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Abstract The paper develops new methods of nonpara-
metric estimation of a compound Poisson process. Our key
estimator for the compounding (jump) measure is based on
series decomposition of functionals of a measure and relies
on the steepest descent technique. Our simulation studies for
various examples of suchmeasures demonstrate flexibility of
our methods. They are particularly suited for discrete jump
distributions, not necessarily concentrated on a grid nor on
the positive or negative semi-axis. Our estimators also appli-
cable for continuous jump distributions with an additional
smoothing step.
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1 Introduction

The paper develops new methods of nonparametric esti-
mation of the distribution of compound Poisson data. A
compound Poisson process (Wt )t≥0 is a Markov jump pro-
cess with W0 = 0 characterised by a finite compounding
measure Λ defined on the real line R = (−∞,+∞) such
that

Λ({0}) = 0, ‖Λ‖ := Λ(R) ∈ (0,∞). (1)

The jumps of this process occur at the constant rate ‖Λ‖,
and the jump sizes are independent random variables with a
common distributionΛ(dx)/‖Λ‖. In amore general context,
the compound Poisson process is a particular case of a Lévy
processwithΛbeing the corresponding integrableLévymea-
sure. Inference problems for such processes naturally arises
in financial mathematics (Cont and Tankov 2003), queueing
theory (Asmussen 2008), insurance (Mikosch 2009) and in
many other situations modelled by compound Poisson and
Lévy processes.

Suppose the compoundPoisson process is observed at reg-
ularly spaced times (Wh,W2h, . . . ,Wnh) for some time step
h > 0. The consecutive increments Xi = Wih−W(i−1)h then
form a vector (X1, . . . Xn) of independent random variables
having a common compound Poisson distribution with the
characteristic function

ϕ(θ) = EeiθWh = ehψ(θ), ψ(θ) =
∫

(eiθx − 1)Λ(dx).

(2)

Here and below the integrals are taken over the whole R

unless specified otherwise. Estimation of the measure Λ in
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terms of a sample (X1, . . . Xn) is usually calleddecompound-
ing which is the main object of study in this paper.

We propose a combination of two nonparametric meth-
ods which we call characteristic function fitting (ChF) and
convolution fitting (CoF). ChF may deal with a more gen-
eral class of Lévy processes, while CoF explicitly targets the
compound Poisson processes.

The ChF estimator for the jump measure Λ is obtained by
minimisation of the loss functional

LChF(Λ) =
∫

|ehψ(θ) − ϕ̂n(θ)|2ω(θ)dθ, (3)

where ψ(θ) ≡ ψ(θ,Λ) is given by (2),

ϕ̂n(θ) = 1

n

n∑
k=1

eiθXk .

is the empirical characteristic function and ω(θ) is a weight
function. It was shown in Neumann and Reiss (2009) in a
more general Lévy process setting that minimising (3) leads
to a consistent estimator of the Lévy triplet. Typically, ω(θ)

is a positive constant for θ ∈ [θ1, θ2] and zero otherwise,
but it can also be chosen to grow as θ → 0, this would lead
to boosting an agreement of the moments of a fitted jump
distribution with the empirical moments.

We compute explicitly the derivative of the loss func-
tional (3) with respect to the measure Λ, formula (18) in
“Appendix”, and perform the steepest descent directly on the
cone of non-negative measures to a local minimiser, further
developing the approach by Molchanov and Zuyev (2002).
It must be noted that, as a simple example reveal, the func-
tionals based on the empirical characteristic function usually
have a very irregular structure, see Fig. 1. As a result, the
steepest descent often fails to attend the global optimal solu-
tion, unless the starting point of the optimisation procedure
is carefully chosen.

The CoF estimation method uses the fact that the convo-
lution of F(x) = P(Wh ≤ x),

F∗2(x) =
∫

F(y)F(x − y)dy,

as a functional of Λ has an explicit form of an infinite Taylor
series involving direct products of measures Λ, see Theo-
rem 2 in Sect. 4. After truncating it to only the first k terms,
we build a loss function L(k)

CoF by comparing two estimates
of F∗2: the one based on the truncated series and the other
being the empirical convolution F2∗

n . CoF is able to produce
nearly optimal estimates Λ̂k when large values of k are taken,
but at the expense a drastically increased computation time.

A practical combination of these methods recommended
by this paper is to find Λ̂k usingCoFwith a low value of k and
then apply ChF with Λ̂k as the starting value. The estimate

x

−4
−2

0
2

4

la
m
bd
a

1

2

3

4
5

D
istance

0

2

4

6

8

Fig. 1 Illustration of intrinsic difficulties faced by any characteristic
function fitting procedure. Plotted is the integrated squared modulus of
the difference between two characteristic functions with measuresΛ =
δ1 andΛ′ = λδx , x ∈ [−5, 5], λ ∈ (0, 5). Clearly, any algorithm based
on closeness of characteristic functions, like (3), would have difficulties
converging to the global minimum attained at point x = 1, λ = 1 even
in this simple two-parameter model

for such a two-step procedure will be denoted by Λ̃k in the
sequel.

To give an early impression of our approach, let us demon-
strate the performance of our methods on the famous data by
Ladislaus Bortkiewicz who collected the numbers of Prus-
sian soldiers killed by a horse kick in 10 cavalry corps over
a 20-year period (Bortkiewicz 1898). The counts 0, 1, 2, 3
and 4 were observed 109, 65, 22, 3 and 1 times, with 0.6100
deaths per year per cavalry unit. The author argues that the
data are Poisson distributed which corresponds to the mea-
sure Λ = λδ1 concentrated on the point {1} (only jumps of
size 1) and the mass λ being the parameter of the Poisson
distribution estimated by the sample mean to be 0.61. Fig-
ure 2 on its top panel presents the estimated Lévy measures
for the cut-off values k = 1, 2, 3 when using CoF method.
For the values of k = 1, 2, the result is a measure having
many atoms. This is explained by the fact that the accuracy
of the convolution approximation is not enough for these
data, but k = 3 already results in a measure Λ̂3 essentially
concentrated at {1}, thus supporting the Poisson model with
parameter ‖Λ̂3‖ = 0.6098. In Sect. 4, we return to this exam-
ple and explain why the choice of k = 3 is reasonable here.
Caused by a possibly very irregular behaviour of the score
function LChF demonstrated above, we practically observed
that the convergence of the ChFmethod depends critically on
the choice of the initial measure, especially on its total mass.
However, the proposed combination of CoF followed byChF
demonstrates (the bottom plot) that this two-step (faster) pro-
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Fig. 2 The analysis of Bortkiewicz horse kick data. Top panel com-
parison of CoF estimates for k = 1, 2, 3. Bottom panel comparison of
the estimate by CoF with k = 3 and a combination of CoF with k = 1
followed by ChF

cedure results in the estimate Λ̃1, which is as good as more
computationally demanding Λ̂3.

