of analyzing the nuclear interac-
tion, the nuclear potential is built from a sum of pion-exchange 
contributions and nucleon contact terms, see, e.g., Refs. [20,21]. 
Power counting enables to determine the importance of individ-
ual terms in the low-energy expansion and thereby also facilitates 
a meaningful truncation of higher-order diagrams that build the 
potential. All potentials in this work employ Weinberg’s dimen-
sional power counting schemes [22,23], whereby the order ν ≥ 0
to which a diagram belongs is proportional to Q ν , where

Q = max

{
p

�b
,

mπ

�b

}
(2)

and p is a small external momentum, �b is the chiral symmetry 
breaking scale of about the rho meson mass, and mπ is the pion 
mass. Given a power counting, contributions with a low power of 
ν are more important than terms at higher powers. Starting from 
the leading order (LO), i.e., ν = 0, higher orders will be denoted as 
next-to-leading order (NLO), i.e., ν = 2, next-to-next-to-leading or-
der N2LO, i.e., ν = 3, and so on. It is worth noticing that, in chiral 
EFT, the contributions with ν = 1 vanish due to time-reversal and 
parity. At each order ν of the chiral EFT potential, there will be a fi-
nite set of parameters, known as low energy constants (LECs), that 
determine the strength of various pion–nucleon and multi-nucleon 
operators. The LECs are not provided by the theory itself but can 
be obtained from fitting to selected experimental data, such as NN 
and πN scattering cross sections, and other few-body ground state 
observables, such as radii and binding energies. Different fitting 
procedures exist, and we will explore a variety of them as a way 
to probe both statistical and systematic uncertainties.

To avoid infinities upon iteration in the Lippmann–Schwinger 
equation all chiral potentials are regulated by exponentially sup-
pressing contributions with momenta p greater than a chosen 
cutoff value �, see e.g. Refs. [20,21]. Non-perturbative ab initio 
calculations using momentum-space chiral EFT often employ NN 
interactions with � ≈ 400–600 MeV.

Chiral EFT and effective field theories in general, unlike phe-
nomenological models, furnish a systematic, i.e., order-by-order, 
description of low-energy processes at a chosen level of resolu-
tion. In this work, it provides us with an opportunity to estimate 
the uncertainty of δTPE truncated up to different chiral orders. In 
our previous work [16,18], we probed the theoretical uncertainty 
stemming from the nuclear physics models by cutoff variation, i.e., 
varying �. Strictly speaking, this prescription to estimate the chiral 
EFT uncertainty also requires the excluded νth-order chiral con-
tributions to be proportional to 1/�ν+1 when � is approaching 
the breakdown scale �b: a property that hinges on order-by-order 
renormalizability of the canonical chiral EFT formulation, which is 
not yet established. Also, cutoff-variation tend to either underes-
timate or overestimate the chiral EFT systematic uncertainty with 
respect to the variation range [24,25]. To this end, and to be as 
conservative as possible, we will augment the procedure of cutoff-
variation by implementing the chiral EFT truncation-error to obtain 
solid systematic uncertainty estimates.

Any rigorous estimate of the theoretical uncertainty must also 
consider the effects of the statistical uncertainties of the LECs due 
to experimental uncertainties in the pool of fitted data. For exam-
ple, in Ref. [26] it was found that a rigorous statistical analysis lead 
to a four-fold increase in the uncertainty estimates of the proton–
proton fusion S-factor as compared to previous work which only 
probed the systematic uncertainty of the nuclear model by limited 
cutoff variations. Motivated by the possibility that the uncertain-
ties were underestimated, we rigorously probe the statistical and 
systematic uncertainties in the nuclear structure corrections in the 
Lamb shift of μ − d, by propagating the uncertainties of the LECs 
appearing in the NN potentials up to N2LO [27,28].

Details on the observables associated with the LS in μ − d are 
explained in Section 2 and results of the statistical analysis will 
be shown in Section 3. In addition, we improve our estimates of 
the systematic uncertainty associated with the chiral EFT expan-
sion by carrying out our calculations up to fifth-order in chiral 
EFT, namely N4LO. We then use the method detailed in Refs. [24,
25,29] to estimate the systematic uncertainty associated with the 
chiral truncation at each order. Results will be shown in Section 4. 
Finally, we will examine and combine all the relevant sources of 
uncertainty in Section 5, before drawing conclusions in Section 6.

