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Abstract Two methods for calculating the volume and surface area of the intersec-
tion between a triangle mesh and a rectangular hexahedron are presented. The main
result is an exact method that calculates the polyhedron of intersection and there-
after the volume and surface area of the fraction of the hexahedral cell inside the
mesh. The second method is approximate, and estimates the intersection by a least
squares plane. While most previous publications focus on non-degenerate triangle
meshes, we here extend the methods to handle geometric degeneracies. In particular,
we focus on large-scale triangle overlaps, or double surfaces. It is a geometric degen-
eracy that can be hard to solve with existing mesh repair algorithms. There could also
be situations in which it is desirable to keep the original triangle mesh unmodified.
Alternative methods that solve the problem without altering the mesh are therefore
presented. This is a step towards a method that calculates the solid area and volume
fractions of a degenerate triangle mesh including overlapping triangles, overlapping
meshes, hanging nodes, and gaps. Such triangle meshes are common in industrial
applications. The methods are validated against three industrial test cases. The val-
idation shows that the exact method handles all addressed geometric degeneracies,
including double surfaces, small self-intersections, and split hexahedra.
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1 Introduction

The need for computing intersections between polyhedral objects is common in many
applications, such as computer graphics, simulations, and robotics [12]. Polyhedral
objects are typically used as discrete representations of real objects, for example,
when computational fluid dynamics (CFD) is used to solve multiphase flow prob-
lems. The surface of a solid object can then be represented by a triangle mesh and
immersed in a background fluid grid consisting of rectangular hexahedra. The mesh
needs to be connected to the background grid. In the connection step or later in the
solution process, it can be necessary or useful to compute the intersection between
the triangle mesh and each fluid cell, to find information about the cut cells.

Two well-known methods for connecting the mesh and the grid are cut cell meth-
ods [2, 11, 26] and immersed boundary (IB) methods [19, 22]. In cut cell methods,
the fluid cells that are intersected by the mesh are refined to fit the mesh. In IB meth-
ods, body-fitted grids and cut cells are replaced by other approaches for connecting
the mesh and the grid. The cut cell geometric information is clearly needed in the
connection step of a cut cell method, but can be of interest also in an IB method. A
typical application is in the calculation of fluxes. There is potential to improve the
accuracy in the simulated fluxes if the fraction of each cell face inside the triangle
mesh is known. This information can be extracted from the cut cell information.

Several methods for extracting the geometry of a cut cell are found in the literature.
Some of these are reviewed in Section 2. However, few of the publications focus on
degenerate triangle meshes. Degeneracies such as hanging nodes (T-vertices), gaps,
cracks, overlapping meshes, or overlapping triangles are common in triangle meshes
used for engineering applications. This aspect is important to consider when design-
ing or using an algorithm that extracts the geometry of a cut cell. One option is to
repair the mesh before it is given as input to the geometry extraction algorithm. Mesh
repair is a broad field, partly surveyed in Section 2. Another, less common, option is
to let the geometry extraction algorithm itself handle the degeneracies. This is done
for example in [27].

In this article, we present a method similar to [1, 2, 11] for extracting the exact
geometric information about a Cartesian cell cut by a triangle mesh. In contrast to
earlier works, our method is geometrically robust in the sense that it can handle large-
scale triangle overlaps, what we will also call double surfaces, without the need for
previously repairing the mesh. To some extent, our method also handles more general
self-intersecting meshes. This is an improvement since large-scale triangle overlaps
appear frequently in engineering applications and are hard to repair without undesir-
able side effects (see Section 2). Moreover, none of [1, 2, 11] go into details about
the method and implementation, that is why there is still room for explanation of
important concepts. We will consider some of these concepts here.

The method is in the following referred to as ”the exact method.” It is not com-
pletely exact since we use finite precision floating point arithmetics in our intersec-
tion routines. What we mean by exactness is that the exact polygons and polyhedrons
of intersection are calculated given the intersection points. An approximate method
where a least squares plane is fitted to the cell-triangle mesh intersection is also
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developed and compared to the exact method. The approximate method is intended
for highly resolved hexahedral grids, for which it is reasonable to approximate
the cell-triangle mesh intersection with a plane. It has some limitations and is a
complement to the exact method.

What we essentially have solved is the purely geometric problem of intersecting
a degenerate triangle mesh and a rectangular hexahedron. However, the proposed
methods are specially designed to be used in an immersed boundary method [20].
As such, we are interested in both the cell-triangle mesh intersection and the face-
triangle mesh intersections. This has been taken into account in the development of
the methods.

2 Related work

Different methods for extracting the geometry of a cut cell are found in the liter-
ature. In 1994, Quirk [23] introduces the Cartesian boundary method for complex
two-dimensional geometries, where the cut cells are identified and classified into
one of twelve types depending on how the solid and the cell boundary intersect.
The intersection between the geometry and the cell is approximated by a line. This
approximation is motivated by the fact that the existence of a cell with more than
two intersection points indicates that the grid is not fine enough to resolve the solid
properly.

Yang et al. [26] take this a bit further and describe a cut cell method in three
dimensions where the part of the triangle mesh in the interior of the cell is approxi-
mated by a non-planar quadrilateral. They find the area of the quadrilateral and each
cut face and use Gauss’s divergence theorem to calculate the volume of the part of
the cell located inside the triangle mesh.

In [1, 2], Aftosmis et al. present an approach for completely resolving the geome-
try of a cut cell in three dimensions. They introduce triangle polygons, face polygons,
and face segments to describe the polyhedron that represents a cut cell. To construct
the triangle polygons, they use the Sutherland-Hodgman algorithm [25] for clipping
each triangle against the cell boundary. They mention that face polygons are easily
formed by connecting face segments with the edges of the cut cell. Cieslak et al. [11]
also present a cut cell method that preserves the real geometry by finding the exact
cut out polygons and polyhedron. They find the face polygons through connectivity
criteria such as common faces or common triangles.

In [11, 23, 26], little or nothing is mentioned about geometrically degenerate trian-
gle meshes, while Aftosmis et al. [2] adopt a volumetric approach to degenerate and
overlapping triangle meshes. Volumetric approaches belong to one of two groups of
mesh repair methods. The other group consists of surface-oriented methods. Surface-
oriented methods such as [7, 15, 18] operate directly on the degenerate geometry,
while volumetric methods such as [9, 17, 21] create an intermediate volumetric rep-
resentation of the geometry. The intermediate representation is used to create a new
mesh without degeneracies. Most repair methods either have restrictions on the input
mesh or drawbacks [4, 10]. Volumetric methods are typically robust, but destroy
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connectivity structures of the input geometry and could lead to loss of model features.
Surface-oriented methods are often better at preserving details of the input mesh, but
are typically not as robust as the volumetric methods. A survey and categorization of
mesh repair approaches was done by Attene, Campen, and Kobbelt in 2013 [4].

A robust surface-oriented repair method that focuses particularly on self-
intersecting meshes and double surfaces was proposed by Attene in 2014 [5]. It com-
putes the exact outer hull of the input triangle mesh by finding the self-intersections,
subdividing the triangles along the self-intersections, and finally, removing excess
triangles. Exact arithmetics is used to ensure correct intersections, but only when
ordinary floating point operations are not sufficiently accurate.

Some approaches to a combination of mesh repair and geometric operations are
found in the literature, where the method by Aftosmis et al. [2] is already mentioned.
Another approach was recently proposed by Zhou et al. [27], who integrate mesh
repair and set operations such as difference and union of an arbitrary number of
input meshes. They assign a generalized winding number to different parts of space,
defined by the intersections between the input meshes. The winding numbers are
used to repair the meshes or perform set operations.

The repair method proposed in [5] could be used to remove the self-intersecting
double surfaces, and [27] could be used to find the requested cut cell informa-
tion if each hexahedral cell is first triangulated. In contrast to the three-dimensional
set operations in [27], we present a method that operates on the two-dimensional
faces of the intersection between the triangle mesh and the hexahedron. Thus, our
method is adapted for finding both cell-mesh and face-mesh intersections. Only
minor changes to the original method are required to handle double surfaces and
some other types of self-intersections. Due to the small computational overhead of
handling the degenerate cases, we claim that our method is a good alternative to the
previous methods.

3 Problem formulation

Let T = {Ti}nT

i=1 be a triangle mesh, where Ti ⊂ R
3, i ∈ {1, . . . , nT }, are triangles.