Previously developed methods include discrete decom-
pounding approach based on the inversion of Panjer recur-
sions as proposed in Buchmann and Grübel (2003). van Es
et al. (2007) and, lately, Duval (2013), Comte et al. (2014)
studied the continuous decompounding problem when the
measure Λ is assumed to have a density. They apply Fourier
inversion in combination with kernel smoothing techniques

for estimating the unknown density of the measure Λ. In
contrast, we do not distinguish between discrete and contin-
uous Λ in that our algorithms, based on direct optimisation
of functionals of a measure, work for both situations on a dis-
cretised phase space of Λ. However, if one sees many small
atoms appearing in the solution, which fill a thin grid, this
may indicate that the true measure is absolutely continuous
and some kind of smoothing should yield its density.

In this paper, we do not address estimation ofmore general
Lévy processes allowing forΛ(−1, 1) = ∞. In theLévy pro-
cess setting, themost straightforward approach for estimating
the distribution F(x) = P(Wh ≤ x) is the moments fitting,
see Feuerverger andMcDunnough (1981b) and Carrasco and
Florens (2000). Estimates of Λ can be obtained by maximis-
ing the likelihood ratio (see e.g.Quin andLawless 1994) or by
minimising some measure of proximity between F and the
empirical distribution function F̂n(x) = 1

n

∑n
k=1 1I{Xk≤x},

where the dependence on Λ comes through F via the inver-
sion formula of the characteristic function:

F(x) − F(x − 0) = 1

2π
lim
y→∞

∫ y

−y
exp{hψ(θ) − iθx}dθ.

For the estimation, the characteristic function in the integral
above is replaced by the empirical characteristic function.

Parametric inference procedures based on the empiri-
cal characteristic function have been known for some time,
see Feuerverger and McDunnough (1981a) and Sueishi and
Nishiyama (2005), and the references therein. Algorithms
based on the inversion of the empirical characteristic func-
tion and on the relation between its derivativeswere proposed
in Watteel and Kulperger (2003). Note that the inversion
of the empirical characteristic function, in contrast to the
inversion of its theoretical counterpart, generally leads to a
complex valued measure which needs to be dealt with.

One of the reviewers has drawn our attention to the recent
preprint Coca (2015) which promises to be useful for testing
the presence of discrete and/or continuous jump distribution
components as well as for obtaining approximation accuracy
bounds based on the central limit theorem. Practical imple-
mentations of these theoretical results are yet to be explored.

The rest of the paper has the following structure. Sec-
tion 2 introduces the theoretical basis of our approach—a
constraint optimisation technique in the space of measures.
Section 3 provides an algorithmic implementation of the cor-
responding steepest descentmethod inR-language. Section 4
develops the necessary ingredients for the CoFmethod based
on the main analytical result of the paper, Theorem 2. Sec-
tion 5 contains a broad range of simulation results illustrating
performance of our algorithms on simulated data with var-
ious compounding measures, both discrete and continuous.
Section 6 presents an application of our approach to real
currency exchange data. Section 7 summarises our approach
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and gives some practical recommendations. We conclude by
“Appendix” with proofs and explicit formulas for the gradi-
ents of the two loss functions used in our steepest descent
algorithm.

2 Optimisation of functionals of a measure

In this section, we briefly present the main ingredients of
the constrained optimisation of functionals of a measure.
Theorem 1 gives necessary conditions for a local minimum
of a strongly differentiable functional. This theorem justi-
fies a major step in our optimisation algorithm described in
Sect. 3. Further details of the underlying theory can be found
in Molchanov and Zuyev (2000a, b).

Denote byM andM+ the class of signed and, respectively,
non-negative measures with a finite total variation. The set
M then becomes a Banach space with sum andmultiplication
by real numbers defined set-wise: (η1 + η2)(B) := η1(B) +
η2(B) and (tη)(B) := tη(B) for any Borel set B and any
real t . The set M+ is a pointed cone in M meaning that the
zero measure is in M+, μ1 + μ2 ∈ M+, and tμ ∈ M+ as
long as μ1, μ2, μ ∈ M+ and t ≥ 0.

A functional G : M �→ R is called Fréchet (or strongly)
differentiable at η ∈ M if there exists a bounded linear oper-
ator (a differential) DG(η)[·] : M �→ R such that

G(η + ν) − G(η) = DG(η)[ν] + o(‖ν‖), ‖ν‖ → 0, (4)

where ‖ν‖ is the total variation of a signed measure ν ∈
M. If for a given η ∈ M there exists a bounded function
∇G( · ; η) : R → R such that

DG(η)[ν] =
∫

∇G(x; η) ν(dx) for all ν ∈ M,

then ∇G( · ; η) is called the gradient function for G at η.
Typically in applications, and it is indeed the case for the
functionals of ameasure considered in this paper, the gradient
functions exist so that the differentials indeed have an integral
form.

As a simple illustration, consider an integral of a bounded
function G(η) = ∫

f (x)η(dx). Since this is already a
bounded linear functional of η, we get ∇G(x; η) = f (x)
for any η. More generally, for a composition G(η) =
u(

∫
f (x)η(dx)), the gradient function can be obtained by

the Chain rule:

∇G(x; η) = u′(∫
f (y) η(dy)

)
f (x). (5)

The functional G in this example is strongly differentiable if
both functions u′ and f are bounded.

Taking into account condition (1),we aim tofind a solution
to the following constraint minimisation problem:

Λ = argmin{L(η) : η ∈ M+, η({0}) = 0}, (6)

where L : M+ �→ R is strongly differentiable functional of
a measure. The following necessary condition of a minimum
is proven in Appendix.

