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THE SHILOV BOUNDARY FOR A q–ANALOG OF THE HOLOMORPHIC

FUNCTIONS ON THE UNIT BALL OF 2×2 SYMMETRIC MATRICES

JIMMY JOHANSSON AND LYUDMILA TUROWSKA

(Communicated by D. R. Farenick)

Abstract. We describe the Shilov boundary for a q -analog of the algebra of holomorphic func-
tions on the unit ball in the space of symmetric 2×2 matrices.

1. Introduction

In the middle of the 1990s, L. Vaksman initiated a program to develop a q -analog
of the theory of holomorphic functions on bounded symmetric domains (see [12] and
references therein). Among the numerous results which have emanated under this pro-
gram we shall in this paper be interested in a noncommutative analog of the maxi-
mum modulus principle, a notion whose foundation is comprised of a noncommutative
generalization of the Shilov boundary in the setting of operator algebras, which was
developed by W. Arveson in [1, 2].

In [13], Vaksman proved a q -analog of the maximum modulus principle for the
unit polydisk in Cn , and more recently D. Proskurin and L. Turowska obtained, in [10],
an analogous result for the unit ball in the space of 2×2 matrices. In this paper we show
that similar methods can be used to compute the Shilov boundary ideal for a q -analog
of the algebra of holomorphic functions on the unit ball in the space of symmetric 2×2
matrices.

The paper is organized as follows. In Section 2 we collect some basic material
from the theory of quantum groups that we will need in this paper. In Section 3 we
introduce the algebra of polynomials on quantum complex symmetric 2× 2 matrices
and discuss its universal enveloping C∗ -algebra C(Dsym

2 )q , a q -analog of the continu-
ous functions on the unit ball D

sym
2 = {Z ∈ Matsym

2 : Z∗Z � I} . We prove, in particular,
that the Fock representation is a faithful irreducible representation of C(Dsym

2 )q . In
Section 4 we describe the Shilov boundary ideal for the closed subalgebra A(Dsym

2 )q , a
q -analog of the algebra of functions holomorphic on the open unit ball of Matsym

2 and
continuous on its closure. The key tool, like in [13] and [10], is a unitary dilation of a
contractive operator on a Hilbert space. Finally, in Section 5, we show that our result
agrees with the definition of a ∗ -algebra referred to as the algebra of regular functions
on the Shilov boundary, whose definition was proposed in [4].

In this paper all algebras are assumed to be associative unital algebras over C and
q ∈ (0,1) .
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2. Preliminaries

In this section we review and fix our notation for the notions from the theory of
quantum groups that we shall employ in this paper.

The algebra C[SL2]q is defined by the generators ti j , i, j = 1,2, and the relations

t11t21 = qt21t11, t11t12 = qt12t11, t12t21 = t21t12

t22t21 = q−1t21t11, t22t12 = q−1t12t22

t11t22− t22t11 = (q−q−1)t12t21, t11t22 −qt12t21 = 1.

We define C[SU2]q = (C[SL2]q,∗) , where the involution ∗ is determined by t∗11 = t22

and t∗12 = −qt21 .
Here and throughout this paper we denote by {ek : k∈Z�0} the standard orthonor-

mal basis for the Hilbert space �2(Z�0) , and we let S , Cn , D ∈ B(�2(Z�0)) denote
the operators defined by

Sek = ek+1, Cnek =
√

1−qnkek, Dek = qkek. (1)

It is well known that C[SU2]q admits the irreducible representations πϕ , ϕ ∈ [0,2π) ,
acting on �2(Z�0) , which are determined by

πϕ(t11) = S∗C2, πϕ(t12) = −qe−iϕD

πϕ(t21) = eiϕD, πϕ(t22) =C2S.
(2)

C[SU2]q can also be equipped with a Hopf ∗ -algebra structure (see e.g. [8]). In
particular, the comultiplication is given by

Δ(ti j) =
2

∑
k=1

tik ⊗ tk j, i, j = 1,2.

We denote by Uqsl2 the Hopf algebra generated by E,F,K,K−1 satisfying the
relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK

[E,F ] =
K−K−1

q−q−1 .

The comultiplication Δ , the antipode S , and the the counit ε are defined by

Δ(E) = E ⊗1+K⊗E, Δ(F) = F ⊗K−1 +1⊗F, Δ(K) = K⊗K

S(E) = −K−1E, S(F) = −FK, S(K) = K−1

ε(E) = ε(F) = 0, ε(K) = 1.

