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High order cut finite element methods 
for the Stokes problem
August Johansson1*, Mats G. Larson2 and Anders Logg3

Background
Introduction

Meshing of complex geometries remains a challenging and time consuming task in engi-
neering applications of the finite element method. There is therefore a demand for finite 
element methods based on more flexible mesh constructions. One such flexible mesh 
paradigm is the formulation of finite element methods on composite meshes created by 
letting several meshes overlap each other. This approach enables using combinations of 
meshes for certain parts of a domain and reuse of meshes for complicated parts that may 
have been difficult and time consuming to construct.

We consider the case of a composite mesh consisting of one mesh that overlaps 
another mesh which together provide a mesh of the computational domain of interest. 
This results in some elements on one mesh having an intersection with one or several 
elements on the boundary of the other mesh. We denote such elements by cut elements. 
The interface conditions on these cut elements are enforced weakly and consistently 
using Nitsche’s method [1].

In this setting [2] first developed and analyzed a composite mesh method for elliptic 
second order problem based on Nitsche’s method. In [3], this approach was extended to 
the Stokes problem using suitable stabilization to ensure inf-sup stability of the method. 
Implementation aspects were discussed in detail in [4]. In [5] a related cut finite element 
method for a Stokes interface problem based on the P1-iso-P2 element was developed 
and analyzed.

Abstract 

We develop a high order cut finite element method for the Stokes problem based 
on general inf-sup stable finite element spaces. We focus in particular on compos-
ite meshes consisting of one mesh that overlaps another. The method is based on 
a Nitsche formulation of the interface condition together with a stabilization term. 
Starting from inf-sup stable spaces on the two meshes, we prove that the resulting 
composite method is indeed inf-sup stable and as a consequence optimal a priori error 
estimates hold.

Keywords: Interface problem, High order, Stokes problem, Nitsche’s method,  
Unfitted finite element methods
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Composite mesh techniques using domain decomposition are often called chimera, 
see for example [6, 7] for uses in a finite difference setting or [8] in a finite element set-
ting. The extended finite element method (XFEM) also provides composite mesh han-
dling techniques, see for example [9, 10]. However, the Nitsche method approach using 
cut elements used in this work makes it possible to obtain a consistent and stable formu-
lation while maintaining the conditioning of the algebraic system for both conforming 
and non-conforming high order finite elements.

In this paper, we consider Stokes flow and devise a method based on a stabilized 
Nitsche formulation for enforcement of the interface conditions at the border between 
the two meshes. A specific feature is that we only assume that we have inf-sup stable 
spaces on the two meshes and that the spaces consist of polynomials. We can then show 
that our stabilized Nitsche formulation satisfies an inf-sup condition and as a conse-
quence optimal order a priori error estimates hold. We emphasize that the spaces are 
arbitrary and can be different on the two meshes, in particular, continuous or discontin-
uous pressure spaces as well as higher order spaces can be used. We present numerical 
results for higher order Taylor-Hood elements in two and three spatial dimensions that 
confirm our theoretical results.

The outline of the paper is as follows: First we review the Stokes problem. Then the 
finite element method is presented by first defining the composite mesh and introducing 
finite element spaces. The method is then analyzed where the inf-sup condition is the 
main result. Finally we present the numerical results and the conclusions.

The Stokes problem

In this section, we review the Stokes problem and state its standard weak formulation. 
We also introduce some basic notation.

Strong form

Let � be a polygonal domain in Rd with boundary ∂�. The Stokes problem takes the 
form: Find the velocity u : � → R

d and pressure p : � → R such that

where f : � → R
d is a given right-hand side.

Weak form

As usual, let Hs(�) denote the standard Sobolev space of order s ≥ 0 on � with norm 
denoted by � · �Hs(�) and semi-norm denoted by | · |Hs(�). Let L2(�) denote the L2-norm 
on � with norm denoted by � · ��. The corresponding inner products are labeled accord-
ingly. We will also use the notation x � y to denote the inequality x ≤ Cy, where C is a 
constant. The corresponding inequality x � y is defined accordingly.

Introducing the spaces

(1)−�u+∇p = f in �,

(2)div u = 0 in �,

(3)u = 0 on ∂�,

(4)V = [H1
0 (�)]d ,
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with norms �Dv�� = �v ⊗∇�� and ‖q‖�, the weak form of (1) and (2) reads: Find 
(u, p) ∈ V × Q such that

where the forms are defined by

Remark 1 We obtain the variational problem (6) by formally multiplying (1) by a test 
function v and (2) by a test function −q.

It is then possible to show that the inf-sup condition

holds, from which it follows that there exists a unique solution to (6). See [11] for further 
details.

Method
The composite mesh

We here present the concepts and notation of the domains and meshes used. The main 
idea is to introduce a background domain which is partially overlapped by another 
domain (the overlapping domain). For each of these domains, we mimic the setup of a 
traditional finite element method in the sense that each domain is equipped with a tra-
ditional finite element mesh. The two meshes are completely unrelated. In particular, the 
interface between the two meshes is determined by the overlapping domain and is not 
required to match or align with the triangulation of the background domain.

The composite domain

Let the predomains �̂i ⊂ �, i = 0, 1, be polygonal subdomains of � in Rd such that 
�̂0 ∪ �̂1 = �; see Fig. 1. Consider the partition

and let Ŵ = ∂�1\∂� be the interface between the overlapping domain �1 and the under-
lying domain �0; see Fig. 1. We make the basic assumption that each �i, i = 0, 1, has a 
nonempty interior. We note that implies that there exists a nonempty open set U ∈ � 
such that Ŵ ∩U �= ∅ (The set U plays an important role in the proof of Lemma 4 below).

(5)Q = {q ∈ L2(�) :

∫

�

q dx = 0},

(6)a(u, v)+ b(u, q)+ b(p, v) = l(v) ∀ (v, q) ∈ V× Q,

(7)a(u, v) = (Du,Dv)�,

(8)b(u, q) = −(div u, q)�

(9)l(v) = (f , v)�.

