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THE SHILOV BOUNDARY FOR A ¢-ANALOG OF THE HOLOMORPHIC
FUNCTIONS ON THE UNIT BALL OF 2 x2 SYMMETRIC MATRICES

JIMMY JOHANSSON AND LYUDMILA TUROWSKA

(Communicated by D. R. Farenick)

Abstract. We describe the Shilov boundary for a g-analog of the algebra of holomorphic func-
tions on the unit ball in the space of symmetric 2 x 2 matrices.

1. Introduction

In the middle of the 1990s, L. Vaksman initiated a program to develop a g-analog
of the theory of holomorphic functions on bounded symmetric domains (see [12] and
references therein). Among the numerous results which have emanated under this pro-
gram we shall in this paper be interested in a noncommutative analog of the maxi-
mum modulus principle, a notion whose foundation is comprised of a noncommutative
generalization of the Shilov boundary in the setting of operator algebras, which was
developed by W. Arveson in [1, 2].

In [13], Vaksman proved a g-analog of the maximum modulus principle for the
unit polydisk in C", and more recently D. Proskurin and L. Turowska obtained, in [10],
an analogous result for the unit ball in the space of 2 x 2 matrices. In this paper we show
that similar methods can be used to compute the Shilov boundary ideal for a g-analog
of the algebra of holomorphic functions on the unit ball in the space of symmetric 2 x 2
matrices.

The paper is organized as follows. In Section 2 we collect some basic material
from the theory of quantum groups that we will need in this paper. In Section 3 we
introduce the algebra of polynomials on quantum complex symmetric 2 x 2 matrices
and discuss its universal enveloping C* -algebra C(D;ym)q, a g-analog of the continu-
ous functions on the unit ball D™ = {Z € Mat;"™" : Z*Z < I}. We prove, in particular,
that the Fock representation is a faithful irreducible representation of C(D3™),. In
Section 4 we describe the Shilov boundary ideal for the closed subalgebra A(D}™),, a
g-analog of the algebra of functions holomorphic on the open unit ball of Mat;ym and
continuous on its closure. The key tool, like in [13] and [10], is a unitary dilation of a
contractive operator on a Hilbert space. Finally, in Section 5, we show that our result
agrees with the definition of a x-algebra referred to as the algebra of regular functions
on the Shilov boundary, whose definition was proposed in [4].

In this paper all algebras are assumed to be associative unital algebras over C and
q€(0,1).
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2. Preliminaries

In this section we review and fix our notation for the notions from the theory of
quantum groups that we shall employ in this paper.
The algebra C[SL;], is defined by the generators #;;, i, j = 1,2, and the relations

f1if21 = qiait1,  hitiz = ghiotin,  tifar = 121112
1 ~1
Inlhy =q 121111, Ioh2=q 112022
~1

thtn —totn = (g—q " tiotar,  titn —qhiaty = 1.
We define C[SU>|; = (C[SLy]4,*), where the involution * is determined by 7/, = 2,
and tfz = —ql1 .

Here and throughout this paper we denote by {e; : k € Z(} the standard orthonor-

mal basis for the Hilbert space ¢*(Zx), and we let S, C,, D € B({*(Z=0)) denote
the operators defined by

Ser = epr1, Cuep =\/1—q'key, Dek:qkek. (D)

It is well known that C[SU»], admits the irreducible representations 7, ¢ € [0,27),
acting on ¢%(Z=), which are determined by

To(ti) = S*Ca,  Ty(tin) = —qe "D

o @)
ﬂ(p(l‘zl) =e%D, ﬂ(p(l‘zz) =8,

C[SU]4 can also be equipped with a Hopf *-algebra structure (see e.g. [8]). In
particular, the comultiplication is given by

Atl] Ztlk®tk]7 ZJ_I 2.
k=1

We denote by Uysl, the Hopf algebra generated by E,F,K,K ~1 satisfying the
relations
KK '=K'K=1, KE=¢’EK, KF=q *FK
K—K!
a—q '
The comultiplication A, the antipode S, and the the counit € are defined by

[E,F] =

AE)y=E®1+K®E, AF)=FK '+10F, AK)=K®K
S(Ey=—-K'E, S(F ):—FK, S(K)=K"!
e(E)=¢(F)=0, g(K)=1.

