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Capacity Scaling of Flexible Optical Networks With
Nonlinear Impairment

Li Yan and Erik Agrell

Abstract—Efficient resource utilization with a satisfying quality
of service is the key to high capacity in flexible optical networks.
In our work, this is achieved by supporting the resource allocation
with the Gaussian noise model, which estimates the nonlinear
physical-layer impairments. The study includes variable launch
power, modulation formats, error-correcting code rates, and var-
ious new network features to provision traffic requests efficiently.
The advantageous performance of the flexible optical networks
is demonstrated by simulation results.

Keywords—Flexible optical networks, Gaussian noise model,
resource allocation

I. INTRODUCTION

The rapid rise in the use of the Internet has led to increasing
data volumes and diversified traffic requests, which put severe
pressure on backbone optical networks. Flexible-grid optical
networks have been developed to relax the rigid spectrum grid
requirement of wavelength-division multiplexing (WDM) net-
works and offer much higher efficiency by adaptively assigning
spectrum to traffic demands [1]. New transmission techniques
and network features are also introduced into flexible-grid
networks to further boost the capacity. Consequently, the
states of flexible-grid networks become extremely complicated
and physical layer impairments (PLIs) will be the dominant
limiting factor for satisfactory qualities of transmission (QoTs).
Hence, studying efficient and intelligent resource allocation
algorithms that overcome these challenges is meaningful to
avoid the so-called “capacity crunch” [2], [3].

To achieve acceptable QoTs in highly heterogeneous net-
work environments, we need to consider the significant nonlin-
ear interference (NLI) among demands coexisting on different
wavelengths in the same fiber link [4]. Recently, the Gaussian
noise (GN) model [5], [6] has been proposed to approximate
the PLIs analytically with reasonable accuracy and low compu-
tational complexity. Based on this model, the demand signal-
to-noise ratio (SNR) can be estimated according to the overall
network state. Significant efficiency improvements have been
achieved in the optical networks by precise NLI evaluation and
optimized resource allocation [7], [8].

Accompanied with the network development are the vari-
ous new techniques that improves transmission capacity sig-
nificantly. To maximize the throughput over a fiber link,
higher order modulation format adaptation [9], variable error-
correcting code rate [10], and optimized launch power [11]
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are used at the transceiver. Space-division multiplexing (SDM)
has been proposed as a cost-effective alternative for single-
mode fibers to increase the transmission data rate greatly [12].
The performance of these innovations can be evaluated on the
link level by point-to-point transmission experiments, but their
potential in the network context remains in part an unanswered
question.

In this paper, we investigate the capacity and efficiency
benefits of combining flexible-grid networks with different
transmission techniques and new network features including
modulation format and carrier frequency adaptation, adjustable
launch power, variable coding rate, SDM, and regenerator
placement. Some of these techniques aim at improving the
network resource utilization, whereas others improve the fun-
damental transmission capacity of optical fibers. Resource
allocation algorithms that ensure acceptable QoTs based on
the GN model are reviewed. Numerical results are shown for
the performance assessment.

II. PHYSICAL LAYER IMPAIRMENT MODEL

We consider transparent or translucent optical network com-
posed of ideal colorless-directionless reconfigurable optical
add-drop multiplexers (CD-ROADMs) nodes and bidirectional
links with equal-length fiber spans. Erbium-doped fiber am-
plifiers (EDFA) are deployed at the end of each fiber span
to compensate for the fiber loss. The linear impairments are
compensated for at the receiver by digital signal processing.
The PLIs are mainly attributed to the NLIs generated during
signal propagation in fibers and the amplified spontaneous
emission (ASE) noise from EDFAs.

According to the GN model [5], [6], given a set of demands
D in a flexible-grid network, the power spectral density (PSD)
of the NLI per polarization for demand i ∈ D can be expressed
as [13]

GSCI
i = µN span

i G3
i arcsinh

(
ρ∆f2i

)
, (1)

and

GXCI
i = µGi

∑
j∈D
j 6=i

N span
ij G2

j ln

(
|fi − fj |+ ∆fj
|fi − fj | −∆fj

)
, (2)

where µ = 3γ2/(2πα|β2|), ρ = π2|β2|/2α, γ is the nonlinear
parameter, α is the fiber power attenuation, β2 is the group
velocity dispersion parameter, and fi, ∆fi, Gi, GSCI

i and
GXCI
i are the center frequency, bandwidth, PSD, self-channel

interference (SCI), and cross-channel interference (XCI) of
demand i ∈ D, respectively. The ASE noise can be written
as

GASE
i = N span

i

(
eαL − 1

)
hνnsp, (3)
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where L is the length per fiber span, h is Planck’s constant,
nsp is the spontaneous emission factor, and ν is the light
frequency. If multicore fiber (MCF) is used, however, there
will be additional intercore interference (ICI), which affects
channels transmitted on overlapping spectrum and adjacent
cores. The PSD of ICI is expressed as

GICI
i = δ

∑
j∈Di

N span
ij Gj , (4)

where δ is the ICI coefficient and Di is the set of demands
that generate ICI to i.