T is represented by a set of indexed vertices {vi}nv

i=1, and each triangle Ti is defined
by three vertices. Note that nv ≤ 3 nT , since vertices are unique and shared between
triangles. The triangular mesh is oriented by the triangle normals {ni}nT

i=1 pointing
out of T . If T encloses a bounded volume, the interior of T is denoted �T .

Let C ⊂ R
3 be a Cartesian cell, i.e., an axis-aligned cuboid consisting of

its boundary ∂C and interior �C . Then, ∂C = ⋃6
i=1 Fi , where {Fi}6i=1, are the

rectangular cell faces. A cell C also has twelve edges {Ei}12i=1 and eight vertices
{Vi}8i=1.

In this paper, we consider the problem of calculating the percentage or solid
volume fraction of C inside T . The solid volume fraction α is given by

α = V (�T
⋂

C )

V (C )
, (1)
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where V (X) denotes the volume of a subset X of R3. We also consider the percent-
age or solid area fraction of each cell face Fi inside T . The solid area fraction βi

corresponding to face Fi is given by

βi = A(�T
⋂

Fi)

A(Fi)
, (2)

where A(X) is the area of a two-dimensional object X. A cell C intersecting a
triangular mesh T is seen in Fig. 1a, and �T

⋂
C is seen in Fig. 1b.

More generally, we consider multiple meshes T1, . . . , TN , where α and βi are

the fractions of the cell and faces inside
N⋃

i=1
Ti . Each mesh is allowed to include

overlapping triangles or double surfaces. To define the concept of a double surface,

let T1 = {T 1
i }n1Ti=1 and T2 = {T 2

i }n2Ti=1 be proper triangle meshes (without geomet-
ric degeneracies). Let S1 ⊂ T1 and S2 ⊂ T2 be such that

⋃

Ti∈S1
⋃

S2

Ti lie in a

plane and (
⋃

Ti∈S1

Ti)
⋂

(
⋃

Ti∈S2

Ti) �= ∅. Then,D = (
⋃

Ti∈S1

Ti)
⋂

(
⋃

Ti∈S2

Ti) is a double

surface. A typical double surface is seen in Fig. 2.

4 Algorithms

In this section, the two proposed methods to calculate the solid volume fraction α

and solid area fractions βi are presented. Both methods find a polyhedron P that
represents �T

⋂
C and calculate α and βi by

α = V (P )

V (C )
(3)

and

βi = A(P
⋂

Fi)

A(Fi)
, (4)

i ∈ {1, . . . , 6}. The first method exactly calculates �T
⋂

C . It is presented in
Section 4.3. The second method is an approximate method based on approximating

Fig. 1 Intersection between a triangle mesh T and a Cartesian cell C
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Fig. 2 Triangles from different meshes overlap in a double surface. The double surface is the intersection
of triangles T 1

1 and T 1
2 from one triangle mesh T1, and triangle T 2

1 from a second triangle mesh T2

�T
⋂

C from a least squares fit of the intersection T
⋂

C between the mesh and
the cell. It is presented in Section 4.4.

In this first phase, we require that the triangle meshes are non-degenerate. This
restriction is removed in Section 5, where we consider double surfaces and multiple
meshes. Pseudo code for the algorithms is presented, with some helper methods out-
lined in Appendix A. The algorithms in the pseudo code are sometimes simplified,
but cover the key steps of a successful implementation.

4.1 Preliminaries

Before we proceed, we define some important concepts: face polygon, cell polygon,
and intersection point. We use a notation similar to that of [1, 2]. Given a polyhedron

P and cell faces Fi, i ∈ {1, . . . , 6}, the sets
(
P

⋂
Fi

)◦, are called face poly-

gons, and we say that ∂P
⋂

�C consists of a number of cell polygons (see Fig. 3).

Here,
(
P

⋂
Fi

)◦ is the closure of the interior of the two-dimensional set P
⋂

Fi

and ∂P
⋂

�C is the closure of the three-dimensional set ∂P
⋂

�C . Now, let S be a
subset of a two-dimensional space, and let ∂0(S) be the extreme points of S. The set

I =
nT⋃

i=1

6⋃

j=1

∂0

(
Ti

⋂
Fj

)
(5)

is called the intersection points between C and T (see Fig. 4 where, for a particular

triangle Ti ,
6⋃

j=1
∂0

(
Ti

⋂
Fj

)
is marked by spheres). The set

I0 = �C

⋂ nv⋃

i=1

vi (6)

are referred to as the triangle vertices of T inside C .
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Fig. 3 The polyhedron in Fig. 1b seen as a composition of face polygons and cell polygons. A face
polygon is the intersection between a cell face Fi and the polyhedron P . A cell polygon is a face of P in
the interior of the cell C

The divergence theorem is used to calculate the volume of a polyhedron P .

Applying the theorem to the vector field F(x, y, z) = 1

3
(x, y, z), we get

V (P ) = 1

3

∑

i

ci · n̂i Ai, (7)

where ci is the centroid, n̂i the unit normal, and Ai the area of the i:th face Si of the
surface of P . To see this, note that ∇ · F = 1 and

V (P ) = ∫
P

dV = ∫
P

∇ · F dV = ∫
∂P

F · n̂ dS = 1
3

∑

i

∫
Si

(x, y, z) · n̂i dSi

= 1
3

∑

i

n̂i · ∫
Si

(x, y, z) dSi = 1
3

∑

i

n̂i · ci Ai .
(8)

Fig. 4 Intersecting a triangle
and a Cartesian cell results in
intersection points, here marked
by spheres
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The areas and centroids in (7) are calculated as in [8]:

A = 1

2

n−1∑

i=0

(xiyi+1 − xi+1yi), (9)

and

cx = 1
6A

n−1∑

i=0
(xi + xi+1)(xiyi+1 − xi+1yi),

cy = 1
6A

n−1∑

i=0
(yi + yi+1)(xiyi+1 − xi+1yi),

(10)

where c = (cx, cy) and the polygon has vertices (x0, y0), . . . , (xn−1, yn−1), (xn,

yn), with (xn, yn) = (x0, y0). A change of coordinates is performed so that (xi, yi)

are the coordinates of vertex i in a basis for the two-dimensional space defined by
the polygon plane.

4.2 Triangle-cell intersections

To calculate the area and volume fractions, we first need to find the intersection
points between the triangle mesh and the hexahedral cell according to (5). What we
basically want to do is to intersect a number of triangles and an axis-aligned hexa-
hedron in a robust way. By robustness, we mean that we want to locate the points
of intersection, we do not want to miss an intersection due to numerical imprecision,
and we want related intersection tests to give consistent results. The latter require-
ment could fail for example if an edge that is shared between two triangles is not
represented consistently between the two triangles [12]. We also want unique inter-
sections, meaning that an intersection point on a triangle edge is shared between the
two triangles meeting at the edge, and that an intersection point in a triangle vertex is
shared between all triangles that meet in the vertex.

The above robustness criteria makes the triangle-box intersection problem hard to
solve. Determining whether a triangle and an axis-aligned box intersect or not is a
well-studied problem, discussed for example in [3]. Robustness issues are discussed
by among others [12, 24]. It gets more complicated when the locations of the inter-
section points are also required. One approach to this is to perform a sequence of
simpler intersection tests, where the triangle edges are intersected with the rectangu-
lar faces of the box, and the box edges are intersected with the triangle. Such line
segment-rectangle and line segment-triangle intersection tests are common in several
applications, often build upon the parametric representation of the geometric objects,
and summarized for example in [12].

To get unique intersections, we have introduced vertices and edges that are shared
between triangles. Similarly, we have introduced box vertices and box edges that
are shared between the rectangular faces of the box. These joint edges and vertices
are then used in a sequence of simpler intersection tests, as described above. Before
the intersection points are calculated numerically, we, as far as possible, discretely
determine how many intersections there are. This is done using coordinate compar-
isons similar to the outcodes described in [1, 2]. The coordinate comparison approach
is appealing since the cell is axis-aligned, and the x-, y-, and z-coordinates can be
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considered separately. Neither are there any numerical issues with the coordinate
comparisons, since no floating point calculations have to be performed.