We let Uysuy denote the Hopf «-algebra ( qslz, ), where the involution is given by

E*=KF, F*=EK ', K'=K.
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We recall that C[SL;], is the finite dual of U,sl,. As linear functionals the elements of
C[SL], are determined by

m(E)=q "2 ni(F)=¢"% mK) =q, m(K)=¢" 3)

and all other evaluations on the generators are zero.
We shall also need the x-algebra Pol(C),, a g-analog of the *-algebra of poly-
nomials on C, which is defined by the generator z and the relation z*z = g*zz* + 1 — ¢*.

We have the following list of irreducible representations of Pol(C) 42> Up to unitary
equivalence (see [11]):

(i) the Fock representation pr acting on £2(Z=o): pr(z) = C4S;

(ii) one-dimensional representations pg, @ € [0,27): py(z) = €.

3. A g-analog of the algebra of continuous and holomorphic functions
on the unit ball

The algebra C[Mat;’™], is defined by the generators zi1, z21, 22> satisfying the
relations

2
211221 = q° 221211
2
21222 = 4" 222221 €]

2 -2\ .2
211222 — 222211 = q(q° —q 7)z3;-

The algebra admits a natural gradation given by degz;; = 1. The *-algebra
Pol(Mat;ym)q, a g-analog of the x-algebra of polynomials on the space of symmet-
ric complex 2 x 2 matrices, is defined by the generators z11, z21, 222 satisfying the
relations (4) and

Zizn =4z —a(q " — @) (1+ ) 2125
+(q " =91+ ")z +1-4°
Zhaat =21z —qlq " = a) (g +9)zzs
211222 = 2202); 5)
i1 =42 — (1= ")zt +1- ¢
B122 = 22

* 4 * 4
250200 =q 2222 +1—¢q".

REMARK 3.1. For the sake of symmetry and for brevity in formulas (see e.g.
Lemma 3.3), one may include zj, as an additional generator together with the relation
212 = 4221 -
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We have that C[Maty™"], is a Uysl,-module algebra, where the Uysl, -action is
given as follows ([4]):
0, i=j=1
Ezj=q""{an, i=2,j=1 (6)
(g+q Dz, i=j=2

(@+q Nz, i=j=1
Faij=q"%{ o, i=2,j=1 ™
0, i=j=2
gz, i=j=1
KZij: 221, l:2aJ:1 (8)
q ‘2, i=j=2.
Recall that the action of U,sl, on other elements of C[Mat;’™|; can be obtained from
the property that

E(fg) =& NEsg)

1

for & € Uysly, f,g € CMaty™],; and A(§) =3 gi(l) ® éi(z) (in the Sweedler notation).
Since the involutions in Uysu, and Pol(Mat; ™), are compatible in the sense that
(Ef)" =S(E)°f", &€ Uysua, f € Pol(Maty™),
the action of U,sl, on C[Maty’™], can be extended to an action of U,su, on Pol(Maty™),.
Explicitly, the U,su; -action is given by (6)—(8) together with
Ez; = —qu(Fz,-j)*, Fz; = —q2(Ez,-j)*, Kz = (K~ 'zi)".
sym

The irreducible representations of Pol(Mat;’™),, which we present in the follow-
ing theorem, were classified in [3].

