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On Possibilities of Using Smart Meters for Compulsory Load Shedding 

Supported by Load Forecasting 

YASIR ARAFAT 

Department of Electrical Engineering  

Chalmers University of Technology 

Abstract 

The smart meter rollout is progressing in several parts of the world with 

early adoption in some parts, e.g., Europe. Remote ON/OFF control switch of 

the smart meter allows distribution system operators to switch the smart meter 

of any customer remotely. This thesis investigated the possibility of using 

ON/OFF control switch of the smart meters for compulsory load shedding 

supported by load forecasting.  

Acute situations, e.g., critical power shortage could require today 

compulsory load shedding as a last resort if the power reserve becomes 

insufficient. The compulsory load shedding is typically done from medium 

voltage substation level, and in that case, all customers including emergency 

service providers located under the affected substation would lose power. By 

using the remote ON/OFF control switch, it is possible to exclude the 

vulnerable groups of customers such as elderly and also socially critical 

customers such as clinics, pharmacies, and fire stations.  

Three field tests have been performed on small-scale load shedding using 

the smart meters. The results have shown that the smart meters’ switching has 

no or negligible impact on the power quality at the low voltage level of the 

grid. Moreover, existing challenges in the present smart metering system, e.g., 

the reliability of confirmation report on smart meters’ switch status, are 

identified. Thus, demands that need to be put on the future smart metering 

system are identified. 

This thesis developed large-scale smart meters’ switching model based on 

the field tests’ results. Moreover, load forecasting models are developed using 

Artificial Neural Network method to forecast load at the individual customer 

level and also at low aggregation levels, e.g., low voltage substation level.  

The results from aggregated load forecasting models, e.g., at an hour with 

high load condition, have shown that the total load in, e.g., a 10kV residential 

grid can be estimated with an error of around ± 3% by using up to previous 

day’s hourly smart meter data as input predictor. Moreover, the results from 

a simulated example of selecting low voltage areas for load shedding have 

shown that, compared to load estimation from average load values, 

aggregated load forecasting models could help to save around 25% of number 

of customers from unnecessary load shedding. 
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The simulation results on voltage calculation at each of the low voltage 

substation during and after the load shedding show that the voltage calculation 

using individual customers’ forecasted load values gives a negligible error 

(around ± 0.001 per unit), compared to voltage calculation using actual load 

values.   

The smart meters can be used for the compulsory load shedding for 

excluding prioritized customers. However, assurance of accurate status 

update report of smart meters’ switch and consideration of delays in smart 

meters’ disconnection are required to perform compulsory load shedding 

within the allowable time. Moreover, the assurance of either more extended 

battery backup time for smart meters and meter data collection units, or quick 

communication network buildup capability, are recommended to enable rapid 

reconnection of smart meters if power system fails after compulsory load 

shedding.    

 

Index Terms: Electrical distribution system, Load forecasting, Compulsory 

load shedding, Power quality, Remote switching, Smart meter. 
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Chapter 1                              
Introduction 
 

This chapter provides an overview of the background and motivations of the 

thesis. The potential application of smart meters for compulsory load 

shedding and the possible use of smart meter data for load forecasting at low 

aggregation level are discussed. The main contributions of the thesis and the 

list of resulting scientific publications are provided. 

1.1  Background and Motivation 

Smart metering is becoming a central part of distribution grid 

management, e.g., maintaining acceptable voltage levels with the help of 

voltage monitoring down to customer level. The Smart Metering System 

(SMS) will be able to provide a number of new functionalities if they have 

the right specifications. Many Distribution System Operators (DSOs), e.g., in 

Sweden, who installed Smart Meters (SMs) around ten years ago, are in the 

process of preparing for the next generation of SMs. According to [1], the 

average asset life of SM mentioned is around 15 years. Many of the existing 

SMs are therefore expected to have reached their useful economic lives within 

the next few years. Moreover, the Swedish Energy Markets Inspectorate (Ei) 

set a deadline to meet the proposed requirements by 1st January 2025 [2].The 

electric power system is also expected to undergo some changes, both in 

electricity production, e.g., higher share of intermittent generation 

(photovoltaics panels and wind farms) by 2030 and consumption, e.g., higher 

share of electric vehicles. Also, there has been a rapid technological 

development in the field of smart metering and Smart Grids (SGs) which has 

led to increased functionalities as well as new uses of SMs. It is therefore 

important that the DSOs need to know which specifications for the next 

generation of SMs they should have. This thesis attempts to address this need 

by the DSOs.  

The SMs can provide not only Energy Consumption Data (ECD) and 

voltage data from the customer level but also functionalities such as 



2 

 

on-demand reading, remote switching, as well as remote SM management. 

The historical data from the SM can be used for the DSOs’ short-term 

planning, e.g., anticipating network congestion as well as, long-term 

planning, e.g., anticipating load growth. This thesis attempts to develop Load 

Forecasting (LF) models using SMs data to support the operation of 

distribution system. However, the load types, generations, customers’ 

behaviours, etc., are changing rapidly with time, and therefore the 

functionalities of the SMs also need to be adjusted to provide best possible 

services to the customers and to increase the efficiency and reliability of the 

distribution system operation.  

1.2 Investigated Potential Applications of Smart 

Meters (SMs) 

The potential application of SMs for Compulsory Load Shedding (CLS) 

and the possible use of SM data for developing LF models are discussed in 

this section.  

1.2.1 Potential Application of Smart Meters for 

Compulsory Load Shedding (CLS) 

In many European countries, new units of wind power and solar power are 

installed and connected to the grid to meet the target set by the European 

Union (EU), to produce 20% of EU energy from renewable energy sources 

[3]. Therefore, the share of fluctuating infeed of the total electricity generation 

is substantial in many European countries today, due to fluctuating nature of 

wind power and solar power. The load is also predicted to fluctuate more in 

the future, due to the charging of electric vehicles and more electronic loads. 

These changes in the grid pose new challenges for the Transmission System 

Operators (TSO) [4]. In general, four operational states of the power system 

are used to describe the operational condition of the power system, i.e., 

Normal, Alert, Disturbed and Emergency states. Figure 1.1 shows the typical 

operational states of a power system [5]. It is noted here that the network 

collapse is not specified in Figure 1.1.  

Normal state refers to a state when all consumption requirements are being 

met; frequency, voltage, and transmission lie within their limits; and also 

reserve requirements are being met. The difference between the normal state 

and the alert state is that the reserve requirements are not fulfilled and hence 

the faults in network components or in production components will lead to 

disturbed state or emergency state. From the alert state, the normal state can 
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be achieved in 15 minutes. The difference between the alert state and the 

disturbed state is that the frequency, voltage, and transmission are not within 

acceptable limits, and also the normal state cannot be achieved in 15 minutes. 

When a system is operating at disturbed state, an additional fault could lead 

the system from disturbed state to emergency state. The emergency state 

refers to an operational state when the CLS has been applied and that 

production shedding and network divisions may occur. Dimensioning fault 

refers to the faults which entail the greatest impact on the power system due 

to the loss of individual principal components such as a line, a bus bar, a 

transformer, a production unit, etc. Faults in the power system are called 

serious disturbance when the fault is too large, e.g., a combination of two 

faults caused by the same event or multiple faults.  Restoration refers to the 

transition between operational states due to control actions.    

 

Figure 1.1: Operational states of a power system (network collapse is not specified 

in the figure) [5] 

Among the four operational states, the CLS could be ordered to perform 

manually under the alert state if necessary. The CLS can be useful to maintain 

the system security so that dimensioning fault does not lead to extensive 

follow-on disturbances. The primary goal of the CLS is to prevent a possible 

collapse in a part or the entire synchronized system and faster return to a 

Normal State

Disturbed State Emergency State
Restoration

Additional Fault

Load shedding has taken place

15 min

Insufficient reserves after 15 min 
Transmission limits exceeded

Resto
ra

tio
n

Serious 

disturbance
New Reserve 

activated/transmission 
limits maintained/
adjusted in 15 min

Dimensioning fault (n-1)

Alert State
Max. 15 minutes

(Compulsory Load shedding ordered by the 
TSO in critical power shortage situation)



4 

 

normal state of electricity supply. The secondary goal of the CLS is to 

minimize the amount of additional load shedding to save the entire system [6].  

Load shedding can be done manually and automatically. During 

exceptionally high consumption period, e.g., due to very cold weather, acute 

situations could require manual load shedding. Examples of acute situations 

are critical power shortages or power shortages resulting from disturbances in 

power systems, or bottleneck situations, i.e., a capacity limitation on the 

transmission network. The CLS which is manual is carried out as a last resort 

when other measures are insufficient, i.e., insufficient manual active reserve 

[5],[6]. Automatic load shedding takes place when time does not allow to 

perform manual load shedding since the frequency of the network drops 

rapidly, e.g., due to a fault that requires several large production units to be 

disconnected. In Sweden, automatic load shedding is triggered when the 

frequency drops below 48.8 Hz. However, electric boilers and heat pumps, 

with a minimum of 5 MW power, are disconnected at 49.4 Hz [7].  

The CLS is typically ordered during critical power shortage and during 

regional power shortages caused by bottlenecks or grid disturbances [6]. 

Critical power shortage refers to the hour of operation when consumption has 

to be reduced or disconnected. Preparations for manual load shedding will be 

ordered in the deficit areas when a critical power shortage is approaching, and 

the load shedding needs to be done within 15 minutes. Similarly, preparations 

for manual load shedding within 15 minutes will be ordered due to regional 

power shortages caused by bottlenecks or grid disturbances.  

According to [8], each TSO shall be entitled to define an amount of load 

to be manually disconnected based on the frequency condition, when 

necessary to prevent any propagation or worsening of an emergency situation. 

The TSO shall notify DSOs of the amount of load to be disconnected from 

their distribution systems. Each DSO shall disconnect the notified amount of 

load, within the specified time.  

Today, the CLS would be done from the Medium Voltage (MV) substation 

level, and in that case, all customers under the affected substation would lose 

power. This type of load shedding could disconnect power supply to the 

emergency service providers located in the affected area. However, it is 

crucial for a society to exclude emergency service providers such as clinics 

from load shedding.  

The SMs are typically equipped with a remotely accessible switch which 

gives a unique opportunity to select individual customers for switching. 

Therefore, with the SMs, it is possible to perform the CLS at the customers’ 
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level by excluding customers on a pre-defined prioritized list. A list of 

prioritized customers is needed to be prepared beforehand by the authorities, 

e.g., county administrative boards and municipalities together with DSOs 

which can be used in critical situations to exclude the vulnerable customers 

such as elderly and also the critical customers such as clinics, pharmacy and 

fire stations. Moreover, this process can help to keep the communication 

network of the SMs alive, which is crucial to check grid’s condition remotely 

at local level and also to reconnect the SMs after the critical situation is over. 

Pre-selection of load shedding could be made to ensure emergency 

services always available. Each customer can be predefined by a different 

priority value. From the pre-prepared prioritized customers’ group, the DSOs 

can select which group(s) of customers need to be disconnected based on the 

load shedding request from the TSO. The SMs also allow the DSOs to 

perform gradual load shedding rather than instant load shedding which is the 

case for feeder disconnection from MV levels. The reconnection of each 

customer can also be predefined by the DSO. When the critical situation is 

over, the disconnected customers can be gradually reconnected to the grid 

using the SMs. 

This thesis investigated the use of the SMs for the CLS. Large-scale load 

shedding scenarios are simulated with the developed models that are based on 

the field tests’ results on small-scale load shedding. Small-scale field tests 

refer to the tests performed on 12, 37 and 86 customers, and large-scale load 

shedding scenario refers to the model developed considering 2000 residential 

customers. 

1.2.2 Possible Use of Smart Meter Data for Load 

Forecasting (LF) at Low Aggregation Level  

The development of the SMs has resulted in a vast increase in the data 

volume as well as types of data measured and collected. The SM data can help 

to increase the accuracy of many applications, e.g., distribution system state 

estimation, load modelling, and overloading detection of grid’s component. 

Unlike traditional aggregated system-level LF, the availability of SM data 

introduces a fresh perspective to the way LF can be made [9],[10]. The SM 

data can help to forecast load at lower aggregation level, ranging from 

substation level, feeder level, or even down to the individual customer level 

[11],[12], [13], which used to be difficult before the deployment of the SMs. 

The LF utilizing SM data is, however, still limited due to the lack of previous 

household level SM data [14],[15] since the SM rollout is not in progress in 
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all countries yet. Moreover, there are some countries that are deploying the 

SMs, have not completed the rollout in the whole country yet.  

According to the literature on LF at LALs, more frequent ECD, e.g., 5 to 

10 mins data can help to get more accurate load forecast compared to the one 

with less frequent data, e.g., hourly data. However, typically hourly or half-

hourly ECD is available from the SMs since frequent data requires additional 

cost for additional storage capacity and data communication capability. 

Hence, it could be a challenge to get more frequent data for developing LF 

models.  

Forecasting the distribution-level load, e.g., Low Voltage (LV) substation 

level is much more difficult than forecasting a system-level load [16]. 

However, the problem of LF at the low aggregate level, e.g., at LV substation 

level or feeder level has been studied in some literature, but very few studies 

have been conducted regarding individual customer’s consumption prediction 

[17],[18]. 

1.2.2.1  Potential Application of LF 

In case of using the SMs for CLS, the forecasted load at the hour of 

operation could support the CLS which is the primary focus of this thesis. 

Aggregated LF models at LV substation level could help the DSOs to more 

accurately estimate the loads in selected areas for the CLS. Therefore, the 

DSOs can minimize the unnecessary load shedding while fulfilling the load 

shedding request from the TSO. 