4.3 Exact method

In the exact method, we find the exact polyhedron of intersection �T
⋂

C (see
Fig. 1b). We apply (1)–(2) and (7) to calculate the exact area and volume fractions of
C . The main steps in the method can be summarized as follows:

1. Find the intersection points I between the mesh T and the cell C
2. Find the triangle vertices I0 of T inside the cell C
3. For i ∈ {1, . . . , 6}, connect intersection points in I

⋂
Fi to polygons �ij , and

calculate the area fraction βi as the total area of the polygons �ij divided by the
area of the face Fi

4. For each triangle Ti intersecting the cell C , connect
(
I

⋃
I0

) ⋂
Ti to a cell

polygon �Ti

5. The face and cell polygons �ij and �Ti
in steps 3–4 define the polygonal faces

of the polyhedron �T
⋂

C . Calculate volume fraction of �T
⋂

C according
to (1) and (7).

The intersection points in step 1 are given by (5), and the triangle vertices I0 in step
2 by (6). More details about the construction of polygons in steps 3–5 are found in
Section 4.3.1. The main steps in the algorithm are illustrated in Fig. 5.

Pseudo code for an algorithm that computes the exact solid volume and area
fractions is presented in Algorithm 1. In the algorithm, we introduce the notation
T‖ = T‖(C ) for the set of triangles T‖ ⊆ T that are coplanar to some cell face

Fig. 5 Description of how the polyhedron of intersection is found in the exact method
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Fk ⊂ C . We denote by T↑ = T↑(C ) the set of triangles T↑ ⊆ T , with Ti ∈ T↑ sat-
isfying I

⋂
Ti ⊂ Fk for some k ∈ {1, . . . , 6}, and I0

⋂
Ti = ∅. This means that

an edge or vertex of Ti ∈ T↑ touches a cell face, but the intersection of the triangle
and the interior of the cell is empty.

The method normal = UnitNormal(polygon) returns a unit normal of the input
polygon. The method UnitNormals(polygons) returns a list of normals, one for
each polygon in polygons. The method Area(polygon) and Centroid(polygon)
are implementations of (9) and (10), respectively. Centroids(polygons) calls Cen-
troid(polygon) for each polygon in polygons. The method polygons = ConnectPoly-
gons(intersection points, target facet) connects the points in points to polygons. It is
described in Section 4.3.1.

Data: A triangle mesh T and a hexahedral cell C .
Result: α: fraction of C inside T .

{βi}: fractions of Fi inside C , where Fi, i ∈ {1, . . . , 6}, are the faces
of C .

1 I ←
nT⋃

i=1

6⋃

j=1
∂0

(
Ti

⋂
Fj

)

2 I ← I
⋂

(T \ (T‖
⋃

T↑)

3 I0 ← �C
⋂ ⋃nv

i=1 vi

4 α ← 0
5 for i ∈ {1, . . . , 6} do
6 {�ij } ← ConnectPolygons(I

⋂
Fi, Fi)

7 {n̂ij } ← UnitNormals({�ij })
8 {cij } ← Centroids({�ij })
9 βi ← ∑

j Area(�ij )/Area(Fi)

10 α ← α + ∑
j n̂ij · cij ∗ Area(�ij )

11 for Ti ∈ T : (I
⋃

I0)
⋂

Ti �= ∅ ∧ ¬ (
Ti ∈ T‖

) ∧ ¬ (
Ti ∈ T↑

)
do

12 �Ti
← ConnectPolygons

(
(I

⋃
I0)

⋂
Ti, Ti

)

13 n̂Ti
← UnitNormal(�Ti

)

14 cTi
← Centroid(�Ti

)

15 α ← α + n̂Ti
· cTi

∗ Area(�Ti
)

16 α ← α/3

In the algorithm, we do not create cell polygons from triangles in T‖ or T↑, and
we remove intersection points in T \ (T‖

⋃
T↑). We do not create cell polygons

from coplanar triangles to avoid that they contribute with the same area both to cell
and face polygons, which would result in an error in (7). Since we do not create cell
polygons from coplanar triangles, the coplanar triangles have to be accounted for in
the face polygons. Instead of resolving every coplanar triangle in the face polygon
algorithm, we remove from I the set {x ∈ I : x /∈ T \ T‖}; that is the intersection

Algorithm 1 {α, {βi}} = CalculateExactAreaAndVolumeFraction(T , C )
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points that are only in coplanar triangles. If a cell face Fk has no intersection points
after the removal, we know that the area fraction of Fk is 0.0 or 1.0. To find out
which, we check if a point x ∈ Fk is on the inside or outside of T . This is done using
a method based on angle weighted pseudo normals, similar to that of Bærentzen and
Aanæs [6].

Since we do not consider triangles in T‖, we must also disregard triangles in T↑.
To see why, consider Fig. 6a, where a cell intersected by a triangulation T including
triangles T1 ∈ T↑ and T2 ∈ T‖ is seen in cross section. One of the intersection
points marked by spheres belongs to both T1 and T2, and the other one only belongs
to T2. The intersection point that is only in T2 is removed since T2 ∈ T‖. Assuming
symmetry, the area fraction of the top cell face is 1.0. Not removing the intersection
points in T1 would erroneously give an area fraction less than 0.5. Therefore, we also
remove from I the set {x ∈ I : x /∈ T \ (T‖

⋃
T↑)}, the points that are only in

coplanar triangles or triangles pointing out of the cell.
As seen in Fig. 6b, we can not remove all x ∈ I

⋂
T‖. Again assuming symme-

try, the top area fraction is now approximately 0.6, since there is a face polygon that
in cross section is the line between the two intersection points. We need to keep the
intersection point that belongs to both T1 and T2 to construct this polygon. The dif-
ference to Fig. 6a where we removed both intersection points is that T1 now does not
belong to T↑ but points into the cell.

4.3.1 Connecting intersection points to polygons

In this section, we describe how the intersection points in I
⋃

I0 are connected to
polygons. It is critical that the intersection points are processed in correct order so
that (9)–(10) can be used to calculate area and centroid. As in [11], the connectivity
of the triangle mesh and the cell is used to achieve this. While [11] briefly states that

Fig. 6 Cross sections of a cell intersected by a triangulation T including triangles T1 and T2
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the face polygons are found through connectivity criteria such as common faces or
common triangles, we describe how this is done.

There are two types of polygons that need to be created. The first type is the
cell polygon, which is the intersection between a triangle Ti and �T . The second
type is the face polygon that for each cell face Fi, i ∈ {1, . . . , 6}, has vertices
I

⋂
Fi . While [1, 2] uses the Sutherland-Hodgman algorithm [25] to clip each tri-

angle Ti against the cell faces to create the cell polygons �Ti
, we use the connectivity

to connect all points in
(
I

⋃
I0

) ⋂
Ti . This will be convenient when detecting

double surfaces (see Section 5.1.1). To create the face polygons {�ij }, we use the
connectivity to connect all points in I

⋂
Fi .

Both types of polygons can be constructed in a similar way, which can be
described after introducing target facets (FT ) and search facets (FS). A target facet
is the triangle Ti when the cell polygon �Ti

is constructed, and the cell face Fi when
the face polygons {�ij } are constructed. The goal is to connect all intersection points
on the target facet to one or more polygons. To do this, we need search facets. A
search facet is a triangle, a triangle edge, a cell face, or a cell edge in which to search
for the next vertex of the polygon that is under construction.

Given a correct current search facet, there should always be a uniquely determined
intersection point to take as next polygon vertex. The main idea is to find the next
vertex on the current search facet, and then change search facet. The next search facet
is determined by the location of the newly added vertex with respect to the triangle
mesh and the cell. This procedure, taking the next vertex and updating the search
facet, is repeated until the polygon is completed, and until all intersection points on
the target facets have been assigned to a polygon. Examples are given in Figs. 7 and 8,
where a simple face polygon and a simple cell polygon are constructed.

In Algorithm 1, the recently described polygon connection step is performed by
the method ConnectPolygons(intersection points, target facet). It is given in pseudo
code in Algorithm 3 (see Appendix A.1).

4.4 Approximate method

In the approximate method, �T
⋂

C is approximated by a convex polyhedron P

with convex polygonal faces. P is defined by a least squares plane fitted to the points
in I

⋃
I0 and a normal of the plane. The plane splits C in two parts, P and C \ P .