THEOREM 3.2. The irreducible representations of Pol(Mat;ym)q up to unitary
equivalence are given by
(i) the Fock representation acting on *(Z=0)®3:
mr(z11) =1 D*QCyS — g 1S CL R CrSCS @ 1
mr(z21) =D* @GS ®1
mp(z22) = C4SRIR I,

(ii) representations Ty, ¢ € [0,27), acting on £*(Z=o)®?:

Tp(z11) = €1 @ D* — ¢~ 18*C4 ® C28C>S
Tp(221) = D* @GS
T(p(ZQQ) =CS®I;
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(iii) representations @y, ¢ € [0,27), acting on *(Zx):
0y (z11) = —q '€*?S°Cy
0y (221) = e"PD2
0y (222) = C4S;

(iv) representations Ve, ¢ € [0,27), acting on (*(Zxg):

Vo(z11) =q'CsS
Vo(221) =0

Vo (222) = €'?L;
(v) one-dimensional representations Op, ¢,, @1, € [0,27):

09,0, (z11) =q '€
9<P17<P2(121) =0
Op,.¢, (222) = €'?2.

From the above list it readily follows that Pol(Matgym)q is *-bounded, i.e., for
each x € Pol(Mat;™), there exists a constant Cy such that ||7(x)|| < Cy for all rep-
resentatlons m of Pol(Mat;™),. We let C(D}'™), denote the universal enveloping

C* -algebra of Pol(Mat;™), and A(D5™), the closed (non-involutive) subalgebra gen-
erated by 711, 221, and zp. We recall that the universal enveloping C* -algebra can be
defined as a pair (C(D3™),,p), where p : Pol(Maty™), — C(DJ™), is a *-homo-
morphism with the property that for each representation 7 of Pol(Maty’™), there is a
unique representation ¢ of C(Dsym)q such that & = @ o p. It is useful to note that the
irreducible representations of Pol(Mat;ym)q are in one-to-one correspondence with the
irreducible representations of C(D3™),. We say that C(D3™), (resp. A(D}™),) is a
g-analog of the C*-algebra of continuous functions (resp. subalgebra of holomorphic
functions) on the closed unit ball of symmetric complex 2 x 2 matrices D" = {Z €
Maty™: Z*Z < I}.

We will now consider an alternative way of constructing representations of
Pol(Mat"™), which was presented in [3]. Imperative to this construction is the fol-
lowing *-homomorphism, whose existence was indicated in [3] without proof, of a
coaction corresponding to the action of the unitary group U, of 2 x 2 matrices

Z—U"Z20, Ue€U,,ZeDy™ Cc Matj™.
LEMMA 3.3. There is a x-homomorphism
2 : Pol(Maty™), — Pol(Maty’™), ® C[SUa,
given by

D(zij) 2 I Dty  Lj=1,2.
k=1
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Proof. We begin by establishing that the restriction of 2 to C[Maty"],,
CMat?™], — C[Mat;’™], ® C[SLa],, ©)

is a homomorphism. Using the fact that C[SL,], C (Ugsl2)* as linear functionals given
by (3), we claim that the map (9) recovers the Uysl, -action on C[Mat;y™"],, i.e.,

2(x)(§) =&x, xeCMaty™],, & € Uysh.

Consequently Z respects the relations (4), showing that the map (9) is a well-defined
homomorphism.

It is straightforward to verify that the claim holds when x and & are generators
of C[Mat;"™], and U,sl, respectively. In order to show that 2(z;;)(&) = &z;; for all
& € Uysly, it would be enough to see that whenever Z(z;;) (&) = &xzij for & € Ugsly,
k=1,2, we have 2(zj;)(&1&) = &1&pzij. Using the fact that the comultiplication is a
homomorphism, we have the following computation:

2
P (zij)(&1&2) = Z zatitij(61&2) = Y, A (tty;) (& @ &)

k=1 k=1

Z Z 2 (trtis) (81) (trits ) (82) = Z D(zrs)(&1) (trits)(&2)

rs=1k,l=1 rs=1
2
=& Y asltrits) (&) = E19(2ij) (&) = &1z
rs=1

It remains to show that extending & to (C[Matgym] 4 naturally by linearity and by letting