Moreover, as a spin-off, this thesis investigated the LF over a short time 

horizon, e.g., few minutes to hour-ahead. According to the studied literature, 

the forecasted load over a short time horizon can benefit the utility service 

providers, e.g., aggregators, customers, as well as the system as a whole in 

the following ways:  

 Improve scheduling and dispatching of storage devices to reduce peak 

load demands [19].  

 Help the utility get early warnings about, e.g., i) how the load demand 

is changing; ii) how often grid constraints (e.g., cable overloading) are 

violated; iii) which practical solutions are available to solve the 

problems [20]. 

 Improve control actions such as switching on/off the Demand 

Response (DR) appliances to balance the electricity supply and 

demand. Home Energy Management Systems (HEMS) can also be 

optimized by scheduling household smart device based on the 
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forecasted load [21]. The utility service providers who wish to apply 

real-time load shifting could also benefit from the LF at the individual 

level [22]. 

 Help to minimize imbalance costs to energy retailers. The LF at 

individual level could also help the customers to plan accordingly in 

case of real-time and dynamic pricing [17]. 

The LF over a short time horizon can also help the customers with prepaid 

electricity programs which have become more popular in recent years in 

several countries (e.g., Bangladesh, India, and Tanzania). The customers 

under these programs need to pay for energy usage in advance, having a 

deposit account and getting the daily energy usage cost debited from the 

account [23],[27]. Moreover, the LF can provide the customers an estimation 

of when their credit is going to finish. 

1.2.2.2  Method Chosen for LF based on  Literature 

The possibility of improving the LF by using the statistical relations 

between ECD series is addressed in [24] both at the household level and also 

at the district scales, i.e., hundreds of houses. The paper showed that energy 

consumption is highly correlated to the energy consumption of up to three 

hours previously in the case of one hour-ahead prediction.  

A hybrid method which is a combination of Artificial Neural Network 

(ANN), fuzzy logic, Auto-Regressive Integrated Moving Average and 

wavelet neural networks is examined in [25] for day-ahead load forecast using 

SM data for a small community, i.e., 90 houses and 230 houses. The paper 

showed that ANN performs very well in estimating the load peaks, fuzzy logic 

performs well during night time close to the morning time peak, where the 

user behaviour tends to be more routinized, and the wavelet neural networks 

help in eliminating the noise of individual behaviour in the cluster.  

Extensive error analyses are performed in [21] on the ANN model to 

investigate the suitability of the model for day-ahead prediction. The paper 

showed that ANN method is suitable for forecasts of residential loads.  

The paper [13] showed that at the local level, e.g., LV feeders, the 

correlations between load demand and the influencing variables become 

much weaker and hence significant decrease in LF accuracy is observed with 

a move towards lower levels of load demand aggregation. A sensor-based 

approach is discussed in [26] to forecast multi-family building’s energy 
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consumption, using support vector regression technique. The paper showed 

that most effective models could be built with hourly consumption data.  

The use of ANN for the load forecasts at MV/LV substations is addressed 

in [28] with a focus on the methodology of ANN model design. The paper 

showed that the ANN-based models outperform the time series models and 

also showed that the ANN models are very efficient in mapping complex 

relationships between inputs and outputs.   

This thesis chose ANN method for load forecast since the method is shown 

to be effective and efficient to forecast load at Low Aggregation Level (LAL) 

using SM data.   

1.3 Regulations on the SMs’ Functional Requirements 

Different national and international authorities proposed functional 

requirements of SMs to cope with future grid conditions, e.g., enabling local 

generation and DR, home energy management, etc. The proposed 

functionalities are discussed and mapped in Section 3.5.  

1.3.1 European Guidelines and Proposals on Functional 

Requirements   

In February 2011, the European Regulators’ Group for Electricity and Gas 

(ERGEG) provided a set of sixteen requirements as guidelines of good 

practice on regulatory aspects of smart metering for electricity [3], where 

three of the guidelines are regarding the rollout of SMs. In December 2012, 

CEN/CENELEC/ETSI Smart Meters Co-ordination Group (SMCG) had 

proposed a set of 6 functionalities relevant for communications under the 

mandate M/441 [29].  

In [30], the European Commission (EC) defined a SMS in terms of 13 key 

functionalities and using a questionnaire asked the EU member states whether 

these functionalities have been considered or not. Based on the results, the EC 

has included ten common minimum functional requirements for electricity 

SMS in Recommendation 2012/148/EU [31]. The ten minimum 

functionalities are also discussed in a report EC published in 2016 [32], under 

a cyber-security and privacy perspective of the functionalities.  

On November 2016, the EC published proposals which are called “Clean 

energy for all Europeans,” and it includes a proposal for a new electricity 

market directive in 2016 requiring the features of SMs [33]. Moreover, there 

is an extensive effort in Europe to develop standards for the SMs. E.g., 
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European Smart Grid Task Force Expert Group 1 published a report in August 

2016 describing how the EU Member States and regulators can ensure the 

interoperability between different parts of the SG and SMs. The 

interoperability is needed to promote demand flexibility [34].  

1.3.2  Sweden’s Proposals on Functional Requirements  

The Swedish Energy Markets Inspectorate (Ei) first proposed functional 

requirements for future electricity meter in 2015, where Ei proposed eight 

functional requirements [35]. The Ei’s proposal on minimum functionalities 

promotes reliable and efficient grid management, greater integration of local-

generation, and wider opportunity for demand flexibility and also easier 

access for the LV customers to be active in the market. However, the Ei has 

excluded one of the eight functional requirements in the draft proposal that 

the Ei recently has made for constitutional amendments required to regulate 

functional requirements for electricity meters [2]. The function of alarm at a 

neutral error has been removed due to the lack of a standardized method to 

measure this fault and also due to the uncertainties present in the measurement 

methods used today. 

The seven minimum functional requirements proposed by Ei covers all LV 

(< 1 kV) customers. The customers with a fuse rating of up to 63A, and with 

direct measurements, are proposed to meet the requirements by 1st of January 

2025, e.g., household customers.  There are over five million SMs in this 

category in Sweden.  

The LV customers with 1) fuse rating of above 63A (direct measurements 

or measurements with only current transformer) and 2) with a fuse rating of 

up to 63A (measurements with only current transformer), are proposed to 

meet the requirements by 1st of January 2030. The examples of these type of 

customers are property owners, apartment blocks, or smaller industries. The 

DSOs should also meet the requirements for these customers from 1st of 

January 2025 if customers request it. There are around 0.12 million SMs in 

this category in Sweden. However, the customers of this second category do 

not need to meet the requirement of being able to connect or disconnect the 

SMs remotely.  

1.3.3  Identified Gaps in Proposed Functionalities  

The reports mentioned above proposed few functional requirements, e.g., 

frequent readings from the SMs mentioned in [31], without explicitly 
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specifying any time resolution. The requirement of the SM data granularity 

can vary depending on the application of the data, e.g., LF, load scheduling, 

etc. The accuracies of load forecasts can be improved by using the latest 

energy consumption value from the SMs and hence this type of application 

could require very frequent readings, e.g., every hour. The time resolution at 

which the data needs to be recorded is also not mentioned explicitly in [31]. 

However, in [2], third-party permissions to the proposed near real-time SM 

data are suggested to be supported for different energy-saving applications.  

Moreover, the reports on the functional requirements from EC addressed 

about the recording of ECD by only mentioning that it needs to be frequent 

enough to allow the information to be used for grid planning. However, how 

frequent the data need to be saved can depend on the application, e.g., LF to 

support the CLS or distribution system congestion prediction.     

Also, the reports from EC and Ei addressed about the possibility of critical 

grid condition handling using SMs’ ON/OFF control switch but detail 

requirements on this functionality is not addressed, e.g., requirements on 

SMs’ switching time, and the necessity of reliable reports on SMs’ switch 

status, etc. 

Furthermore, the functionality regarding Power Quality (PQ) indices e.g., 

flicker, individual harmonics, and transient measurements are not explicitly 

addressed in the reports although the importance of the PQ monitoring is 

indicated to be increasing in future [30]. 

1.4 Objectives of the Thesis 

To address the challenges (which will be described in more details in 

Chapter 2) in using the present SMs for the CLS, the difficulties in forecasting 

loads at LAL, and the limitations in getting the high granularity SM data as 

well as the latest SM data for the LF, the objectives of the thesis are to: 

1) Identify the challenges and opportunities of using present SMS for 

compulsory large-scale load shedding considering the possible impacts of 

SMs’ switching on the voltage quality. 

2) Propose a method of CLS based on aggregated load forecasting at the 

hour of load shedding to reduce unnecessary amount of load shedding.  

3) Determine the smart meter data granularity and data availability 

requirement for load forecasting to support CLS.  
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4) Propose functional requirements for future SMS to enable the use of SMs 

for CLS based on the performance of the present SMS, simulation results 

on load shedding, and requirements from authorities.  

1.5 Main Contributions of the Thesis 

The following contributions have been made in the thesis: 

1) Three field tests performed on the SMs’ switching for three small 

groups of residential customers. The impacts of the SMs’ switching on the 

PQ, e.g., transients are analyzed from the tests’ results. The results show no 

impact on PQ due to SMs’ disconnection other than some transient events 

during SMs’ reconnection which are negligible. 

2) The possibilities and the challenges in using the SMs of the present 

SMS for large-scale CLS are identified, which can be used to propose 

functional requirements for the future SMS. 

3) The SMs’ switching model is developed, based on the results of the 

field tests, to simulate large-scale CLS with the SMs.  

4) Aggregated LF models are developed at LV substation levels of a 

10kV residential grid to investigate the support of forecasted aggregated loads 

in selecting groups of customers for the CLS. The benefit of using forecasted 

load values during the CLS is shown by comparing the results obtained by 

using forecasted load values with the results obtained by using estimated load 

values from average or maximum daily load profile.  

5) Individual LF models are developed for the two thousand customers 

in the investigated 10kV residential grid to study the support of forecasted 

individual loads in estimating the change in load at each load bus during and 

after the load shedding. The voltages at each load bus are then calculated 

using the change in load values in the load flow model. The accuracy of 

voltage calculation is verified by comparing voltage calculation from 

forecasted load value, with voltage calculation from actual load value.  

6) The possibility of using the typical hourly SM data for LF model 

development and using the historical SM data up to previous 24 hours as input 

predictor are studied considering the CLS application. The options are found 

as good enough to support the CLS. 

7) Recommendations are made on the functionality requirements of 

future SMS considering the application of SMs for the CLS, and accuracy 

improvement of LF at LAL.    
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1.6  Thesis Outline 

With the introduction of the thesis already given in this chapter, the rest of the 

thesis is organized as follows: 

 

 Chapter 2 presents the conceptual framework, which lays the foundation 

for the work in the thesis. 

 Chapter 3 provides an introduction to a SMS for electricity, and the 

functionalities of a SMS focusing on the SMs’ remote ON/OFF control.  

 Chapter 4 describes the field tests performed on multiple SMs’ 

switching in a real electrical distribution network. 

 Chapter 5 presents the results of the field tests concerning the 

performance of the existing SMS and the impacts of SMs’ switching on 

the PQ. 

 Chapter 6 provides results and analysis on factors influencing the 

accuracy of LF models, developed using ANN method. 

 Chapter 7  presents the developed model for load shedding with SMs’ 

switching (the switching model) which is integrated in a multi-time-steps 

load flow simulation model. The description of a real 10 kV residential 

distribution system which is used in a case study with the integrated 

model is provided. Moreover, the chapter presents the simulation results 

of the large-scale SMs’ switching model with variations in the number 

of SMs per Meter data Collection Unit (MCU) and the SMs’ switching 

time. 

 Chapter 8 presents and discusses the results of compulsory load 

shedding scenarios supported by load forecasting. The benefits of using 

pre-developed aggregated load forecasting models to minimize the 

unnecessary load shedding are demonstrated. The use of pre-developed 

individual load forecasting models to calculate, using the load flow 

model, the voltage values of the prioritized customers which remain 

connected after the compulsory load shedding are demonstrated. 

 Chapter 9 presents the main conclusions of the thesis and proposes 

potential ideas for future work. 
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Chapter 2                                  
Conceptual Framework 
 

This chapter presents the conceptual framework, which lays the foundation 

of the work in the thesis. This framework constitutes the potential use of smart 

meters for compulsory load shedding, use of smart meter data for load 

forecasting, relating load forecasting with compulsory load shedding, and 

identification of functional requirements for the future smart metering system. 

  

2.1 Use of SMs for Compulsory Load Shedding (CLS) 

The ten common minimum functionalities proposed by EC, include the 

essential elements that a SMS should have to benefit all stakeholders, i.e., the 

customer, the metering, and the DSO. The minimum functionalities include 

several aspects such as enabling smart metering in a secured and safe 

environment, commercial aspects of supply/load demand and the integration 

of distributed generation. One functionality requirement among the ten 

common minimum functional requirements is that the SM should allow 

remote ON/OFF control of the supply and/or power flow limitation. This 

functionality relates to both the demand side and the supply side. It can speed 

up processes such as when customers are moving home, the old supply can 

be disconnected, and the new supply can be enabled quickly and simply. 

Moreover, it can be used for handling technical grid emergencies. 