The main steps in the method can be summarized as follows:

1. Find the intersection points I between the mesh T and the cell C
2. Find the triangle vertices I0 of T inside the cell C
3. Fit a least squares plane π to the intersection points I and the vertices found in

steps 1–2
4. Identify P and C \ P

5. For i ∈ {1, . . . , 6}, calculate the area of P
⋂

Fi and the area fraction βi

6. Calculate the volume of P and the volume fraction α.

We now comment on the details of this procedure. The intersection points in step 1
are defined by (5), and the triangle vertices I0 in step 2 by (6). In step 3, a total
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Fig. 7 Description of how a face polygon is created according to Algorithm 3

least squares plane π is fitted to I
⋃

I0. The plane with minimal total orthogonal
squared distance to m points {pi}mi=1 in R

3 satisfies

min||n||=1

m∑

i=1

((pi − p0) · n)2, (11)

where p0 is a point in the plane and n is the plane normal. We can take [13]

p0 = 1

m

m∑

i=1

pi . (12)

Let A be the matrix

A =
⎡

⎢
⎣

p1 − p0
...

pm − p0

⎤

⎥
⎦ . (13)
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Fig. 8 Description of how a cell polygon is created according to Algorithm 3

Then, (11) can be written

min||n||=1
||An||2, (14)

where || · || denotes the Euclidean norm. The minimum can be found by computing
the singular value decomposition

A = USV T (15)

of A. One then finds the minimum n as the third column of V . To see this, note that

||An||2 = ||USV T n||2 = ||SV T n||2 = ||Sz||2 = λ1z
2
1 + λ2z

2
2 + λ3z

2
3, (16)

where λ1 ≥ λ2 ≥ λ3 are the squared singular values of A, and z = V T n. The second
equality in (16) follows since U is an orthogonal matrix, and the last equality since
S(i, i) = √

λi and S(i, j) = 0, i �= j . The expression in (16) is thus minimized
when z = e3 = (0, 0, 1), or equivalently when

n = V e3, (17)

the third column of V .
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In step 4, the correct sign of the plane normal nπ is critical to determine what is P

and what is C \ P . One heuristic to determine the sign is to compare nπ to the area
weighted average naw of all normals of triangles intersecting the cell,

naw =
∑

Ti

⋂
C �=∅

A(Ti) n̂i , (18)

where n̂i is the unit normal of Ti . If naw ·nπ > 0, the sign of n is assumed correct; oth-
erwise, it is changed. A second alternative is to replace A(Ti) by A(Ti

⋂
C ) in (18).

This will have advantages when the mesh includes double surfaces (see Section 5),
but is more expensive since Ti

⋂
C has to be found. In addition, Ti

⋂
C will in gen-

eral have a more complex shape than Ti , which makes the area calculation more
expensive.

For steps 5–6, we need the cell and face polygons of P (see Fig. 3). The only cell
polygon � is convex and defined by

� = ∂P
⋂

�C . (19)

It is constructed from the points in

Iπ =
12⋃

i=1

∂0(π
⋂

Ei), (20)

the intersection between the plane π and the edges of C . The face polygon on cell
face Fi is denoted by �i , and defined by

�i = P
⋂

Fi. (21)

It is constructed by connecting the points in Iπ

⋂
Fi with the cell vertices {Vj }8j=1

on the correct side of the plane π . The correct side is determined by the plane normal
nπ . What remains is to calculate the volume of the polyhedron according to (7) and
divide it by the cell volume to get the volume fraction α. The face area fraction βi is
given by the area of �i divided by the area of Fi .

The main steps in the algorithm are illustrated in Fig. 9. Pseudo code for an
algorithm that computes P and hence the solid volume and area fractions of C is
described in Algorithm 2. The method plane = LeastSquaresPlane(points) on line
3 is an implementation of the least squares plane algorithm described in (11)–(17).
The method CorrectNormal(plane, triangle mesh, cell) on line 4 corrects the nor-
mal nπ of the input plane according to the sign of naw · nπ as described above,
where naw is given by (18). The method FindCellVerticesInPolyhedron(cell, plane)
returns a list of the vertices of the input cell on the correct side of the input plane,
where the correct side is determined by the plane normal. The method normal =
UnitNormal(polygon) returns a unit normal of the input polygon. The methods area
= Area(polygon) and centroid = Centroid(polygon) are implementations of (9) and
(10), respectively. Finally, polygon = ConvexPolgon(points, normal) takes as input a
list of polygon vertices and the normal of the polygon, and returns a list of the ver-
tices sorted in clockwise or counterclockwise order. Pseudo code for this method is
presented in Algorithm 11 in Appendix A.2.
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5 Geometric complications

The algorithms described in Section 4 calculate solid area and volume fractions for a
non-degenerate triangle mesh. In practice, it is not unusual that the mesh is degenerate
in some sense. It can include T-vertices (hanging nodes), gaps, and cracks, or consist
of overlapping meshes. The latter leads to what we call double surfaces, the inter-
section of overlapping triangles. In this section, it is described how the algorithms
in Section 4 are modified to handle double surfaces with normals of the overlapping
triangles pointing in opposite directions. It is also shown that the algorithms handle
multiple meshes and split hexahedra. These are steps towards a method that calcu-
lates the solid area and volume fractions of a degenerate triangle mesh including
overlapping triangles, overlapping meshes, hanging nodes, and gaps. Such triangle
meshes are common in industrial applications.

5.1 Double surfaces

Recall the definition of a double surface from Section 3. In Fig. 2, we saw a dou-
ble surface including triangle normals with opposite directions. In Fig. 10, there is
another, schematic, example of a mesh including a double surface. Two typical cases
of intersection between a cell and the double surface are seen in Fig. 11.

Algorithm 2 {α, {βi}} = CalculateApproximateAreaAndVolumeFraction(T , C )
Data: A triangle mesh T and a hexahedral cell C .
Result: α: approximate fraction of C inside T .

{βi}: approximate fractions of Fi inside C , where Fi, i ∈ 1, . . . , 6, are
the faces of C .

1 I ←
nT⋃

i=1

6⋃

j=1
∂0

(
Ti

⋂
Fj

)

2 I0 ← �C
⋂ ⋃nv

i=1 vi

3 π ← LeastSquaresPlane
(
I

⋃
I0

)

4 CorrectNormal(π , T , C )

5 Iπ ← ⋃12
i=1 ∂0(π

⋂
Ei)

6 IV ← FindCellVerticesInPolyhedron(C , π )
7 for i ∈ {1, . . . , 6} do
8 n̂i ← UnitNormal(�i)

9 �i ← ConvexPolygon(Iπ

⋃
(IV

⋂
Fi), n̂i )

10 ci ← Centroid(�i)

11 βi ← Area(�i)/Area(Fi)

12 n̂ ← UnitNormal(π)

13 � ← ConvexPolygon(Iπ , n̂)

14 c ← Centroid(�)

15 α ← 1/3 ∗
[
n̂ · c ∗ Area(�) + ∑6

i=1 n̂i · ci ∗ Area(�i)
]
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Fig. 9 Description of how the polyhedron of intersection is found in the approximate method

When T1 and T2 are handled as separate meshes both algorithms correctly
accounts for the double surface as explained in Section 5.2. To solve the degener-
ate case when the two meshes are treated as one, the algorithms are modified as
described below. In the rest of the section, we consider double surfaces on a single
mesh T = T1

⋃
T2.

5.1.1 Exact method

The exact method in Section 4.3 is modified to handle both cases in Fig. 11. It is not
necessary that the double surface is axis-aligned. The cell polygons are unproblem-
atic since a cell polygon is created by connecting all intersection points in a particular
triangle. The contribution to the volume fraction from the triangles in the double
surface will cancel out in (7). Possible problems occur when the face polygons are

overlapping triangles

Fig. 10 Cross section of two triangle meshes T1 and T2 glued together. The arrows represent triangle
normals pointing out of the interior of the respective mesh. The overlapping triangles give rise to a double
surface
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Fig. 11 Cross section of typical cases of intersection between a cell and a double surface

created. Then, it has to be made sure that intersection points from the underlying
meshes T1 and T2 are connected to separate polygons. The solution is to use the
connectivity of T to extract information about the underlying meshes T1 and T2, so
that the two parts of T can be handled separately.