(10)�q�� � sup
v∈V

b(v, q)

�Dv��
= sup

v∈V

(divv, q)

�Dv��
∀ q ∈ Q

(11)� = �0 ∪�1, �0 = �\�̂1, �1 = �̂1,
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The composite mesh

For i = 0, 1, let K̂h,i be a quasi-uniform mesh on �̂i with mesh parameter h ∈ (0, h̄] and 
let

be the submesh consisting of elements that intersect �i; see Fig.  2. Note that Kh,0 
includes elements that partially intersect �1. We also introduce the notation

Note that �1 = �h,1 and �0 ⊂ �h,0; see Fig. 3. 
We obtain a partition of � by intersecting the elements with the subdomains:

See also Fig. 2.

(12)Kh,i = {K ∈ K̂h,i : K ∩�i �= ∅}

(13)
�h,i =

⋃

K∈Kh,i

K .

(14)
1⋃

i=0

Kh,i ∩�i =

1⋃

i=0

{K ∩�i : K ∈ Kh,i}.

̂Ω0
̂Ω1 Ω0 Ω1 =

̂Ω1

Γ

Fig. 1 The domains �̂i and the subdomains �i (all shaded) sharing the interface Ŵ

̂Kh,0
̂Kh,1 Kh,0 Kh,1 =

̂Kh,1

Γ

Fig. 2 The meshes K̂h,i and Kh,i of the corresponding domains �̂i and �h,i. Note that Ŵ is not aligned with 
Kh,0

Ωh,0 Ωh,1 = Ω1

Γ

Fig. 3 The domains �h,i (shaded)
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Finite element formulation

In this section, we present the finite element method for approximating the weak form 
(6). Some notation will be introduced, but the main idea is to assume we have inf-sup 
stable spaces in each of the subdomains away from the interface. Then we are able to for-
mulate a method similar to [2] and [3].

Finite element spaces

For each of the predomains �̂i with corresponding family of meshes K̂h,i we consider 
velocity and pressure finite element spaces V̂h,i × Q̂h,i. The spaces do not contain bound-
ary or interface conditions since these will be enforced by the finite element formulation. 
We define

where i = 0, 1 and define

Note that since the domains �h,i overlap each other, Vh × Qh is to be understood as a 
collection of function spaces on the overlapping patches �h,i, i = 0, 1. Using the notation 
�Y (x) to denote the average of x over the domain Y, we now make the following funda-
mental assumptions on these spaces:

Assumption A (Piecewise polynomial spaces) The finite element spaces Vh and Qh con-
sist of piecewise polynomials of uniformly bounded degree k and l, respectively.

Assumption B (Inf-sup stability) The finite element spaces are inf-sup stable restricted 
to a domain bounded away from the interface. More precisely, we assume that for i = 0, 1 
and h ∈ (0, h̄] there is a domain ωh,i ⊂ �i such that:

(a)  The set ωh,i is a union of elements in Kh,i; see Fig. 4.
(b)  The inf-sup condition 

(15)Vh,i × Qh,i = V̂h,i|�h,i
× Q̂h,i|�h,i

,

(16)Vh × Qh =

1⊕

i=0

Vh,i × Qh,i.

(17)mi�pi − �ωh,i
(p)�ωh,i

≤ sup
v∈Wh,i

(divv, p)ωh,i

�Dv�ωh,i

ωh,0 ωh,1 = Ωh,1

Γ

Fig. 4 The domains ωh,i (shaded) where inf-sup stability is assumed. Note that Ŵ is outside ωh,0
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 holds, where Wh,i is the subspace of Vh,i defined by 

(c)  The set ωh,0 is close to �0 in the sense that 

where Uδ(Ŵ) = {x ∈ R
d : |ρ(x)| < δ} is the tubular neighborhood of Ŵ with thick-

ness δ.

Remark 2 The assumptions presented ensure that the polynomial spaces are such that 
certain inverse inequalities hold. More generally, inverse inequalities hold if there is a 
finite set of finite dimensional reference spaces used to construct the element spaces. 
The use of the interpolant in the proof of Lemma 4 could alternatively be handled using 
an abstract approximation property assumption.

Finite element method

We consider the finite element method: Find (uh, ph) ∈ Vh × Qh such that

where the forms are defined by

Here, n is the unit normal to Ŵ exterior to �1. Denoting the restriction of v to �i by 
vi = v|�i, [v] = v1 − v0 is called the jump and �v� = (v0 + v1)/2 is called the aver-
age. (Any convex combination for the average is valid [2].) The parameter β > 0 is the 
Nitsche parameter and must be sufficiently large (see for example [2]) and scales as k2,  

(18)Wh,0 = {v ∈ Vh,0 : v = 0 on �h,0\ωh,0},

(19)Wh,1 = Vh,1.

(20)�h,0\ωh,0 ⊂ Uδ(Ŵ), δ ∼ h,

(21)Ah((uh, ph), (v, q)) = lh(v) ∀ (v, q) ∈ Vh × Qh,

(22)Ah((u, p), (v, q)) = ah(u, v)+ bh(u, q)+ bh(v, p)+ dh((u, p), (v, q)),

(23)ah(u, v) = ah,N (u, v)+ ah,O(u, v),

(24)

ah,N (u, v) = (Du,Dv)�0 + (Du,Dv)�1

− (�(Du) · n�, [v])Ŵ − ([u], �(Dv) · n�)Ŵ

+ βh−1([u], [v])Ŵ ,

(25)ah,O(u, v) = ([Du], [Dv])�h,0∩�1 ,

(26)bh(u, q) = −(divu, q)�0 − (divu, q)�1 + ([n · u], �q�)Ŵ ,

(27)dh((u, p), (v, q)) = h2(�u−∇p,�v +∇q)�h,0\ωh,0
,

(28)lh(v) = (f , v)� − h2(f ,�v + ∇q)�h,0\ωh,0
.
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where k is the polynomial degree. Furthermore, h is the representative mesh size of the 
quasi-uniform mesh. In a practical implementation, h is evaluated as the local element 
size.