2(f8) = 2(H)2(9). f. g € CMat;""];, we obtain Z(fg)(§) =&(fg) forall £ €
Ugsl, and f, g € C[Maty™],. Let

A=Y og?
k

denote the comultiplication of an element & € Usl, . For f,g generators of C[Mat;y’™],
we have

9(15)(&) = (N Pe) &) = (zﬁ®s,-) (zg,@tj) -
= %figjsitj(é) = %%figjsi <§k(1)> 1 (ééﬁ)

3(3(€) (3006}

=y elrePe=¢(re).
k
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The general case is proved by induction on the degree of f and g. Since Pol(Maty’™),

is a Uysup -module algebra and the involutions in Uysu, and C[SU,], are compatible,
it follows that (9) can be extended to a *-homomorphism on Pol(Mat;™),. O

From relations (4)—(5) it follows that the family of maps

I, : Pol(Mat;™), — Pol(C) 2,

¢ € [0,27), defined on the generators of Pol(Maty™), by

Mp(z11) =q 'z, Me(z21) =0, Tp(z2)=e"

is a *-homomorphism.
Let pr and py, ¢ € [0,27), be the irreducible representations of Pol(C) > given
in Section 2. Defining

Fo=prolle,  Xpi.0o = Pgy oy,
we obtain two families of representations of Pol(Mat;’™"),:
(Fo@m)oZ, (Xpp.p@M)0 D, ¢,01,¢ €[0,27),

here m is the irreducible representation of C[SU,|, given by (2). Evaluated on the
generators, we have
(Zp@m)o D(z11) = q 'pr(z) @ mo(t11)* + €1 @ mo(t21)?
=q 'CiS @SS Cr + eI 2 D?

(Fp @m0) 0 D(z21) = q ' pr(z) @ mo(ti2) Mo (t11) + €T @ Mo (t22) o (121)
=—q 'S5 C:D+ €1 2 C,SD

(Fp@m) 0 P(z20) = q 'pr(z) ® m(tn)? + €1 @ mo(122)*
= gCS @ D> + 1 ® C,8C, S

and

(Xor.pn @ M) 0 D(z11) = g P S*C28*Cy + €2 D?
(Xor.0n @ M) © D(221) = —q~ '€ P1S* CD + €' P2C,SD (10)
(X1, @T0) 0 D(222) = ge'® D? + ¢ %2C,8C,S.

LEMMA 3.4. The representation (F, @ my) o2, ¢ € [0,2x), is unitarily equiv-
alent to Ty.



46 J. JOHANSSON AND L. TUROWSKA

Proof. 1t is straightforward to verify that Q = e¢g ® eq is cyclic for all representa-
tions 7y and (Fy @ my)o Z, ¢ € [0,27), and

Tp(211)" Q= (Fp®
Tp(221)' Q= (Fp®
Tp(222)"Q = (Fp®

M) o P(zn) Q= e ?Q
m) o Z(z21)' Q=0
mo) 0 D (222)" Q2 =0.

Therefore both 7, and (F, ® my) 0 Z are coherent representations of the Wick al-
gebra corresponding to Pol(Mat;ym)q with equal coherent state. (We refer to [7] for
the definition and properties of coherent representations of x-algebras allowing Wick
ordering.) Since a coherent representation of a Wick algebra is unique up to unitary
equivalence by [7, Proposition 1.3.3], this proves the lemma. [J

THEOREM 3.5. The Fock representation ©g of C (ID);ym)q is faithful, and conse-
quently C(D™), is *-isomorphic to C*(mp (Pol(Maty™),)).

Proof. Let C*(S) be the C*-algebra generated by the isometry S. Recall that for
¢ €[0,27), there exists a *-homomorphism @ : C*(S) — C defined by ©y(S) =e€'?,
see e.g. [5].

The operators in (1) satisfy

C2 _ (1 _qn) i anSk+l(S>k)k+l
k=0

oo

D— Eqk (Sk(S*)k_Sk+1(S*)k+l> 7

k=0

and hence C,,D € C*(S). Moreover, we have ©4(C,) = 1 and ©y(D) = 0.