Figure 12 shows a cell face Fi and intersection points I
⋂

Fi from Fig. 11a.
The intersection points are marked by spheres and boxes. The spheres represent
I

⋂
Fi

⋂
T1, and the boxes represent I

⋂
Fi

⋂
T2. The whole cell is inside, so

the face polygons {�ij } should cover Fi . In Fig. 12b, the points in I
⋂

Fi

⋂
T1

have been connected to one polygon �i1 and the points in I
⋂

Fi

⋂
T2 to a second

polygon �i2, where Fi = �i1
⋃

�i2 as expected.
When the search facet is a triangle, there is no ambiguity in the choice of the

next polygon vertex. When the next intersection point is searched on a face side, as
in Fig. 12a, the presence of the double surface becomes apparent. Then, it has to
be made sure that only intersection points from the correct part of T can be taken.
Normally, the next intersection point on the face side is the one closest to and on the
correct side of the current intersection point (see Algorithm 7 in Appendix A.1). At
a double surface, there are two intersection points at the same position. The solution

Fig. 12 Face polygon connection at a double surface. Intersection points marked by spheres come from
T1 and intersection points marked by boxes come from T2
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is to make sure that an intersection point in a triangle with normal pointing against
the current intersection point cannot be taken. This is a check that the polygon that
is created is actually located on the inside of the underlying mesh T1 or T2, since
the triangle normals point of �T1 and �T2 (at a double surface the surface normal of
T is undefined). To account for the presence of double surfaces, Algorithm 7 has to
be modified according to this observation. The result is presented in Algorithm 10 in
Appendix A.1.

5.1.2 Approximate method

To see that the approximate method in Section 4.4 is inaccurate for meshes with dou-
ble surfaces, consider Fig. 11a. The cell is intersected by a double surface, which will
make all intersection points lie in a plane in the middle of the cell. The unmodified
algorithm takes this plane as the approximating plane and gives a volume fraction
around 0.5, though the whole cell is inside. The solution is to check if all normals
of triangles intersecting the cell point in the same or opposite direction, and if the
triangles lie in the same plane. The volume fraction is then set to 1.0.

In Fig. 11b, a cell is intersected both by a double surface and a regular part of
T = T1

⋃
T2. The intersection points at the double surface will erroneously affect

the plane. This problem is not handled as a special case in the approximate method.
As pointed out in Section 4.4, it is better to use the normal weighted with the

area of the part of a triangle inside the cell than the area of the whole triangle when
determining the sign of the least squares plane normal. To see an example of why,
consider Fig. 13, where a cross section of a cell intersected by a triangle mesh includ-
ing triangles T 1

1 , T
1
2 , and T 2

1 is seen. Parts of T 1
2 and T 2

1 overlap in a double surface.
The dashed line and normal represent the approximating plane π in the approximate
method. Now assume the area of T 1

2 is much larger than that of T 1
1 and T 2

1 . The com-
parison normal can then be approximated by that of T 1

2 , and we would erroneously
take the wrong sign for the normal of π by the sign test of the dot product. If we
weight with the area inside the cell, the double surface will be canceled out and will
not affect the comparison normal.

Fig. 13 Cross section of cell intersected by a double surface created by T 1
2 and T 2

1 . The approximating
plane π in the approximate method is marked by a dashed line
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5.2 Several meshes

Both algorithms in Section 4 can be applied on multiple meshes T1, . . . , TN by
considering each Tj separately and summing the area fractions βij , i ∈ {1, . . . , 6},
and volume fraction αj from each mesh according to

α =
N∑

j=1

αj , (22)

and

βi =
N∑

j=1

βij . (23)

5.3 Small self-intersections or overlaps

When floating points are used, numerical issues could make the triangles in a double
surface slightly overlap or be slightly separated, as in Fig. 14. The proposed algo-
rithms work even if the triangles in the double surface are slightly separated and not
overlapping. However, an extra condition has to be added if small overlaps are to be
handled.

A limit ε for the maximal overlap allowed can be introduced and used to indi-
cate when a double surface is found. Two intersection points at a separation distance
smaller than ε are assumed to lie on a double surface if they also belong to triangles
with opposite normals. Due to numerical issues, it will be necessary to have a limit
on the oppositeness of normals. In the following, we assume that two normals are
opposite if π − θ < δ, where θ is the angle between the normals and δ is a prescribed
limit.

In the approximate method, it is enough to use the limits to determine when two
triangles with opposite normals are coplanar. In the exact method, the limits are used
in the face polygon connection step to indicate whether a certain intersection point
can be taken as the next vertex in the face polygon or not. In the following, we discuss
the treatment of double surfaces in the exact algorithm.

Fig. 14 Cross section of typical cases of intersection between a cell and a double surface. The double
surface includes small overlaps or small separations between triangles
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When a double surface intersects a cell, as in Fig. 11, we wish to connect the inter-
section points on T1 to one polyhedron of intersection, and the intersection points on
T2 to another polyhedron of intersection as described in Section 5.1. The result after
a correct polygon connection step is visualized in Fig. 15, where the different striped
patterns correspond to the different polyhedrons of intersection, one for T1 and one
for T2.

For an overlapping double surface, the goal is to get to the result in Fig. 16. The
two meshes T1 and T2 still contribute with one polyhedron of intersection each, but
there will now be an overlap between the polyhedrons. This overlap corresponds to
the overlap of the double surface. The area and volume of the overlap is counted
twice in the solid area and solid volume fraction calculations. To get to the result in
Fig 16, the face polygon connection step has to be modified, or the result will. be as
in Fig. 17 where only a fraction of the correct polyhedrons of intersection is found.

The problem with the cases in Fig. 17 is that the algorithm cannot distinguish the
overlapping double surface from a thin or sharp-edged part of the mesh. Examples of
thin and sharp-edged meshes are found in Fig. 18a and b, respectively. A sharp edge
is in this case formed when two triangles meet at an angle less than δ. For the cases
in Fig. 18, it is correct to connect the two close intersections at the left and right cell
faces, while it is wrong to do the same thing for the cases in Fig. 17.

To avoid the problem demonstrated in Fig. 17, the maximal overlap limit ε is used
as an upper limit on how close two nearby vertices of a face polygon can be. If the
distance between the current vertex and a candidate for the next vertex is closer than
ε, and the two vertices belong to triangles with opposite normals; the candidate can
not be taken as the next vertex. With this modification of the polygon connection
algorithm, the result will be as in Fig. 16. A consequence is that sharp-edged meshes
and meshes thinner than ε cannot be handled.

The above modification of the exact algorithm is necessary only if the double sur-
face belongs to a single mesh T = T1

⋃
T2. If T1 and T2 are handled separately,

the double surface is resolved by finding the face polygons and polyhedrons of inter-
section for one mesh at a time as described in Section 5.2. The area and volume
fractions from the different meshes are then added.

For separate meshes T1 and T2, the overlaps that can be handled are not restricted
to double surfaces. It is possible to handle arbitrary overlaps, as long as it is
reasonable to count the overlap volume and area twice.

Fig. 15 Cross section of typical cases of intersection between a cell and a double surface. The intersections
have been connected into the correct polyhedrons of intersection, one for T1 and one for T2
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Fig. 16 Cross section of typical cases of intersection between a cell and an overlapping double surface.
The intersections have been connected into the correct polyhedrons of intersection, one for T1 and one for
T2

5.4 Split hexahedra

When the hexahedral grid is coarse or the geometry is thin or detailed, a cell can be
cut in several disconnected parts by one or more polyhedrons of intersection. This
leads to the formation of so called split cells, or split hexahedra. An example of a
split cell in two dimensions is found in Fig. 19.

The exact method easily handles most cases of split hexahedra by construction.
The cell polygons are treated triangle by triangle as described in Section 4.3.1 and
in Algorithm 3, which is not complicated by split hexahedra. The face polygons
are uniquely determined by the connectivity of the triangle mesh under the same
assumptions of self-intersections as for double surfaces (see Section 5.3), and not
either complicated by most forms of split hexahedra. The face polygon construction
algorithm described in Section 4.3.1 and in Algorithm 3 finds as many polygons of
intersection as needed until all intersection points have been assigned to a polygon.

One case that is not covered by the algorithm described this far is when the triangle
mesh intersects a cell face and forms one or more polygonal “holes,” as in Fig. 20.
This happens when a connected part of the triangle mesh intersects the face without
intersecting the boundary of the face. The algorithm cannot determine what is the
inside and what is the outside of the “hole,” since the triangle normals are not used
in the connection step.