Most of the DSOs in Europe have installed remote ON/OFF control in the 

SM [36],[37]. The DSOs can switch the SM of any customer remotely when 

needed. Some DSOs in Sweden, e.g., Gothenburg Energy Network Company 

(GENAB) who have installed remote ON/OFF control are currently applying 

this technique for customers typically one by one when customers are 

changing addresses or when contracts are terminated or have defaulted on 

their payments. The ON/OFF control functionality of the SMs could be used 

to disconnect/connect selected customers at the LV level of the distribution 

system, thereby opening up new possibilities to balance electricity 

consumption and production in critical situations. The LV distribution system 

is the part of the electrical grid from the last substation to the customers. In 

Sweden, a three-phase connection with a voltage of 0.4 kV is usual in this part 

of the grid where most of the customers are residential, service and small 

industrial sectors.   
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2.1.1 Research Gaps in CLS using SMs  

Large-scale load shedding using SMs’ switching technique is a new 

concept in the field of CLS. How the technology has been functioning in 

practice has, however, not been fully investigated about multiple SMs’ 

switching. This thesis addresses the following challenges and gains the 

knowledge on how the SMs are to be used for the CLS at the customers’ level. 

The following research ideas with regards to using the SMs for the CLS have 

been identified:  

 Understanding on impacts of simultaneous multiple SMs’ switching 

on the PQ, e.g., voltage transient due to current transient. Knowledge 

on the propagation of voltage transient created due to a SMs’ 

switching and the impact of that voltage transient on the neighbors’ 

PQ, and also on the PQ at the LV substation level.  

 Knowledge of how the existing SMS works concerning small-scale 

simultaneous SMs’ switching. Understanding of the possibilities and 

limitations of the existing SMS regarding large-scale CLS.  

 Perception on the total load shedding time using the present SMs for 

large scale load shedding. 

 Knowledge of the functional requirements that need to be put on the 

future SMS which will be capable of performing large-scale CLS. 

2.1.2 Method used to meet the Research Gaps in CLS 

In this thesis, under voltage situation is considered as a critical grid 

situation and the load shedding is considered to be the only remaining solution 

to save the grid from the total collapse. The identified challenges on CLS are 

addressed, and the following contributions have been made: 

 The PQ indices are monitored and recorded in the installed five PQ 

meters during each of the field test which were located at the selected 

four customers’ site and also at the LV substation.   

 On-demand readings are collected from the selected SMs before, 

during and after the load shedding. The readings are compared with 

the PQ meter data to study e.g., the communication delays, recoded 

PQ events in the PQ meters, etc.   

 Real time status update of the SMs’ switch are collected during each 

of the test which shows the switching success or failure for the 

selected SMs. The switching performance of the present SMS is 

investigated and challenges are identified concerning the load 

shedding with the SMs.  
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 Total load shedding time is calculated by using the actual SMs’ 

switching time obtained from the field tests. The ways of load 

shedding time reduction are studied by simulating load shedding 

using shorter SMs’ switching times than the actual SMs’ switching 

time. Also total load shedding time is simulated by varying the 

number of SMs per MCU and along with the shorter switching time.  

 The regulations concerning the use of SMs for the CLS are studied, 

and the demands are identified that need to be put on the future SMS 

to perform the large-scale CLS with the SMs.   

2.2 Load Forecasting (LF) using Smart Meter Data 

In the field of electrical LF, most of the research has been done on large-

scale systems. Previous studies have shown that high precision, with Mean 

Absolute Percentage Error (MAPE) as low as around 2%, can be achieved on 

large-scale LF, e.g., at national and municipal level [38],[39],[40],[41]. 

However, load forecast at a local level, e.g., transformer level or feeder level 

recently emerged as a research interest [9],[10],[11],[12].  

2.2.1 Challenges and Applications of LF at a Local Level 

2.2.1.1  Challenges of LF at a Local Level  

Latest developments in the electrical grids have introduced recent concepts 

in the field of electric power engineering such as SG, Demand Side 

Management (DSM), Micro-Grid (MG), and large-scale integration of 

distributed energy resources. These concepts and availability of SM data have 

led to significant interest in applying LF at a local and disaggregated 

level [24]. 

Typically, LF for a large area is comparatively easy because the 

fluctuations and the noise in the individual houses may cancel out each other 

while taking the sum, and at the same time provide little chaotic curves in 

which trend and seasonality are easily identifiable [20],[42]. The LF is 

particularly more challenging if it is to be done at LAL, e.g., LV substation 

level than at high aggregation level, e.g., MV substation level or municipality 

level. Because, the load demands at LAL are more volatile [20],[43]. The LF 

for individual customers is known to be a much more difficult problem and 

has been shown to be prone to large errors [17]. It is difficult because of 

several factors, e.g., hourly energy consumption of individual customers is 

relatively smaller than the aggregated load at LAL, highly variable and deeply 

irregular as a result of natural human behaviour. 
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2.2.1.2  LF at Local Level to Support Compulsory Load Shedding 

The LF at local level i.e., at LV substation level and individual customer 

level can be used to support the CLS.  Today, the SMs can be used to perform 

the CLS by excluding the selected customers. However, the CLS would be 

done without approximately knowing the actual load at the time of 

disconnections and also the amount of load successfully disconnected. The 

LF for the pre-selected groups, e.g., residential customers with certain priority 

level could be helpful to determine approximately how many individual 

customers’ load need to be shed to fulfill the load shedding request from the 

TSO. The forecasted load values at the hour of load shedding can then be 

helpful to minimize unnecessary load shedding during the CLS. Because, 

instead of using estimated load values which requires high error margins, the 

DSOs could use much lower error margin while using forecasted load values. 

Moreover, the DSOs could fulfill the load shedding request more precisely 

than performing the load shedding without the LF. 

2.2.2 Research Gaps in LF 

Research gaps on LF using the SMs’ data can be divided according to 

those of LF at the individual customer level and those of LF at LAL, e.g., LV 

substation level.  

 

LF at Individual Customer Level:  

 
For LF at the individual customer level, it is essential to investigate how often the 

ECD need to be measured and recorded by the SMs due to the followings:  

• Lowering data granularity requires additional communication costs to 

handle the increased amount of data during collection.  

• Lowering data granularity would require additional costs of operation and 

maintenance. For storing more frequent data, the SMs must have sufficient 

storage capacity and increased data capacity is also needed for 

communication servers, databases, etc.  

• Capabilities of the communications networks and the Central System (CS) 

need to be increased as well.  
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LF at Low Aggregation Level: 

 
The following research questions with regards to LF at LAL have been 

identified and addressed in the thesis:  

• How is the accuracy level of LF dependent on types of residential 

customers, e.g., Villa or Apartment customers, for different load 

aggregation levels? 

• Which level of load aggregation level can be considered as the minimum 

aggregation level based on the accuracy requirement for different types of 

applications considering different types of residential customers? 

•  How significant the influence of latest ECD over different time periods on 

the accuracies of LF, concerning the CLS?  

• Can the aggregated LF models developed with hourly ECD support the CLS 

application? 

2.2.3 Method used to meet the Research Gaps in LF 

This thesis addresses the identified challenges on LF at the individual 

customer level and following method has been used to meet the research gaps: 

 The individual LF models are initially developed for 200 residential 

customers where half are Villas and half are Apartments, and the 

models are trained with hourly SM data. Also, individual LF models 

are developed for four individual residential customers, which are 

trained with different lower granularity data, e.g., 6-min data. The 

impacts of the customer types and the data granularity on the accuracy 

of the forecasted load are analyzed. 

 The impacts of the previous ECD over different time periods on the 

accuracies of forecasted loads are studied by using both the hourly 

ECD and the 6-min ECD. 

 Impacts of data granularity on the accuracy of the forecasted loads 

are also analyzed for two forecast time-horizons, i.e., 30-min ahead 

and 1-hour-ahead, using data with different granularity, e.g., 6-min to 

1-hour.  

 Forecasted individual customer’s load values are used to calculate the 

voltage values during and after the load shedding and verified the 

voltage calculation using actual load values.   
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Moreover, the identified challenges on LF at LAL are addressed, and the 

following method has been used to meet the research gaps: 

 

 Initially, aggregated LF models are developed by aggregating the load 

of three different types of residential customers and also aggregating 

the loads at three LV substation levels. The accuracies of the forecasted 

loads are studied by using real data from the 717 SMs of residential 

customers in Gothenburg, Sweden.  

 Loads of Villa customers and Apartment customers have been 

aggregated at different levels, i.e., two customers to 350 customers and 

the impacts of aggregation levels on the load forecast accuracies have 

been evaluated. 

 Previous ECD over different time periods have been used to analyze 

their impacts on the accuracies of the LF at LV substation levels.   

 Aggregated hourly ECD are used to develop aggregated LF models at 

LV substation level of the 10kV residential grid. The forecasted load 

values from the models are used in the load shedding simulation to 

analyze the possibility of using the LF models developed hourly SM 

data to support the CLS. 

2.3 Developed Models to Support CLS  

Field tests’ results have been used to develop the models for load shedding 

using the SMs. The preparation steps for the field tests on small-scale SMs’ 

switching and the outcomes from the field tests are shown in Figure 2.1.  

 
Figure 2.1: SMs’ switching model developed using field tests’ results  
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In this thesis, models have been developed considering three aspects: 1) 

minimizing unnecessary load shedding, 2) estimating load shedding time to 

compare time with the allowed load shedding time and 3) calculating 

expected supply voltage levels to the remaining customers after the load 

shedding.  

Figure 2.2 shows the conceptual framework for the CLS. The DSOs would 

need to have some pre-prepared load shedding plans for the predefined 

prioritized customers’ lists to exclude the prioritized customers from the CLS. 

However, the load shedding with the SMs can be done more efficiently by 

having few pre-prepared models, e.g., aggregated LF models at LV substation 

level for non-prioritized customers, individual LF models for all non-

prioritized customers in the selected areas, SMs’ switching model and load 

flow model. The inputs to the models and the outputs from the models are 

shown in Figure 2.2. 

The outputs from a model which are used as input to the other model are 

shown with similar color, i.e., blue or green. Moreover, Figure 2.2 shows how 

each of the model(s) can allow additional benefits to the DSOs concerning 

efficient load shedding, e.g., pre-prepared aggregated LF models can be used 

to minimize unnecessary load shedding. 

Aggregated LF Models at LV Substation Level: 

 

Aggregated LF models are developed at each of the LV substation level of 

the investigated 10kV residential grid. 26 aggregated LF models are 

developed since there are 26 load buses. The models are developed using 

ANN method, and each model is trained by using one-year’s hourly 

aggregated ECD of the respective customers under each load bus. The 

aggregated LF models can forecast load for a particular hour which represents 

the estimated load for each load bus at the load shedding hour.    

 

LF Models at Individual Customer Level: 

 

In addition to the developed aggregated LF models at LV substation level, 

individual LF models are also developed using ANN method for each of the 

two thousand customers in the investigated 10kV residential grid. The 

individual LF models are trained with one-year’s hourly ECD. The estimated 

individual load of all selected customers can be obtained from the pre-

prepared LF models at the individual customer level.  
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Figure 2.2: Block diagram of the conceptual framework 
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Smart Meters’ Switching Model: 

 

The SMs’ switching model is developed based on the existing SMS’ 

switching performance obtained from the field tests. The SMS configuration, 

i.e., the number of SMs per MCU, and also the real switching time of the SMs 

are considered in the model. The forecasted load values of individual 

customers can be used in the SMs’ switching model to run the CLS scenario 

for the selected customers. The SMs’ switching model can then estimate the 

SM’s disconnection moments for all individual customers. The model can 

also estimate the amount of load disconnected at every second (sec) of the 

load shedding period while considering the parallel operation of all MCUs 

and the series operation of individual MCU.  The SMs’ switching model can 

estimate aggregated disconnected load values from each load bus over the 

total load shedding period with one sec interval. Moreover, the model 

estimates the remaining aggregated load values, i.e., for the excluded 

customers on each load bus. Moreover, the switching model can help the 

DSOs to get an estimated total load shedding time for the selected customers 

and compare it with the allowed time for load shedding by the TSO. 

 

Multi-Time-Steps Load Flow Simulation Model: 

The SMs’ switching model is integrated in a multi-time-steps load flow 

simulation model of the investigated 10kV residential grid where real grid 

data are considered. The output from the SMs’ switching model, i.e., the 

aggregated load values at each load bus with one sec interval and for the total 

load shedding period, can be used as an input to the pre-prepared load flow 

model. The load flow model provides the voltage profile for each load bus for 

the load shedding period and also the voltage values after the load shedding. 

The DSOs can use the calculated voltage values at each load bus to check if 

the excluded customers are supplied with acceptable voltage values or not. 

Moreover, the voltage profile for each load bus can help the DSOs to take 

necessary actions if needed after checking the level of the supply voltage to 

the remaining connected customers.   

Finally, as shown in Figure 2.2, functional requirements are proposed for 

the future SMS concerning the CLS. The proposals are based on the lessons 

learned from the analysis of the models’ results, and also the functional 

requirements proposed by authorities for SMS.          
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Chapter 3                                
Smart Metering System  
 
This chapter provides an introduction to the smart metering system for 

electricity discussed in this thesis. The functional requirements of the smart 

metering system proposed by different national and international authorities 

are discussed in this chapter. Moreover, potential future applications of 

remote ON/OFF control switch in the SM are discussed. Cyber security issues 

related to remote ON/OFF control, and the current situation of the worldwide 

rollout of the SMs are also presented. Finally, recognized standards on power 

quality measurements are summarized. 

3.1  Overview of the Smart Metering System 

3.1.1  What is a Smart Metering System  

The Smart Metering System (SMS) is an actual application of the SMs on 

a larger scale, i.e., the application of a general principle on a system rather 

than on an individual appliance. In the history of metering technology 

spanning more than hundred years, SMS represents the third stage in a chain 

of developments which are described below [44]:   

 In the first stage, the traditional electromechanical meters were developed 

in the late Nineteenth century, which have a spinning disc and a mechanical 

counter display. This type of meters operates by counting the number of 

revolutions of a metal disc that rotates at speed proportional to the power 

drawn through the main fuse box. 