We note that C* (7 (Pol(Mat;™),)) C C*(S)®* and similarly for the other rep-
resentations. By letting ©¢ act on the last factor in the tensor products, we get the
induced *-homomorphisms

19120,

C* (zr (Pol(Matd™),)) ——C* (1o (Pol(Matd™),)) —

T2, ¢ (@ (Pol(Maty™), ).

Since C*(7y (Pol(Maty™),)) is *-isomorphic to C* (% @ mp) o Z(Pol(Mat;y’™),)) by
Lemma 3.4, by letting ©g act on the last factor in the tensor product for (.F, ® my) 0 Z,
we get an induced *-homomorphism

C* (T (Pol(Maty™))) — C* (v (Pol(Mat™)).

Finally, by letting ©, acton vy, , @1, € [0,27), we get an induced *-homomorphism

C*(vg, (Pol(Mat;™), )) I, C* (8, (POl (Maty™),)).
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As a x-homomorphism between C*-algebras is contractive we get that for all x €
Pol(Mat;y’™), and all irreducible representations 7 of Pol(Mat;"™),, ||7(x)| < ||7e(x)]| -
By the definition of C(DY™),, it follows that the *-homomorphism

g : C(DY™)y — C*(mp (Pol(Mat;’™),))

is an isomorphism. [

4. The Shilov boundary

The notion of a noncommutative analog of the maximum modulus principle goes
back to the foundational paper [1] by W. Arveson. Recall that the Shilov boundary of
a compact Hausdorff space X relative to a uniform algebra </ in C(X) is the smallest
closed subset S C X such that every function in &7 attains its maximum modulus on
S. The prototypical example of this is of course the maximum modulus principle en-
countered in the theory of holomorphic functions. For the disk algebra A(D) C C(D),
consisting of functions that are continuous on the closed unit disk D and holomor-
phic on its interior, it is well known that every function in A(ID) attains its maximum
modulus on the unit circle T.

When passing to the noncommutative setting, a notion that arises is that of com-
pletely contractive and completely isometric maps. Let E be a subspace of a C*-
algebra A, and let M, (E) be the space of n x n-matrices with entries in £ and norm
induced by the one on M, (). Then any linear map 7 from E to another C*-algebra
% induces a linear map T : M, (E) — M, (€) by letting

T ((aij)) = (T(ai)), (ai;) € Ma(E).

The linear map T is called a contraction (resp. an isometry)if || T|| < 1 (resp. ||T(a)|| =
||la|| for any a € E). Tt is called a complete contraction (resp. a complete isometry) if
T is a contraction (resp. an isometry) for all n € N. Clearly a %-homomorphism
between C* -algebras is completely contractive.

The following noncommutative generalization of the Shilov boundary was given
by Arveson in [1].

DEFINITION 4.1. Let ./ be a subspace of a C*-algebra % such that </ contains
the identity of % and generates % as a C*-algebra. A closed ideal ¢ in % is called
a boundary ideal for o/ if the canonical quotient map j, : # — %/ _# is a complete
isometry when restricted to <7 . A boundary ideal is called the Shilov boundary for </
if it contains every other boundary ideal.

It is clear from the definition that if the Shilov boundary exists, then it is unique,
and it was shown by M. Hamana in [6] that the Shilov boundary exists for any <7 sat-
isfying the conditions of the above definition. It is not difficult to see that this definition
is equivalent to the definition of the Shilov boundary given above in the commutative
case, i.e., when Z = C(X).
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EXAMPLE 4.2. Theideal # = {f € C(D): f|r =0} is the Shilov boundary for
A(D).