Theorem 1 Suppose that a Λ solves (6), and the functional
L possesses a gradient function ∇L(x;Λ) at this Λ. Then

{
∇L(x;Λ) ≥ 0 for all x ∈ R \ {0},
∇L(x;Λ) = 0 Λ − almost everywhere.

(7)

Remark 1 It can be shown similarly that the necessary con-
dition (7) also holds for optimisation over the class of Lévy
measures satisfying, in addition to (1), the integrability con-
dition

∫
min{1, x2} Λ(dx) < ∞.

3 Steepest descent algorithm on the cone of
positive measures

There is an extensive number of algorithms realising a
parametric optimisation over a finite number of continuous
variables, but optimisation algorithms over the cone of mea-
sures have been proposed only recently in Molchanov and
Zuyev (2002) for the case of measures with a fixed total
mass. The variation analysis of functionals of a measure out-
lined in the previous section allows us to develop a steepest
descent type algorithm for minimisation of functionals of
a compounding measure which we describe next. This algo-
rithm has been used to obtain the simulation results presented
in Sect. 5.

Recall that the principal optimisation problem has the
form (6), where the functional L(Λ) is minimised over the
measures Λ subject to the constraint (1). For computational
purposes, a measure Λ ∈ M+ is replaced by its discrete
approximation which has a form of a linear combination
ΛΛΛ = �l

i=1λiδxi of Dirac measures on a finite regular grid
x1, . . . , xl ∈ R, xi+1 = xi + 2Δ. Specifically, for a given
measure Λ, the atoms ofΛΛΛ are given by

λ1 := Λ((−∞, x1 + Δ)),

λi := Λ([xi − Δ, xi + Δ)), for i = 2, . . . , l − 1, (8)

λl := Λ([xl − Δ,∞)).

Clearly, the larger is l and the finer is the grid {x1, . . . , xl}
the better is the approximation, however, at a higher compu-
tational cost.
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Respectively, the discretised version of the gradient func-
tion ∇L(x;Λ) is the vector

ggg = (g1, . . . , gl), gi := ∇L(xi ;ΛΛΛ), i = 1, . . . , l. (9)

Our main optimisation algorithm has the following struc-
ture: In the master algorithm description above, the line 3

Steepest descent algorithm
Input: initial vectorΛΛΛ
1: function GoSteep(ΛΛΛ)
2: initialise the discretised gradient
3: ggg ← (∇L(x1;ΛΛΛ), . . . ,∇L(xl ;ΛΛΛ))

4: while
(
mini gi < −τ2 or max{i : λi>τ1} gi > τ2

)
do

5: choose a favourable step size ε depending on L andΛΛΛ

6: compute new vectorΛΛΛ ← MakeStep(ε,ΛΛΛ, ggg)
7: compute gradient at the newΛΛΛ:
8: ggg ← (∇L(x1;ΛΛΛ), . . . ,∇L(xl ;ΛΛΛ))

9: end while
10: return ΛΛΛ

11: end function

uses the necessary condition (7) as a test condition for the
main cycle. In the computer realisations, we usually want to
discard the atoms of a negligible size: for this purpose, we
use a zero-value threshold parameter τ1. Another threshold
parameter τ2 decides when the coordinates of the gradient
vector are sufficiently small to be discarded. For the exam-
ples considered in the next section, we typically used the
following values: ω ≡ 1, τ1 = 10−2 and τ2 = 10−6. The
keyMakeStep subroutine, mentioned on line 6, is described
below. It calculates the admissible steepest direction ννν∗ of
size ‖ννν∗‖ ≤ ε and returns an updated vectorΛΛΛ ← ΛΛΛ + ννν∗.

Algorithm for a steepest descent move
Input: maximal step size ε, current variable value ΛΛΛ and current gra-

dient value ggg
1: function MakeStep(ε,ΛΛΛ, ggg)
2: initialise the optimal step ν∗ν∗ν∗ ← 000
3: initialise the running coordinate i ← 0
4: initialise the total mass available E ← ε

5: while ((E > 0) and (i ≤ l)) do
6: if gi > |gl | then
7: ν∗

i ← max(−λi ,−E)

8: E ← E − ν∗
i

9: else
10: ν∗

l ← E
11: E ← 0
12: end if
13: i ← i + 1
14: end while
15: return ΛΛΛ + ν∗ν∗ν∗
16: end function

The MakeStep subroutine looks for a vector ννν∗ which
minimises the linear form

∑l
i=1 giνi appearing in the Taylor

expansion

L(ΛΛΛ + ννν) − L(ΛΛΛ) =
l∑

i=1

giνi + o(|ννν|).

This minimisation is subject to the following linear con-
straints

l∑
i=1

|νi | ≤ ε, νi ≥ −λi , i = 1, . . . , l.

The just described linear programming task has a straight-
forward solution given below.

For simplicity, we assume that g1 ≥ · · · ≥ gl . Note that
this ordering can always be achieved by a permutation of
the components of the vector ggg and respectively,ΛΛΛ. Assume
also that the total mass ofΛΛΛ is bigger than the given positive
stepsize ε. Define two indices

ig = max{i : gi ≥ |gl |}, iε = max{i :
i−1∑
j=1

λ j < ε}.

If iε ≤ ig , then the coordinates of ννν∗ are given by

ν∗
i :=

⎧⎨
⎩

−λi for i ≤ iε,∑iε−1
j=1 λ j − ε for i = iε + 1,

0 for i ≥ iε + 2,

and if iε > ig , then

ν∗
i :=

⎧⎪⎨
⎪⎩

−λi , for i ≤ ig,
0 for ig < i < l,

ε − ∑ig
j=1 λ j for i = l.

The presented algorithm is realised in the statistical com-
putation environment R Core Team (2015) in the form of a
library mesopwhich is freely downloadable from one of the
authors’ webpage.1

4 Description of the CoF method

As it was alluded in Introduction, the CoF method uses a
representation of the convolution as a function of the com-
poundingmeasureΛ.We now formulate themain theoretical
result of the paper on which the CoF method is based. The
proof is given in Appendix.