To handle polygonal holes, signed polygon areas are used. The sign of the area is
determined by the normals of the triangles that form the polygon. The area is positive

Fig. 17 Cross section of typical cases of intersection between a cell and a double surface. The intersections
have in both cases been connected erroneously to only one polyhedron of intersection
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Fig. 18 Meshes that cannot be distinguished from an overlapping double surface in the method based on
a maximal limit of the allowed overlap

if the normals point out of the polygon, and negative if the normals point into the
polygon. To determine if the normals point into the polygon or not, a method similar
to [6, 14] is used. The closest polygon vertex v to an arbitrary face edge is first found,
the vertex is projected onto the edge, and the vector from the projection ve to the
vertex is formed. The sign of the dot product (ve − v) · nv determines if the triangle
normals point into or out of the polygon according to

sgn(A) =
{

1, (ve − v) · nv > 0,
−1, (ve − v) · nv < 0,

where sgn(A) is the sign of the polygon area and nv is the average of the triangle
normals of the triangles meeting in v. An illustration is found in Fig. 21.

If none of the face polygons intersect the boundary of the face, the area of the
whole face has to be added to the total area of intersection if the “outermost” polygon
is a hole. This is the case in Fig. 20b. The outermost polygon is found by locating the
vertex closest to an arbitrary face edge, and identifying the corresponding polygon.

6 Numerical examples and results

Three test cases have been studied for evaluation of the algorithms. The cases were
designed to test the algorithms on double surfaces, numerical or small overlaps, and

Fig. 19 The triangle mesh T
splits the cell C into four parts.
Two of the four parts are
disconnected polyhedrons of
intersection
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Fig. 20 Two triangle meshes T1 and T2 intersecting a cell C in a way that splits the hexahedral cell in
three parts, without intersecting the boundary of any cell face

split hexahedra. In Section 6.1, double surfaces and split hexahedra is tested with a
geometry representing a heat sink used for air cooling of CPU:s. In Section 6.2, we
test the exact method for double surfaces and small overlaps on a geometry consisting
of two cylinders whose surfaces should meet in a double surface, but the surfaces are
not perfectly matching. In Section 6.3, the geometry consists of four cylinders placed
inside each other. It is used to test the exact method for split hexahedra and holes.

The algorithms were implemented in the C++-based multiphase flow framework
IBOFlow [16]. All computations were carried out on a machine equipped with a
3.50-GHz Intel Core i7 processor (5930K) and 64 GB of RAM (1.066 GHz DDR4).

6.1 Heat sink with a double surface

The exact method is validated and compared to the approximate method on a geome-
try including a double surface. The geometry represents a heat sink and is taken from
an industrial application. The whole mesh is seen in Fig. 22a, and a zoom in on the
part of the mesh that is marked by a circle is shown in Fig. 22b. The triangle pattern

(a) The area is positive since nv points out of the
polygon.

(b) The area is negative since nv points into the
polygon.

Fig. 21 The sign of the dot product (ve − v) · nv is used to determine if the polygon is a hole or not
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(a) Test geometry representing a heat sink. (b) Zoom in on the part in the left figure marked
by a circle. The overlapping triangles indicate
that there is a double surface.

Fig. 22 The test case

in the lower right part of the zoom in reveals that the geometry contains a double
surface.

Grid convergence and CPU times were analyzed and compared. For the grid study,
the fluid grid was stored in an octree and initially consisted of eight rectangular cells
with sides (�x, �y, �z) = (0.0250m, 0.0208m, 0.0312m). It was refined up to
eight times around the triangular mesh, resulting in a finest grid with 3, 329, 947 cells
of size (�x, �y, �z) = (9.77 · 10−5 m, 8.13 · 10−5 m, 1.22 · 10−4 m) or larger.
At each refinement level, the smallest cell size was halved and eight new cells were
formed. The test setup and the solid volume fractions for the base grid is seen in
Fig. 23a. The solid volume fractions for grids with one, three, and six refinements
are seen in Fig. 23b, c, d, respectively. The exact method was used in all four cases.

Results of the grid study are presented in Fig. 24a. The total volume of the inte-
rior of the geometry was calculated by running the exact and approximate volume
fraction algorithms for each cell. This was repeated for each refinement level. The
calculated volume was compared to the real volume 1.45 ·10−5 m3, which was found
by applying (7) to the whole triangle mesh.

A plot of the CPU time against the number of fluid cells is seen in Fig. 24b. The
times are the average results from ten runs. A Cartesian grid with initial cell size
(�x, �y, �z) = (4.16·10−3 , 4.16·10−3 , 4.16·10−3 m)was used for the time study.
It was refined up to five times around the triangular mesh, resulting in a finest grid
with 8, 438, 270 cells of size (�x, �y, �z) = (1.30 · 10−4 m, 1.30 · 10−4 m, 1.30 ·
10−4 m) or larger. In summary, the exact method is independent of cell size, while
the approximate method is second-order accurate. The exact method is a constant
factor slower than the approximate method. The constant factor is close to 2.0 when
the number of cells is large.

The grid study in Fig. 24a and the test setup in Fig. 25 indicate that the exact
method handles split hexahedra well. In Fig. 25a, the initial grid has been refined
three times, and several cells are split in two or more parts by the triangle mesh.
One of the split cells is marked green. A zoom in on this cell and the polyhedrons
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(a) The test setup in intersection and the
resulting solid volume fraction for the ini-
tial grid consisting of 8 hexahedral cells.

(b) Resulting solid volume fraction for a
grid that has been refined three times.

(c) Resulting solid volume fraction for a
grid that has been refined once.

(d) Resulting solid volume fraction for a
grid that has been refined six times.

Fig. 23 Test setup and resulting solid volume fraction for different number of refinements of the initial grid

of intersection are seen in Fig. 25b. The calculated volume of the two polyhedrons
of intersection agrees well with the theoretical volume 9.51 · 10−9 m3. The thickness
of the first fin is 6.15 · 10−4 m and the thickness of the second fin is 5.55 · 10−4 m,
extending in the z-direction. The dimensions of the cell are (�x, �y, �z) = (3.13 ·
10−3 m, 2.60 · 10−3 m, 3.90 · 10−3 m).

(a) Grid convergence of volume fraction algo-
rithms run on the heat sink case.

(b) CPU time of volume fraction algorithms run
on the heat sink case.

Fig. 24 Results from grid and CPU time studies
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(a) The test setup for three refinements. One cell
that is split in several parts by the triangle mesh
is colored green.

(b) The resulting polyhedrons of intersection
that split the green cell in several parts.

Fig. 25 The test setup for three refinements results in a number of split hexahedra

6.2 Overlapping cylinders

Two identical co-located cylinders of radius 0.5m were triangulated, joined to one,
and intersected by an axis-aligned hexahedral cell of dimensions (�x, �y, �z) =
(0.23m, 0.208m, 0.312m). The co-located cylinders simulate a double surface.
Different triangulation schemes were used for the two cylinders so that the resulting
triangle meshes slightly overlapped instead of forming a perfect double surface. The
resulting setup is seen in Fig. 26. In Fig. 26a, it is seen how the hexahedron intersects
the triangle meshes, and in Fig. 26b, we have zoomed in on parts of a cross section
of the triangle meshes to show that the triangles overlap.

(a) Two overlapping cylinder triangle meshes are
intersected by a hexahedral cell (blue). The arrows
represent triangle normals pointing out of the inte-
rior of the meshes. Only half of the triangle meshes
are shown.

(b) Part of a circular cross-section of the trian-
gle meshes, which shows that the triangle meshes
slightly overlap. The overlaps have been exagger-
ated in the figure.

Fig. 26 Setup that tests the algorithm for a double surface formed by slightly overlapping, non axis-
aligned triangles
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The algorithm handles the overlapping double surface according to Section 5.3,
where ε = 0.01�x m and δ = 2π

45 rad is chosen. The polygons and polyhedrons of
intersection are correctly connected, as demonstrated in Fig. 27. One of the polyhe-
drons is colored red and the other black, and they belong to one cylinder each. Both
overlaps and gaps had to be handled to construct the face polygons. This is seen
from the face polygons for face 2 (y-top) in Fig. 28. For visibility, the overlaps and
gaps have been exaggerated in the figure. At the bottommost face edge, the factual
overlap between the triangles is 0.002�x m, which is within the tolerance ε. The
angle θ between the triangle normals satisfies π − θ = 1.23 · 10−1 rad, which is less
than δ.