The substitution of electromechanical meters with solid-state electronic 

meters happened in the second stage of the meter evolution, making it 

possible to measure energy using highly integrated components. These 

devices digitize the instantaneous voltage and current by using analog to 

digital converter. The energy data is displayed on a liquid-crystal display. 

Once meter data is available in electronic form, it becomes feasible to add 

communications to the meter, allowing the meter to use Automatic Meter 

Reading (AMR) to access data remotely via the one-way communication link. 

This remote data access capability helps eliminate estimated bills for energy 

consumption and the need for a meter reader to visit individual premises 

which are required for traditional electricity meter readings.  
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The SMS, the third stage in the meter evolution, broadens the scope of 

AMR beyond just meter readings with additional features enabled by two-

way data communication. A smart metering solution delivers a range of 

applications using an infrastructure comprising networked meters, 

communication networks and data collection and management systems, 

which is called Advanced Metering Infrastructure (AMI). An overview of a 

SMS, i.e., AMI can be represented as shown in Figure 3.1. An AMI can take 

real-time or near-real-time measurements, provide outage notification and 

basic PQ monitoring, and also can support in-home energy applications. It 

allows data exchange between the SM and the Central System (CS) of DSO, 

while also allowing customers to have timely and easily accessible 

information about their usage. The system with AMI can also manage the 

configuration of all units in the system, which function is referred as 

Automatic Meter Management (AMM). Moreover, the AMM function can 

provide the basis for meter data management, event and fault management, 

operation and maintenance.   

 
Figure 3.1: An overview of the smart metering system, i.e., AMI 
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3.1.2  Components of a Smart Metering System   

A SMS generally contains four main components, i.e., SMs, terminals, 

Meter-data Collection Units (MCUs) and a CS. The functions of each 

component are given below: 

Smart Meter: The SM is a remotely readable energy meter with two-way 

communication capability which measures the consumptions of electric 

energy of a household or an industry in real-time or near-real-time and 

securely sends the measured data to the DSO [45],[46]. The SM is electrically 

fed and composed of electronic controllers with a digital display. Some SMs 

allow the ECD to be displayed on a device within the home. It has an interface 

allowing data to be transmitted from the meter terminal to the MCU or directly 

to the CS. The main functions of the SMs are to measure, display and record 

actual data of electricity consumption. Most of the SMs can also record the 

energy that the customer feeds back into the distribution grid from own 

generation sources, such as wind turbines and solar panels. In addition to 

these, most of the SMs can provide the opportunity for remote connection and 

disconnection of the customer’s power supply. Moreover, alarm functions can 

be implemented which will send an alarm to the CS automatically if someone 

tries to manipulate the meter. Furthermore, some of the SMs can receive 

information remotely, e.g., tariff information or transfer from the credit to the 

prepayment mode.  

Terminal: The terminal is the unit which maintains communication between 

the SM and the MCU. It collects the data, e.g., the ECD from the meter and 

sends it to the MCU or directly to the CS. How often the data is transmitted 

depends on the configuration set by DSOs. Usually, the terminal is integrated 

into the meter, and the DSO can communicate with it. Several techniques are 

used for communication between the SM, the MCU, and the CS. The choice 

of technique depends on the area, number of customers and the available 

communication infrastructure. The data can be transmitted by using Power 

Line Communication (PLC), Radio link and/or Global System for Mobile 

communications (GSM)/General Packet Radio Service (GPRS). The data is 

collected from the meter in accordance with the internal schedule set by the 

administrator of the SMS. 

Meter data Collection Unit: The MCU is the unit which supervises and 

maintains communication with all meter terminals assigned to it. The MCU 

collects the data from several meter terminals and stores it temporarily. The 

CS finally collects the data from MCU regularly after a certain time interval. 

The MCUs are usually placed on the LV side of a substation to make a 

communication path between the SMs and the CS. The MCUs maintain local 

communication with the SMs, and if a meter cannot be reached within a 
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particular time, it reports to the CS. The MCUs can support various MCU 

management functions such as firmware download, control, setup and 

information view. 

Central System: The CS acts as a brain where it is decided what to do and at 

which time. The CS receives commands from a user at the DSO through the 

web user-interface and sends the commands to the SMs via MCU and returns 

the result to the user. By using the software, the CS can control and configure 

different units in the system. The CS mostly communicates with the MCU. 

The data processed in the CS are the basis for invoice management and 

statistics which is regularly provided to customers via the web-based 

customer portal. 

3.1.3 Applications of Smart Metering System  

The SMS has been shown to provide benefits to both customers and the 

DSOs, e.g., the SMS can provide electricity customers a chance to get better 

customer service and also can provide the DSOs an opportunity to analyze the 

time-varying characteristics of the electricity consumption of individual 

customer. The SMS can also help in different grid applications, e.g., DR, to 

reduce the peak load. Moreover, the SMS can provide new customer offerings 

such as time-of-use billing and prepayment.  The smart metering technology 

is helping the DSOs to address modern energy challenges such as optimized 

grid planning and operation.  

However, the applications of the SMS depend on the available 

functionalities in the SMS, and the available functionalities in SMS can vary 

from country to country and even from one DSO to another DSO within the 

same country. The applications of the SMS can be categorized according to 

who is getting benefit from the application, e.g., end-users or energy industry 

[47],[48], [49],[50].  

3.1.3.1  Benefits for End-Users 

Better bill information: SMS provides actual and more accurate ECD to the 

customers and timely billing based on actual consumption data.  

Smart homes: Smart home refers to a home which has automation system to 

control different home appliances, lighting, ventilation system, etc. according 

to customer’s preferences, outdoor climate, and other parameters. Now a day, 

remote control of appliances, heating and alarm systems become more 

common. The customers can control the individual appliances in response to 

information obtained from the SM.  
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Alarm Services: The communication system of the SMS can be used to 

provide some additional services such as fire alarms, burglar alarms, panic 

alarms or other safety-related alarms.  

Prepaid service: The SM may introduce more cost efficient and customer 

friendly prepaid service compared to traditional prepaid meters due to the 

advantage of a communication system with SM.  

Customer usage feedback: The customer will be provided with the 

information of their usage, and thus the customer would be in the position to 

reduce its energy consumption or to shift its energy use. The customer can get 

supplementary information or guideline on how to make energy-savings by 

using their usage pattern. 

3.1.3.2  Benefits for Distribution System Operator 

Status of electrical distribution grid: By taking measurements at the 

customer point of connection the loading and the losses of the distribution 

grid can be known more accurately. It can help the DSOs to take actions to 

prevent overloading of transformers and lines.  

Power Quality monitoring: PQ involves the voltage quality of the 

distribution grid and the current quality of the loads. Most of the voltage 

quality problems originate from the customers. The SM can keep the record 

of power supply interruption and voltage dips to help the DSOs to understand 

where investments are most needed. 

Customer Service: SMS can increase the service quality of the customer call 

center due to the availability of real-time power consumption data. Remote 

connection and disconnection of the customer are also possible with the SM. 

The DSOs can switch any SM remotely according to the necessity of the 

customers, e.g., while changing addresses. 

Load analysis and forecasting: ECD can be used for load analysis. By 

combining some information with the load profile, the total energy use and 

peak load demand can be estimated and forecasted. This information is useful 

for retail suppliers and for the DSO to make a plan for operating the power 

distribution grid.  

Demand Response: The DR largely refers to customers’ “response” to price 

information by adjusting their load demand. The SMS can enable the DR by 

allowing real-time pricing which can be, e.g., an hourly rate applied to energy 

consumption, to the customers through, e.g., a customer interface. 

Integration of renewables: The ability of the SM to measure power flow in 

both directions, i.e., generation and consumption can facilitate the installation 

of renewable generation, e.g., photovoltaic installations. 
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Management of smart meter: The information of the SM such as a database 

of the vendor, type of the meter, configuration settings, working life, a record 

of scheduled or urgent visit of safety and security checks can help the 

management process of the SM and the customer record.  

Load control: Some DSOs can control the load of the customer by using the 

interface of the SM. However, the load can be controlled in different ways 

such as remote connection and disconnection of the total load which is a 

common practice. Some SMs can also allow remote connection and 

disconnections of the partial load or remotely limiting the maximum allowed 

capacity for a metering point, which are not common practice. 

Illegal customer detection: Some SMs can detect any illegal attempt to open 

the meter box or to modify the connections to the meter or reprogram the 

meter software. The SM can send signals of any illegal attempt to the CS 

promptly.    

3.1.4 Data from Smart Metering System 

Data collected regularly: The MCUs collect hourly ECD from the SMs and 

send the collected data to the CS on a regular basis. The SMs send various 

types of data, e.g., hourly ECD, last metering time, meter information, sensor 

information, total energy consumption of the customer from the beginning. 

Moreover, the SMs also send the voltages of the time instants when MCUs 

asked for meter data.  

On-demand data: It is also possible to get on-demand readings from the 

SMs. With the on-demand readings, the CS can get instantaneous voltages 

and currents of three-phases, active and reactive cumulative ECD and 

information of meter along with other information such as last power outage 

date, SM’s switch status.  

Data on Power quality events: Some SMs can send event report 

automatically to the CS. It can detect different PQ problems according to the 

configuration, e.g., power supply interruption. The SMs can also send the time 

instants and the duration of the events.  

Data triggering an alarm: Some SMs can send an alarm in real-time to the 

CS for a power outage, tamper detection, low battery, etc. The software in the 

SMS can filter the alarms to analyze the severity of the cause of alarm and 

helps to take necessary steps rapidly and efficiently. 

3.2 Communication Technologies in Smart Metering 

System 

Several techniques are used for data transmission between the SMs and 

the CS. Different factors impact the choice of communication technology 
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such as the number of customers within the area, telecommunication network 

coverage of the area and the availability of internet connection. However, 

research is required towards robust, low power and low-cost communication 

medium that can adapt to multiple environments [51].  

Currently used communication technologies for the SMS can be 

distinguished as wired communication medium such as PLC and a wireless 

communication medium such as GPRS and ZigBee. Some of the most 

common communication technologies are given below: 

3.2.1  Power Line Communication   

The dominant technology in wired smart metering communication is PLC 

which is also known as Power line Carrier. PLC has evolved since 1980 [51]. 

The PLC technology uses the existing electrical power cable network with a 

frequency range of 24 kHz to 500 kHz, and the data rate is up to 9.6 kbps. It 

provides a convenient and economical solution which is suitable for densely 

populated areas. This technology has the main limitation that the low range 

signal deteriorates with distance and beyond a certain distance such as some 

few hundred meters, the signal is completely lost. PLC technology is thus 

used to establish communication between a set of SMs and the nearby MCU. 

Then the data are encoded by the MCU in digital format and sent to the CS 

by using the GPRS network.  

Due to the most cost-effective way for two-way communication, PLC 

technique has gained higher interest in data communication of SM. However, 

the power line is full of various types of noises [52]. 

Significant attenuation of signal can occur in power line due to various 

interferences from the noise. Power line noises can be created from a normal 

operation such as noises by partial discharges on insulators and apparatus. It 

may also come from switching operation such as isolator switch, circuit 

breaker, and faults. Moreover, noise can be created from the interference of 

external sources. The noise which comes from switching operations usually 

has a high amplitude of noise, and in most of the case, it causes a short 

interruption in signal transmission [52].  

All of the different smart energy devices inside and outside homes, e.g., 

distributed consumer electronics, sensing and monitoring devices, etc. need 

to be reliably connected all the time in any environmental condition and 

resilient to interference. The required data throughput for these purposes is 

low, and the data packet size is less than 64 bytes. Based on it, the narrowband 

PLC is the most preferred choice because it has low power consumption, low 

cost, higher scalability, and flexibility. Moreover, it can be implemented in a 

full programmable fashion economically [53].     
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3.2.2  ZigBee Radio 

Different radio-based communication solutions exist in the world. ZigBee 

communication system is discussed here since this is what the studied system 

uses. ZigBee is a suite of high-level communication protocol specifications 

based on the IEEE 802.15.4-2003 standard [54]. ZigBee uses the frequency 

band of 2400 MHz to 2483.5 MHz for the globally open standard. The higher 

frequency of 2.4 GHz means that the data rate should be up to 250 kbps 

compared to 1 Mbps data rate of Bluetooth. The technology is intended to be 

simpler and less expensive than other wireless solutions based on radio 

technology, e.g., Bluetooth. ZigBee is used at radio-frequency applications 

that require a low data rate, long battery life, and secure networking. This 

standard has been developed to meet the growing demand to enable wireless 

networking between numerous low power devices. Devices in the ZigBee 

network could include light switches with lamps, in-home displays, and 

customers’ electronics equipment. It also offers many potential applications 

such as Home Area Network (HAN), heating control, home security, 

industrial, and building automation. The high spreading factor of IEEE 

802.15.4 at 2.4 GHz and the sixteen available channels can empirically deliver 

a disturbance-free network, even on a citywide network. 

The ZigBee network is self-healing, which indicates route rediscovery if 

messages fail. The signal passes by another node if one node is not working. 

In the ZigBee network, each meter thus becomes a repeater, and the network 

becomes stronger. The nodes may act as an independent router. Since the 

numbers of neighbors are not fixed, it is easy to connect and disconnect new 

nodes. It occurs automatically in a spontaneous network. Moreover, the 

ZigBee network can also be easily expanded as new homes are built, or new 

services need to be added. 