We let Uqsu2 denote the Hopf ∗ -algebra (Uqsl2,∗) , where the involution is given by

E∗ = KF, F∗ = EK−1, K∗ = K.
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We recall that C[SL2]q is the finite dual of Uqsl2 . As linear functionals the elements of
C[SL2]q are determined by

t12(E) = q−1/2, t21(F) = q1/2, t11(K) = q, t22(K) = q−1 (3)

and all other evaluations on the generators are zero.
We shall also need the ∗ -algebra Pol(C)q2 , a q -analog of the ∗ -algebra of poly-

nomials on C , which is defined by the generator z and the relation z∗z = q4zz∗+1−q4 .
We have the following list of irreducible representations of Pol(C)q2 , up to unitary

equivalence (see [11]):

(i) the Fock representation ρF acting on �2(Z�0) : ρF(z) = C4S ;

(ii) one-dimensional representations ρϕ , ϕ ∈ [0,2π) : ρϕ(z) = eiϕ .

3. A q -analog of the algebra of continuous and holomorphic functions
on the unit ball

The algebra C[Matsym
2 ]q is defined by the generators z11 , z21 , z22 satisfying the

relations

z11z21 = q2z21z11

z21z22 = q2z22z21 (4)

z11z22 − z22z11 = q(q2−q−2)z2
21.

The algebra admits a natural gradation given by degzi j = 1. The ∗ -algebra
Pol(Matsym

2 )q , a q -analog of the ∗ -algebra of polynomials on the space of symmet-
ric complex 2× 2 matrices, is defined by the generators z11 , z21 , z22 satisfying the
relations (4) and

z∗11z11 = q4z11z
∗
11−q(q−1−q)(1+q2)2z21z

∗
21

+(q−1−q)2(1+q2)z22z
∗
22 +1−q4

z∗11z21 = q2z21z
∗
11−q(q−1−q)(q−1 +q)z22z

∗
21

z∗11z22 = z22z
∗
11 (5)

z∗21z21 = q2z21z
∗
21− (1−q2)z22z

∗
22 +1−q2

z∗21z22 = q2z22z
∗
21

z∗22z22 = q4z22z
∗
22 +1−q4.

REMARK 3.1. For the sake of symmetry and for brevity in formulas (see e.g.
Lemma 3.3), one may include z12 as an additional generator together with the relation
z12 = qz21 .
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We have that C[Matsym
2 ]q is a Uqsl2 -module algebra, where the Uqsl2 -action is

given as follows ([4]):

Ezi j = q−1/2

⎧⎪⎨
⎪⎩

0, i = j = 1

z11, i = 2, j = 1

(q+q−1)z21, i = j = 2

(6)

Fzi j = q1/2

⎧⎪⎨
⎪⎩

(q+q−1)z21, i = j = 1

z22, i = 2, j = 1

0, i = j = 2

(7)

Kzi j =

⎧⎪⎨
⎪⎩

q2z11, i = j = 1

z21, i = 2, j = 1

q−2z22, i = j = 2.

(8)

Recall that the action of Uqsl2 on other elements of C[Matsym
2 ]q can be obtained from

the property that

ξ ( f g) = ∑
i
(ξ (1)

i f )(ξ (2)
i g)

for ξ ∈Uqsl2 , f ,g ∈ C[Matsym
2 ]q and Δ(ξ ) = ∑i ξ

(1)
i ⊗ξ (2)

i (in the Sweedler notation).
Since the involutions in Uqsu2 and Pol(Matsym

2 )q are compatible in the sense that

(ξ f )∗ = S(ξ )∗ f ∗, ξ ∈Uqsu2, f ∈ Pol(Matsym
2 )q,

the action of Uqsl2 on C[Matsym
2 ]q can be extended to an action of Uqsu2 on Pol(Matsym

2 )q .
Explicitly, the Uqsu2 -action is given by (6)–(8) together with

Ez∗i j = −q−2(Fzi j)∗, Fz∗i j = −q2(Ezi j)∗, Kz∗i j = (K−1zi j)∗.

The irreducible representations of Pol(Matsym
2 )q , which we present in the follow-

ing theorem, were classified in [3].

THEOREM 3.2. The irreducible representations of Pol(Matsym
2 )q up to unitary

equivalence are given by

(i) the Fock representation acting on �2(Z�0)⊗3 :

πF(z11) = I⊗D2⊗C4S−q−1S∗C4⊗C2SC2S⊗ I

πF(z21) = D2⊗C2S⊗ I

πF(z22) = C4S⊗ I⊗ I;

(ii) representations τϕ , ϕ ∈ [0,2π) , acting on �2(Z�0)⊗2 :

τϕ (z11) = eiϕ I⊗D2−q−1S∗C4⊗C2SC2S

τϕ (z21) = D2 ⊗C2S

τϕ (z22) = C4S⊗ I;
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(iii) representations ωϕ , ϕ ∈ [0,2π) , acting on �2(Z�0):

ωϕ(z11) = −q−1e2iϕS∗C4

ωϕ(z21) = eiϕD2

ωϕ(z22) = C4S;

(iv) representations νϕ , ϕ ∈ [0,2π) , acting on �2(Z�0):

νϕ (z11) = q−1C4S

νϕ (z21) = 0

νϕ (z22) = eiϕ I;

(v) one-dimensional representations θϕ1,ϕ2 , ϕ1,ϕ2 ∈ [0,2π):

θϕ1,ϕ2(z11) = q−1eiϕ1

θϕ1,ϕ2(z21) = 0

θϕ1,ϕ2(z22) = eiϕ2 .