We will need the following notation. For a function F ,
denote Ux F(y) = F(y − x) − F(x) and

1 http://www.math.chalmers.se/~sergei/download.html.
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Ux1,...,xn F(y) := Uxn (Ux1,...,xn−1F(y))

=
∑

J⊆{1,2,...,n}
(−1)n−|J |F(y − � j∈J x j ),

where the sum is taken over all the subsets J of {1, 2, . . . , n}
including the empty set. Denote �0(F,Λ, y) = F(y), and

�i (F,Λ, y) = 1

i !
∫
Ri

Ux1,...,xi F(y)Λ(dx1) . . . Λ(dxi ),

i ≥ 1.

Theorem 2 Let (Wt )t≥0 be a compound Poisson process
characterised by (2), and F(y) = Fh(y) be the cumulative
distribution function of Wh for a given positive h. Then for
each real y, one has

F∗2(y) =
∞∑
i=0

hi�i (F,Λ, y). (10)

Recall that the empirical convolution of a sample
(X1, . . . , Xn),

F̂∗2
n (y) := 1(n

2

) ∑
1≤i< j≤n

1I{Xi + X j ≤ y}. (11)

is an unbiased and consistent estimator of F∗2(x), see Frees
(1986). The CoF method looks for a finite measure Λ that
minimises the following loss function

L(k)
CoF(Λ) =

∫ { k∑
i=0

hi�i (F̂n,Λ, y) − F̂∗2
n (y)

}2
ω(y)dy.

(12)

The infinite sum in (10) is truncated to k terms in (12) for
computational reasons. The error introduced by the trunca-
tion can be accurately estimated by bounding the remainder
term in the finite expansion formula (16) in the proof. Alter-
natively, turning to (10) and using 0 ≤ F(y) ≤ 1, we obtain

supy∈R |Ux1,...,xi F(y)| ≤ 2i−1, yielding a uniform bound

sup
y∈R

∞∑
i=k+1

hi
∣∣�i (F,Λ, y)

∣∣ ≤ Rk(h‖Λ‖), where

Rk(x) = 1

2

∞∑
n=k+1

(2x)n

n! . (13)

Thus, to have a good estimate with this method, the upper
bound Rk(h‖Λ‖) should be small, which could be achieved
by reducing the time step h or/and increasing k. For instance,
for the horse kick data considered in Introduction, we have
h = 1 and the estimated value of ‖Λ‖ is 0.61, giving

the values Rk(0.61) = 0.58, 0.21, 0.06 for k = 1, 2, 3.
This indicates that k = 3 is rather adequate cut-off for the
data.

If the expected number of jumps, h‖Λ‖, in the time inter-
val [0, h], is large, the sample values Xi , in the case of a
finite variances, would have approximately normal distri-
bution. Since the normal distribution is determined by the
first two moments only and not by the entire compound-
ing distribution, an effective estimation of Λ/‖Λ‖ is hardly
possible, see Duval (2014) for a related discussion. Indeed,
to get the upper bound close to 0.2 given h‖Λ‖ = 8, one
would need to take k = 41 which is hardly computationally
possible.

To summarise, if one has a control on the choice of h,
it should be taken so that the estimated value of h‖Λ‖ is
close to 1. For large values of this parameter, the central limit
theorem prevents an effective estimation of λ, while the small
values would result in almost always single jumps and the
optimisation procesure giving basically the sample measure
as a solution. Similarly to the problem of choice of a kernel
estimator or the histogram’s bin width, a compromise should
be sought.Apractical approachwould be to try various values
of h, as we demonstrate below in Sect. 6 on the real FX data.

5 Simulation results

To illustrate the performance of our estimation methods, we
generated samples of size n = 1000 for compound Poisson
processes driven by various kinds ofmeasureΛ. In Sects. 5.1,
5.2 and 5.3, we considered examples of discrete jump size
distributions. Note that lattice distributionswith both positive
and negative jumps are particularly challenging because of
possible cancellations of jumps, the case barely considered
in the literature so far.

In Sects. 5.4 and 5.5, we present simulation results for two
cases of continuously distributed jumps: non-negative and
general. The continuous measures are replaced in the sim-
ulations by their discretised versions given by (8). The grid
size in these examples was Δ = 0.25. Note that no special
account is given to the fact that themeasure is continuous and
the algorithms work the same way as with genuine discrete
measures. However, the presence of atoms filling the consec-
utive grid ranges should indicate that the true compounding
measure is probably continuous. A separate analysis could
be tried to formally check this hypothesis, for instance, by the
methods proposed in Coca (2015). If confirmed, some kind
of kernel smoothing could be used to produce an estimated
density curve or specific estimation methods for continu-
ously distributed jumps employed, like the ones mentioned
in Introduction.

For all the considered examples, we applied three versions
of the CoF with h = 1, k = 1, 2, 3 and ω ≡ 1. We also apply
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ChF using the estimate of CoF with k = 1. Observe that CoF
with k = 1 can be made particularly fast because here we
have a non-negative least squares optimisation problem. If
the computation time is no concern, one can also implement
CoF with higher values of k to use the resulting measure as a
starting point to ChF. Given a complicated nature of the loss
function, this may or may not lead to a better fit. In all these
examples ‖Λ‖ = 1, which explains our particular choice of
h = 1, see the discussion above in connection to the error
estimate (13).

5.1 Degenerate jump measure

Consider first the simplest measure Λ(dx) = δ1(dx) cor-
responding to a standard Poisson process with rate 1. Since
all the jumps are integer valued and non-negative, it would
be logical to take the non-negative integer grid for possi-
ble atom positions of the discretised Λ. This is the way we
have done it for the horse kick data analysis in Introduction.
However, to test the robustness of our methods, we took the
grid {0,±1/4,±2/4, . . .}. As a result, the estimated mea-
sures might place some mass on non-integer points or even
on negative values of x to compensate for inaccurately fitted
positive jumps. We have chosen to show on the graphs the
discrepancies between the estimated and the true measure.
An important indicator of the effectiveness of an estimation
is the closeness of the totalmasses ‖Λ̂‖ and ‖Λ‖. ForΛ = δ1,
the probability to have more than 3 jumps is approximately
0.02; therefore, with the CoF method we expect that k = 3
would give an adequate estimate for these data. Indeed, the
top panel of Fig. 3 demonstrates that the CoF with k = 3 is
much more effective in detecting the jumps of the Poisson
process compared to k = 2 and, especially, to k = 1. The lat-
ter methods generate large discrepancies both in atom sizes
and in the total mass of the obtained measure. Observe also
the presence of artifactual small atoms at large x and even at
some non-integer locations.