Combining the ASE noise and NLIs, the requirement of the
SNR for demand i can be written as

SNRi =
Gi

GSCI
i +GXCI

i +GASE
i +GICI

i

≥ SNRi,th, (5)

where SNRi and SNRi,th are the actual SNR and SNR thresh-
old of demand i, respectively. If MCF is used, the GICI

i
term will also appear in the denominator of (5). The SNR
threshold depends on according the modulation format and
error-correcting code used by the demand.

Note that in (1) and (2), the NLIs are nonlinear functions of
the demand PSDs and spectrum assignments. The nonlinearity
would be a computational burden to many resource allocation
algorithms. This is because many problems, e.g., the assign-
ment of route, spectrum, and regenerators, are modeled as
mixed integer programming optimizations, which are solvable
in realistic size networks only with linear constraints. There-
fore, in order to leverage the precise NLI estimation of the GN
model, it is necessary to simplify (1) and (2).

To approximate the GN model without much accuracy loss,
linearization can be applied to (1) and (2). Mathematically, a
function h(x) can be fitted by a piecewise linear function [14]
in the form of

ĥ(x) = max{a1>x + b1, . . . ,ak
>x + bk}, (6)

where ai
>, bi for i = 1, . . . , k are the coefficients of a set

of linear functions and x is a vector of resources to be
optimized. In the resource allocation, x could be the assigned
demand PSDs and frequencies. To obtain satisfactory QoTs,
the linearized GN model should be an overestimation of the
NLI PSDs, which implies ĥ(x) ≥ h(x) for all meaningful x.
The number of linear functions k controls the complexity and
accuracy of the linearization. Thanks to the convexities of (1)
and (2), good fitting qualities1 are achieved with k = 60.

III. CAPACITY ENHANCING TECHNIQUES IN
FLEXIBLE-GRID NETWORKS

In this section, we incorporate the GN model, new trans-
mission techniques, and network features into flexible-grid
networks. Their potential capacity and efficiency benefits are
assessed by novel resource allocation algorithms and numerical
results.

1The maximum relative fitting errors for SCI and XCI noises are 0.1% and
18.0%, respectively, which are sufficient to yield good resource allocations
in flexible-grid networks [14] since the contribution of XCI is usually
comparatively small in the optimized resource allocations. A smaller fitting
error can be achieved by setting k to a higher value.
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Figure 1: The spectrum usage of the proposed CL heuristic
and the TR-based benchmark in the German network [8].

A. Modulation Format and Carrier Frequency Adaptation
Todays agile transponders can adapt the bit rate and spec-

trum usage by supporting several modulation formats and
tunable center frequencies. With higher order quadrature am-
plitude modulation (QAM), an increased spectral efficiency of
transmission is achieved at the price of higher SNR threshold
and hence increased vulnerability to PLIs. Moreover, the
coexistence of multiple modulation formats and channel band-
widths on fiber links would generate much higher spectrum
fragmentation and NLIs, which makes it necessary to develop
PLI-aware resource allocation algorithms.

To this end, we applied a connection list (CL) heuristic
algorithm to solve the routing, modulation format, and spec-
trum allocation (RMSA) problem based on the GN model in
flexible-grid networks [8], [15]. The CL heuristic allocates
traffic demands one by one greedily. For each demand, the
best routing, spectrum, and modulation format are chosen
such that the QoTs of all the demands in the network are
satisfactory. The order of processing demands is controlled by
a simulated annealing heuristic [16]. A uniform PSD among
all traffic demands is assumed. As is illustrated in Figure 1, by
utilizing the GN model in the PLI estimation, the proposed CL
heuristic improves the spectrum efficiency by 50% compared
to the benchmark [17], which guarantees QoTs by limiting
the route length to the worst case transmission reach (TR) for
each modulation format. Moreover, the proposed heuristic can
provide feasible solutions for all launch powers, whereas the
benchmark works only at low power levels.