From the above list it readily follows that Pol(Matsym
2 )q is ∗ -bounded, i.e., for

each x ∈ Pol(Matsym
2 )q there exists a constant Cx such that ‖π(x)‖ � Cx for all rep-

resentations π of Pol(Matsym
2 )q . We let C(Dsym

2 )q denote the universal enveloping
C∗ -algebra of Pol(Matsym

2 )q and A(Dsym
2 )q the closed (non-involutive) subalgebra gen-

erated by z11 , z21 , and z22 . We recall that the universal enveloping C∗ -algebra can be
defined as a pair (C(Dsym

2 )q,ρ) , where ρ : Pol(Matsym
2 )q → C(Dsym

2 )q is a ∗ -homo-
morphism with the property that for each representation π of Pol(Matsym

2 )q there is a
unique representation ϕ of C(Dsym

2 )q such that π = ϕ ◦ρ . It is useful to note that the
irreducible representations of Pol(Matsym

2 )q are in one-to-one correspondence with the
irreducible representations of C(Dsym

2 )q . We say that C(Dsym
2 )q (resp. A(Dsym

2 )q ) is a
q -analog of the C∗ -algebra of continuous functions (resp. subalgebra of holomorphic
functions) on the closed unit ball of symmetric complex 2× 2 matrices D

sym
2 = {Z ∈

Matsym
2 : Z∗Z � I} .
We will now consider an alternative way of constructing representations of

Pol(Matsym
2 )q which was presented in [3]. Imperative to this construction is the fol-

lowing ∗ -homomorphism, whose existence was indicated in [3] without proof, of a
coaction corresponding to the action of the unitary group U2 of 2×2 matrices

Z �→UT ZU, U ∈U2, Z ∈ D
sym
2 ⊂ Matsym

2 .

LEMMA 3.3. There is a ∗ -homomorphism

D : Pol(Matsym
2 )q −→ Pol(Matsym

2 )q⊗C[SU2]q

given by

D(zi j) =
2

∑
k,l=1

zkl ⊗ tkitl j, i, j = 1,2.



44 J. JOHANSSON AND L. TUROWSKA

Proof. We begin by establishing that the restriction of D to C[Matsym
2 ]q ,

C[Matsym
2 ]q −→ C[Matsym

2 ]q ⊗C[SL2]q, (9)

is a homomorphism. Using the fact that C[SL2]q ⊂ (Uqsl2)∗ as linear functionals given
by (3), we claim that the map (9) recovers the Uqsl2 -action on C[Matsym

2 ]q , i.e.,

D(x)(ξ ) = ξ x, x ∈ C[Matsym
2 ]q, ξ ∈Uqsl2.

Consequently D respects the relations (4), showing that the map (9) is a well-defined
homomorphism.

It is straightforward to verify that the claim holds when x and ξ are generators
of C[Matsym

2 ]q and Uqsl2 respectively. In order to show that D(zi j)(ξ ) = ξ zi j for all
ξ ∈Uqsl2 , it would be enough to see that whenever D(zi j)(ξk) = ξkzi j for ξk ∈Uqsl2 ,
k = 1,2, we have D(zi j)(ξ1ξ2) = ξ1ξ2zi j . Using the fact that the comultiplication is a
homomorphism, we have the following computation:

D(zi j)(ξ1ξ2) =
2

∑
k,l=1

zkltkitl j(ξ1ξ2) =
2

∑
k,l=1

zklΔ(tkitl j)(ξ1⊗ ξ2)

=
2

∑
r,s=1

2

∑
k,l=1

zkl(tkrtls)(ξ1)(trits j)(ξ2) =
2

∑
r,s=1

D(zrs)(ξ1)(trits j)(ξ2)

= ξ1

2

∑
r,s=1

zrs(trits j)(ξ2) = ξ1D(zi j)(ξ2) = ξ1ξ2zi j.