A comment on the respective terms may be clarifying:
  • ah,N (and the last term in bh) contains the standard Nitsche formulation of (6) to 

enforce continuity over the interface. This is similar to an interior penalty discontinu-
ous Galerkin method [12].

  • ah,O is a stabilization of the jump of the gradients across Ŵ (see [3]). This term is 
to avoid ill-conditioning when the intersection of an element and the domain is 
small.

  • dh (and the last term in lh) stabilizes the method since we do not assume inf-sup sta-
bility in all of �0. This least-squares type of stabilization is commonly found in low-
order methods, see e.g. [13] for more details.

By simple inspection, we note that the method is consistent. We conclude by noting 
that the method satisfies the Galerkin orthogonality.

Proposition 1 (Galerkin orthogonality) Let (u, p) ∈ V× Q be a weak solution to the 
formulation (6) and let (uh, ph) ∈ Vh × Qh be the solution to the finite element formula-
tion (21). Then it holds

Proof The result follows from [2] and noting that ah,O(u, vh) = dh((u, p), (vh, qh)) = 0 
for all (vh, qh) ∈ Vh × Qh.  �

Approximation properties

We assume that there is an interpolation operator πh,i : Vi(�h,i) → Vh,i, for i = 0, 1,  
where Vi(�h,i) ⊂ [L2(�h,i)]

d is a space of sufficient regularity to define the interpolant. 
For Taylor-Hood elements, we take πh,i to be the Scott-Zhang interpolation opera-
tor [14], and Vi(�h,i) = [L2(�h,i)]

d. For other elements we refer to their corresponding 
papers, for example the Crouzeix-Raviart element [15], the Mini element [16], or the 
overviews in [13] or [17].

The full interpolation operator πh : V → Vh can now be defined by the use of a linear 
extension operator E : [Hs(ωh,0)]

d → [Hs(�h,0)]
d, s ≥ 0, such that (Ev)|ωh,0

= v and

Now, πh : V → Vh is defined by

A similar argument can be made to define the pressure interpolation operator 
πh : Q → Qh.

Furthermore, we assume that the following standard interpolation estimate holds:

(29)Ah((u, p)− (uh, ph), (vh, qh)) = 0 ∀ (vh, qh) ∈ Vh × Qh.

(30)‖Ev‖Hs(�h,0) � ‖v‖Hs(ωh,0).

(31)πhv = πh,0Ev0 ⊕ πh,1v1.

(32)�v − πhv�Hm(K ) � hk+1−m|v|
Hk+1(K̃ )

, m = 0, 1, . . . , k .



Page 8 of 23Johansson et al. Adv. Model. and Simul. in Eng. Sci.  (2015) 2:24 

Here, in the case of a Scott-Zhang interpolation operator, K̃  is the patch of elements 
sharing a vertex with element K.

Stability and convergence

In this section, we prove that the finite element method proposed in (21) is stable. This 
is done by first proving the coercivity and continuity of ah defined in (23), followed by 
proving that bh defined in (26) satisfies the inf-sup condition. Combining these results 
proves stability of Ah. This strategy is similar to what can be found in [3] and [5]. In 
particular, Verfürth’s trick [18] is used to prove inf-sup stability. For a general overview 
of the saddle point theory used, see [11, 13, 17]. We conclude the section by proving an 
a priori error estimate. Before we begin, we state appropriate norms.

Norms

In the analysis that follows, we shall use the following norms:

Interpolation estimates

Using (32) together with the trace inequality �v�2Ŵ∩K � h−1�v�2K + h�∇v�2K , we obtain 
the following interpolation estimate for v ∈ V :

See [2] for a proof. For the pressure p, we have

Coercivity and continuity

Establishing coercivity and continuity of ah is straightforward and similar to [2].

Lemma 1 (Coercivity of ah) The bilinear form ah (23) is coercive:

Proof Note that the overlap term ah,O provides the control

(33)|||v|||2h =

1∑

i=0

�Dvi�
2
�h,i

+ h��Dv� · n�2Ŵ + h−1�[v]�2Ŵ , v ∈ Vh,

(34)�q�2h =

1∑

i=0

�qi�
2
�h,i

, q ∈ Qh,

(35)|||(v, q)|||2h = |||v|||2h + �q�2h, (v, q) ∈ Vh × Qh.

(36)|||v − πhv|||h � hk |v|Hk+1(�).

(37)�p− πhp�h � hl+1|v|Hl+1(�).

(38)|||v|||2h � ah(v, v) ∀ v ∈ Vh.
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where we have used that �h,0\�1 = �0 and �h,0 ∩�1 ⊂ �1 as described in the section 
on the composite mesh above. We also note that for each element K that intersects an 
interface segment Ŵ we have the inverse bound

independent of the particular position of the intersection between K and Ŵ (see [2]). 
Combining these two estimates with the standard approach to establish coercivity of a 
Nitsche method (see for example [2]) immediately gives the desired estimate.  �

Lemma 2 (Continuity of ah)  The bilinear form ah (23) is continuous:

Proof A proof in absence of ah,O is found in [2]. Bounding ah,O is straightforward using 
the Cauchy-Schwarz inequality and the fact that �Dw��h,i

� |||w|||h for any w ∈ Vh and 
i = 0, 1.  �

Stability

Showing stability of the proposed finite element method involves several steps. First we 
show a preliminary stability estimate for Ah (21). Then the so called small inf-sup condi-
tion for bh (26) is shown using a decomposition of the pressure space into L2 orthogonal 
components. For each of these components we show that an inf-sup condition holds. 
This is then used to show the big inf-sup condition for Ah.