2. Two-photon exchange contributions

For the calculation of δTPE we separate terms that depend on 
the few-nucleon dynamics, denoted with A, from terms that exclu-
sively depend on properties of the single-nucleon, denoted with N , 
as
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δTPE = δA
TPE + δN

TPE. (3)

The first contribution, which is the focus of this paper, can be writ-
ten as

δA
TPE = δ(0) + δ(1) + δ(2) + δA

Zem + δ
(1)
N S + δ

(2)
N S . (4)

Here δ(0) is the leading, δ(1) the subleading and δ(2) the sub-
subleading term in the context of an η-expansion. The small pa-
rameter η is 

√
mr/md with md being the deuteron mass. The term 

δA
Zem is the third Zemach moment. These first four terms are cal-

culated in the point-nucleon limit, while nucleon size (N S) cor-
rections are added with the additional terms δ

(1)
N S and δ

(2)
N S . The 

formulas of these corrections are detailed in Refs. [16,18,30,31] and 
not repeated here.

The single-nucleon terms, which we take from the literature, 
can be decomposed into

δN
TPE = δN

Zem + δN
pol + δN

sub . (5)

The nucleon Zemach moment and polarizability terms are esti-
mated from data and taken to be δN

Zem = −0.030(2) meV1 and 
δN

pol = −0.028(2) meV [15]. The subtraction term δN
sub instead is 

not well constrained by experimental data. Its contribution in μH 
was calculated by Birse and McGovern using chiral perturbation 
theory to be 0.0042(10) meV [32]. With the operator product ex-
pansion approach, Hill and Paz recalculated the TPE in μH [33], 
obtaining a central value that agrees with Ref. [32] but has a much 
larger uncertainty (see also Refs. [34,35]). For the nucleonic sub-
traction in μD, we adopt the strategy of Ref. [19] assuming that 
proton and neutron subtraction terms are of the same size and as-
signing a 100% uncertainty. This yields δN

sub = 0.0098(98) meV [19]. 
If we enlarge the uncertainty to 200% to be comparable with the 
finding in Ref. [33], we have δN

sub = 0.0098(196) meV.
The calculations for the deuteron are based on a harmonic os-

cillator expansion of the wave function and a discretize approach 
to the sum rules to compute the terms in Eq. (4), see Refs. [16,18]. 
We have previously shown that this approach is reliable and agrees 
very well with other calculations, such as from Pachucki [13] and 
Arenhövel [36].

3. Statistical uncertainty estimates

To probe the uncertainties in δTPE due to statistical uncertain-
ties in the LECs – originating from the uncertainties in the pool 
of fitted data – we use the NkLOsim potentials from Ref. [28], 
with k from 0 to 2.2 The presently available sim potentials em-
ploy seven different cutoff values � = 450, 475, . . . , 575, 600 MeV, 
and for each cutoff a potential was simultaneously fit to six in-
creasingly larger energy-ranges of the SM99 world database of 
NN scattering cross sections, along with πN scattering cross sec-
tions, and ground state properties3 of the 2,3H and 3He systems. 
The various subsets of the NN scattering data are delimited by 
the maximum kinetic energy in the laboratory frame of reference; 
T max

Lab = 125, 158, 191, 224, 257, 290 MeV. The statistical covariance 
matrix of the LECs for each sim interaction was determined nu-
merically to machine precision using forward-mode automatic dif-
ferentiation. The covariance matrices make it possible to propagate 

1 This value is estimated by rescaling the μH value adopted by [19] according to 
the scaling factor described in Refs. [18,31].

2 Note that k and ν are not exactly the same, even though there is a one-to-one 
correspondence between them; k = 0, 1, 2, 3, 4 corresponds to ν = 0, 2, 3, 4, 5.

3 Radius, energy, and for 2H also the quadrupole moment.
the statistical uncertainties of the LECs to, e.g., δTPE, and the var-
ious � and T max

Lab cuts gauge the systematic uncertainties in the 
fitting procedure and the cutoff choice.