The bottom panel shows that a good alternative to a rather
computationally demanding CoF method with k = 3 is a
much faster combined CoF–ChF method when Λ̂1 measure
is used as the initialmeasure in theChF algorithm. The result-
ing measure Λ̃1 is almost identical to Λ̂3, but also has the
total mass closer to the target value 1. The total variation
distances between the estimated measures Λ̂k and the theo-
retical measureΛ are 0.435, 0.084 and 0.053 for k = 1, 2, 3,
respectively. The best fit provides the combined CoF–ChF
method which produces a measure Λ̃1 within the distance of
0.043 from Λ.

5.2 Discrete positive and negative jumps

Consider now a jump measure Λ = 0.2δ−1 + 0.2δ1 + 0.6δ2.
This gives rise to a compound Poisson process with rate
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Fig. 3 Simulation results forΛ = δ1.Toppanel the differences between
Λ({x}) and their estimates Λ̂k({x}) obtained by CoF with k = 1, 2, 3.
Zero values of the differences are not plotted. Bottom panel comparison
of Λ̂3 with Λ̃1 obtained by ChF initiated at Λ̂1. Notice a drastic change
in the vertical axis scale as we go from the top to the bottom panel

‖Λ‖ = 1 and jumps of sizes −1, 1, 2 having respective
probabilities 0.2, 0.2 and 0.6. Figure 4 presents the results
of our simulations. The presence of negative jumps can-
celling positive jumps creates an additional difficulty for the
estimation task. This phenomenon explains why the approx-
imation obtained with k = 2 is worse than with k = 1 and
k = 3: two jumps of sizes+1 and−1 sometimes cancel each
other, which is indistinguishable from no jumps case, see the
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Fig. 4 Simulation results for Λ = 0.2δ−1 + 0.2δ1 + 0.6δ2. Top panel
the differences between Λ({x}) and their estimates Λ̂k({x}) obtained
by CoF with k = 1, 2, 3. Bottom panel comparison of Λ̂3 with Λ̃1

top panel of Fig. 4. Moreover, −1 and 2 added together are
the same as having a single size 1 jump. The phenomenon
still persists when we increased the sample size: k = 1 and
k = 3 still perform better. Notice that going from k = 1
through k = 2 up to k = 3 improves the performance of CoF,
although the computing time increases dramatically. The cor-
responding total variation distances of Λ̂k to the theoretical
distribution are 0.3669, 0.6268 and 0.1558. The combined
method gives the distance 0.0975, and according to the bot-
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Fig. 5 Simulation results for a shifted Poisson distribution Λ({x}) =
e−1/(x − 1)! for x = 1, 2, . . .. Top panel the differences between
Λ({x}) and their estimates Λ̂k({x}) obtained by CoF with k = 1, 2, 3.
Bottom panel comparison of Λ̂3 with Λ̃1 obtained by ChF initiated at
Λ̂1

tom plot, it is again a clear winner in this case too. It is also
much faster.

5.3 Unbounded compounding distribution

As an example of a measure Λ with unbounded support,
we take a shifted Poisson distribution with parameter 1.
Figure 5 presents our simulation results for this case; for
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computation purposes, we took the interval x ∈ [−2, 5] as
the support range for the estimated measure. In practice, the
support range should be enlarged if atoms start appearing
on the boundaries of the chosen interval indicating a wider
support of the estimated measure, see also Buchmann and
Grübel (2003) for a related discussion. As the top panel
reveals, also in this case the CoF method with k = 3 gives
a better approximation than those with k = 1 or k = 2
(the total variation distance to the theoretical distribution is
0.1150 compared to 0.3256 and 0.9235, respectively) and the
combined (faster) method gives an even better estimate with
dTV(Λ̃1,Λ) = 0.0386. Interestingly, the case of k = 2 was
theworst in terms of the total variation distance to the original
measure. We suspect that the ’pairing effect’ may be respon-
sible: the jumps are better fitted with a single integer- valued
variable rather than with the sum of two. The algorithm may
also got stuck in a local minimum producing small atoms at
non-integer positions.

5.4 Continuous non-negative compounding distribution

Consider a compound Poisson process of rate 1 with the
compounding distribution being exponential with parame-
ter 1. The top plot of Fig. 6 shows that, as expected, the
approximation accuracy increases with k. Observe that the
total variation distance dTV(Λ̂3,ΛΛΛ) = 0.0985 is comparable
with the discretisation error: dTV(Λ,ΛΛΛ) = 0.075. A Gaus-
sian kernel smoothed version of Λ̂3 is presented at the bottom
plot of Fig. 6. The visible discrepancy for small values of x
is explained by the fact that there were no sufficiently many
small jumps in the simulated sample for the algorithm to put
more mass around 0.

Optimisation in the space of measures usually tends
to produce atomic measures since these are boundary
points of typical constraint sets in M. Indeed, Λ̃1 has
smaller number of atoms than ΛΛΛ does and still it approx-
imates better the empirical characteristic function of the
sample.

5.5 Continuous compounding distribution

Finally, Fig. 7 takes up the important example of com-
pound Poisson processes with normally distributed jumps
having both positive and negative values. Once again, the
estimates Λ̂k improve as k increases, and the combined
method CoF–ChF gives an estimate similar to Λ̂3. Notice
an inflection around 0 caused by the restraint on the esti-
matedmeasure which imposes the origin to have a zeromass.
This shows as a dip in the curve produced by the kernel
smoother.