Lemma 3 (Preliminary stability estimate for Ah) It holds

Proof Recall the inverse estimate

(see [19],  Section  4.5) where m, l ∈ Z
+, K ∈ Kh,i and v ∈ Vh. The first estimate in the 

lemma follows by adding and subtracting �u, using the triangle inequality and (43) as 
follows:

(39)

1∑

i=0

�Dv�2�h,i
= �Dv0�

2
�h,0\�1

+ �Dv0�
2
�h,0∩�1

+ �Dv1�
2
�h,1

� �Dv0�
2
�h,0\�1

+ �D(v0 − v1)�
2
�h,0∩�1

+ �Dv1�
2
�1

≤

1∑

i=0

�Dv�2�i
+ ah,O(v, v),

(40)h�(Dv) · n�2K∩Ŵ � �Dv�2K

(41)ah(v,w) � |||v|||h|||w|||h ∀ v,w ∈ Vh.

(42)

|||u|||2h + h2�∇p�2�h,0\ωh,0
� |||u|||2h + h2��u− ∇p�2�h,0\ωh,0

� Ah((u, p), (u,−p)).

(43)�v�Hl(K ) ≤ Chm−l�v�Hm(K )

(44)

h2�∇p�2K ≤ h2�∇p−�u�2K + h2��u�2K

� h2�∇p−�u�2K + �Du�2K ,
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 for each element K ∈ Kh,i. The second estimate follows immediately using coercivity 
(38) since

  �
The pressure space can be written as the following L2-orthogonal decomposition:

where Qc is the space of piecewise constant functions on the partition {�i}
1
i=0 of � with 

average zero over � and Qi is the space of L2 functions with average zero over �i. We 
next show inf-sup conditions for Qc and Q0. Recall that the inf-sup condition for Q1 is 
already established by Assumption B.

Lemma 4 (Inf-sup for Qc)  For each q ∈ Qc there exists a wc ∈ Vh with |||wc|||h = �q�h 
such that

where the bound is uniform w.r.t. q.

Proof We first note that Qc is a one-dimensional vector space spanned by

and that we have the identities

Second, we note that since �0 and �1 are nonempty, there exists a nonempty open set 
U ⊂ � such that Ŵ ∩U �= ∅. Let now x0 ∈ Ŵ ∩ U  be a point on the interface Ŵ and let 
BR(x0) be a ball of radius R centered at x0 as in Fig. 5. The radius R is chosen such that 
BR(x0) ⊂ U independently of the mesh size h.   

Now, let γ = Ŵ ∩ BR(x0) and note that on γ, both the interface normal n and the jump 
[χ ] are constant [In fact, [χ ] is constant on the entire interface, see (49)].

To construct the test function wc ∈ Qc, we let ϕ be a smooth nonnegative function 
compactly supported on BR(x0) such that ϕ = 1 on BR/2(x0), and take v(x) = cϕ(x)n, 
where c is a constant to be chosen. We then have the identity

Choosing c = |γ |−1 we obtain

Integrating by parts and recalling that χ is constant on each subdomain �i, i = 0, 1, it fol-
lows that this construction of v leads to the identity

(45)

Ah((u, p), (u,−p)) = ah(u,u)+ dh((u, p), (u,−p))

= ah(u,u)+ h2�∇p−�u�2�h,0\ωh,0

� |||u|||2h + h2�∇p−�u�2�h,0\ωh,0
.

(46)Q = Qc ⊕ Q0 ⊕ Q1,

(47)‖q‖2h � bh(wc, q),

(48)χ =

{
|�0|

−1 in �0,

−|�1|
−1 in �1.

(49)�χ�2� = |�1|
−1 + |�2|

−1, [χ ] = −|�1|
−1 + |�2|

−1 = −�χ�2�

(50)(�n · v�, [χ ])γ = (�n · cϕn�, [χ ])γ = −c|γ | �χ�2�.

(51)(�n · v�, [χ ])γ = −�χ�2�.
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Now, let w = πhv ∈ Vh. It follows that

The last inequality holds for all h ∈ (0, h̄] with h̄ sufficiently small. (Note that the con-
stants c and C do not depend on q). The first inequality follows by noting that

Here we have  first used the Cauchy-Schwarz inequality, then a trace inequality on 
BR(x0) and the second identity of (49) to replace |[χ ]| by ‖χ‖� , then an inequality of 
the type ab � a2 + b2 and the interpolation estimate (32), and finally the estimate 
‖ϕ‖H2(BR(x0))

� 1, which holds since ϕ is a fixed compactly supported smooth function.
Finally, given q ∈ Qc, we may write q = c1χ for some c1 > 0. (If c1 < 0, we may rede-

fine χ). Taking wc = c2w, where c2 > 0 is chosen such that |||wc|||h = �q�h, we have

where we used the fact that ‖χ‖h � ‖χ‖�, which holds since χ is piecewise constant and 
|�h,0 \�0| � h|Ŵ| � 1, and the identities c1 = �q�h/�χ�� and c2 = �q�h/|||w|||h to con-
clude that c1/c2 = |||w|||h/�χ�� ∼ 1, since w and χ are both fixed functions.  �

(52)bh(v,χ) = −(�n · v�, [χ ])γ = �χ�2�.

(53)

bh(w,χ) = bh(v,χ)+ bh(w − v,χ)

= �χ�2� − (�n · (w − v)�, [χ ])γ

= �χ�2� − c(�πhϕ − ϕ�, [χ ])γ

≥ �χ�2� − cCh�χ�2�

� �χ�2�.

(54)

|(�πhϕ − ϕ�, [χ ])γ | ≤ ��πhϕ − ϕ��γ �[χ]�γ

= ��πhϕ − ϕ��γ |γ |
1/2|[χ ]|

� �πhϕ − ϕ�
1/2
BR(x0)

�πhϕ − ϕ�
1/2

H1(BR(x0))
�χ�2�

� h
(
�∇ϕ�BR(x0) + ��ϕ�BR(x0)

)
�χ�2�

� h�χ�2�.