We compute the covariance matrix of the nuclear structure cor-
rections relevant to the μ − d system using the linear approxima-
tion. For two quantities A and B , matrix elements of the covari-
ance matrix are then obtained from

Cov(A, B) = J ACov(α) J T
B . (6)

Here, J A is the row vector of partial derivatives of the quantity A, 
with respect to the set of LECs α, and analogously for J B . The co-
variance matrix Cov(α) of LECs is provided from [28]. The vector 
components J A,i = ∂ A

∂αi
are obtained from a univariate spline fit to 

ten numerical function evaluations of A in a small neighborhood 
of the optimal value of the LEC αi . To benchmark our procedure 
for calculating the derivatives in this fashion we compared our re-
sults for the deuteron ground state properties, such as the ground 
state energy E0, the root mean-square point-nucleon radius r, and 
the quadrupole moment Q d , with existing computations based on 
automatic differentiation algorithms and obtained excellent agree-
ment for all quantities, i.e. better than 0.005% relative uncertainty. 
The linear correlation coefficient between A and B is given by

ρ(A, B) = Cov(A, B)

σA,statσB,stat
, (7)

where σA,stat ≡ √
Cov(A, A), and similarly for σB,stat , are the sta-

tistical uncertainties of A and B , respectively. A value ρ(A, B) = 1
(ρ(A, B) = −1) indicates fully (anti-) correlated quantities, while 
ρ(A, B) = 0 implies that A and B are uncorrelated.

A regression analysis provides an exact quantification of the 
statistical correlations that are present in the chiral EFT descrip-
tion of the nuclear polarization effects. This allows us to deter-
mine constraints between different observables predicted within 
the NkLOsim models and serves as a valuable check of the uncer-
tainty propagation formalism. In this work, we focus on δA

TPE and 
its components, such as the leading dipole term δ(0)

D1 and the small 
magnetic term δ(0)

M . Since they are related to the electric dipole 
and magnetic dipole response, we also study the electric dipole 
polarizability αE and the magnetic susceptibility βM . Detailed ex-
pressions can be found in Refs. [16,18]. We also compute other 
observables of interest, such as the ground-state energy E0 and 
the mean square point-proton distribution radius r, related to rd

by

r2
d = r2 + r2

p + r2
n + 3

4m2
+ r2

2BC , (8)

where rp/n are the proton and neutron radius, respectively, while 
m is the proton mass and r2

2BC is a contribution due to two-
body currents [37,38] and other relativistic corrections beyond the 
Darwin–Foldy term 3

4m2 . Furthermore, we also study other ground-
state observables, such as the electric quadrupole moment Q d and 
the magnetic dipole moment μd , along with the D-wave proba-
bility P D . The linear correlation coefficients between these observ-
ables are presented in Fig. 2.

We observe that the quadrupole moment Q d of the deuteron 
is strongly correlated with the P D [39]. The magnetic moment of 
the deuteron ground state μd can be calculated analytically and 
depends only on the P D probability [39]. As expected, from our 
numerical analysis, the correlation ρ(μd, P D) is strongly negative. 
Furthermore, from this correlation we also expect to see a corre-
lation between P D and δ(0) which we indeed observe. Based on 
M
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Fig. 2. The correlation matrix of the deuteron ground state energy E0, rms radius r, 
quadrupole moment Q d , D-state probability P D , magnetic moment μd , electric po-
larizability αE , magnetic susceptibility βM , leading dipole polarizability correction 
δ
(0)
D1 (by far the largest term in δ(0) , see Ref. [16]), magnetic polarization correction 

δ
(0)
M and δA

TPE for the N2LOsim potential with � = 450 MeV and T max
lab = 125 MeV. 

(For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)

this analysis, we see that the magnetic properties of the deuteron 
are strongly related to P D , indicating that they are largely deter-
mined by the D-wave component of the deuteron. By contrast, the 
electric properties are found to be related to r. For example, a cor-
relation is observed between r and αE . This correlation is predicted 
on the basis of the zero-range model of the deuteron [40] and has 
been observed to hold in heavier systems [41,42]. In fact, we find 
that δA

TPE, which is strongly dominated by the dipole term δ(0)
D1 , is 

correlated to r and αE .
At this point the production of expected correlations within the 

formalism of the statistical uncertainty propagation served as a 
way to inspect the validity of our statistical analysis, but it could 
also be of guidance if one decided to use alternative fitting proce-
dures in the future.