EXAMPLE 4.3. In[10], the authors considered a g-analog C(ID,), (resp. A(ID2),)
of the C*-algebra of continuous functions (resp. subalgebra of holomorphic functions)
on the closed unit ball of complex 2 x 2 matrices D, = {Z € Mat, : Z*Z < I}. The for-
mer was defined as the universal enveloping C*-algebra of Pol(Mat,),, a g-analog of
the x-algebra of polynomials on ID,. It was proven that the ideal in C(ID,), generated
by

g Py 87 a B =12,

™Mo

1

J
is the Shilov boundary for A(ID,),,.

Let J be the x-ideal of Pol(Mat;™), generated by

2

A—i—i ok .
Zq ' jZiijk_(siﬁ l,]= 1727
k=1

sym

and let # be the closed ideal generated by the image of J in C(Dy),. We shall
refer to the quotient C(S(D5™)), = C(D3™),/ 7 as a g-analog of the C*-algebra of
continuous functions on the Shilov boundary of D;ym . The canonical quotient map j, :
C(DY™)y — C(S(D5™)), is a g-analog of the restriction map that sends a continuous
function on D™ to its restriction to the Shilov boundary S(D}'™) = {Z € Mat;"™ :
Z*Z =1I}. The aim of this section is to prove that ¢ is the Shilov boundary for
ADS™),.

From the above discussion of representations of Pol(Mat;ym)q, we have the fol-
lowing result on which representations annihilate J, whose proof is a straightforward
verification.

LEMMA 4.4. The representations ®y and Op, o,, @,¢1,¢> € [0,27), are the
only, up to unitary equivalence, irreducible representations of Pol(Mat;ym)q that anni-
hilate J. Moreover, any representation (Xg,.¢, @ ) © 7, @1, @ € [0,27), annihilates
J.

THEOREM 4.5. The ideal ¢ is a boundary ideal for A(DY™),.

Proof. By Lemma 4.4, any representation (¢, ® ) Z, ¢1,¢2 € [0,27), an-
nihilates J. Thus we have a family of *-homomorphisms

C(S(DF™))g — C*((Xgy.0, @ M) © Z(Pol(Mat;™)))
givenby b+ 7 — (X, ® M) 0 Z(b), and consequently

sup  [[((xgy.0 @ m0) © Z(bi)I| < | (bij+ )
9017(/)26[072”)
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for all (b;;) € M,(C(D5™),). Since the quotient map j, : C(D3™), — C(S(DF™))g is
a *-homomorphism, j, and consequently j,| ADY™), is a complete contraction. It is
therefore sufficient to prove that

[(aip) |l = [[(mr(ai))| < sup  [[((Xgr., @ 70) © D(aij))]|
¢1,92€[0,27)
for all (a;;) € M,(A(D3™),).
We note that the operator C4S is a contraction on H = 62(220). By Sz.-Nagy’s
dilation theorem (see e.g. [9, Theorem 1.1]), there exists a unitary operator U on a

Hilbert space K containing H as a subspace such that (C4S)" = PyU"|y forall n > 0.
Consider the map ¥ into Z(H*? ® K) defined on the generators of Pol(Mat;’™), by

Y(z11)=I10D*QU —q '8*"C4 0 C,SC8 @ 1
‘P(Zzl) = D2®C2S®I
Y(z22) =CaSRIRI.

It is readily verified that this map extends uniquely to a representation of Pol(Maty’™),

on H®?>® K . By the spectral theorem, ¥ can be written as a direct integral representa-
tion of the field of representations {7, : ¢ € [0,27)},i.e.,

@
‘P:/ o ® Ipdi(0).
0.27) o @lpdu(p)

For £ € H®?>® K, we have

IR = [ Im @ l0)E @) Paue) < s [z@)PIE]R
0€l0,2m)