(55)

bh(wc, q) = c1c2bh(w,χ)

� c1c2�χ�
2
�

� c1c2�χ�
2
h

=
c2

c1
�q�2h

� �q�2h,

x0

BR(x0)

Γ

Fig. 5 The ball BR(x0) ⊂ Ŵ ∩ U
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Remark 3 We may generalize the proof to a more general assumption on the inter-
face between the overlapping domain �1 and underlying domain �0 as follows. Con-
sider the situation where the interface Ŵ is piecewise smooth and for each value of the 
mesh parameter h, �1,h is a polygonal domain consisting of shape regular tetrahedra that 
approximates �1 in such a way that the resulting surface mesh on ∂�1,h interpolates ∂�1.  
Then for each value of h we obtain a piecewise linear interface Ŵh, with unit normal nh, 
approximating the piecewise smooth interface Ŵ.

Let x0 ∈ Ŵ and assume that x0 and R are chosen such that γ = BR(x0) ∩ Ŵ is smooth. 
We define v(x) = cϕ(x)n(x0) and, instead of (51), we obtain

where γh = BR(x0) ∩ Ŵ. With our assumptions we find that for R and h̄ small enough, 
there are constants c1, c2 > 0 such that

In fact |γh| → |γ | as h → 0, and if we for each x ∈ γh let p(x) be the closest point on Ŵ we 
have

where the first term tends to zero as h tends to zero and the second is positive for a suffi-
ciently small R, since the curvature is bounded and therefore the normal varies continu-
ously with the distance from x0. Choosing the constant c = 1/(c1c2) in (56), we obtain

The proof may now be continued in the same fashion as for fixed polygonal domains.

Lemma 5 (Inf-sup for Q0)  For each q ∈ Q0 there exists a w ∈ Wh,0 ⊂ Vh,0 with 
�Dw�ωh,0

= �q − �ωh,0
(q)�ωh,0

 such that

where the bound is uniform w.r.t. q.

Proof Recall the definitions of Wh,0 and �ωh,0
 from Assumption B. We first show that we 

can change the average from ��0(q) to �ωh,0
(q) using the following estimates:

where we first added and subtracted �ωh,0
(q) and used the triangle inequality, then used 

the identity �ωh,0
(q) = ��0(�ωh,0

(q)), which holds since ��0 is an average, and finally we 
used the L2(�h,0) stability |��0(v)| � �v��h,0

 of the average operator.

(56)(�nh · v�, [χ ])γh = −c|γh|nh · n(x0)�χ�
2
�

(57)|γh| ≥ c1, nh(x) · n(x0) ≥ c2 ∀x ∈ γh, ∀h ∈ (0, h0]

(58)nh(x) · n(x0) = (nh(x)− n(p(x))) · n(x0)+ n(p(x)) · n(x0)

(59)−(�nh · v�, [χ ])γ = c|γh|nh · n(x0)�χ�
2
� ≥ cc1c2�χ�

2
� ≥ �χ�2�

(60)�q − ��0(q)�
2
�h,0

− h2�∇q�2�h,0\ωh,0
� bh(w, q),

(61)

�q − ��0(q)��h,0
≤ �q − �ωh,0

(q)��h,0
+ ��ωh,0

(q)− ��0(q)��h,0

= �q − �ωh,0
(q)��h,0

+ ���0(�ωh,0
(q)− q)��h,0

� �q − �ωh,0
(q)��h,0

,
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Next we have the estimate

which follows by first observing that this inverse inequality holds:

where K1 and K2 are two neighboring elements sharing the face F12. Then, starting with 
ω0
h,0 = ωh,0, we define a sequence of sets ωn

h,0, n = 1, 2, . . . consisting of the union of ωn−1
h,0  

and all elements K ⊂ �h,0\ω
n−1
h,0  that share a face with an element in ωn−1

h,0 . It then fol-
lows from (64) that

Using the assumption that ωh,0 is close to �0 (20) together with shape regularity and 
quasi-uniformity of the mesh we conclude that ωn

h,0 = �h,0 for some n ≤ C for all 
h ∈ (0, h̄] where the constant is independent of h. Now (62) follows from a uniformly 
bounded number of iterations of (65).

Combining (61) with (62), we obtain

where we used the fact that ∇�ωh,0
(q) = 0 and at last the inf-sup condition (17) to choose 

a w0 ∈ Wh,0 with �Dw0�ωh,0
= �q − �ωh,0

(q)�ωh,0
 such that bh(w0, q) = �q − �ωh,0

(q)�2ωh,0
. 

  �
We now combine the inf-sup estimates for Qc and Q0 to prove an inf-sup estimate for 

Qh.

Lemma 6 (Small inf-sup)  There are constants C > 0 and m > 0 such that for each 
q ∈ Qh there exists a w ∈ Vh with |||w|||h = �q�h such that

where the bound is uniform w.r.t. q.

Proof Take wc as in Lemma 4, w0 as in Lemma 5 and w1 ∈ Wh,1. Consider 
the test function w = δ1wc + w0 + w1 where δ1 > 0 is a parameter. By writing 
q = qc + q0 + q1 ∈ Qc ⊕ Q0 ⊕ Q1, we have

(62)�q�2�h,0
� �q�2ωh,0

+ h2�∇q�2�h,0\ωh,0
∀ q ∈ Q0,

(63)�q�2K1
� h2�∇q�2K1

+ h�q�2F12

(64)�q�2K1
� h2�∇q�2K1

+ �q�2K2
,

(65)�q�2ωn
h,0

� �q�2
ωn−1
h,0

+ h2�∇q�2
ωn
h,0\ω

n−1
h,0

, n = 1, 2, . . .