The statistical uncertainties of r, the electric dipole polariz-
ability αE , and δA

TPE are 0.02%, 0.05%, and 0.05% respectively, i.e., 
negligible compared to the size of the systematic uncertainty, as 
we will show in the next Section. Importantly, if one uses the sep-
arately (or sequentially) optimized N2LOsep potentials of Ref. [28], 
which fit the LECs in the πN, NN and 3N sectors separately, the 
deduced statistical errors would be larger. This originates from ne-
glecting the statistical covariances between the πN and NN (and 
3N) sectors of the chiral EFT potentials while also employing LECs 
with rather large statistical uncertainties. Most microscopic inter-
actions are constrained to data in such a sequential manner, in 
particular the chiral EFT potentials up to 5th order that we employ 
in the next Section. However, the sub-leading πN LECs employed 
in those potentials were separately optimized using a novel Roy–
Steiner extrapolation of the πN scattering data [43]. The resulting 
πN LECs exhibit very small statistical uncertainties [44], and a for-
Fig. 3. The calculated values of δA
TPE for different cutoffs � in MeV as a function of 

T max
Lab for the N2LOsim potentials.

ward error propagation to δA
TPE would most likely lead to similarly 

reduced statistical uncertainties.

4. Systematic uncertainty estimates

Here we present the systematic uncertainties in our calcula-
tions due to various truncations introduced in chiral EFT. First, we 
address the truncation via T max

Lab in the energy range of the NN 
scattering data used in the fit of the LECs. In Fig. 3, the calculated 
values of δA

TPE are plotted as a function of the maximum lab en-
ergy, T max

Lab , in the fit of the N2LOsim potentials for various choices 
of the cutoff �. The error bars indicate the statistical uncertainties, 
computed as detailed in the previous Section, which were on aver-
age found to be 0.001 meV, or 0.06%. In Fig. 3 it is clear that the 
statistical uncertainties are small in comparison to the systematic 
uncertainties due the variation of the cutoff � and T max

Lab . Further-
more, the range of the calculated values of δA

TPE for different �
decreases at the largest T max

Lab energies, indicating that the nuclear 
dynamics as described by the LECs become better constrained with 
more data.

Next, we address the uncertainties coming from truncating chi-
ral EFT at the order ν . The common approach to gauge this un-
certainty is by varying the cutoff � over a range of values. How-
ever, this approach to uncertainty estimation suffers from several 
deficiencies, such as the arbitrariness in the chosen �-range. Fur-
thermore, often the residual � dependence underestimates uncer-
tainties as discussed in Refs. [24,25]. To address these deficiencies 
and give a conservative estimate of the systematic uncertainties, in 
addition to cutoff variation, we follow [25,29] and include an un-
certainty estimate based on the expected size of the next higher-
order contribution in the chiral EFT expansion. This approach is 
in semi-quantitative agreement with a Bayesian uncertainty analy-
sis. Assuming that an observable A(p), associated with an external 
momentum scale p, and computed non-perturbatively from chiral 
EFT, follows the same order-by-order pattern as chiral EFT itself, 
then it can be expressed as

A(p) = A0

∞∑
ν=0

cν(p)Q ν, (9)

where A0 is the leading order value, Q is the small expan-
sion parameter, given in Eq. (2), and cν(p) is an observable- and 
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Fig. 4. Systematic uncertainties of δA
TPE as a function of the cutoff � for the N2LOsim

potentials. The blue (dark) band indicates the uncertainty due to variations in T max
Lab . 

The (light) green band also includes the chiral truncation uncertainty. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

interaction-specific expansion coefficient determined a posteriori. 
The uncertainty in A due to truncation at some finite order ν , i.e., 
LO, NLO, N2LO, . . . , can be estimated by

σ NkLO
A,sys(p) = A0 · Q k+2max{|c0|, ..., |ck+1|}. (10)

This expression rests on a prior assumption of independent expan-
sion coefficients cν with a boundless and uniform distribution.