ZigBee is suitable for home automation since the reach of the ZigBee 

signal is stated to be below 250 m with free sight line. However, a reach of 

more than 2,000 m with free sight line can be attained [55]. Moreover, the 

average power consumption of ZigBee is very low since the wake-up time to 

be in active mode is 15ms or less. The MCU has a power usage of only 3 W 

to 4 W, which is not much more than SM consumption. Moreover, the SM 

does not initiate transmission by itself except for alerts/alarm but answers 

when data is requested from the CS. Finally, it is advantageous and 

cost-effective for the DSOs since the DSOs own the infrastructure and are 

independent of other actors.   
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3.2.3  GPRS  

GPRS is a packet-based wireless communication service that provides data 

rates from 56 Kbps up to 114 Kbps. The GPRS is based on GSM 

communication. It provides moderate-speed data transfer, by using unused 

Time Division Multiple Access (TDMA) channels in, for example, the GSM 

system [56]. In theory, GPRS packet-based services cost users less than 

circuit-switched services since packets are needed basis rather than dedicated 

to only one user at a time. The GPRS also complements Bluetooth, a standard 

for replacing wired connections between devices with wireless radio 

connections. 

The GPRS technique can be used to build a communication network of the 

SMS. The GPRS technique is used in the investigated system of this thesis 

for communication between the MCUs and the CS. Investment and operation 

cost of this technique is high. Service level is fast, but there is a possibility of 

missing values. It has possibilities to add more service but with a high 

expense.   

3.2.4  Comparison between Communication Technologies 

Each communication technology has advantages and also disadvantages. 

Table 3.1 presents a comparison between these three communication 

technologies mentioned above. 

Table 3.1 Comparison of three communication technologies 

 PLC GPRS Zigbee Radio 

Investment Cost Low High High 

Operational Cost High High Low 

Service level 

(data transfer) 

Slow/missing 

values 

Fast/missing values Fast/secure 

operation 

Added service Hard Possible but expensive Easy 

3.3 Remote ON/OFF Control of the SMs 

3.3.1  What is Remote ON/OFF Control 

The SMs can be equipped with an additional remotely accessible switch 

to allow the DSO to control customer power supply and the switch is referred 

as remote ON/OFF control switch or remote connect/disconnect switch. 

Among the ten minimum functionalities recommended by the EC, there was 

a high consensus on the provision that the SM should allow remote ON/OFF 

control of the supply [31]. In a power failure scenario, the SM will start 
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functioning automatically after the power supply is back since the switch was 

ON. However, the switch of the SM needs to be remotely reconnected if it is 

disconnected remotely. Some SMs, however, allow physical reconnection 

using an optical eye if the remote reconnection command does not function 

properly. Moreover, the communication signal strength needs to be sufficient 

to execute SM switching.  

3.3.2 Potential Future Applications of Remote ON/OFF 

Control 

Several goals can be achieved by using the remote ON/OFF control switch 

of the SM. Some potential applications of remote ON/OFF control switch 

provided below:  

3.3.2.1 Demand Side Management during Over Load Condition 

One of the main issues that are discussed nowadays regarding the electrical 

grid infrastructure is the problem with congestion during peak electricity 

demand periods. The DSM can be necessary to keep the balance between the 

load demand and supply [57]. The DSM refers to actions from the 

demand-side in such a way that the electricity demand is adapted to the 

electricity production and the available electricity in the grid. The DSM aims 

to reducing electricity demand and avoiding load peaks during congestion in 

the grid. The benefit for a DSO to control the energy use is to be better able 

to handle congestion situations and decrease the risk of blackouts. The 

distribution grid generally holds overcapacity to handle peak demand 

situations. Since the power reserve that can be started on short notice and 

agreements might be phased out in future, the implementation of the SG and 

DSM are expected to provide flexibility which will contribute to reducing the 

need for the generation capacity reserve. The key to making the DSM more 

effective and the grid smarter is to fully and dynamically integrate customer’s 

loads, and information about their usage into the operation of the grid. The 

SMs can help in achieving this target by providing hourly electricity 

consumption data.  

According to [58], there are two ways of controlling the customer energy 

use: direct and indirect. Direct control of the energy use indicates that a 

contract is made with customers where the customers give permission for 

direct control over the power output. The controlling authority could be, e.g., 

the DSO or the electricity supplier. The indirect control means giving 

incentives to the customers based on different types of contracts that will 

motivate the customers to adapt their electricity use. In this case, no certainty 

of the customer reaction is given, but with experience, the supplier and grid 
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owner could predict the reactions. The SMS can be used for direct control of 

demand side in the grid based on a contract with the customers. Moreover, 

using SM switching technique for DSM may help the DSO to exclude 

emergency service providers and prioritized customers from a power outage. 

Disconnecting selected customers during over-load condition can help to 

reduce overloading of the electricity distribution lines. The DSOs can decide 

which customers to disconnect and at which overloading level. All 

disconnection levels need to be remotely configured within the SMS software, 

and each customer can be predefined by a priority value. This action might 

allow differentiated and gradual step-wise load shedding for more balanced 

load management. The reconnection of each customer can also be predefined 

by the DSO. When the overload condition is over, customers will also be 

gradually reconnected to the grid. The switching functionality of the SMs can 

help the DSOs to perform gradual and selective load shedding on the customer 

level without the need to disconnect all customers within a substation area.  

3.3.2.2 Power to Prioritized Customers during Maintenance Work 

The DSO might need to perform maintenance work on the grid to clear 

faults, conduct network reinforcement or upgrade the grid. The maintenance 

work can either be Preventive Maintenance (PM) or corrective maintenance. 

The PM work is usually planned, e.g., to adjust voltage level at LV substation 

and scheduled before while the corrective maintenance work is carried out 

after failure detection to restore an asset to an operation condition. When a 

DSO performs maintenance work, e.g., PM work in an area, most of the time 

the DSO needs to disconnect power from the substation with the consequence 

that all customers under that substation lose power supply, including 

prioritized customers. Sometimes, it can be possible to supply the customers 

of the impacted area from a nearby substation if the total load falls within the 

capacity of that substation. But for some area, the total load might exceed the 

capacity of other substation. In that case, remote switching technique of the 

SMs can be used to disconnect some customers until the capacity of the other 

substation is matched. The rest of the customers can then be supplied from a 

nearby substation while doing maintenance work at the main local substation. 

In this way, the essential service providers and the prioritized customers can 

have power supply during the PM or corrective maintenance work when the 

DSO needs to shut down the power from the substation.   

3.3.2.3 Outage Planning during Natural Disasters 

Natural disasters might damage electric power system components, 

causing widespread outages over an extended period of restoration, resulting 
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in the overloading of distribution lines. The remote SM switching technique 

can be used to provide power supply to essential service providers during 

disasters. This technique can either be used to shed some loads for reduction 

of line overloading or can be used to continue power supply to the prioritized 

customers from an active substation. This practice may help the DSO to 

handle the critical conditions during natural disasters, and also to ensure 

continuous power supply to the prioritized customers. 

3.3.3 Cyber security Issues Related to ON/OFF Control 

Switch of Smart Meter 

The remotely accessible ON/OFF control switch of the SMs is valuable 

for DSOs, but researchers have raised concerns about possible abuse by 

malicious attackers which could lead to blackouts or affect the stability of the 

electrical grid, e.g., by disturbing the system frequency.  

The remote connect/disconnect capability of the SMs has caught the 

attention of the security community in recent years [59],[60],[61]. Because 

the remote ON/OFF control switches of the SMs can either be used as planned 

or misused by an adversary. The DSOs have not had to face this kind of 

security problem before. By using the remote switch, the adversary can 

tamper with the frequency of the electrical grid which could cause a 

widespread blackout or could potentially harm the electrical grid. 

An oversight may lead to no change of the default settings [60]. Security 

measures such as data encryption and intrusion detection systems offer some 

level of protection for AMI systems. However, these security measures 

provide little help if an attacker is able to compromise the system and issue a 

malicious disconnect commands to millions of SMs [62].  

Related work on cyber security issues of SM can be found in some articles. 

For example, problems related to the communication module with 

interception and injection of false messages is discussed in [63]. It also 

presents a scenario showing how the injection of false malicious data lets the 

adversary gain different benefits from the system. Moreover, a methodology 

to extract and reverse engineer the firmware from a SM to obtain valuable 

information such as passwords and communication encryption keys is 

described in [64]. Furthermore, weakness of the communication channel 

between the SMs and the CS has been shown in [65]. In [66],[67] the model 

and the functionalities of intrusion detection systems are covered for AMI 

system. 

A successful attack would have severe economic and political 

consequences. Significant research efforts can be seen in securing the SG 

mainly focused on the Supervisory Control And Data Acquisition (SCADA) 
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systems and the transmission grid. However, attacks originating from the 

distribution side can also have significant effects on the grid. More research 

is recommended in this new research area. 

3.4 Smart Meter Rollout 

The SM rollout is progressing in several parts of the world with early 

adoption in some parts, e.g., in Europe. The DSOs worldwide are deploying 

SMs as the first step of moving toward the SGs, enabling two-way power and 

information flows. According to [69], by the end of 1st quarter of 2017, China 

accounted for 68.3% of tracked global installations while North America and 

Western Europe followed at 12.9% and 12.5%, respectively. The rest of Asia 

Pacific accounted for around 4.8% while the remaining regions at only 1.4% 

of tracked SM installations.  

The Electricity Directive in the Third Energy Package, Directive 

2009/72/EC1, triggered the installation of the SMs in the EU countries and it 

is foreseen that at least 80% of the electricity customers will adopt this 

technology by 2020. The rollout is subject to a cost-benefit assessment of 

long-term cost and benefits to the market and the individual customers or 

which form of intelligent metering is economically reasonable and cost-

effective [36]. Over the past years, almost all European countries have 

performed Cost Benefit Analysis (CBA) of smart metering, and the majority 

of the cases have resulted in a recommendation to go ahead with a rollout 

[36],[70]. Some examples of SM rollout progress in the several parts of the 

world are given below:  

Smart Meters in Europe:  

The EC adopted an energy and climate change package in 2007. The 

objectives on the initiative state that by 2020, greenhouse gas emissions must 

be reduced by 20%, there must be a 20% of renewable energy sources in the 

EU energy mix, and EU primary energy use must be reduced by 20% [71]. 

Local electricity supply management is expected to play a crucial role in 

reaching the ambitious 2020 targets and can be enabled and enhanced by SMS 

which can increase customer awareness and participation. Due to the EU 

policy recommendations regarding energy, the EU member states committed 

to rolling out close to 200 million SMs for electricity, and it is expected that 

by 2020, 72% of the European customers will have a SM for electricity [72]. 

According to [72], 80 million SMs have been installed in the 28 EU countries 

and Norway by the end of November 2016. SMS rollout in Europe keeps 

steady progress forward, but the pace of SMS deployment has been different 

from one country to the other.    
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In Europe, five EU member states have already completed the full rollout 

of the SMs by the end of 2017. Italy and Sweden are the first countries to 

complete a near full rollout of the SMs [73],[72], while several European 

countries prepare the take-off. During 2001 to 2011, Italy completed a close 

to full rollout, installing around 36 million SMs [74]. In the years 2003 to 

2009, Sweden completed a full rollout, installing 5.2 million SMs. The SMS 

coverage of Finland was 100% by the end of 2013 which indicates 3.3 million 

SMs installation throughout the country. Malta has also completed a full 

rollout of 260 thousand SMs by 2014. Estonia and Spain have joined the 

pioneers Sweden, Finland and Malta where Estonia completed 100% rollout 

by 2017 and Spain will complete 100% rollout by 2018. Most of the countries 

in Europe have already mandated the SM rollout with a specified timetable. 

There are different deadlines in each country from 2017 to 2020. For example, 

France will install 35 million SMs by 2020 and the UK will install 56 million 

by 2020.  

According to [73],[72], 16 EU member states (Austria, Denmark, Estonia, 

Finland, France, Greece, Ireland, Italy, Luxemburg, Malta, Netherlands, 

Poland, Romania, Spain, Sweden and the UK) have decided to complete 

large-scale rollout of SMs by 2020 or earlier, except for Poland and Romania 

which planned to complete the rollout by 2022. However, eight member states 

(Belgium, Croatia, the Czech Republic, Germany, Latvia, Lithuania, 

Portugal, and Slovakia) got negative or inconclusive outcomes of CBA for a 

large-scale rollout of SMs and hence faced delays in SMs’ rollout. The 

remaining four member states (Bulgaria, Cyprus, Hungary, and Slovenia) 

have not made the plan for large-scale SMs’ rollout available yet. Norway, 

which is not among the EU member states, planned to complete 100% rollout 

SMs by the beginning of 2019.     

The Swedish Parliament approved monthly reading of all electricity 

meters from 1 July 2009, supported by the findings of the Swedish Energy 

Agency that more frequent meter reading would generate economic net 

benefit. Since July 2009 monthly meter reading is required for customers with 

a fuse of less than 63A and hourly metering should be performed for larger 

customers [75]. From 1st October 2012, a new regulation was introduced, that 

allowed the customers to require hourly metering of their electricity 

consumption if they had an hourly energy contract with their retailer [76].  