(66)

�q − ��h,0
(q)�2�h,0

� �q − �ωh,0
(q)�2�h,0

� �q − �ωh,0
(q)�2ωh,0

+ h2�∇q�2�h,0\ωh,0

� bh(w0, q)+ h2�∇q�2�h,0\ωh,0
,

(67)m�q�2h − Ch2�∇q0�
2
�h,0\ωh,0

≤ bh(w, q),
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Note that bh(wi, qc) = 0, i = 0, 1. This follows from integration by parts since qc ∈ Qc,  
which is piecewise constant, and since wi ∈ Wh,i, which is zero on the boundary. The 
second term and third terms on the right-hand side can be estimated as follows

where i = 0, 1 and δ2 > 0 is a parameter. Here we have used the bound 
�divv� ≤ �Dv�, the definition of wc from Lemma 4 and Young’s inequality 
ab ≤ ǫa2 + (4ǫ)−1b2 ≤ ǫa2 + ǫ−1b2, which holds for any ǫ > 0. Continuing from (68), 
we use (69) to obtain

where we first choose δ2 sufficiently small and then δ1 sufficiently small to ensure that the 
two first terms are positive.

Finally, we note that by construction

and thus |||w|||h � �q�h. The desired result now follows by setting w̃ = �q�h(w/|||w|||h),  
which gives

(68)

bh(δ1wc + w0 + w1, q) = δ1bh(wc, qc)+ δ1bh(wc, q0)+ δ1bh(wc, q1)

+ bh(w0, qc)︸ ︷︷ ︸
=0

+bh(w0, q0)+ bh(w0, q1)︸ ︷︷ ︸
=0

+ bh(w1, qc)︸ ︷︷ ︸
=0

+ bh(w1, q0)︸ ︷︷ ︸
=0

+bh(w1, q1)

≥ δ1mc�qc�
2
h − δ1|bh(wc, q0)| − δ1|bh(wc, q1)|

+m0�q0 − ��0(q0)�
2
�h,0

− Ch2�∇q0�
2
�h,0\ωh,0

+m1�q1 − ��1(q1)�
2
�1

= ⋆.

(69)

δ1|bh(wc, qi)| = δ1|bh(wc, qi − ��h,i
(qi))|

� δ1�Dwc��h,i
�qi − ��h,i

(qi)��h,i

� δ1�qc��h,i
�qi − ��i(qi)��h,i

� δ21δ
−1
2 �qc�

2
h + δ2�qi − ��i(qi)�

2
�h,i

,

(70)

⋆ ≥ δ1

(
mc − Cδ1δ

−1
2

)
�qc�

2
h +

1∑

i=0

(mi − Cδ2)�qi − ��h,i
(qi)�

2
�h,i

− Ch2�∇q0�
2
�h,0\ωh,0

� m

(
�qc�

2
h +

1∑

i=0

�qi − ��i(q)�
2
�h,i

︸ ︷︷ ︸
= �q�h

)
− h2�∇q0�

2
�h,0\ωh,0

,

(71)

|||w|||2h � |||wc|||
2
h +

1∑

i=0

|||wi|||
2
h

= �qc�
2
h +

1∑

i=0

�qi�
2
�h,i

= �q�2h
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  �

Proposition 2 (Big inf-sup)  It holds

Proof Given p ∈ Qh, take w ∈ Vh as in Lemma 6. First note that for dh we have the 
estimate

where we have used the Cauchy-Schwarz inequality, the triangle inequality, the inverse 
estimate (43), the definition of the energy norm (33) and the definition of w in Lemma 6.

Next for δ1 > 0 we have

where we have used Lemmas 3, 2, 6 as well as (74). Choosing first δ2 sufficiently small 
and then δ1 sufficiently small, we arrive at the estimate

We now note that

(72)
bh(w̃, q) =

�q�h

|||w|||h
bh(w, q)

� bh(w, q).

(73)|||(u, p)|||h � sup
(v,q)∈Vh×Qh

Ah((u, p), (v, q))

|||(v, q)|||h
.

(74)

|dh((u, p), (w, 0))| � h2��u− ∇p��h,0\ωh,0
��w��h,0\ωh,0

� h2
(
��u��h,0\ωh,0

+ �∇p��h,0\ωh,0

)
��w��h,0\ωh,0

�
(
�Du��h,0\ωh,0

+ h�∇p��h,0\ωh,0

)
�Dw��h,0\ωh,0

� δ−1
2

(
�Du�2�h,0\ωh,0

+ h2�∇p�2�h,0\ωh,0

)
+ δ2�Dw�

2
�h,0\ωh,0

� δ−1
2

(
|||u|||2h + h2�∇p�2�h,0\ωh,0

)
+ δ2�p�

2
h,

(75)

Ah((u, p), (u,−p)+ δ1(w, 0)) = Ah((u, p), (u,−p))

+ δ1

(
ah(u,w)+ bh(w, p)+ dh((u, p), (w, 0))

)

� |||u|||2h + h2�∇p�2�h,0\ωh,0

− δ1

(
δ−1
2 |||u|||2h + δ2�p�

2
h

)

+ δ1

(
�p�2h − h2�∇p�2�h,0\ωh,0

)

− δ1δ
−1
2

(
|||u|||2h + h2�∇p�2�h,0\ωh,0

)
− δ1δ2�p�

2
h

�
(
1− Cδ1δ

−1
2

)
|||u|||2h +

(
1− Cδ1δ

−1
2

)
h2�∇p�2�h,0\ωh,0

+ δ1(1− Cδ2)�p�
2
h,

(76)
|||(u, p)|||2h = |||u|||2h + �p�2h

� Ah((u, p), (u,−p)+ δ1(w, 0))
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and thus the desired estimate (73) follows since

  �

A priori error estimate

In this section we use the approximation properties of the finite element spaces to show 
that the proposed method is optimal.

Theorem 1 It holds

Proof By the triangle inequality we have

From the approximation property (36), we obtain an optimal estimate of the first term. 
To show an optimal estimate for the second term we recall the big inf-sup estimate 
Proposition 2

where we have used a pair (vh, qh) such that |||(vh, qh)|||h � 1 in the inequality and the 
Galerkin orthogonality (29) to obtain the equality. The terms in Ah (22) may now be esti-
mated individually. The optimal estimate for ah (23) follows immediately from continuity 
(41). For bh(u− πhu, qh) (26) we have

(77)

|||(u+ δ1w,−p)|||2h = |||u+ δ1w|||
2
h + �p�2h

≤ |||u|||2h + δ1|||w|||
2
h + �p�2h

� |||u|||2h + �p�2h

= |||(u, p)|||2h.