To estimate the typical momentum scale p of the nuclear 
structure corrections, we compute the average energy value of 
the largest term in δA

TPE, namely the leading order dipole correc-
tion [16]

δ
(0)
D1 = −2πm3

r (Zα)5

9

∞∫
ωth

dω

√
2mr

ωN
S D1(ω), (11)

where S D1(ω) is the dipole response function. The average value 
〈ω〉D1 is calculated as

〈ω〉D1 =
∫

dω ω
√

2mr
ωN

S D1(ω)∫
dω

√
2mr
ωN

S D1(ω)

. (12)

Given that we obtain 〈ω〉D1 ≈ 7 MeV, which corresponds to a 
momentum scale p smaller than mπ , the chiral convergence pa-
rameter Q for our uncertainty estimates is always taken to be 
mπ/�b . For a solid estimation of truncation errors, it is also cru-
cial to adopt a suitable �b . Here we follow [25,29] and set �b to 
600 MeV, as a choice shown by Bayesian analyses [29,45] to be 
optimal.

In Fig. 4, the uncertainty estimates for δA
TPE are displayed for 

the N2LOsim potentials as a function of the cutoff �. The blue band 
shows a conservative spread of δA

TPE due to variations of T max
Lab from 

125 to 290 MeV, which, with respect to the central value, amounts 
to about 0.004 meV or 0.2%. The green band also includes the 
uncertainty stemming from the chiral truncation. Due to the fact 
that the two systematic uncertainties are not independent from 
each other, the chiral truncation error is calculated from Eq. (10)
and added to each point in T max

Lab and �. The green band encom-
passes the maximum and minimum values of δA

TPE so obtained. The 
largest contribution of the truncation uncertainty alone is found to 
Table 1
Results for δTPE at various orders with corresponding estimates for the nuclear 
physics σNucl and total σTot uncertainties.

Order Potential δTPE [meV] σNucl [meV] σTot [meV]

LO sim −1.616 +0.11
−0.11

+0.11
−0.11

E K M −1.767 +0.18
−0.17

+0.18
−0.17

E MN −1.599 +0.095
−0.097

+0.097
−0.099

NLO sim −1.724 +0.032
−0.032

+0.038
−0.038

E K M −1.718 +0.025
−0.034

+0.032
−0.040

E MN −1.710 +0.029
−0.029

+0.035
−0.035

N2LO sim −1.721 +0.011
−0.011

+0.023
−0.023

E K M −1.705 +0.008
−0.010

+0.022
−0.023

E MN −1.710 +0.008
−0.009

+0.022
−0.022

N3LO E K M −1.719 +0.009
−0.012

+0.022
−0.024

E MN −1.712 +0.006
−0.005

+0.021
−0.021

N4LO E K M −1.718 +0.008
−0.009

+0.022
−0.022

E MN −1.712 +0.006
−0.006

+0.021
−0.021

be 0.007 meV for the N2LOsim potentials. The overall systematic 
uncertainty including cutoff variation, T max

Lab variations and chiral 
truncation error amounts to 0.011 meV or 0.65% for the N2LOsim

potentials and thus dominates with respect to the 0.06% statistical 
uncertainty.

To study the convergence of δA
TPE with respect to the chiral or-

ders greater than N2LO, in addition to the sim potentials, we also 
carry out calculations using the chiral potentials available up to 
N4LO. Two groups of chiral interactions have been constructed us-
ing different fitting procedures and slightly different operatorial 
form in the potentials, but identical power-counting. We will use 
all orders available from Ref. [24]4 and denote them as NkLOE K M , 
and those from Ref. [46], which will be denoted as NkLOE MN . 
For the NkLOE K M family of potentials we will explore the cutoffs 
(R0, �) = (0.8, 600), (1.0, 600) and (1.2, 400) [fm, MeV], where 
R0 is a coordinate-space regulator, and for the NkLOE MN family 
of potentials we will use � = 450, 500 and 550 MeV. The use of 
a higher order in chiral EFT will allow us not only to update our 
results with respect to our previous work [16,18], but also to get 
a more reliable estimate the chiral convergence uncertainty using 
Eq. (10). Our goal is to provide an updated value of δTPE with its 
overall uncertainty. This will be discussed in the next Section.