Smart Meters in America: 

According to [77], in the United States, 70 million SMs have been installed 

by the year 2016, and the deployments of the SMs are projected to be 90 

million by 2020. However, according to [78], the United States has seen a 

slowdown in the activity of the SMs’ project since 2013, following the 
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conclusion of the SG Investment Grant Program which contributed to an 

influx of SM installations across the United States. Most of the states in the 

United States are still at the beginning phase of the SMs’ deployment [77]. In 

Canada, the rollout of SMs across all provinces is near completion where 

Ontario was one of the first provinces to complete the rollout of SMs. The 

majority of Canadian households have SMs installed. However, nationwide 

deployments of the SMs have slowed down in 2013 since the deployment was 

near conclusion and the deployment is predicted to remain at around 1 million 

units per year through 2018 [79].  However, the provinces of Ontario and 

British Columbia have introduced mandatory requirements for SMs for all 

customers. In Latin America, Brazil and Mexico are leading the region in SM 

rollout which accounts for more than 60% of the region’s total electricity 

meters [80]. Mexico’s state-run utility aims to install over 30 million SMs by 

2025. Among other countries, significant activity has been noted in Barbados, 

Brazil, Costa Rica, Ecuador, Jamaica, and Puerto Rico. 

Smart Meters in Asia: 

In Asia, some of the East Asian countries are leading the rollout of SM. 

Large-scale rollouts of SM continue across China and Japan where the 

utilities of these countries pushing toward near nationwide coverage. Japan 

already has the world’s most advanced grid monitoring systems. In Japan, ten 

utilities planned to deploy around 80 million SMs by 2024 [69]. South Korea 

has adopted a national plan for the construction of a SG by 2020. China 

remains the leading global SM market with more than 408 million SMs 

installed which accounts for 68.3% of tracked global installation until March 

2017. China’s two utilities are set to conclude their massive rollouts by the 

end of 2017 [69].  

Smart Meters in Middle East and Africa: 

The deployment of the SMs in the Middle East and Africa is still in its 

early stages. In the Middle East, countries, e.g., Kuwait, Lebanon, and the 

United Arab Emirates have all announced large-scale projects on SMs’ 

deployment. Qatar has completed the first phase of SMs’ deployment in 2016 

by replacing all analog meters in the Doha area by the SMs. Saudi Arabia 

planned for a massive rollout of SMs starting from 2017 and expected to 

finish the rollout by the end of 2021 [81]. The Middle East SMs’ market is 

forecasted to reach 16.1 million units by 2022 where 86% of homes and 

businesses in the region are expected to have SMs by the same year [82]. 

 In Africa, more high-level activity is emerging from countries, e.g., 

Egypt, Nigeria, and South Africa [69]. Moreover, small-scale projects on 

SMs’ deployment exist in countries, e.g., Algeria, Kenya, Tunisia, and 

Zimbabwe.   
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3.5  Mapping of Functional Requirements and 

Guidelines Proposed by Different Authorities 

Different national and international authorities, e.g., EC, ERGEG, SMCG, 

Ei, etc. proposed functional requirements and guidelines for SMS as presented 

in Appendix A. Three reports from EC [30], [31], and [32], which are named 

as EC11, EC12 and EC16 in the mapping, discussed functional requirements 

for the SMS. Moreover, a report from EC on a new electricity market 

directive, named as ECM16 also discussed the functional requirements of the 

SMs to enable the new market [33].  

This thesis attempts to map the functionalities and guidelines proposed by 

EC with the ones proposed by SMCG, ERGEG, and Ei. However, it is noted 

that there are interrelations between different functional requirements and 

their applications. Therefore, mapping of functionalities with their 

applications could be tricky. E.g., the functionality called ‘two-way 

communication’ is needed for functionality ‘support advanced tariff,’ 

‘provide import/export metering,’ ‘frequent reading to operators,’ and  

‘update firmware,’ etc.  The functionalities are divided into five parts 

following the EC11 report, where the divisions are made based on the 

stakeholders of the functionalities, e.g., customers, and DSOs, and also based 

on different aspects of the functionalities such as the commercial and security 

aspects. The applications of different functionalities which are described in 

slightly different ways in different reports are addressed in this section. It is 

noted here that same functionality could be used for customers and also for 

the DSOs. E.g., the interval data of active energy import/export could help to 

increase the customer’s ability to participate in the market while the data gives 

tariffing and billing support for the energy suppliers. Moreover, the interval 

data can support grid planning for the DSOs.   

3.5.1 Mapping of Functionalities for Customers 

The functionalities for customers and their applications are mapped in 

Table 3.2. The table shows that all the authorities support the functionality of 

the SMs to provide readings from the SM to the customer’s in-house device, 

i.e., customer interface. However, only Ei has explicitly mentioned about the 

type of data to be transferred to the customer interface and also the interval of 

the data to be transferred from the SM. Other information such as tariff, 

warnings on low credit for prepaid customers, etc. are not explicitly 

mentioned or proposed in the reports except in the questionnaire of EC11. 



41 

 

Table 3.2 Functionalities for customers and their applications 

Functionalities 

For Customers 

Applications  

EC 

11 

 

EC 

12 

 

EC 

16 

 

SM 

CG 

 

ER 

GEG 

 

Ei 

 

EC 

M16 

 

 

 

 

 

 

 

 

Readings from 

the meter to 

the customer 

SM-HAN or a user accessible communications port/interface, 

by which this data is transmitted to in-house devices ‘which 

would enable energy management solutions in ‘real-time,’ 

such as home automation, and different DR schemes’ 

√ √ 
 √ √ √ √ 

Accurate, user-friendly and timely readings  √ 
     

Or remotely through different channels (web portal, mobile 

applications, paper communications, file downloads or 

sending). 

  √ √ √ 
 √ 

Capable of measuring phase voltages, phase currents, active 

and reactive power both import/export on each phase  

     √ 
 

Capable of measuring and recording the total active energy for 

both import/export. 

     √ √ 

An update rate of every 15 minutes is needed at least.  √ 
     

To record transferred active energy (both way) data per hour 

and capable of recording data with 15-minute interval if 

needed. 

     √ 
 

Increase the customers ' ability to participate in the markets.      √ 
 

 

A standardized 

customer 

interface 

A standardized interface which provides visualized individual 

consumption data to the consumer. 

 √ √ √ √ √ √ 

Activation and de-activation of the interface on customers’ 

request. 

     √ √ 

 

 

Frequent 

readings to 

achieve energy 

savings 

The information flow to the customer is fast enough to allow 

the customer to react to excessive loads 
√ 

    √ 
 

Customers need to see the information responding to their 

action 

 √ 
     

To allow the customers to react to price signals and adapt 

consumption 

  √ 
 √ √ 

 

Data on phase voltages, phase currents, active and reactive 

power, and active energy both import/export need to be 

displayed at least once per ten seconds. 

     √  

 

Readings in a 

form easily 

understood by 

the untrained 

consumer, 

enabling final 

customers to 

control their 

energy 

consumption 

better 

Readily available easily understandable data  √ √ 
  √ 

 √ 

High consumption warning √ 
      

Information on impending tariff changes, where the Time-of-

Use tariff is in use 
√ 

      

Information on outstanding available credit, for Pre-payment 

systems 
√ 

      

The accrued cost in the current billing period, for credit 

customers 
√ 

   √ 
  

Information on the present status of SMs’ switch √ 
      

The effect of continued consumption at the present level, for 

impending power limitation 
√ 

      

Showing the impact of his behaviour on energy consumption, 

and on derived values like money and CO2 emission 

  √ 
    

3.5.2 Mapping of Functionalities for Commercial Aspects 

of Energy Supply  

The functionalities for commercial aspects of energy supply, and their 

applications are mapped in Table 3.3. The table shows that most of the 

authorities proposed the functionality to support the advanced tariff system, 

remote ON/OFF control of the supply. However, the functionality to support 
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energy supply by pre-payment and remote power flow limitation are not 

proposed by the Ei. The functional requirement of the remote ON/OFF control 

switch for CLS are not mentioned in the reports although the possibility of 

the using the switch is mentioned in the reports from the Ei and the EC. It is 

noted here that few cells of the table are merged to represent that the authority 

mentioned about all applications in respective cells of Applications column.   

Table 3.3 Functionalities for commercial aspects of energy supply, and applications 

Functionalities 

for commercial 

aspects of 

energy supply 

Applications  

EC 

11 

 

EC 

12 

 

EC 

16 

 

SM 

CG 

 

ER 

GEG 

 

Ei 

 

EC 

M16 

 

 

 

 

 

 

 

Supports 

advanced tariff 

systems 

Data storage capacity within the Smart Meter System to 

allow effective comparison of consumption profiles 
√ 

 √ 
  √ 

 

Storage of, e.g., Peak Demands with date/time of occurrence √ 
    

Support for time-of-use, block and demand based tariffs √ √ 
 √ 

 

Support for remote control of tariffs; switching times, unit 

costs, etc 
√ √ 

 √ 
 

Provision of active tariff information to the customer. √ √ 
   

Set billing parameters, e.g., payment mode, tariff scheme, 

thresholds and response action, data sets 

  √ 
  

To make offers to the customer that better reflect actual 

consumption/injection divided into different time periods. 

   √ 
 

 

Supports energy 

supply by pre-

payment and on 

credit 

Ability to switch between Credit & Pre-payment; and back √ 
      

Credit top-up for pre-payment meters   √ √ 
   

Pre-payment with remote top-up   √ 
    

 

Remote 

ON/OFF control 

of the supply 

Speeds up processes such as when moving home or non-

payment; 
√ 

 √ √ √ √ 
 

Protection of vulnerable customers  √ 
      

Needed for handling technical grid emergencies. √ √ 
   √ 

 

 

 

 

Remote flow or 

power limitation 

The net benefit to the customer of the application of power 

limitation; 
√ 

   √ 
  

Protection of vulnerable customers by allowing grading in 

the limitations. 
√ √ 

     

The supply of energy can be limited if the consumer does not 

pay the bill (the possibility of using essential devices) 

  √ √ √ 
  

Allows the formulation of individually designed contract 

enhancements 

    √ 
  

3.5.3 Mapping of Functionalities for Grid and Grid 

Operators 

The functionalities for grid and grid operators, and their applications are 

mapped in Table 3.4. The table shows that all authorities support the 

functionality of two-way communication, remote readings of meter registers 

by third parties and the DSOs, remote meter management, e.g., upgrading 

firmware. However, monitoring PQ with the SM is not proposed in most of 

the reports.  



43 

 

Table 3.4 Functionalities for grid and grid operators, and their applications 

Functionalities 

 for grid & grid 

operators 

Applications  

EC 

11 

 

EC 

12 

 

EC 

16 

 

SM 

CG 

 

ER 

GEG 

 

Ei 

 

EC 

M16 

 

 

 

 

 

Remote 

reading of 

meter registers 

by meter 

operators 

Both on-demand readings, e.g., when a consumer moves out or when 

he changes supplier and scheduled readings which are sent 

periodically to the meter operator.  

√ √ √ √ 
   

Information on, e.g., interval readings or peak demands by the supplier 

to the customer  
√ 

      

Data storage within the meter to retrieve data on past consumption √ √ 
  √ √ 

 

Correct billing, both on a regular basis or on-demand (on the change 

of occupier or energy supplier) 
√ 

   √ 
  

Alarms, which are sent unscheduled when e.g., power failure or a fraud 

attempt occurs. 

  √ √ √ 
  

Retrieve AMI component information & check device availability    √ 
   

 

 

Recording 

power 

interruption 

Able to record data on power interruption by recording the start and 

the end time of each power outages in one or more phases that are 

longer than three minutes. 

     √ 
 

Strengthens the role of the customer in getting the interrupt 

compensation payment.  

     √ 
 

 

 

 

 

 

 

Remote 

reading of 

meter registers 

by third parties 

Provide readings directly to any third party designated by the 

consumer 
√ √ 

 √ 
   

Allow customers to grant access to third parties to their data through 

the entitled data management entity (Meter Operator or another party), 

for example for consumption analysis and comparison of suppliers. 

  √ 
 √ 

  

If a service provider is in charge of information on the customer’s 

voltage quality, the customer should know that this data exists and also 

receive information on explicit data which could be subject to a 

reasonable fee  

    √ 
 √ 

Alarm in case of exceptional energy consumption     √ 
  

Phase voltages, phase currents, active and reactive power, and active 

energy both import/export, and also power interruption data 

     √ 
 

 

 

 

 

Two-way 

communication 

between the 

meter and 

external 

networks for 

maintenance 

and control of 

the meter 

Ability to remotely upgrade the firmware √ √ √ √ √ √ 
 

Monitoring of the status of the meter with the ability to provide 

warnings of actual or impending problems 
√ 

      

Time synchronization of meter’s internal clock √ 
 √ √ 

   

Update of new tariff details, including changes in cost and/or 

switching times and the calendar.  
√ 

 √ 
    

Adding and removing communication links to other meters   √ √ 
   

Emergency or Demand Response  signals sent by TSO, DSO or third 

parties 

  √ 
  √ 

 

Configure meter events and actions; Manage events    √ 
   

Configure AMI device, e.g.,  configuring, parameterizing, adjusting 

the Smart Meter 

   √ 
   

 

 

Monitoring of 

Power Quality 

Provision of a warning to the customer if voltage quality falls to such 

a level that equipment could be damaged. 
√ 

      

Provision of warning to the supplier, e.g., excessive harmonic currents √ 
      

Logging of power quality issues, e.g., interruptions √ 
      

 

Readings 

frequently 

enough to 

allow the 

information to 

be used for 

grid planning 

Depending on whether grid control is being considered at a micro (e.g., 

local) level or a macro (e.g., sub-station) level 
√ √ 

  √ 
  

Readings obtained from a subset of customers can be used to generate 

load profiles, which are commonly used for tariff design and system 

operation planning 

 

  √ 
  √ 
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The questionnaire that was included in the report EC11 showed that some 

EU member states commented to the questionnaire mentioning that their 

already installed SMs are monitoring PQ, e.g., supply failures, harmonic 

distortion and voltage sag/swell. The frequency of getting the SM readings to 

the CS to allow the information to be used for different applications, e.g., grid 

planning, LF, etc. are not explicitly mentioned in the reports. 