(78)

|||(u, p)|||h �
Ah((u, p), (u+ δ1w,−p))

|||(u, p)|||h

�
Ah((u, p), (u+ δ1w,−p))

|||(u+ δ1w,−p)|||h
.

(79)|||(u, p)− (uh, ph)|||h � hk(�u�Hk+1(�) + �p�Hk (�)).

(80)|||(u, p)− (uh, ph)|||h � |||(u, p)− (πhu,πhp)|||h + |||(πhu,πhp)− (uh, ph)|||h.

(81)
|||(πhu,πhp)− (uh, ph)|||h � Ah((πhu,πhp)− (uh, ph), (vh, qh))

= Ah((πhu,πhp)− (u, p), (vh, qh)),

(82)

|bh(u− πhu, qh)| �

(
1∑

i=0

�div(u− πhu)�
2
�i
�qh�

2
�i

+ �[n · (u − πhu)]�
2
Ŵ��qh��

2
Ŵ

)1/2

�
(
�D(u− πhu)�

2
�0∪�1

�qh�
2
�0∪�1

+ h
(
h−1�[u− πhu]�

2
Ŵ

)
�qh�

2
Ŵ

)1/2

�
(
|||u− πhu|||

2
h�qh�

2
h + h|||u− πhu|||

2
h�qh�

2
Ŵ

)1/2
,
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where we have used the Cauchy-Schwarz inequality in the first two inequalities and the 
definition of the energy norm (33) in the last inequality. Using a similar argument we 
obtain the following estimate for bh(vh, p− πhp):

(see [3]). Finally, we estimate dh to obtain

where we have used the Cauchy-Schwarz inequality, the triangle inequality, the inverse 
estimate (43), the definition of the energy norm (33) and at last the definition of the full 
triple norm (35). The a priori estimate now follows from the interpolation estimates (32) 
and (36).  �

Results and discussion
Numerical results

To illustrate the proposed method, we here present convergence tests in 2D and 3D as 
well as a more challenging problem simulating flow around a 3D propeller. The numeri-
cal results are performed using FEniCS [20, 21], which is a collection of free software for 
automated, efficient solution of differential equations. The algorithms used in this work 
are implemented as part of the “multimesh” functionality present in the development 
version of FEniCS and will be part of the upcoming release of FEniCS 1.6 in 2015. The 
interfaces are assumed to be piecewise planar and we compute the integrals using the 
techniques from [4]. Curved interfaces will be addressed in future releases. We believe 
that the method will still be optimal in the case of curved interfaces as long as one can 
compute the integrals with sufficient accuracy, for example using an isoparametric map-
ping of the quadrature points.

Convergence test

As a first test case, we consider Stokes flow in the domain � = [0, 1]d, d = 2, 3, with 
homogeneous Dirichlet boundary conditions for the velocity (no-slip) on the boundary. 
For d = 2, the exact solution is given by

with corresponding right-hand side

(83)|bh(vh, p− πhp)| � |||vh|||h�p− πhp�h

(84)

dh((u− πhu, p− πhp), (vh, qh)) � h2
(
��(u− πhu)�

2
�h,0\ωh,0

+ �∇(p− πhp)�
2
�h,0\ωh,0

)1/2

×
(
��vh�

2
�h,0\ωh,0

+ �qh�
2
�h,0\ωh,0

)1/2

�
(
�D(u− πhu)�

2
�h,0\ωh,0

+ �p− πhp�
2
�h,0\ωh,0

)1/2

×
(
�Dvh�

2
�h,0\ωh,0

+ �qh�
2
�h,0\ωh,0

)1/2

�
(
|||u− πhu|||

2
h + �p− πhp�

2
h

)1/2(
|||vh|||

2
h + �qh�

2
h

)1/2

=
(
|||u− πhu|||

2
h + �p− πhp�

2
h

)1/2
|||(vh, qh)|||h,

(85)u(x, y) = 2π sin(πx) sin(πy) · (cos(πy) sin(πx),− cos(πx) sin(πy)),

(86)p(x, y) = sin(2πx) sin(2πy),
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For d = 3, the exact solution is

with corresponding right-hand side

In both cases, the velocity field is divergence free and the right-hand side has been cho-
sen to match the given exact solutions. We let the overlapping domain �1 be a d−dimen-
sional cube centered in the center of � with side length 0.246246 rotated 37° along the 
z-axis. For d = 3, �1 is rotated the same angle along the y-axis as well. The domains �i 
are illustrated in Fig. 6.

The discrete spaces are Pk–Pk−1 Taylor–Hood finite element spaces with continu-
ous piecewise vector-valued polynomials of degree k ≥ 2 discretizing the velocity and 
discontinuous scalar polynomials of degree l = k − 1 discretizing the pressure. These 
spaces are inf-sup stable on the uncut elements of the background mesh discretizing �0 
and on the whole of �1 and therefore satisfy Assumption B. The linear systems are solved 
using the direct solver MUMPS, which can be called from FEniCS.

Figures 7 and 8 show the convergence of the error in the H1
0- and L2-norms in 2D and 

3D respectively. Optimal order of convergence is obtained, although limited computer 
memory resources prevented a study for higher degrees than k = 3 in 3D. Note that in 
this method, the degrees of freedom in the elements in Kh,0 ∩ Ŵ are doubled. Therefore, 
the total number of degrees of freedom are for this problem comparable to a standard 
method. In the convergence plots, results for small mesh sizes, roughly corresponding to 
errors below 10−7 have been removed because errors could not be reliably estimated due 
to numerical round-off errors in the numerical integration close to the cut cell boundary.