It remains to show that extending D to C[Matsym
2 ]q naturally by linearity and by letting

D( f g) = D( f )D(g) , f , g ∈ C[Matsym
2 ]q , we obtain D( f g)(ξ ) = ξ ( f g) for all ξ ∈

Uqsl2 and f , g ∈ C[Matsym
2 ]q . Let

Δ(ξ ) = ∑
k

ξ (1)
k ⊗ ξ (2)

k

denote the comultiplication of an element ξ ∈Uqsl2 . For f ,g generators of C[Matsym
2 ]q

we have

D( f g)(ξ ) = D( f )D(g)(ξ ) =

(
∑
i

fi ⊗ si

)(
∑
j

g j ⊗ t j

)
(ξ )

= ∑
i, j

fig jsit j(ξ ) = ∑
k

∑
i, j

fig jsi

(
ξ (1)

k

)
t j

(
ξ (2)

k

)

= ∑
k

(
∑
i

fisi

(
ξ (1)

k

))(
∑
j

g jt j

(
ξ (2)

k

))

= ∑
k

ξ (1)
k f ξ (2)

k g = ξ ( f g).
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The general case is proved by induction on the degree of f and g . Since Pol(Matsym
2 )q

is a Uqsu2 -module algebra and the involutions in Uqsu2 and C[SU2]q are compatible,
it follows that (9) can be extended to a ∗ -homomorphism on Pol(Matsym

2 )q . �

From relations (4)–(5) it follows that the family of maps

Πϕ : Pol(Matsym
2 )q −→ Pol(C)q2 ,

ϕ ∈ [0,2π) , defined on the generators of Pol(Matsym
2 )q by

Πϕ(z11) = q−1z, Πϕ(z21) = 0, Πϕ(z22) = eiϕ

is a ∗ -homomorphism.
Let ρF and ρϕ , ϕ ∈ [0,2π) , be the irreducible representations of Pol(C)q2 given

in Section 2. Defining

Fϕ = ρF ◦Πϕ , χϕ1,ϕ2 = ρϕ1 ◦Πϕ2 ,

we obtain two families of representations of Pol(Matsym
2 )q :

(Fϕ ⊗π0)◦D , (χϕ1,ϕ2 ⊗π0)◦D , ϕ ,ϕ1,ϕ2 ∈ [0,2π),

here π0 is the irreducible representation of C[SU2]q given by (2). Evaluated on the
generators, we have

(Fϕ ⊗π0)◦D(z11) = q−1ρF(z)⊗π0(t11)2 + eiϕI⊗π0(t21)2

= q−1C4S⊗S∗C2S
∗C2 + eiϕI⊗D2

(Fϕ ⊗π0)◦D(z21) = q−1ρF(z)⊗π0(t12)π0(t11)+ eiϕI⊗π0(t22)π0(t21)

= −q−1C4S⊗S∗C2D+ eiϕI⊗C2SD

(Fϕ ⊗π0)◦D(z22) = q−1ρF(z)⊗π0(t12)2 + eiϕI⊗π0(t22)2

= qC4S⊗D2 + eiϕI⊗C2SC2S

and

(χϕ1,ϕ2 ⊗π0)◦D(z11) = q−1eiϕ1S∗C2S
∗C2 + eiϕ2D2

(χϕ1,ϕ2 ⊗π0)◦D(z21) = −q−1eiϕ1S∗C2D+ eiϕ2C2SD

(χϕ1,ϕ2 ⊗π0)◦D(z22) = qeiϕ1D2 + eiϕ2C2SC2S.

(10)

LEMMA 3.4. The representation (Fϕ ⊗π0)◦D , ϕ ∈ [0,2π) , is unitarily equiv-
alent to τϕ .
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Proof. It is straightforward to verify that Ω = e0 ⊗ e0 is cyclic for all representa-
tions τϕ and (Fϕ ⊗π0)◦D , ϕ ∈ [0,2π) , and

τϕ(z11)∗Ω = (Fϕ ⊗π0)◦D(z11)∗Ω = e−iϕΩ
τϕ(z21)∗Ω = (Fϕ ⊗π0)◦D(z21)∗Ω = 0

τϕ(z22)∗Ω = (Fϕ ⊗π0)◦D(z22)∗Ω = 0.

Therefore both τϕ and (Fϕ ⊗ π0) ◦D are coherent representations of the Wick al-
gebra corresponding to Pol(Matsym

2 )q with equal coherent state. (We refer to [7] for
the definition and properties of coherent representations of ∗ -algebras allowing Wick
ordering.) Since a coherent representation of a Wick algebra is unique up to unitary
equivalence by [7, Proposition 1.3.3], this proves the lemma. �

THEOREM 3.5. The Fock representation πF of C(Dsym
2 )q is faithful, and conse-

quently C(Dsym
2 )q is ∗ -isomorphic to C∗(πF(Pol(Matsym

2 )q)) .

Proof. Let C∗(S) be the C∗ -algebra generated by the isometry S . Recall that for
ϕ ∈ [0,2π) , there exists a ∗ -homomorphism Θϕ :C∗(S)→C defined by Θϕ(S) = eiϕ ,
see e.g. [5].