In the presented examples with continuous compounding
distribution, when choosing the kernel smoother width, we
were guided by a visual smoothness of the resulting curve.
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Fig. 6 Simulation results for a compound Poisson process with jump
intensity 1 and jump sizes having an exponential distribution with
parameter 1. Top plot obtained measures for various algorithms, the
bottom plot the theoretical exponential density and the smoothed ver-
sion of Λ̃1 measure with a Gaussian kernel with the standard deviation
0.4

Similarly to a general smoothing procedure, optimisation of
the kernel width requires additional criteria to be employed,
like information criteria. It is also possible to add a specific
term into the score function of the optimisation procedure
depending on the kernel function which is responsible for the
goodness of fit of the smoothed curve to the empirical data.
We do not address, however, these issues here considering
it a separate problem from a nonparametric measure fitting,
see also Discussion section below.
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Fig. 7 Top plot estimated jump measure for a simulated sample with
jump sizes having a normal distribution with the mean 0.5 and variance
0.25. Bottom plot the theoretical Gaussian density and the smoothed
version of Λ̂3 measure with a Gaussian kernel with the standard devia-
tion 0.2

6 Currency exchange data application

Lévy processes are widely used in financial mathematics to
model the dynamics of the log-returns which for a commod-
ity with price St and time t is defined to beWt = log(St/S0).
For this model, the increments Wh − W0, W2h − Wh, . . . are
independent and have a common infinitely divisible distribu-
tion. For example, many authors argue that the log-returns of
the currency exchange rates in a stable market have indeed
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Fig. 8 Top plot Consecutive increments of the log-returns of GBP rate
against EUR from 2014-01-02 to 2014-10-10. Bottom plot the fitted
stable distribution to the increment data

i.i.d. increments, see e.g. Cont (2001). We took FX data of
the Great Britain Pound (GBP) against a few popular cur-
rencies and chose to work with GBP to EUR exchange rates
in a period of 200 consecutive days of a relatively stable
market from 2014-01-02 to 2014-10-10, see the top plot of
Fig. 8. We fitted various, popular among financial analysts,
distributions to the daily increments of the log-returns: Gaus-
sian, GEV, Weibull and stable distributions. The best fit was
obtained by the stable distribution. In order to have a consis-
tent comparison with our methods, we used the loss function
(3) to estimate the parameters of the stable distribution, such
estimation method goes back to at least Paulson et al. (1975).
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The fitted stable S(1.882,−1, 0.002, 0; 0) distribution (in S0
parametrisation) is resented on the bottom plot of Fig. 8. A
formal Chi-square test, however, rejected the null hypothesis
that the data are coming from the fitted stable distribution due
to the large discrepancies in the tails. The distance between
the empirical characteristic function and the fitted stable dis-
tribution’s characteristic function measured in terms of the
score function LChF was 6.12 × 10−3. We then ran our CoF
algorithm with k = 1 and obtained a distribution within the
distance 5.53× 10−6 from the empirical characteristic func-
tion. Taking the resulting jump measure as a starting point
to our ChF method, we arrived at the distribution within the
distance 8.71 × 10−7. The observed improvement is due to
more accurate estimates of the large jumps of the exchange
rates (which are not related to global economical or political
events).

It may be expected that, as in the case of a linear regres-
sion, the agreement of the estimated model with the data
could be “too good”. To verify stability of our estimates, we
ran our algorithms on the data with different time lags: every
2, 4 and 8 days records. It is interesting to note that even at 8
days lag our algorithms attained a distribution at the distance
2.19 × 10−4, an order of magnitude closer to the empiri-
cal characteristic function than the fitted stable distribution
despite that fact that 8 times less data were used, see Fig. 9.

The estimates of the measure Λ obtained for various lags
are not that much different, apart from 8 days lag when only
25 observations are available, which reassures that our esti-
mation methods give consistent results. These findings are
illustrated on the bottom panel of Fig. 9.

7 Discussion

This paper deals with nonparametric inference for compound
Poisson processes. We proposed and analysed new algo-
rithms based on the characteristic function fitting (ChF) and
convoluted cumulative distribution function fitting (CoF).
The algorithms are based on the recently developed varia-
tional analysis of functionals ofmeasures and the correspond-
ing steepest descent methods for constraint optimisation on
the cone of measures. CoFmethods are capable of producing
very accurate estimates, but at the expense of growing com-
putational complexity. The ChF method critically depends
on the initial approximation measure due to highly irregular
behaviour of the objective function. We have observed that
the problems of convergence of the ChF algorithms can often
be effectively overcome by choosing the sample measure
(discretised to the grid) as the initial approximation mea-
sure. However, a better alternative, as we demonstrated in
the paper, is to use the measure obtained by the simplest
(k = 1) CoF algorithm. This combined CoF–ChF algorithm
is fast and in majority of cases produces a measure which is
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Fig. 9 Top plot estimated Lévymeasure for a GBP/EUR rate log-return
increments. Bottom plot estimated compounding measure for FX data
recorded with various lags: 1 (circle), 2 (plus), 4 (cross) and 8 (triangle)
day intervals

closest in the total variation to the measure under estimation,
and thus, this is our method of choice.

The practical experience we gained during various tests
allows us to conclude that the suggested methods are espe-
ciallywell suited for estimation of discrete jump size distribu-
tions. Theyworkwell evenwith jumps that take both positive
and negative values, not necessarily belonging to a regu-
lar lattice, demonstrating a clear advantage over the existing
methods, see Buchmann and Grübel (2003), Buchmann and
Grübel (2004). The use of our algorithms for continuous
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compounding distributions requires more trial and error in
choosing the right discretisation grid and smoothing proce-
dures. In order to properly take into account the continuity
of the compounding measure, one may apply direct methods
of the density estimation proposed by van Es et al. (2007),
Watteel and Kulperger (2003). Alternatively, one can try to
develop an optimisation algorithm for the class of absolutely
continuous measures by characterising their tangent cones.
Additional conditions on the density may also be imposed,
like Lipschitz kind of conditions, to make the feasible set
closed in the corresponding measure topology.

Appendix

Proof of Theorem 1

First-order necessary criteria for constrained optimisation in
a Banach space can be derived in terms of tangent cones. Let
A be a subset ofM and η ∈ A. The tangent cone to A at η is
the following subset of M:

TA(η) = lim inf
t↓0 t−1(A − η).

Recall that the lim infn An for a family of subsets (An) in
a normed space is the set of the limits of all converging
sequences {an} such that an ∈ An for all n. Equivalently,
TA(η) is the closure of the set of such ν ∈ M for which
there exists an ε = ε(ν) > 0 such that η + tν ∈ A for all
0 ≤ t ≤ ε.