5. Total uncertainty estimates

First, systematic and statistical uncertainties of the various nu-
clear interactions are combined into σNucl, which is detailed in 
Table 1. For the NkLOE K M and NkLOE MN potentials at all orders 
we include systematic uncertainties from chiral convergence and 
cutoff variation. Systematic errors stemming from T max

Lab variations 
cannot presently be estimated at N3LO and at N4LO, thus we 
include the corresponding uncertainty evaluated from N2LOsim . 
For the lowest orders in the E K M and E MN potentials, system-
atic errors from T max

Lab variations are taken from the correspond-
ing order of the sim interactions. The sim potentials contain all 
of the above and statistical uncertainties, estimated consistently 
at each order. Statistical uncertainties are found to be negligible 
in the sim potentials and, while at present a consistent evalu-
ation is not possible, they are also expected to be small in the 

4 This is a newer version of the potentials with respect to those we used in 
Ref. [16].
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Fig. 5. δTPE as a function of the chiral order with total uncertainty (see text for 
details).

NkLOE K M and NkLOE MN families. Thus, we take the N2LOsim statis-
tical values also for the N2,3,4LOE K M/E MN potentials, and the LOsim
(NLOsim) values for the LOE K M/E MN (NLOE K M/E MN ) potentials, re-
spectively.

The present calculation is performed to sub-subleading order in 
the η-expansion, thus uncertainties deriving from higher order η
contributions need to be estimated in the total error budget. These 
higher order η contributions are estimated to provide a 0.3% effect 
based on a different approach to the computation of δA

TPE, which 
allows to include higher order electromagnetic multipoles [47]. So 
far we have concentrated on δA

TPE, which is the only term in δTPE
with explicit dependence on the nuclear dynamics. For a complete 
discussion on δTPE we should consider the additional nucleonic 
terms in Eq. (5), namely δN

pol, δ
N
Zem , δN

sub and their respective un-
certainties, using the values quoted in Section 2. Finally, our δTPE
formulas are valid in an α expansion up to 5th order. Higher order 
terms in the α expansion were estimated first by Pachucki [13] to 
be of 1%. Here, we will keep this value and refer to it as the atomic 
physics uncertainty, as in Refs. [16,18], and add it to the other un-
certainties in quadrature. Atomic, single-nucleon, and η-expansion 
uncertainties of δTPE are included in σTot, on top of the nuclear 
physics uncertainties, given in Table 1.

In Fig. 5 and in Table 1, we show the convergence of δTPE and 
its overall uncertainties with respect to all chiral orders from LO up 
to N4LO using δN

sub from Ref. [19] (we will include the larger uncer-
tainties of Ref. [33] later in our analysis). In particular, in Table 1, 
one can appreciate the difference between σNucl and σTot. One can 
readily see that uncertainty bands decrease as the order of the chi-
ral expansion increases, as expected. Beside LO calculations, where 
the three potential families somehow differ, all results at higher 
orders are quite stable around the same value, independently of 
the potential used. Interestingly, N4LO results are almost identi-
cal to N3LO results, indicating convergence of the chiral expansion 
for this observable. The uncertainty estimates at N3LO and N4LO 
are compatible with our previous estimates in Refs. [16,18], even 
though slightly larger, mostly due to the inclusion of the system-
atic error using Eq. (10). Furthermore, Table 1 shows that, although 
the nuclear physics errors are dominant at lower order in the chi-
ral expansion, at N4LO the leading uncertainty is not stemming 
from nuclear physics, but rather from the other sources.

Results are also compared to the experimentally inferred δTPE
correction [1] and theoretical compilation [19]. We find that the 
N4LO band is consistent with the theoretical compilation and en-
compasses also our result δTPE = −1.709 meV from Ref. [16] based 
Table 2
Uncertainty breakdown of the final δTPE value. For the single-nucleon 
contribution we quote two values, one where we adopted the strat-
egy of Ref. [19] and one where we use the larger uncertainties from 
Ref. [33] for δN

sub .