The operators in (1) satisfy

C2
n = (1−qn)

∞

∑
k=0

qnkSk+1(S∗)k+1

D =
∞

∑
k=0

qk
(
Sk(S∗)k −Sk+1(S∗)k+1

)
,

and hence Cn,D ∈C∗(S) . Moreover, we have Θϕ(Cn) = 1 and Θϕ(D) = 0.
We note that C∗(πF(Pol(Matsym

2 )q)) ⊂ C∗(S)⊗3 and similarly for the other rep-
resentations. By letting Θϕ act on the last factor in the tensor products, we get the
induced ∗ -homomorphisms

C∗(πF(Pol(Matsym
2 )q))

I⊗I⊗Θϕ−−−−−→C∗(τϕ (Pol(Matsym
2 )q)) −→

I⊗Θϕ−−−→C∗(ωϕ (Pol(Matsym
2 )q)).

Since C∗(τϕ (Pol(Matsym
2 )q)) is ∗ -isomorphic to C∗((Fϕ ⊗π0)◦D(Pol(Matsym

2 )q)) by
Lemma 3.4, by letting Θ0 act on the last factor in the tensor product for (Fϕ ⊗π0)◦D ,
we get an induced ∗ -homomorphism

C∗(τϕ (Pol(Matsym
2 )q)) −→C∗(νϕ (Pol(Matsym

2 )q)).

Finally, by letting Θϕ1 act on νϕ2 , ϕ1,ϕ2 ∈ [0,2π) , we get an induced ∗ -homomorphism

C∗(νϕ2(Pol(Matsym
2 )q))

Θϕ1−−→C∗(θϕ1,ϕ2(Pol(Matsym
2 )q)).
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As a ∗ -homomorphism between C∗ -algebras is contractive we get that for all x ∈
Pol(Matsym

2 )q and all irreducible representations π of Pol(Matsym
2 )q , ‖π(x)‖� ‖πF(x)‖ .

By the definition of C(Dsym
2 )q , it follows that the ∗ -homomorphism

πF : C(Dsym
2 )q −→C∗(πF(Pol(Matsym

2 )q))

is an isomorphism. �

4. The Shilov boundary

The notion of a noncommutative analog of the maximum modulus principle goes
back to the foundational paper [1] by W. Arveson. Recall that the Shilov boundary of
a compact Hausdorff space X relative to a uniform algebra A in C(X) is the smallest
closed subset S ⊂ X such that every function in A attains its maximum modulus on
S . The prototypical example of this is of course the maximum modulus principle en-
countered in the theory of holomorphic functions. For the disk algebra A(D) ⊂C(D) ,
consisting of functions that are continuous on the closed unit disk D and holomor-
phic on its interior, it is well known that every function in A(D) attains its maximum
modulus on the unit circle T .

When passing to the noncommutative setting, a notion that arises is that of com-
pletely contractive and completely isometric maps. Let E be a subspace of a C∗ -
algebra B , and let Mn(E) be the space of n×n -matrices with entries in E and norm
induced by the one on Mn(B) . Then any linear map T from E to another C∗ -algebra
C induces a linear map T (n) : Mn(E) → Mn(C ) by letting

T (n)((ai j)) = (T (ai j)), (ai j) ∈ Mn(E).

The linear map T is called a contraction (resp. an isometry) if ‖T‖� 1 (resp. ‖T (a)‖=
‖a‖ for any a ∈ E ). It is called a complete contraction (resp. a complete isometry) if
T (n) is a contraction (resp. an isometry) for all n ∈ N . Clearly a ∗ -homomorphism
between C∗ -algebras is completely contractive.

The following noncommutative generalization of the Shilov boundary was given
by Arveson in [1].

DEFINITION 4.1. Let A be a subspace of a C∗ -algebra B such that A contains
the identity of B and generates B as a C∗ -algebra. A closed ideal J in B is called
a boundary ideal for A if the canonical quotient map jq : B → B/J is a complete
isometry when restricted to A . A boundary ideal is called the Shilov boundary for A
if it contains every other boundary ideal.

It is clear from the definition that if the Shilov boundary exists, then it is unique,
and it was shown by M. Hamana in [6] that the Shilov boundary exists for any A sat-
isfying the conditions of the above definition. It is not difficult to see that this definition
is equivalent to the definition of the Shilov boundary given above in the commutative
case, i.e., when B = C(X) .
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EXAMPLE 4.2. The ideal J = { f ∈C(D) : f |T = 0} is the Shilov boundary for
A(D) .

EXAMPLE 4.3. In [10], the authors considered a q -analog C(D2)q (resp. A(D2)q )
of the C∗ -algebra of continuous functions (resp. subalgebra of holomorphic functions)
on the closed unit ball of complex 2×2 matrices D2 = {Z ∈Mat2 : Z∗Z � I} . The for-
mer was defined as the universal enveloping C∗ -algebra of Pol(Mat2)q , a q -analog of
the ∗ -algebra of polynomials on D2 . It was proven that the ideal in C(D2)q generated
by

2

∑
j=1

q4−α−β zα
j (zβ

j )
∗ − δ αβ , α,β = 1,2,

is the Shilov boundary for A(D2)q .