Thus [[W(b)|| < supyeioar) l1To()]| forall b e C(DF™),, and since ¥ induces a rep-

resentation on M, (C(D3™),), similar arguments show that

I(¥(Bij)[ < sup [[(7o(bij))l
0<(0,2m)

for all (b;;) € M,(C(DF™),). Since mr(a) = (I®1® Py)¥(a)|yes, we get

[(7r (aij)) | < sup [|(7g(aij)) (1D
0€(0,2m)

for all (a;;) € M,(A(D3™),).
Our next step is to show that, for all ¢ € [0,27),

[(Tplai)ll < sup  [[((Xp1.p, ® W) © D(aij))l
9017(/)26[012”)
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for all (a;;) € M,(A(D3™),). Similar to the previous step, we consider the map ¥,
into (K ® H) defined on the generators of Pol(Mat;’™), by

Yo(z11) = ¢ ' URS CS*Cy + 1@ D?
Yo(221) = —q 'U @S C:D+¢?1 © C,SD
¥y (220) = qU @ D* + €1 @ C2SCsS.
Itis readily verified that ¥, extends to a representation of C(D3Y™), on K@ H . By (10)

and the spectral theorem, ¥, can be written as a direct integral representation of the
field of representations {(¥¢,.0 ® )0 Z: @1 € [0,27)}, i.e.,

®

Vo= [ (@ m)o 701y du(gn).
¢1€[0,27)

For & € K ® H, we have

2r
I¥e(®)E]? = /0 1(Xp1.p ©70) © Z @1, (b)& (1) A (1)

2
< sup H(%whw@ﬂo)oﬁ(b)llz/ 1€ (@) du(er)
¢1€[0,27) 0

= sup [ (Xpr.0 @ 70) 0 2(0)[1P1]I*.
¢1€[0,27)

Thus

[Wo®)| < sup  [[(Xg.0 ®70) 0 Z(D)|
¢1€[0,27)

for all b € C(D3™),. Since ¥, induces a representation on M, (C(D3™),), similar

arguments show that

[(Foij)ll < sup  [[((Xg.9 ®m0) o0 P(bij))|l
(1)16[0,271f)

for all (b;;) € M,(C(DF™),). Since
(Fp@m)oP(a)=(Pu&I)¥o(a)|ye

and
17p(@)]| = [(Fp @ M) 0 ()]
forall a € A(Dy™),, we have

Ito(@)] < [[Wo(a) < sup  [[(xgy.0, @ 0) 0 Z(a)]-

?1,92€[0,27)
By a similar argument, we have
I(t(ai))l < sup  [[((xgy.00 @ 0) © Z(aij))| (12)
P1,92€[0,27)

for all (a;;) € M,(A(D}™),). By combining the inequalities (11) and (12), we get the
desired statement. [
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LEMMA 4.6. If 0 is a representation of Pol(Maty'"), that annihilates J, then

[l < sup [Jo(x)]|
0€[0,2m)

for all x € Pol(Mat;’™),.

Proof. As (Z"’}ﬁ ¢ and @y, @, @1, ¢ € [0,27) are the only irreducible representa-
tions of Pol(Maty™), that annihilate J it is sufficient to prove that

6910, (x)| < sup ||y (x)]
@€[0,2m)

for all x € Pol(Mat;’™), and @1, € [0,27). Recall that C*(w, (Pol(Mat;™),)) is

a subalgebra of C*(S) and if ©y, : C*(S) — C is the *-homomorphism given by
Oy, (S) = €'?2, then it is readily verified that ©,, induces a *-homomorphism
C*(m(qal+¢2+n)/2(P01(Mat;ym)q)) - C*(9¢1,¢2(P01(Mat;ym)q))»

where each generator @y, 1 ¢, +7)/2(zij) is mapped to 0y, ¢,(zi;). Thus

10010, ()| < || gy 19y +m)2(X) | < sUp | (x) |
0€[0,2m)

for all x € Pol(Maty’™), and @, ¢, € [0,27), which proves the lemma. [J

THEOREM 4.7. The ideal ¢ contains all other boundary ideals.