By the definition of the tangent cone, if η is a point of
minimum of a strongly differentiable function L over a set
A, then one must have

DL(η)[ν] ≥ 0 for all ν ∈ TA(η). (14)

Indeed, assume that there exists ν ∈ TA(η) such that
DL(η)[ν] := −ε < 0. Then, there is a sequence of posi-
tive numbers tn ↓ 0 and a sequence ηn ∈ A such that ν =
limn t−1

n (ηn−η). Because ‖η−ηn‖ = tn(1+o(1))‖ν‖ → 0,
we obtain that ηn → η. Since any bounded linear operator is
continuous, we also have

DL(η)[ν] = DL(η)[lim
n

t−1
n (ηn − η)]

= lim
n

t−1
n DL(η)[ηn − η] = −ε.

Furthermore, by (4),

DL(η)[ηn − η] = L(ηn) − L(η) + o(‖η − ηn‖)
= L(ηn) − L(η) + o(tn),

implying

L(ηn) − L(η) = −tnε(1 + o(1)) < −tnε/2

for all sufficiently small tn . Thus, in any ball around η there
exists an ηn ∈ A such that L(ηn) < L(η), so that η is not a
point of a local minimum of L overA. This finishes the proof
of (14).

In our case, the constraint set A is the set L = {η ∈ M+ :
η({0}) = 0}. Next step is to find a sufficiently rich class of
measures belonging to the tangent cone TL(Λ) for s given
Λ ∈ L. For this, notice that for any suchΛ, theDiracmeasure
δx belongs toTL(Λ) sinceΛ+ tδx ∈ L for any t ≥ 0 as soon
as x �= 0. Similarly, given any Borel B ⊂ R, the negative
measure −Λ|B := −Λ( · ∩ B), which is the restriction of
−Λ onto B, is also in the tangent cone TL(Λ), because for
any 0 ≤ t ≤ 1 we have Λ − tΛ|B ∈ L.

Since, under the assumptions of the theorem, ∇L(x;Λ)

is a gradient function, the necessary condition (14) becomes

∫
∇L(x;Λ) ν(dx) ≥ 0 for all ν ∈ TL(Λ).

Substituting ν = δx above we immediately obtain the
inequality in (7). Finally, taking ν = −Λ|B yields

∫
B

∇L(x;Λ)Λ(dx) ≤ 0.

Since this is true for any Borel B, we conclude that
∇L(x;Λ) ≤ 0 Λ almost everywhere which, combined with
the previous inequality, gives the second relation in (7).

Proof of Theorem 2

LetNNN be the space of locally finite countingmeasuresϕ onR.
LetN be the smallest σ -algebra which makes measurable all
the mappings ϕ �→ ϕ(B) ∈ Z+ for ϕ ∈ NNN and compact sets
B. A Poisson point process with the intensity measure μ is
a measurable mapping Π from some probability space into
[NNN ,N ] such that for any finite family of disjoint compact
sets B1, . . . , Bk , the random variables Π(B1), . . . ,Π(Bk)

are independent and each Π(Bi ) has a Poisson distribution
with parameter μ(Bi ). Clearly μ(B) = EΠ(B) for any B.
To emphasise the dependence of the distribution on μ, we
write the expectation as Eμ in the sequel.

Consider a measurable function G : NNN → R, and for a
given z ∈ R define the difference operator

DzG(ϕ) := G(ϕ + δz) − G(ϕ), ϕ ∈ NNN .

For the iterations of such difference operators,

Dz1,...,znG = Dzn (Dz1,...,zn−1G), (z1, . . . , zn) ∈ R
n,
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it can be checked that

Dz1,...,znG(ν) =
∑

J⊆{1,2,...,n}
(−1)n−|J |G

(
ν + � j∈J δz j

)
,

where |J | stands for the cardinality of J , so that if J is an
empty set, then |J | = 0. Define

TμG(z1, . . . , zn) := EμDz1,...,znG(Π).

Suppose that the functional G is such that there exists a con-
stant c > 0 satisfying

|G(
�n

j=1δz j
)| ≤ cn for all n ≥ 1 and all (z1, . . . zn).

It was proved inMolchanov andZuyev (2000a, Theorem2.1)
that if μ,μ′ are finite measures, the expectation

Eμ+μ′G(Π) exists and

Eμ+μ′G(Π) = EμG(Π)

+
∞∑
i=1

1

i !
∫
Ri

TμG(z1, . . . , zi )μ
′(dz1) . . . μ′(dzi ). (15)

Generalisations of this formula to infinite and signed mea-
sures for square integrable functionals can be found in Last
(2014). A finite-order expansion formula can be obtained by
representing the expectation above in the form

Eμ+μ′G(Π) = EμEμ′ [G(Π + Π ′) Π ],

where Π and Π ′ are independent Poisson processes with
intensity measures μ and μ′, respectively, and then applying
the moment expansion formula by Błaszczyszyn et al. (1997,
Theorem 3.1) to G(Π + Π ′) viewed as a functional of Π ′
with a given Π . This gives us

Eμ+μ′G(Π) = EμG(Π)

+
k∑

i=1

1

i !
∫
Ri

TμG(z1, . . . , zi )μ
′(dz1) . . . μ′(dzi )

+ 1

(k + 1)!
∫
Rk+1

Tμ+μ′G(z1, . . . , zk+1)μ
′(dz1) . . .

μ′(dzk+1). (16)

To prove Theorem 2, we use a coupling of the compound
Poisson process (Wt )t≥0 with a Poisson processΠ onR+×R

driven by the intensity measure μ = � × Λ, where � is the
Lebesgue measure on [0,+∞). Clearly,

Wt = �(t j ,x j )∈Πt x j =
∫ t

0

∫
R

xΠ(ds dx),

where for each realisation� jδz j ofΠ with z j = (t j , x j ), we
denote by Πt the restriction of Π onto [0, t]×R. For a fixed
arbitrary y ∈ R and a point configuration ϕ = � jδ(ti ,x j ),
consider a functional Gy defined by

Gy(ϕ) = 1I
{ ∑

(t j ,x j )∈ϕ

x j ≤ y
}

and notice that for any z = (t, x),

Gy(ϕ + δz) = 1I
{ ∑

(t j ,x j )∈ϕ

x j ≤ y − x
}

= Gy−x (ϕ). (17)

Expressing the cumulative distribution function F(y) =
P{Wh ≤ y} as an expectation

F(y) = Pμ

{ ∑
(t j ,x j )∈Πh

x j ≤ y
}

= EμGy(Πh),

and putting μ′ = [0, h] × Λ, μ′′ = [h, 2h] × Λ, we find

Eμ′+μ′′Gy(Π) = P{W2h ≤ y} = P{Wh + W ′′
h ≤ y} = F∗2(y),

where W ′′
h = W2h − Wh . Observe also that by iteration of

(17),

Tμ′Gy(z1, . . . , zn)

= Eμ′ Dz1,...,znGy(Π)

=
∑

J⊆{1,2,...,n}
(−1)n−|J |Eμ′Gy

(
Π + � j∈J δz j

)

=
∑

J⊆{1,2,...,n}
(−1)n−|J |F(y − � j∈J x j ) = Ux1,...,xn F(y).