B. Adjustable Launch Power
A carefully selected uniform PSD has been shown to be

important to efficient resource utilization in Figure 1. We
push this even further by optimizing the PSD for each traffic
demand [14]. The linearized GN model in the form of (6) is
incorporated into a mixed integer linear programming (MILP)
formulation to reduce the complexity. The proposed MILP
is decomposed into three subproblems, which are solved
sequentially to determine the routing, spectrum, and PSD per
demand, respectively. The decomposition algorithm achieves
fast running time and close-to-optimal performance by explor-
ing the solution space with multiple start points.
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Figure 2: The distribution of allocated PSDs for the uniform
and optimized PSD schemes in the German network.

The distribution of the individually optimized PSDs is
compared with the uniform PSD scheme [8] in Figure 2
across multiple simulations, where each simulation will give a
uniform PSD for the benchmark and different PSDs for each
demands in the variable PSD method. The optimized PSD are
spread in a large range, whereas the uniform PSD scheme
has a much limited choice. In Figure 3, the relative gain of
the optimized PSD scheme grows as the traffic load increases.
This illustrates the effectiveness of the PSD optimization in
heavily loaded networks, where the diverse NLIs generated by
a large number of demands are mitigated significantly.

C. Variable Coding Rate
Forward error correction (FEC) enables the correction of

errors introduced by noise or PLIs by adding redundancy
to transmitted data in controlled fashion [18]. Transponders
with variable modulation formats but fixed code rate can only
provide discrete spectral efficiencies. In contrast, more degrees
of freedom are offered by varying the FEC code rate as well.

In order to leverage the flexibility of variable coding rate,
we propose a routing, code rate, modulation level, and spec-
trum assignment (RCMLSA) algorithm in the static network
scenario [19]. In Figure 4, the spectrum utilizations of the
RCMLSA and fixed coding rate resource allocation are shown,
where RCMLSA achieves much better performance improve-
ment over the whole range of transmit PSD.
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Figure 3: The gain of the optimized PSD relative to the
uniform PSD scheme in the German network. The traffic load
is measured relative to the single demand per node pair case.
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Figure 4: The spectrum usage comparison the fixed and vari-
able coding rate in the German network. The Reed-Solomon
(RS) code family is used.
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Figure 5: The impact of ICI on the spectrum usage in the
German network.

D. SDM

Flexible-grid networks can provide higher throughput by
using the existing resources more efficiently. The single-core
fiber (SCF) underlying the physical layer, however, prevents
the network capacity from fast growing. This limitation is
circumvented by utilizing SDM to transmit parallel signals in
the spatial dimensions of MCFs. To ensure acceptable QoTs,
the ICI expressed in (4) should be considered in addition to
the NLI and ASE noises.

To study the impact of ICI, we developed a spectrum and
fiber core allocation scheme in MCF flexible-grid networks.
We first sort the traffic demands in descending order of their
data rates, and then assign core and spectrum to them one
by one greedily with constraints that the QoTs of all the
existing demands are always acceptable. We then simulate the
network spectrum usage with variable ICI coefficient δ in 2-
core and 7-core MCF networks and compare the results with
those neglecting ICI. As is shown in Figure 5, when δ ≥ −55
dB/100km, the ICI must be considered in order to obtain
feasible solutions for the 2-core MCF network, otherwise some
demands will be blocked due to excessive ICI noise. A 30%
spectrum reduction can be achieved in the 7-core MCF network
when δ ≥ −45 dB/100km.
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Figure 6: The average number of regenerators placed in the
NSF-24 network [20] by the TR- and GN-based algorithms.

E. Regenerator Placement

In some submarine or large terrestrial networks, particularly
if they involve high-order QAM or high baud rates, the length
of the light path may be so long that the accumulated PLIs
are too high to allow direct transmission. Regeneration is
needed in intermediate nodes to restore the optical signals. The
regenerators are, however, expensive since they require high-
speed electronic equipment and maintenance by technicians.
Therefore, accurate PLI estimation can help to optimize the
regenerator placement such that proper QoTs are ensured in
an economical fashion.

In our current work, we develop an iterative regenera-
tor placement algorithm based on the decomposition of an
MILP [20] and a linearized GN model. Our algorithm success-
fully reduces the complexity of MILP optimizations and can
handle up to 50 concurrent traffic demands near-optimally. As
illustrated in Figure 6, the linearized GN model estimates the
PLIs accurately and achieves much conservative regeneration
allocations compared with the TR-based method.

IV. CONCLUSION

Significant capacity and efficiency improvements can be
achieved by incorporating various new transmission techniques
and network features into flexible-grid networks. The compli-
cated and significant PLIs generated by coexisting heteroge-
neous optical signals on different wavelengths and/or cores
in the network, however, should be precisely predicted. Our
research shows that there is a great potential benefit in flexible-
grid networks, which could be harvested by carefully designed
resource allocation algorithms based on accurate physical layer
models.
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