3.5.4 Mapping of Functionalities Required to Allow 

Distributed Generation 

The functionalities to allow distributed generation, and their applications 

are mapped in Table 3.5. The table shows that almost all the reports proposed 

the functionality to measure the import/export, i.e., two-way power flow & 

reactive metering. 

Table 3.5 Functionalities to allow distributed generation, and their applications 

Functionalities 

 to allow 

distributed 

generation 

Applications  

EC 

11 

 

EC 

12 

 

EC 

16 

 

SM 

CG 

 

ER 

GEG 

 

Ei 

 

EC 

M16 

 

 

 

 

Provides Import 

/ Export & 

Reactive 

Metering 

[promote micro 

(or distributed) 

generation] 

Provision of 4 quadrant measurement of active energy (kWh) 

— import & export; 
√ 

 √ 
 √ √ 

 

In a 4 quadrant kWh meter, differentiation between net energy 

and generated energy; 
√ 

    

Provision of 2 quadrant measurement of reactive energy 

(kvarh) — import/export or 

inductive/reactive; 

√ 
    

Provision of 4 quadrant measurement of reactive energy 

(kvarh) — import/export and 

inductive/reactive; 

√ 
    

Communication of high reactive energy to relevant actors. √ 
    

The function should be installed by default and 

activated/disabled in accordance with the wishes and needs of 

the consumer 

 √ 
   

Rapid and detailed feedback on customer’s energy 

consumption. 

     

Measurements support grid planning for the grid operator      

Tariffing and billing support for an energy supplier      

3.5.5 Mapping of Functionalities for Security and Privacy 

The functionalities to allow distributed generation, and their applications 

are mapped in Table 3.6. The table shows that most of the reports proposed 

to provide secure data communication where the reports from the EC 

proposed fraud prevention and detection functionality also. The report from 

the Ei discussed the security and privacy issues related to each functionality 

proposed by Ei.   
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Table 3.6 Functionalities to allow distributed generation, and their applications 

Functionalities 

 for security and 

privacy 

Applications  

EC 

11 

 

EC 

12 

 

EC 

16 

 

SM 

CG 

 

ER 

GEG 

 

Ei 

 

EC 

M16 

 

 

Provide secure 

data 

communications 

High levels of security are essential for all 

communications between the meter and the operator 
√ √ 

 √ 
  √ 

Applies to direct communications with the meter √ √ 
     

Applies to any messages passed via the meter to or from 

any appliances or controls on the consumer’s premises 
√ √ 

     

Privacy consideration may apply a restricting collection 

of specific data sets, or restraining the granularity of 

certain data sets. 

  √ 
    

 

 

Fraud prevention 

and detection 

Relates to the supply side: security and safety in the case 

of access 
√ √ 

    √ 

Physical measures like tamper evident seals and 

plausibility checks. 

  √ 
    

Real-time alarm, for example, if the meter case is opened 

or if unusual operating conditions like a very strong 

magnetic field are detected 

  √ 
    

3.6 Summary of Functionalities Proposed in 

Considered Reports   

From the discussion in Section 3.5, it is clear that there are some 

functionalities which are proposed by Ei but not recommended by EC, e.g., 

recording power interruption data that are longer than three minutes. 

Moreover, regarding the data to the customers, the Ei has specified that some 

data needs to be collected via the customer interface at least once per 10 

seconds. The data can include, e.g., root mean square (rms) voltage, rms 

current, active and reactive power for both import and export for each phase 

and also the reading of the total active energy for both import and export. 

Similarly, there are some functionalities which were recommended by EC but 

not proposed by Ei, e.g., support for advanced tariff system and limitation of 

power flow to the customer.  

This section summarized all the functionalities proposed in the considered 

reports. The mapping of functional requirements and guidelines proposed by 

different authorities showed that most the functionalities are common among 

the proposals. However, there are some functionalities that are proposed in 

one or more reports but not in all the reports. Table 3.7 shows the summary 

of all the functionalities indicated in the reports. 
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Table 3.7 Summary of all the functionalities indicated in the reports 

Functionalities EC 

11 

EC 

12 

EC 

16 

SM 

CG 

ER 

GEG 

Ei EC 

M16 

Functionalities for customers 

Readings from the meter to the customer √ √ √ √ √ √ √ 

Capable of measuring phase voltages, phase 

currents, active and reactive power for both 

import/export on each phase 

     √  

A standardized customer interface  √  √ √ √ √ 

Frequent readings to achieve energy-savings √ √   √ √  

Readings in a form easily understood by the 

customers 

√ √ √  √  √ 

High consumption warning √       

Support demand response signal √ √   √ √  

Functionalities for grid & grid operators 

Remote reading of meter registers by meter 

operators  

√ √ √ √ √ √  

Recording power interruption      √  

Remote reading of meter registers by third 

parties 

√ √ √ √ √ √ √ 

Two-way communication between the meter 

and external networks for maintenance and 

control of the meter 

√ √ √ √ √ √  

Monitoring of Power Quality √       

Readings frequently enough to allow the 

information to be used for grid planning 

√ √ √  √ √  

Alarm in case of exceptional energy 

consumption 

    √   

Alarms, which are sent unscheduled when, e.g., 

power failure occurs. 

  √ √ √   

Functionalities for commercial aspects of energy supply 

Supports advanced tariff systems √ √ √ √ √ √ √ 

Supports energy supply by pre-payment and on 

credit 

√  √ √    

Remote ON/OFF control of the supply √ √ √ √ √ √  

Remote flow or power limitation √ √ √ √ √   

  Functionalities  to allow distributed generation 

Provides Import / Export & Reactive Metering √ √ √  √ √ √ 

  Functionalities  for security and privacy 

Provide secure data communications √ √ √ √   √ 

Fraud prevention and detection e.g.,, e.g., Alarm 

when a fraud attempt occurs. 

√ √ √    √ 
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3.7  Identification of New Functionalities from the 

Proposals 

The functionalities that are available in the present SMS, e.g., in 

Gothenburg, Sweden, are studied based on the available information from 

online documents. Functionalities that are not included yet or included but not 

in use or may be partially included in the present SMS are presented in Table 

3.8. However, the functionalities for recording interruptions, and sending 

alarms when a power failure occurs, are not included in Table 3.8 since the 

function is already included in the SMs by many DSOs [1]. The EC discussed 

the functionality of logging interruptions as an example of PQ monitoring 

[30], although the functionality is not recommended by the EC in [31]. 

However, it is proposed as functionality by the Ei.  

Table 3.8 Summary of functionalities that are not available to all yet 

Functionalities EC 

11 

EC 

12 

EC 

16 

SM 

CG 

ER 

GEG 

Ei EC 

M16 

Functionalities for customers 

Readings from the meter to the customer √ √ √ √ √ √ √ 

Capable of measuring phase voltages, phase currents, 

active and reactive power for both import/export on each 

phase 

     √  

A standardized customer interface  √ √ √ √ √ √ 

Frequent readings to achieve energy-savings √ √ √  √ √  

Readings in a form easily understood by the customers √ √ √  √  √ 

High consumption warning √       

Support demand response signal √ √   √ √  

Functionalities for grid & grid operators 

Remote reading of meter registers by third parties √ √ √ √ √ √ √ 

Monitoring of Power Quality √       

Alarm in case of exceptional energy consumption     √   

Functionalities for commercial aspects of energy supply 

Supports advanced tariff systems √ √ √ √ √ √ √ 

Supports energy supply by pre-payment and on credit √  √ √    

Remote ON/OFF control of the supply √ √ √ √ √ √  

Remote flow or power limitation √ √ √ √ √    

Functionalities  to allow distributed generation 

Provides Import / Export & Reactive Metering √ √ √  √ √ √ 
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3.8  Conclusions 

Large-scale SM rollout is currently underway in different subcontinents, 

while new rollout will continue among later adaptors, e.g., in Europe and 

USA.  The market for the SM remains strong and growing more than a decade 

after the early first generation models of the SM. The countries who adopted 

the SM in the last decade, e.g., Italy and Sweden, are making preparations for 

a second wave of rollouts since the technical lifespan of SMs and 

communications equipment is considered to be ten to fifteen years. These 

indicate that the global penetration of SM is expected to increase in the 

coming years.   

To meet the future demands of digitalization in the energy industry, the 

second generation of SMs would include few new functionalities, if the 

functionalities are not already available in the first generation of SMs. One of 

the functionalities would be lower data resolution, i.e., 10 or 15-minutes data 

resolution, which is typically one-hour resolution. Moreover, it would include 

easy access to near real-time data for the customers, e.g., through a customer 

interface. Among other things, it would include two-way power flow 

measurement capability of the SM to support the integration of renewable 

micro-generation.                                         

The functional requirements proposed by different authorities show that 

the customers would be able to get near real-time data from the SM through 

the customer interface of the future SMS. Among other things, the future SMS 

could also encourage more customers to have a renewable micro-generation, 

e.g., rooftop solar panels.  

Based on the studied proposals from different authorities and the results 

from this thesis, functional requirements are proposed in Chapter 9 to 

facilitate the CLS with support from the LF models.   
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Chapter 4                                   
Field Tests on Small-scale 

Smart Meters Switching 
 

This chapter describes the field tests on multiple SMs switching in a real 

electrical distribution network. The tests have been performed to investigate 

the performance of the present smart metering system concerning multiple 

smart meters switching, and also to study the impact of smart meters’ 

switching on the PQ. The chapter begins with an introduction to the 

investigated smart metering system, and test locations selection and PQ 

measurement methods. These are then followed by the test procedure, a 

review of the risk identification, and the test scenarios.   

4.1  Investigated Smart Metering System and the Test 

Locations 

The communication technologies associated with the investigated SMS 

are discussed in this section. Moreover, a summary is provided on the selected 

areas for the field tests.  

4.1.1 Communication Technology and Functionalities  

GENAB, a DSO in Western Sweden, has installed approximately 265,000 

SMs with remote ON/OFF control switch in Gothenburg city of around 

500,000 citizens and the SMs have been in operation since 2009 [55]. 

GENAB is one of the few companies in Sweden which have installed remote 

ON/OFF control switches in the SMs. A city-wide wireless meshed network 

with AMM system is created. The SM is integrated with a ZigBee system on 

chips and networking software is used to create a wireless meshed network so 

that the SMs can communicate with each other and route data reliably. The 

SMs communicate through ZigBee with approximately 8,000 MCUs or 

concentrators. The ZigBee network is built up as a self-configuring mesh. 

Only 20 repeaters had been installed because of the advantage of the mesh 

network [55]. GPRS or optical fiber is used to connect the MCUs to the CS. 

Figure 4.1 shows the communication structure used in the investigated SMS. 

The SMs not only send data to the CS but also receive a command from the 

CS via the MCUs.    
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Figure 4.1: Two-way communication structure of GENAB’s smart metering system 

The investigated SMS provides several functionalities which are already 

in use, e.g., hourly readings, on-demand readings, i.e., at any time, remote 

connect/disconnect, power-failure alarm in real-time, monitoring of power 

usage and voltage levels, and also other advanced functionalities. Remote 

connect/disconnect was the first so-called AMM functionality put to use. 

Hourly readings are collected daily from the SMs. On-demand readings are 

mainly used in the customer contact center for discussions with customers. 

Moreover, real-time alarms for power failures are reported to the CS 

continuously. The SMS also supports GENAB with many other benefits, such 

as improved customer service and dialogue, improved monitoring of the low-

voltage grid, improved quality of data for grid planning as well as 

opportunities for new customer services. 

4.1.2 Area Selection for Multiple SMs Switching Tests 

The aims of the field tests on small scale load shedding using the SMs are 

to investigate the followings:  

 The impacts of multiple SMs’ switching on the PQ at the end 

customers level and also at the LV substation level.  

 The ability of the investigated SMS for doing multiple SMs’ 

switching.  

 The performance of the SMS during SMs’ switching. 
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The tests were performed during the planned outage work of the DSO to 

avoid extra power outage of the customers. Adjusting the voltage level at the 

substation was the main purpose of planned outage during each test. Three 

areas have been selected for the tests within Gothenburg city where GENAB 

had planned to conduct PM work by interrupting the power supply to the 

customers.  

4.2 Test Approach and Plan 

The DSOs conduct regular PM work on the distribution grid. For PM 

activities, the DSOs make a planned outage plan for different areas. All 

customers that will be impacted by the PM work get information about 

expected downtime, at least one week before the PM work.  

Test approach: 

The DSOs generally start PM work by first disconnecting the power 

supply of the selected area from the LV substation. The power supply to the 

customers is usually switched back immediately after completion of the 

intended task. The timeline of multiple SMs’ switching tests is shown in 

Figure 4.2. 

 
  

 
Figure 4.2: Timeline of multiple SMs’ switching tests 

A new additional approach was taken for disconnecting and reconnecting 

the customers as follows:  
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Step 1: The customers in the selected area were first remotely disconnected 

by switching their SMs. In the first two tests, all SMs in the test area were 

remotely disconnected, but in Test 3, almost half of the SMs were remotely 

disconnected while another half of the customers had a power supply until 

disconnection made from the substation.   

Step 2: The power supply of the whole area was disconnected from the 

substation.  

Step 3: The breaker of the substation was reconnected again after 

completing the PM work.  

Step 4: Finally, the selected SMs were reconnected remotely.  