Contribution Uncertainty in meV

Nuclear physics (syst) +0.008
−0.011

Nuclear physics (stat) ±0.001

η-expansion ±0.005

Single-nucleon ±0.0102 [19] ±0.0198 [33]
Atomic physics ±0.0172

Total +0.022 +0.028
−0.024 −0.029

on the AV18 potential [48], which is also included in the theory 
summary by Krauth [19]. We also observe, though, that our N4LO 
band is not compatible with the experimental determination of 
δTPE.

Finally, based on our analysis, we provide an updated value of 
δTPE = −1.715 meV with its itemized uncertainty budget in Ta-
ble 2. As central value we take the average N4LO result from the 
E MN and E K M families. Uncertainties are separated into system-
atic and statistic nuclear physics, η-expansion, single-nucleon and 
atomic physics uncertainties. Systematic uncertainties from cutoff 
variation and chiral truncation are obtained from our N4LO stud-
ies by taking the combined range of the E MN and E K M bands. 
While here we studied the chiral convergence of the potential, the 
same should in principle be done regarding the chiral expansion of 
electromagnetic currents [37,38] leading to further systematic cor-
rections. In our formalism, δA

TPE is related to electromagnetic multi-
poles, where the electric dipole dominates. The latter is protected 
by the Siegert theorem [36], so that two-body currents are im-
plicitly included via the use of the continuity equation [36]. There 
exist corrections to the Siegert term. We have estimated the mag-
nitude of those by integrating an E1-response function provided by 
Arenhövel [49], which included two-body currents and relativistic 
corrections as in Ref. [36] for the AV18 potential. Their effect on 
the leading dipole correction δ(0)

D1 was both found to be of the or-
der of 0.05%, thus negligible.

Despite the disputed single-nucleon TPE uncertainty [33–35], it 
is evident from Table 2 that the atomic physics error remains a 
major source of uncertainty. It is approximately 1% from a reason-
able, but rough, estimate by Pachucki et al. [13]. The estimate is 
based on taking 50% of relativistic and higher order corrections, 
which are the smallest contributions to δA

TPE. A more thorough es-
timate of α6 effects requires going to third order in perturbation 
theory and study three-photon exchange effects, which is beyond 
the scope of this work. Here, we have shown that uncertainties 
stemming from the chiral EFT description of the nuclear interac-
tion alone are not capable of explaining the discrepancy between 
the calculated δTPE and the corresponding experimental extraction 
by Pohl et al. [1].

Since the deuteron point-nucleon radius r based on CODATA 
was used in the fitting procedure, e.g., of N2LOsim potentials, one 
may suspect this yields a biased δTPE in muonic atoms. However, in 
order to remedy the discrepancy between the μ −d and “μp + iso” 
values of rd , one may just vary r by ∼ 0.1%, see Eq. (8). Due to the 
linear correlation between r and δTPE, this would only lead to a 
maximum variation δTPE of the order of ∼ 0.1%, which is negligible 
with respect to the required ∼ 3% change needed to explain the 
discrepancy between its theory and experimental determination.
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6. Conclusions

In this work, we have explored the uncertainties in δTPE correc-
tions using state-of-the-art chiral potentials from LO up to N4LO. 
We have calculated the statistical uncertainties up to N2LO us-
ing a set of simultaneously optimized chiral potentials. From this 
we conclude that the uncertainty due to variances of the LECs are 
negligible compared to the systematic uncertainties due to cutoff 
variation and chiral truncation. We have also found that going be-
yond N3LO in chiral EFT does not change the overall results of 
δTPE, which also indicates a high theoretical accuracy of our fi-
nal result. In conclusion, the rigorous uncertainty quantification 
presented here weakens the disagreement between the calculated 
two-photon exchange correction and the corresponding experi-
mentally inferred value by Pohl et al. [1] from 2.6 σ to within 
2 σ (or 1.7 σ if using the larger single nucleon uncertainties of 
Ref. [33]). Breaking down the total uncertainty budget in the calcu-
lation of δTPE shows that atomic physics and single-nucleon physics 
need to be addressed to further reduce the theoretical uncertainty. 
It is important to remark that the deuteron-radius puzzle is still 
alive, in that the large discrepancy between the spectroscopic mea-
surements on muonic deuterium and on ordinary deuterium still 
exists and it does not seem to be simply explained from nuclear 
physics uncertainties in the few-body dynamics.
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