Let J be the ∗ -ideal of Pol(Matsym
2 )q generated by

2

∑
k=1

q4−i− jzikz
∗
jk − δi j, i, j = 1,2,

and let J be the closed ideal generated by the image of J in C(Dsym
2 )q . We shall

refer to the quotient C(S(Dsym
2 ))q = C(Dsym

2 )q/J as a q -analog of the C∗ -algebra of
continuous functions on the Shilov boundary of D

sym
2 . The canonical quotient map jq :

C(Dsym
2 )q →C(S(Dsym

2 ))q is a q -analog of the restriction map that sends a continuous
function on D

sym
2 to its restriction to the Shilov boundary S(Dsym

2 ) = {Z ∈ Matsym
2 :

Z∗Z = I} . The aim of this section is to prove that J is the Shilov boundary for
A(Dsym

2 )q .
From the above discussion of representations of Pol(Matsym

2 )q , we have the fol-
lowing result on which representations annihilate J , whose proof is a straightforward
verification.

LEMMA 4.4. The representations ωϕ and θϕ1,ϕ2 , ϕ ,ϕ1,ϕ2 ∈ [0,2π) , are the
only, up to unitary equivalence, irreducible representations of Pol(Matsym

2 )q that anni-
hilate J . Moreover, any representation (χϕ1,ϕ2 ⊗π0)◦D , ϕ1,ϕ2 ∈ [0,2π) , annihilates
J .

THEOREM 4.5. The ideal J is a boundary ideal for A(Dsym
2 )q .

Proof. By Lemma 4.4, any representation (χϕ1,ϕ2 ⊗π0)◦D , ϕ1,ϕ2 ∈ [0,2π) , an-
nihilates J . Thus we have a family of ∗ -homomorphisms

C(S(Dsym
2 ))q −→C∗((χϕ1,ϕ2 ⊗π0)◦D(Pol(Matsym

2 )q))

given by b+J �→ (χϕ1,ϕ2 ⊗π0)◦D(b) , and consequently

sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗π0)◦D(bi j))‖ � ‖(bi j +J )‖
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for all (bi j) ∈ Mn(C(Dsym
2 )q) . Since the quotient map jq : C(Dsym

2 )q →C(S(Dsym
2 ))q is

a ∗ -homomorphism, jq and consequently jq|A(Dsym
2 )q is a complete contraction. It is

therefore sufficient to prove that

‖(ai j)‖ = ‖(πF(ai j))‖ � sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗π0)◦D(ai j))‖

for all (ai j) ∈ Mn(A(Dsym
2 )q) .

We note that the operator C4S is a contraction on H = �2(Z�0) . By Sz.-Nagy’s
dilation theorem (see e.g. [9, Theorem 1.1]), there exists a unitary operator U on a
Hilbert space K containing H as a subspace such that (C4S)n = PHUn|H for all n � 0.
Consider the map Ψ into B(H⊗2 ⊗K) defined on the generators of Pol(Matsym

2 )q by

Ψ(z11) = I⊗D2⊗U −q−1S∗C4 ⊗C2SC2S⊗ I

Ψ(z21) = D2⊗C2S⊗ I

Ψ(z22) = C4S⊗ I⊗ I.

It is readily verified that this map extends uniquely to a representation of Pol(Matsym
2 )q

on H⊗2⊗K . By the spectral theorem, Ψ can be written as a direct integral representa-
tion of the field of representations {τϕ : ϕ ∈ [0,2π)} , i.e.,

Ψ =
∫ ⊕

[0,2π)
τϕ ⊗ Iϕ dμ(ϕ).

For ξ ∈ H⊗2⊗K , we have

‖Ψ(b)ξ‖2 =
∫ 2π

0
‖τϕ ⊗ Iϕ(b)ξ (ϕ)‖2 dμ(ϕ) � sup

ϕ∈[0,2π)
‖τϕ (b)‖2‖ξ‖2.

Thus ‖Ψ(b)‖ � supϕ∈[0,2π)‖τϕ(b)‖ for all b ∈C(Dsym
2 )q , and since Ψ induces a rep-

resentation on Mn(C(Dsym
2 )q) , similar arguments show that

‖(Ψ(bi j))‖ � sup
ϕ∈[0,2π)

‖(τϕ (bi j))‖

for all (bi j) ∈ Mn(C(Dsym
2 )q) . Since πF(a) = (I⊗ I⊗PH)Ψ(a)|H⊗3 , we get

‖(πF(ai j))‖ � sup
ϕ∈[0,2π)

‖(τϕ(ai j))‖ (11)

for all (ai j) ∈ Mn(A(Dsym
2 )q) .