6.3 Split hexahedra

Four cylinders were placed one inside the other in a configuration that intersected an
axis-aligned hexahedron in two different ways. The dimensions of the hexahedron
were (�x, �y, �z) = (6 · 10−3 m, 10−2 m, 10−2 m). The radii of the cylinders
were r1 = 3 · 10−4 m, r2 = 9 · 10−4 m, r3 = 1.5 · 10−3 m, and r4 = 1.8 · 10−3 m.

In the first setup, the centerline of each cylinder was aligned with the y-axis and
passing through the center of the xz-faces of the hexahedron (Fig. 29). In the second
setup, the cylinders were rotated π

4 rad about the x-axis from their initial position
(Fig. 30). For these setups, the analytic volume fraction is to three significant figures
α1 = 8.95 · 10−2, α2 = 1.13 · 10−1, and the area fractions are

β1
i =

{
0, i = 0, 1, 4, 5,
8.95 · 10−2, i = 2, 3,

(24)

Fig. 27 Polyhedrons of intersection between two overlapping cylinders and a cell. The polyhedron with
red border corresponds to one cylinder, and the polyhedron with black border corresponds to the other
cylinder. Together the polyhedrons cover the whole of the cell, as expected. The overlaps and gaps have
been exaggerated in the figure
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Fig. 28 At the rightmost face edge (x-low), there is a gap between the triangles, and at the bottommost
face edge (z-low), the triangles slightly overlap. The overlap and the gap have been exaggerated in the
figure

and

β2
i =

{
0, i = 0, 1,
6.33 · 10−2, i = 2, 3, 4, 5,

(25)

where the superscripts 1 and 2 correspond to the first and second test cases, respec-
tively. The area fractions in (24) and (25) are calculated from the formulas for the
area of a circle and an ellipse, respectively. The first volume fraction, α1, is simply
calculated from the formula for the volume of a cylinder. The second volume fraction
is

α2 = V1 − V2 + V3 − V4

�x �y �z
, (26)

(a) The test setup. (b) The cylinder triangle meshes in intersection,
with triangle normals pointing out of the interior
of each mesh.

Fig. 29 Four axis-aligned cylinders with the same center line and different radii intersecting an axis-
aligned hexahedron
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Fig. 30 Four cylinders with the same center line and different radii intersecting an axis-aligned
hexahedron. The cylinders are rotated 45 degrees about the x-axis

where

Vi = π r2i

√

(�y)2 + (�z)2 − 8

3
r3i , i = 1, 2, 3, 4, (27)

is the volume of intersection of the cylinder with radius ri and the hexahedron. In
(27), Vi is the sum of the volume of three parts. The first part is the largest cylinder C

that fits into the intersection between the rotated cylinder and the cell. The remaining
parts are the two identical bodies that are formed as the difference of the whole
volume of intersection and C. The volume of the two identical bodies was calculated
from the definition of the volume integral. The area and volume fractions calculated
with the proposed algorithm agree with the theoretical results.

7 Discussion and conclusion

Two methods for calculation of solid area and volume fractions of the intersection
between degenerate triangle meshes and a hexahedral grid have been proposed. The
algorithms have been implemented in the multiphase flow framework IBOFlow and
will be used to improve the accuracy in the calculation of fluxes between fluids and
solids. The solid area and volume fractions indicate how much of each fluid cell that
is intersected by the solid. The exact algorithm is the main result that handles all geo-
metric complications addressed in this paper. The approximate method is intended
for highly resolved grids, for which it is reasonable to approximate the cell-mesh
intersection with a plane.

There are some comments on what could have been done differently in the two
methods. In the exact method, since both hexahedra and triangles are convex, the cell
polygons are also convex. This could be used in an alternative method to connect
the intersection points to cell polygons, for example as described in Section 4.4 and
Appendix A.2. In the approximate method, since it is known that the vertices to be
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sorted are the result of intersecting a plane with a hexahedral cell, an alternative is
to use the connectivity of the cell to connect the polygons. A method similar to, but
simpler than, the one used in the exact method in Section 4.3 and Appendix A.1 could
also have been adopted. The advantages and drawbacks of these alternatives have not
been investigated.

A limitation of the current implementation is the numerical computation of the
triangle-cell intersection points, which could fail due to numerical round-off. In case
this would happen, we currently use the approximate algorithm as a backup. Since
the approximate algorithm cannot handle all cases, a better alternative would be to
switch to exact arithmetics when the floating point precision algorithms fail. An even
better approach would be to improve the discrete method for determining the number
of intersection point and their location. If this could be done perfectly, all numerical
problems would be eliminated.

A next step towards a geometrically robust method is to extend the exact algorithm
to handle more general triangle overlaps and hanging nodes. Overlaps could be found
by using the fact that each underlying triangle mesh is handled separately. Hanging
nodes could be handled by introducing triangle subedges, and account for these in
the polygon connection algorithms.
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Appendix A: pseudo code for various algorithms

We here present pseudo code for the helper methods of the algorithms in Section 4.
Algorithms for the exact method are described in Section 1, and algorithms for the
approximate method are described in Section 10. The algorithms in the pseudo code
are sometimes simplified, but cover the key steps of a successful implementation.

A.1 Exact method

Pseudo code for the exact algorithm is given in Algorithm 1 of Section 4.3. It
includes connecting intersection points to polyhedral face polygons as described in
Section 4.3.1. This is done in the method ConnectPolygons, which is given in pseudo
code in Algorithm 3. ConnectPolygons uses several subroutines, which are outlined
in Algorithms 4–10. An overview of the algorithms and where they are called is
presented in Table 1.

In Algorithm 3, it is assumed that an intersection point is either taken or untaken.
An intersection point is taken if it is already included in a polygon in the target facet.

http://creativecommons.org/licenses/by/4.0/
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Table 1 Overview of algorithms in the exact method

Method Reference Used in

CalculateExactAreaAndVolumeFraction Algorithm 1 –

ChangeSearchFacet Algorithm 8 Algorithm 3

ChangeSearchFacetAndUpdateSearchDirection Algorithm 9 Algorithm 3

ConnectPolygons Algorithm 3 Algorithm 1

GetNextVertexInPolygon (cell polygon) Algorithm 5 Algorithm 3

GetNextVertexInPolygonOnFaceSide Algorithm 7, 10 Algorithm 6

GetNextVertexInPolygon (face polygon) Algorithm 6 Algorithm 3

GetSearchFacet Algorithm 4 Algorithm 3

Data: A triangle or a cell face, and the intersection points located on that
triangle or cell face.

Result: The cell polygon or face polygons associated with the triangle or cell
face.

1 polygons ← ∅
2 i ← 0
3 while i < number of elements in intersection points do
4 � ← ∅
5 v0 ← first untaken intersection point in target facet
6 FS ← GetSearchFacet(target facet, v0)

7 vi ← v0
8 t0 ← true
9 initialize d

10 while (vi �= v0) ∨ t0 do
11 if target facet is a triangle then
12 vi+1 ← GetNextVertexInPolygon

(
vi, F S

)

13 else
14 vi+1 ← GetNextVertexInPolygon

(
vi, F S, d, t0

)

15 mark vi+1 as taken
16 if target facet is a triangle then
17 FS ← ChangeSearchFacet(vi+1, F S)

18 else
19 {FS, d} ←

ChangeSearchFacetAndUpdateSearchDirection(vi+1, F S, d)

20 let vi+1 be the next vertex of �

21 vi ← vi+1
22 t0 ← false
23 i ← i + 1

24 append � to polygons

Algorithm 3 polygons = ConnectPolygons(intersection points, target facet)
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Data: A triangle or a cell face, and the intersection point representing the first
vertex in a cell polygon or face polygon associated with the triangle or
cell face.

Result: The search facet on which to find the next vertex in the cell polygon or
face polygon.

1 if target facet is a triangle then
2 if intersection point is in a triangle edge or a triangle vertex then
3 next search facet ← the triangle edge or triangle vertex in which the

intersection point is included

4 else
5 next search facet ← the face side or face corner in which the

intersection point is included

6 else
7 next search facet ← the triangle in which the intersection point is included

current search facet)
Data: The current vertex in a cell polygon under construction, and the search

facet in which to find the next vertex in the cell polygon.
Result: The next vertex in the cell polygon.