We have not investigated these numerical errors in detail but note that these error 
norms are notoriously sensitive to compute for small errors and high order. They involve 
computing an integral of the square of the error, which can be very sensitive to round-off 
errors since the square (u− uh)

2 expands to (u2 + u2h)− 2uuh, resulting in the subtrac-
tion of two “large” numbers of similar size. The computation is also sensitive to how the 
exact analytic solution is interpolated into a finite element (of a higher order). For this 
reason, FEniCS provides a particular function called errornorm, which works around 
this challenge interpolating u and uh into a common higher order function space1. How-
ever, this functionality is not yet supported for the multimesh implementation, so the 
challenge of large round-off errors in the numerical evaluation of norms remains.

(87)f (x, y) = 2π

(
sin(2πy)(cos(2πx)− 2π2 cos(2πx)+ π2)

sin(2πx)(cos(2πy)+ 2π2 cos(2πy)− π2).

)

(88)u(x, y, z) = sin(πy) sin(πz) · (1,− sin(πy) cos(πz), sin(πz) cos(πy)),

(89)p(x, y, z) = π cos(πx),

(90)

f (x, y, z) = π2



sin(πy) sin(πz)− sin(πx)
sin(2πz)(2 cos(2πy)− 1)
sin(2πy)(1− 2 cos(2πz)


.

1 See https://bitbucket.org/fenics-project/dolfin/raw/d50bf5ab9bb7c282b68c5d3c265be2660fedde19/site-packages/dolfin/ 
fem/norms.py for details.

https://bitbucket.org/fenics-project/dolfin/raw/d50bf5ab9bb7c282b68c5d3c265be2660fedde19/site-packages/dolfin/fem/norms.py
https://bitbucket.org/fenics-project/dolfin/raw/d50bf5ab9bb7c282b68c5d3c265be2660fedde19/site-packages/dolfin/fem/norms.py
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Condition numbers

For a numerical study of the algebraic conditioning of the system, we recall the defini-
tion of the condition number of a matrix A

where σmax(A) and σmin(A) are the maximum and minimum singular values of A. Since 
the discrete pressure is only determined up to a constant here, the system matrix A will 
have one zero singular value. To this end, we take the second smallest singular value 
when computing the condition number in (91).

There are two issues that need to be address regarding the conditioning of system 
matrices of interface problems. First, κ should be optimal, i.e. κ � h−2 (see [3]). Second, 
the condition number should be essentially independent of the location of the interface. 
Figure 9 illustrate these properties for the 2D model problem and k = 2. Optimal order 
of convergence is obtained by performing uniform refinement of the two meshes for var-
ious values of the Nitsche parameter β (cf. (25)). To investigate the second issue, we set 

(91)κ(A) =
σmax(A)

σmin(A)

Fig. 6 Location of the overlapping domain in the background mesh. The domain �1 is placed in the center 
of � and rotated along the z-axis in 2D (left) and along the y- and z-axes in 3D (right)

Fig. 7 Convergence results, 2D. A rotated square is embedded in the unit square background mesh. Results 
in L2 (left) and H1

0 (right) norms
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up the same problem with fixed meshes and shift the center of the overlapping domain 
in the x direction in steps of 0.0001 until it is shifted 1.25 h. For each mesh configuration 
we compute κ. This is illustrated in Fig. 9 (right) for various h. The x-axis is normalized 
with respect to the mesh size: 0 corresponds to the initial position (see Fig. 6) and 1 cor-
responds to the overlapping domain being shifted h to the right in the x direction.

Flow around a propeller

To illustrate the method on a complex geometry we create a propeller using the CSG 
tools of the FEniCS component mshr [22], see Fig.  10 (top left). The lengths of the 
blades are approximately 0.5. Then we construct a mesh of the domain outside the pro-
peller, but inside the unit sphere. This is illustrated in Fig. 10 (top right). The mesh is 
constructed using TetGen [23] and is body-fitted to the propeller. To simulate the flow 
around the propeller, the mesh is placed in a background mesh of dimensions [−2, 2]3,  
where we have removed the elements with all nodes inside a sphere of radius 0.9, see 
Fig. 10 (bottom).

The simulation is setup with the inflow condition 
u(x, y, z) = (0, 0, sin(π(x + 2)/4) sin(π(y+ 2)/4)) at z = −2, the outflow condition 
p = 0 at z = 2 and u(x, y, z) = 0 on all other boundaries, including the boundary of the 
propeller. The resulting velocity field using degree k = 2 is shown in Fig. 11. Note the 

Fig. 8 Convergence results, 3D. A rotated cube is embedded in the unit cube background mesh. Results in L2 
(left) and H1

0 (right) norms

Fig. 9 Algebraic conditioning. The condition numbers of the 2D model problem during uniform mesh 
refinement (left) and as a function of the position of the interface normalized with respect to h (right)
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continuity of the streamlines of the velocity going from the finite element space defined 
on the background mesh to the finite element space defined on the overlapping mesh 
surrounding the propeller.

Conclusions
We have presented a finite element method for the Stokes problem based on two com-
posite meshes that overlap each other. The method is based only on the assumption of 

Fig. 10 Propeller geometry and meshes. Propeller geometry (top left) and body-fitted mesh (top right). Non 
body-fitted background mesh and propeller (bottom)

Fig. 11 Flow around propeller. Colors indicate speed
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inf-sup stable polynomial spaces on the two meshes. In fact, the proposed discretiza-
tion allows arbitrary inf-sup stable spaces for the Stokes problem to be stitched together 
using a stabilized Nitsche method from multiple non-matching and intersecting meshes 
to weakly enforce continuity over an interface. By the use of a least-squares type of sta-
bilization, a global inf-sup stable space is constructed. We demonstrate optimal order 
convergence by both a  priori error estimates as well as numerical results for Taylor-
Hood elements of polynomial order up to 4. The method has several practical applica-
tions and one such prime example is the discretization of flow around complex objects. 
Future work includes the extension to time-dependent problems and to fluid–structure 
interaction.
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