To finish the proof, it now remains to apply expansion (15):

F∗2(y) = Eμ′+μ′′Gy(Π) = F(y)

+
∞∑
i=1

1

i !
∫

(R+×R)i
Ux1,...,xi F(y) μ′′(dt1 dx1) . . . μ′′(dtn dxi )

=
∞∑
i=0

hi�i (F,Λ, y).

Gradient of ChF loss function

The ChF method is based on the loss function LChF given by
(3), which is everywhere differentiable in Fréchet sense with
respect to the measureΛ. Aiming at the steepest descent gra-
dient method described in Sect. 3 for obtaining the minimum
of the loss function, we compute here the gradient of LChF

in terms of the following functions
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q1(θ, x) := cos(θx) − 1, q2(θ, x) := sin(θx) − θx 1I{|x |<ε},

Qi (θ, Λ) :=
∫

q2(θ, x)Λ(dx), i = 1, 2.

Using this notation, the real and imaginary parts of an
infinitely divisible distribution characteristic function ϕ =
ϕ1 + iϕ2 can be written down as

ϕ1(θ,Λ) = ehQ1(θ,Λ) cos{hQ2(θ,Λ)},
ϕ2(θ,Λ) = ehQ1(θ,Λ) sin{hQ2(θ,Λ)}.

After noticing that ϕ̂n = ϕ̂n,1 + i ϕ̂n,2, with

ϕ̂n,1(θ) = 1

n

n∑
j=1

cos(θX j ), ϕ̂n,2(θ) = 1

n

n∑
j=1

sin(θX j ),

the loss functional LChF can be written as

LChF(Λ) =
∫ {

ϕ1(θ,Λ) − ϕ̂n,1(θ)
}2

ω(θ)dθ

+
∫ {

ϕ2(θ,Λ) − ϕ̂n,2(θ)
}2

ω(θ)dθ.

From this representation, the gradient function corre-
sponding to the Fréchet derivativewith respect to themeasure
Λ is obtained using the Chain rule (5):

∇LChF(x;Λ)

= 2
∫

{ϕ1(θ,Λ) − ϕ̂n,1(θ)]}∇ϕ1(θ)[x,Λ]ω(θ)dθ

+ 2
∫

{ϕ2(θ,Λ) − ϕ̂n,2(θ)}∇ϕ2(θ)[x,Λ]ω(θ)dθ,

(18)

where the gradients of ϕi (θ) := ϕi (θ,Λ), i = 1, 2, with
respect to the measure Λ, are given by

∇ϕ1(θ)(x;Λ) = hehQ1(θ,Λ)

× {
cos

(
hQ2(θ,Λ)

)
q1(θ, x)

− sin
(
hQ2(θ,Λ)

)
q2(θ, x)

}
,

∇ϕ2(θ)(x;Λ) = hehQ1(θ,Λ)

× {
sin

(
hQ2(θ,Λ)

)
q1(θ, x)

+ cos
(
hQ2(θ,Λ)

)
q2(θ, x)

}
.

Gradient of CoF loss function

As with the ChF method, the CoF algorithm relies on the
steepest descent approach. The needed gradient function has
the form

∇L(k)
CoF(x;Λ) = 2h

∫ { k∑
i=0

hi�i (F̂n,Λ, y) − F̂∗2
n (y)

}

×
k−1∑
j=0

h jΞ j (F̂n,Λ, y, x)ω(y)dy,

where

Ξ j (F,Λ, y, x) = 1

j !
∫
R j

Ux,x1,...,x j F(y)Λ(dx1) . . . Λ(dx j ).

This formula follows from the Chain rule (5) and the
equality

∇
( k∑

j=1

h j

j !
∫
R j

Ux1,...,x j F(y)Λ(dx1) . . . Λ(dx j )
)
(x;Λ)

= h
k−1∑
j=0

h j

j !
∫
R j

Ux,x1,...,x j F(y)Λ(dx1) . . . Λ(dx j ).

To justify the last identity, it suffices to see that for any inte-
grable symmetric function u(x1, . . . , x j ) of j ≥ 1 variables,

∇
( ∫

R j
u(x1, . . . , x j )Λ(dx1) . . . Λ(dx j )

)
(x;Λ)

= j
∫
R j−1

u(x, x1, . . . , x j−1)Λ(dx1) . . . Λ(dx j−1).

This is due to

∫
R j

u(x1, . . . , x j )(Λ + ν)(dx1) . . . (Λ + ν)(dx j )

−
∫
R j

u(x1, . . . , x j )Λ(dx1) . . . Λ(dx j )

=
j∑

k=1

∫
R j

u(x1, . . . , x j )Λ(dx1) . . . Λ(dxk−1)

× ν(dxk)Λ(dxk+1) . . . Λ(dx j ) + o(‖ν‖),

where the last sum equals

j
∫
R j

u(x, x1, . . . , x j−1)ν(dx)Λ(dx1) . . . Λ(dx j−1).

For example, the cost function (12) with k = 1 andω(y) ≡ 1
has the gradient

∇L(1)
CoF(x;Λ)

= 2h
∫ {

F̂n(y) − F̂∗2
n (y)

+
∫

F̂n(y − z)Λ(dz)
}
F̂n(y − x) dy.
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Respectively, the discretised gradient (9) used in the steepest
descent algorithm is the vector ggg with the components

gi = 2h
∫ {

F̂n(y) − F̂∗2
n (y)

+
l∑

j=1

F̂n(y − x j )λ j

}
F̂n(y − xi ) dy,

i = 1, . . . , l. (19)
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