1 if current search facet is a triangle edge then
2 if no untaken intersection point in the current search facet then
3 // current intersection point is in a triangle vertex
4 next vertex ← the untaken intersection point in the other triangle edge
5 in which the current intersection point is included

6 else
next vertex ← the untaken intersection point in the current search facet

7 else
8 // current search facet is a cell face
9 if no untaken intersection point in the current search facet then
10 if current intersection point is in a face side then
11 next vertex ← next untaken intersection point in the second cell

face in which the current intersection point is included

12 else
13 // current intersection point is in a face corner
14 next vertex ← next untaken intersection point in one of the other

two faces in which the current intersection point is included

15 else
16 next vertex ← the untaken intersection point in the current search facet

Algorithm 4 next search facet = GetSearchFacet(target facet, intersection point)

Algorithm 5 next vertex = GetNextVertexInPolygon(current intersection point,
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Every intersection point is untaken by default. We also use that a face side (cell edge)
is a directed line segment. Thus, each intersection point located on a face side has
a unique position relative to the face side, represented as a number in the interval
[0, 1]. In Algorithm 3, we introduce the notation d for the search direction on a face
side. If FS is a face side, d determines if the relative position of the next vertex is
smaller or larger than the relative position of the current vertex.

current search facet, current search direction, first time)
Data: The current vertex in a face polygon under construction, the search facet

in which to find the next vertex in the face polygon, a search direction
used if the search facet is a face side, and a boolean value indicating if
this method has been called before with this face polygon.

Result: The next vertex in the face polygon.
1 if current search facet is a triangle then
2 if no untaken intersection point in the current search facet then
3 if first time then
4 if no untaken intersection point in any of the other triangles in

which the current intersection point is included then
5 if current intersection point is in a face side then
6 current search facet ← the face side in which the current

intersection point is included
7 next vertex ←

GetNextVertexInPolygonOnFaceSide(current intersection
point, current search facet, current search direction)

8 else
9 // current intersection point is in a face corner
10 current search facet ← one of the other face sides in which

the current intersection point is included
11 next vertex ←

GetNextVertexInPolygonOnFaceSide(current intersection
point, current search facet, current search direction)

12 else
13 next vertex ← next untaken intersection point in one of the

other triangles in which the current intersection point is included

14 else
15 next vertex ← the untaken intersection point in current search facet

16 else
17 // current search facet is a face side
18 next vertex ← GetNextVertexInPolygonOnFaceSide(current intersection

point, current search facet, current search direction)

Algorithm 6 next vertex = GetNextVertexInPolygon(current intersection point,
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current search facet)
Data: The current vertex in a cell polygon under construction, and the search

facet in which the current vertex was found.
Result: The search facet in which to find the next vertex in the polygon

1 if current intersection point is in a triangle vertex v then
2 next search facet ← the triangle edge including v that is not the current

search facet
3 else if current intersection point is in a triangle edge e and e is not the current
search facet then

4 next search facet ← e

5 else if current intersection point is in a face side or face corner then
6 next search facet ← a cell face in which the side or corner is included, and

which has not already been searched
7 else
8 // current intersection point is in a cell face f

9 next search facet ← f

Algorithm 7 next vertex = GetNextVertexInPolygonOnFaceSide(current intersec-
tion point, face side, search direction)
Data: The current vertex in a face polygon under construction, the face side in

which to find the next vertex in the face polygon, and a search direction
for the face side.

Result: The next vertex in the face polygon.
1 s ← relative position of the current intersection point on the face side
2 d ← a value larger than 1.0
3 for each intersection point p in the face side do
4 sp ← relative position of p on the face side
5 if p on correct side of the current intersection point given search direction

then
6 dp ← |sp − s|
7 if dp < d then
8 d ← dp

9 next vertex ← p

Algorithm 8 next search facet = ChangeSearchFacet(current intersection point,
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etAndUpdateSearchDirection(current intersection point, current search facet,
current search direction)
Data: The current vertex in a cell polygon under construction, the search facet

in which the current vertex was found, and the current search direction.
Result: The search facet in which to find the next vertex in the polygon, and the

next search direction which needs update if the next search facet is a
face side.

1 finished ← false
2 next search direction ← current search direction
3 if current intersection point is in a triangle edge or a triangle vertex then
4 if there is a a triangle t in which the current intersection point is included,

and t has not already been searched then
5 next search facet ← t
6 finished ← true

7 else
8 // current intersection point is in the interior of a triangle t
9 if current search facet is a face side then
10 next search facet ← t
11 finished ← true

12 if ¬ finished then
13 // next search facet is a face side, so we have to update the search direction
14 if current intersection point is in a face side s then
15 next search facet ← s
16 if current search facet is a triangle with normal n then
17 if the projection ns of n on s is not zero then
18 next search direction ← the direction corresponding to −ns

19 else
20 find a triangle in which the current intersection point is

included, and which normal has a nonzero projection ns on s
21 next search direction ← the direction corresponding to −ns

22 else
23 next search direction ← current search direction

24 else
25 // current intersection point is in a face corner c
26 if current search facet is a face side then
27 next search facet ← the face side in which c is included, and which

is not the current search facet
28 next search direction ← current search direction

29 else
30 // current intersection point is in a triangle t , find face side to search

in and search direction
31 next search facet ← the face side in which c is included, and which

is located on the inside of t assuming that the normal of t points
outwards

32 next search direction ← the direction of the next search facet
pointing away from c

Algorithm 9 {next search facet, next search direction} = ChangeSearchFac-
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section point, face side, search direction)
Data: The current vertex in a face polygon under construction, the face side on

which to find the next vertex in the face polygon, and a search direction
for the face side.

Result: The next vertex in the face polygon.
1 s ← relative position of the current intersection point on the face side
2 d ← a value larger than 1.0
3 for each intersection point p in the face side do
4 sp ← relative position of p on the face side
5 if p on correct side of the current intersection point given search direction

then
6 if (p − current intersection point) · normal of triangle including p > 0.0

then
7 dp ← |sp − s|
8 if dp < d then
9 d ← dp

10 next vertex ← p

A.2 Approximate method

In the approximate method outlined in Algorithm 2 in Section 4.4, we need to sort
the vertices of a convex polygon in clockwise or counterclockwise order. This is
performed by the method ConvexPolygon in Algorithm 11, which sorts a list of ver-
tices given the normal of the polygon. Pseudo code for SortVerticesRecursive, which
performs the sorting and returns a list with the sorted input points, is presented in
Algorithm 12. Pseudo code for the method PartitionVertices used in Algorithm 12 is
presented in Algorithm 13. An overview of the methods and where they are called is
presented in Table 2.

Table 2 Overview of algorithms in the approximate method

Method Reference Used in

CalculateApproximateAreaAndVolumeFraction Algorithm 2 –

ConvexPolygon Algorithm 11 Algorithm 2

PartitionVertices Algorithm 13 Algorithm 11

SortVerticesRecursive Algorithm 12 Algorithm 11

Algorithm 10 next vertex = GetNextVertexInPolygonOnFaceSide(current inter-
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Algorithm 11 polygon = ConvexPolygon(vertices, normal)
Data: Vertices of a convex polygon, and the normal of the polygon.
Result: The polygon vertices sorted in clockwise or counterclockwise order.

1 pop last element in vertices and assign to v0
2 lines ← ∅
3 for each vertex v in vertices do
4 append (v - v0) to lines

5 polygon ← SortVerticesRecursive(vertices, v0, lines, normal)
6 append v0 to polygon

Algorithm 12 polygon = SortVerticesRecursive(vertices, origin, lines, normal)
Data: All but one vertices of a convex polygon, the last vertex of the polygon

chosen as origin, lines from the origin to all other vertices, and the
normal of the polygon.

Result: The polygon vertices in vertices sorted in clockwise or
counterclockwise order.

1 if vertices == ∅ then
2 return ∅
3 if number of elements in vertices == 1 then
4 return vertices

5 else
6 pop last element in vertices and assign to pivot
7 pop last element in lines and assign to pivot line
8 {left vertices, right vertices, left lines, right lines} ←

PartitionVertices(vertices, normal, lines, pivot line)
9 polygon ← SortVerticesRecursive(left vertices, origin, left lines, normal)
10 append pivot to polygon
11 tmp ← SortVerticesRecursive(right vertices, origin, right lines, normal)
12 append tmp to polygon
13 return polygon
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