Our next step is to show that, for all ϕ ∈ [0,2π) ,

‖(τϕ(ai j))‖ � sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗π0)◦D(ai j))‖
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for all (ai j) ∈ Mn(A(Dsym
2 )q) . Similar to the previous step, we consider the map Ψϕ

into B(K⊗H) defined on the generators of Pol(Matsym
2 )q by

Ψϕ(z11) = q−1U ⊗S∗C2S
∗C2 + eiϕI⊗D2

Ψϕ(z21) = −q−1U ⊗S∗C2D+ eiϕI⊗C2SD

Ψϕ(z22) = qU ⊗D2 + eiϕI⊗C2SC2S.

It is readily verified that Ψϕ extends to a representation of C(Dsym
2 )q on K⊗H . By (10)

and the spectral theorem, Ψϕ can be written as a direct integral representation of the
field of representations {(χϕ1,ϕ ⊗π0)◦D : ϕ1 ∈ [0,2π)} , i.e.,

Ψϕ =
∫ ⊕

ϕ1∈[0,2π)
(χϕ1,ϕ ⊗π0)◦D ⊗ Iϕ1 dμ(ϕ1).

For ξ ∈ K⊗H , we have

‖Ψϕ(b)ξ‖2 =
∫ 2π

0
‖(χϕ1,ϕ ⊗π0)◦D ⊗ Iϕ1(b)ξ (ϕ1)‖2 dμ(ϕ1)

� sup
ϕ1∈[0,2π)

‖(χϕ1,ϕ ⊗π0)◦D(b)‖2
∫ 2π

0
‖ξ (ϕ1)‖2 dμ(ϕ1)

= sup
ϕ1∈[0,2π)

‖(χϕ1,ϕ ⊗π0)◦D(b)‖2‖ξ‖2.

Thus
‖Ψϕ(b)‖ � sup

ϕ1∈[0,2π)
‖(χϕ1,ϕ ⊗π0)◦D(b)‖

for all b ∈ C(Dsym
2 )q . Since Ψϕ induces a representation on Mn(C(Dsym

2 )q) , similar
arguments show that

‖(Ψϕ(bi j))‖ � sup
ϕ1∈[0,2π)

‖((χϕ1,ϕ ⊗π0)◦D(bi j))‖

for all (bi j) ∈ Mn(C(Dsym
2 )q) . Since

(Fϕ ⊗π0)◦D(a) = (PH ⊗ I)Ψϕ(a)|H⊗2

and
‖τϕ(a)‖ = ‖(Fϕ ⊗π0)◦D(a)‖

for all a ∈ A(Dsym
2 )q , we have

‖τϕ (a)‖ � ‖Ψϕ(a)‖ � sup
ϕ1,ϕ2∈[0,2π)

‖(χϕ1,ϕ2 ⊗π0)◦D(a)‖.

By a similar argument, we have

‖(τϕ(ai j))‖ � sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗π0)◦D(ai j))‖ (12)

for all (ai j) ∈ Mn(A(Dsym
2 )q) . By combining the inequalities (11) and (12), we get the

desired statement. �
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LEMMA 4.6. If π is a representation of Pol(Matsym
2 )q that annihilates J , then

‖π(x)‖ � sup
ϕ∈[0,2π)

‖ωϕ(x)‖

for all x ∈ Pol(Matsym
2 )q .

Proof. As θϕ1,ϕ2 and ωϕ , ϕ ,ϕ1,ϕ2 ∈ [0,2π) are the only irreducible representa-
tions of Pol(Matsym

2 )q that annihilate J it is sufficient to prove that

|θϕ1,ϕ2(x)| � sup
ϕ∈[0,2π)

‖ωϕ(x)‖

for all x ∈ Pol(Matsym
2 )q and ϕ1,ϕ2 ∈ [0,2π) . Recall that C∗(ωϕ(Pol(Matsym

2 )q)) is
a subalgebra of C∗(S) and if Θϕ2 : C∗(S) → C is the ∗ -homomorphism given by
Θϕ2(S) = eiϕ2 , then it is readily verified that Θϕ2 induces a ∗ -homomorphism

C∗(ω(ϕ1+ϕ2+π)/2(Pol(Matsym
2 )q)) −→C∗(θϕ1,ϕ2(Pol(Matsym

2 )q)),

where each generator ω(ϕ1+ϕ2+π)/2(zi j) is mapped to θϕ1,ϕ2(zi j) . Thus

|θϕ1,ϕ2(x)| � ‖ω(ϕ1+ϕ2+π)/2(x)‖ � sup
ϕ∈[0,2π)

‖ωϕ(x)‖

for all x ∈ Pol(Matsym
2 )q and ϕ1,ϕ2 ∈ [0,2π) , which proves the lemma. �

THEOREM 4.7. The ideal J contains all other boundary ideals.