Proof. Let .# be a boundary ideal such that .# > ¢, and let i, and j,,
ig: C(DY™)g — C(DF™)g/ S
Jq: C(DF™)g — C(S(DF™))q,
be the canonical quotient maps. If
K={9pe[0,2m): wy(¥) =0}

is nonempty, then .# C Ngpeg ker @y, and hence ¥ = 7 if

ﬂ kerw, C 7.

pek

We claim that it is sufficient to prove that K is dense in [0,27]. Indeed, suppose that x
lies in kerw, forall ¢ € K. If K = [0,2n], it follows by Lemma 4.6 that j,(x) =0,

ie,xe 7.

Since i, and j, are isometries when restricted to A(D3™),, we have

lzij+ €+ 71 = llzij +€®|| = ||zij + € + 7] (13)
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forany 6 € [0,27). Since Wy and By, ¢, , P, 1, P> € [0,27), are the only, up to unitary
equivalence, irreducible representations of Pol(Mat;ym)q that annihilate J, Lemma 4.6
gives

oo+ + 7l = sup llwg(ean) +e ) =sup{|¢+e: ¢ € YT} =2
0el0,27) k=0
(14)
If 7 is an irreducible representation of C(Dy'™),/.# which does not vanishon z5; +.¢,
then moi, is an irreducible representation of C(D5™), which does not vanish on z,; .
Since moiy(_#) =0, mwoi, is unitary equivalent to @, for some ¢ € K. Thus

221 + € + 7 || = sup || oiy(za1) + €| = sup || @p(z21) + ||
T ok

=sup {Ig+e:¢ € Ua™Xx},

k>0

where 7 ranges over the irreducible representations of C(Dy™),/.# and Xg = {€'” :

¢ € K} C T. From (13) and (14) we conclude that

sup{|§+ei9\ L e qukXK} =2

k=0

forany 6 € [0,27), and hence Xx must be dense in T, which proves the theorem. [

5. Regular functions on the Shilov boundary

In [4], a x-algebra C[S(D;’™)], referred to as the algebra of regular functions
on the Shilov boundary on the quantum unit ball in the space of symmetric complex
n x n matrices was defined as the localization of C[Mat,""], with respect to the Ore
system (de:t‘;ymz)Z?0 , where det;’™'z is a g-analog of the determinant of the symmetric
matrix z = (z;;) corresponding to the generators of C[Mat;"], (see [4] for definitions
of C[Mat;”™], and det;™z). In this section we show that for our particular case, n =2,
this agrees with our previous result.

In our case of C[S (D;ym)}q the quantum determinant takes the form

sym -1,2
dety™z =z0211—q 23,

and the involution is given by

* -2 sym,_\—1
211 =49 122(detqy Z)

* -1 sym,,\—1
1 =—q z221(dety™z)

T = le(detzymz)fl.
THEOREM 5.1. The map k: zjj+ 7 — z;j € (C[S(D;ym)}q, i,j=1,2, can be

extended to a x-isomorphism of the *-subalgebra of C(S(D}'™)), generated by z;j +
Z,i,j=1,2, onto C[S(DJ™)],.



SHILOV BOUNDARY FOR A ¢-ANALOG OF HOLOMORPHIC FUNCTIONS 53

Proof. 1t is straightforward to verify that an extension of k to polynomials in

zij+ 7, i,j=1,2, is well-defined. We construct an inverse to k as follows. Since

m((dety™z)"dety"z) = g2 for all representations of Pol(Maty’™), that annihilate J,

it follows that (det)™z)*det™z = det}™z(det}’™z)* = g > in C(S(D3™)),. More-
over, each zj; in C(S(DF™)), has the same expression in terms of the generators and
(det™z)~! asin C[S(DJ™)],. Since C[S(DF™)], is generated by z;;. i,j = 1,2, and
(det¥™z)~!, we have a *-homomorphism &’ : C[S(D}"™)], — C(S(D3™)), given by
zij—zij+ F and (det¥™z) "' — g*(det?™z)* + 7 . Itis easily verified that k and k'
are mutually inverse to each other. [l
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