Proof. Let I be a boundary ideal such that I ⊃ J , and let iq and jq ,

iq : C(Dsym
2 )q −→C(Dsym

2 )q/I

jq : C(Dsym
2 )q −→C(S(Dsym

2 ))q,

be the canonical quotient maps. If

K =
{

ϕ ∈ [0,2π) : ωϕ(I ) = 0
}

is nonempty, then I ⊂ ∩ϕ∈K kerωϕ , and hence I = J if

⋂
ϕ∈K

kerωϕ ⊂ J .

We claim that it is sufficient to prove that K is dense in [0,2π ] . Indeed, suppose that x
lies in kerωϕ for all ϕ ∈ K . If K = [0,2π ] , it follows by Lemma 4.6 that jq(x) = 0,
i.e., x ∈ J .

Since iq and jq are isometries when restricted to A(Dsym
2 )q , we have

‖zi j + eiθ +J ‖ = ‖zi j + eiθ‖ = ‖zi j + eiθ +I ‖ (13)
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for any θ ∈ [0,2π) . Since ωϕ and θϕ1,ϕ2 ,ϕ ,ϕ1,ϕ2 ∈ [0,2π) , are the only, up to unitary
equivalence, irreducible representations of Pol(Matsym

2 )q that annihilate J , Lemma 4.6
gives

‖z21 + eiθ +J ‖ = sup
ϕ∈[0,2π)

‖ωϕ(z21)+ eiθ‖ = sup
{
|ζ + eiθ | : ζ ∈

⋃
k�0

q2k
T

}
= 2.

(14)
If π is an irreducible representation of C(Dsym

2 )q/I which does not vanish on z21+I ,
then π ◦ iq is an irreducible representation of C(Dsym

2 )q which does not vanish on z21 .
Since π ◦ iq(J ) = 0, π ◦ iq is unitary equivalent to ωϕ for some ϕ ∈ K . Thus

‖z21 + eiθ +I ‖ = sup
π

‖π ◦ iq(z21)+ eiθ‖ = sup
ϕ∈K

‖ωϕ(z21)+ eiθ‖

= sup
{
|ζ + eiθ | : ζ ∈

⋃
k�0

q2kXK

}
,

where π ranges over the irreducible representations of C(Dsym
2 )q/I and XK = {eiϕ :

ϕ ∈ K} ⊂ T . From (13) and (14) we conclude that

sup
{
|ζ + eiθ | : ζ ∈

⋃
k�0

q2kXK

}
= 2

for any θ ∈ [0,2π) , and hence XK must be dense in T , which proves the theorem. �

5. Regular functions on the Shilov boundary

In [4], a ∗ -algebra C[S(Dsym
n )]q referred to as the algebra of regular functions

on the Shilov boundary on the quantum unit ball in the space of symmetric complex
n× n matrices was defined as the localization of C[Matsym

n ]q with respect to the Ore
system (detsym

q z)Z�0 , where detsym
q z is a q -analog of the determinant of the symmetric

matrix z = (zi j) corresponding to the generators of C[Matsym
n ]q (see [4] for definitions

of C[Matsym
n ]q and detsym

q z). In this section we show that for our particular case, n = 2,
this agrees with our previous result.

In our case of C[S(Dsym
2 )]q the quantum determinant takes the form

detsym
q z = z22z11−q−1z2

21,

and the involution is given by

z∗11 = q−2z22(detsym
q z)−1

z∗21 = −q−1z21(detsym
q z)−1

z∗22 = z11(detsym
q z)−1.

THEOREM 5.1. The map k : zi j + J �→ zi j ∈ C[S(Dsym
2 )]q , i, j = 1,2 , can be

extended to a ∗ -isomorphism of the ∗ -subalgebra of C(S(Dsym
2 ))q generated by zi j +

J , i, j = 1,2 , onto C[S(Dsym
2 )]q .
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Proof. It is straightforward to verify that an extension of k to polynomials in
zi j + J , i, j = 1,2, is well-defined. We construct an inverse to k as follows. Since
π((detsym

q z)∗detsym
q z) = q−2 for all representations of Pol(Matsym

2 )q that annihilate J ,
it follows that (detsym

q z)∗detsym
q z = detsym

q z(detsym
q z)∗ = q−2 in C(S(Dsym

2 ))q . More-
over, each z∗i j in C(S(Dsym

2 ))q has the same expression in terms of the generators and
(detsym

q z)−1 as in C[S(Dsym
2 )]q . Since C[S(Dsym

2 )]q is generated by zi j , i, j = 1,2, and
(detsym

q z)−1 , we have a ∗ -homomorphism k′ : C[S(Dsym
2 )]q → C(S(Dsym

2 ))q given by
zi j �→ zi j +J and (detsym

q z)−1 �→ q2(detsym
q z)∗+J . It is easily verified that k and k′

are mutually inverse to each other. �
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