Test plan: 

An individual test plan was made for each test before conducting the field 

test. The test plans, e.g., steps of the tests, selecting customers for load 

shedding, etc., were made after having group discussions within GENAB with 

people having expertise on the power system, measurement system, and the 

SMS. The data of the PQ measurements were recorded from few minutes, 

e.g., 10 minutes before the beginning of the test period and it was done due to 

data storage capacity limitation of the Power Quality Meters (PQMs). 

Moreover, several people from GENAB were at the test locations during the 

tests with necessary preparations to handle any urgent situations, e.g., SM 

replacement if needed. The tests were performed by following few common 

steps as shown in Figure 4.3. 

 First of all, the communication signal strengths of the selected area 

were checked for both the ZigBee network and also the GPRS 

network.  

 The PQMs were made ready with full memory capability to store the 

data of all assigned parameters with a specified data interval for the 

test periods.  

 The clocks of the PQMs were synchronized with the clock in the CS 

of GENAB to compare the time instants of measurements later in the 

analysis.  

 Real-time measurements of voltages and currents were taken from the 

SMs remotely few minutes before sending a command to switch the 

SMs. 

 After that, a command was sent to all the selected SMs via MCUs to 

disconnect the SMs.  

 The disconnect command was sent from the CS when the planned 

outage period started.  
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 The customer service department of GENAB was immediately 

informed about the successful disconnections of the SMs.   

Figure 4.3: Block diagram of the test steps on multiple SMs’ switching 

 The power supply of the selected area was disconnected from the 

substation to use the tap-changer to step up or step down the voltage 

level. The power supply of the area was reconnected again from the 

substation after adjusting the voltage level. The voltage level was 

decreased by 6V, i.e., one step in the tap changer, during Test 1 and 

test2, and increased by 6V during Test 3.  

 At this stage, real-time one-demand readings were collected again 

from the SMs to make sure that all the SMs are back into function 

state and contribute to the system availability.  

 Finally, a new reconnect command signal was sent from CS to 

reconnect all the selected SMs.   

 The customer service department of GENAB was again informed 

about the successful reconnections of the SMs.  

The status update reports of SMs disconnection and reconnection and also 

the data from the PQMs were collected for PQ analysis.  The status update 

report contains the SMs’ real-time status update which the selected SMs 

typically send to the CS to confirm the execution of the SMs’ switching 

command. The overall process of the SMs’ switching was completed within 

the one hour planned outage period for the first two tests.  However, switching 

during Test 3 took longer than the planned time due to communication 

problems and because of that few SMs were not reachable to reconnect. 
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4.3 Risk Identification of Multiple SMs’ Switching Test 

This thesis identified risks associated with field test before conducting the 

field tests on the real customers. Figure 4.4 shows the various aspects 

considered for the risk identification.  

 
Figure 4.4: Risk identification of the test on multiple SMs’ switching 

 

Different time factors were taken into account for the risk identification, 

e.g., the time required to switch a SM remotely, battery backup time of the 

SM and the MCU, communication delay and the time necessary to replace a 

SM if something happens during the test.  

Moreover, expected effects on PQ were discussed within the project group 

to select which parameters need to be recorded in the PQMs. Furthermore, the 

ability of the existing MCUs for multiple SMs’ switching was checked. It is 

found that the investigated MCUs can execute multiple SMs’ switching but 

switches one SM at a time.  

The possible effects of planned outage work on the test result, e.g., the 

effect of substation switching on the test result are also investigated. The 

effect of the PM work on the test result was not expected since the DSO 

planned to adjust only the voltage level during the PM work.  

Moreover, the location of each SM was checked to ensure easy physical 
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risks associated with the weak signal of the ZigBee and GPRS communication 

network were also investigated.  

Finally, various customer related issues were considered during the risk 

identification, e.g., conveying the message clearly to the customers about the 

test on PQ while installing the PQMs at their premises. Measures were also 

taken to avoid customer’s confusion about the power interruption by updating 

the customer service department of the DSO time to time during the tests.  

Moreover, possible consequences associated with the identified risks were 

also investigated to take necessary precautions for minimizing the 

consequences as shown in Table 4.1. 

Table 4.1 Possible risks, associated consequences, and precautions for the tests 

 

Table 4.1 shows the level of risks and also the severity of the possible 

consequences. Different colors are used to indicate low, medium, and high 
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probability of the risks and also different colors are used to indicate the low, 

medium and high level of consequences.    

4.4 Field Tests 

An overview of the three test scenarios and the time periods of the SMs’ 

disconnections (SMsD) and also the time period of the SMs’ reconnections 

(SMsR) are presented in this section. The number of customers affected by 

the tests has been increased from Test 1 to Test 3. Table 4.2 shows a summary 

of the three selected test areas:  
Table 4.2: Summary of the three test areas 

 Area Type Voltage 

level 

Trans-

former 

ratings 

No. of 

customers 

Customers 

selected for 

SM 

switching 

test 

No. of 

MCUs 

for the 

area 

Test 1 Residential 10/0.4 kV 500 kVA 13 12 1 

Test 2 Residential 10/0.4 kV 800 kVA 37 37 4 

Test 3 Residential 10/0.4 kV 800 kVA 177 86 3 

4.4.1  Test 1  

Test 1 was carried out during the summer period when the load is typically 

low, and the temperature is high. In the test area, 13 residential customers 

were connected to a 500 kVA transformer as shown in Figure 4.5.  

Figure 4.5: Test 1 Scenario of remote SM switching 
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The fuse ratings of the customers were between 16A to 35A except for one 

customer who had a fuse of 50A rating. All customers in the area had a three-

phase connection which is a general standard in Sweden. One SM was not 

easily accessible in the absence of the customer, and thereby excluded from 

SMs’ switching test as a precaution. Other 12 SMs in the area were switched 

during the test, and the PQ was monitored during the disconnection and the 

reconnection of the SMs. All selected 12 SMs of the area were 

communicating with one MCU which was located at a substation located near 

the test area named as Substation 2 as shown in Figure 4.5. 

Timeline of Test 1: 
 

The time periods for the SMsD and the SMsR and also the time instants of 

the substation switching are presented in Figure 4.6. As seen here, the 

disconnection process of 12 selected SMs required 96 seconds while the 

reconnection process of the SMs required 127 seconds which was expected 

for the SMs’ switching. 

Figure 4.6: Time instants of SMs’ switching during Test 1 

4.4.2  Test 2  

Test 2 was carried out in an area during the autumn period where 37 

residential customers were connected to a transformer of 800 kVA rating. The 

fuse ratings of the customers were between 16A to 35A. All customers of this 

area also had a three-phase power supply. Four customers were selected to 

install the PQMs after studying their energy consumption history and fuse 

rating. Because, high current flow through the PQM gives better PQ 

measurement compared to low current flow through the PQM. The PQ was 

not measured at the remaining 33 customers by the PQMs. These 33 SMs and 

also the four selected SMs with the four PQMs were switched during the test. 

The PQ was monitored during the test period of the SMs’ switching. The 

MCUs are usually located at the substations, but it can also be located in the 

cable box as shown in Figure 4.7. The figure also shows that four MCUs were 
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communicating with different SMs and also the number of SMs under each 

MCU was different during the test. 

Figure 4.7: Test 2 Scenario of remote SM switching 

Timeline of Test 2: 

 
The timeline for Test 2 is presented in Figure 4.8. As seen here, the 

disconnection process of 37 selected SMs required 224 seconds while the 

reconnection process of the SMs required 225 seconds. 

Figure 4.8: Time instants of SMs’ switching during Test 2 
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4.4.3  Test 3  

Test 3 was conducted in a residential area where 177 customers were 

connected to a transformer of 800 kVA rating. In the test area, some of the 

SMs were located outside which are easily accessible. However, some of the 

SMs were located inside the apartments which are not easily accessible in 

case of urgent replacement of SM. Total 88 customers were selected from the 

test area for the SMs’ switching test after checking easy physical accessibly 

to the SMs. The reason was to make sure that the DSO can replace any faulted 

SMs if necessary. Because, some SMs might take a longer time to re-establish 

the communication network due to any problem in the communication 

network. All selected customers had three-phase connections except for one 

customer who had single phase connection. The fuse ratings of the customers 

were below 63A.  

The plan of Test 3 was to switch two customers (one near and one far from 

the substation) out of four customers where PQMs were installed. The 

remaining two customers with PQMs (one near and one far from the 

substation) were not switched remotely to investigate the impact of multiple 

SMs’ switching on these two customers. Moreover, one PQM was also 

installed at the substation of the selected area to record the PQ data.  

The test was performed during the planned outage period. First, the 

selected SMs (86 customers out of 88 customers which were selected from 

total 177 customers) were tried to disconnect them remotely. The remaining 

91 customers in the area had a power supply at this point in time. Then, the 

power supply of the selected area was completely interrupted from the 

substation of that area for the PM work and reconnected again after the work. 

The reason for planned PM work was to step up the voltage of the transformer 

by using the tap-changer. The breaker of the substation was reconnected after 

stepping up the voltage. At this stage, the excluded ninety-one customers 

immediately got power supply back. However, the 86 remotely switched 

customers did not have power supply back to their appliances at this point in 

time. Finally, the SMs of the selected customers were reconnected remotely 

to return the power supply to the customer’s load. Figure 4.9 shows the 

scenario of Test 3.   
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Figure 4.9: Test 3 Scenario of multiple SMs’ switching 

Timeline of Test 3: 
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that were actually connected were removed from the list. The new list of the 

actually failed SMs was then sent to the MCUs to try the SMs in the list, which 

is referred here as a next attempt. Figure 4.10 (b) shows the reconnection 

attempts and the success in reconnection at each attempt. 

In the first attempt of reconnection, forty-six SMs were reconnected after 

trying the initial list of SMs for eighteen minutes and eight seconds. In the 

next attempt that lasted for eleven minutes and fifty seconds, five SMs were 

reconnected. During the third attempt which had a duration of twenty-eight 

minutes and thirty-eight seconds, the MCUs were not successful to connect 

any SM of the remaining 35 SMs. However, the fourth attempt was successful 

in connecting 25 SMs, and the duration of the attempt was twenty-seven 

minutes and sixteen seconds. Finally, during the last attempt of the test that 

lasted for next fifty-seven minutes, only one SM was successfully connected. 

Therefore, nine SMs could not be reconnected remotely which were 

reconnected manually by using the optical eye. The optical eye can be used 

to reconnect SM manually if the SM does not respond to the remote signal. 

However, this technique can be applied to a particular type of SM because 

other types of SMs do not support optical eye technique for manual 

reconnection of SM. If any SM, which does not support the optical eye 

solution, fails to respond to the remote switching signal, replacing the SM 

would be a solution for these types of SMs. 

 

Figure 4.10: (a) Time instants of SMs’ switching during Test 3, (b) SMs’ 

Reconnection attempts showing success and failure 
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4.5  Status Update of the SMs’ Switch during the Tests 

A command with a list of selected SMs to be disconnected or reconnected 

was sent remotely from the CS to the selected MCUs during the tests. The 

MCUs were sending back the status update of the SMs’ switching to the CS 

in real-time while executing the SMs’ switching. The status update report 

showed the time instants when the MCUs started disconnecting or 

reconnecting SMs and also the confirmation of disconnections and 

reconnections of the SMs. Moreover, the report shows the time instants of 

switching attempt and failure feedback for the SMs that failed to follow the 

command. The status update reports were collected from the CS during each 

test to identify the time required to disconnect/reconnect each SM and also to 

analyze the test data. The MCUs start disconnecting or reconnecting SMs one 

by one and try all SMs once in the first attempt. In the second attempt, the 

MCUs try the failed SMs to switch again and again until it becomes successful 

to switch or until the switching command is canceled. The status update report 

also helps to identify after how many attempts the failed SMs successfully got 

connected.  

4.6  Power Quality Standards for Monitoring and 

Measurement 

The definition of the PQ is addressed in Appendix B, and the standards for 

monitoring and measurement of PQ are addressed in this section.     

The standard defines what is meant by good PQ and what demands the 

customers can put on the DSOs. A number of different norms and regulations 

have been introduced to give guidance for defining good PQ. The 

international standards on PQ can be found in the International Electro-

technical Commission (IEC) documents on Electro-Magnetic Compatibility 

(EMC). There is a common European standard (EN) for voltage quality, EN 

50160 [68]. According to an investigation by Council of European Energy 

Regulators, many European countries have adopted or acknowledged all or 

some parts of the standard. Also, the IEEE has published a significant number 

of standard documents on PQ, e.g., IEEE 1159 [83] for monitoring PQ.  

Several countries have written their own PQ documents, especially on 

harmonic distortion, e.g., Sweden has adopted their own PQ standard, EIFS 

2013:1 (Swedish regulation) [84]. The new standard EIFS 2013:1, established 

by the Ei is somewhat similar to EN 50160 and an important step towards SG.  

Monitoring of voltages and currents provides the DSOs information about 

the performance of their grid, both for the system as a whole and also for 

individual locations and customers [85]. Measuring PQ at the end customer 

is important but even more important is to measure in the grid to discover 
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potential issues at an early stage. The change in the types of loads connected 

to the power system puts additional pressure on DSOs to monitor and record 

various aspects of grid performance.  

There are some guidelines for PQ monitoring, e.g., CIGRE/CIRED JWG 

C4.112 [85]. The guideline provides information about measurement 

locations, processing, and presentation of measured data. Moreover, types of 

monitoring, e.g., continuous or short-term, monitoring location, monitored 

parameters, sampling rate, averaging window are mentioned in the guideline. 

There is also a measurement standard (IEC 61000-4-30) which divides the 

measurement instruments into different classes (A/B). The class A means that 

the measurement instrument can be used as a reference instrument [86] and 

the class B means that the readings from the measurement instrument would 

be useful but not necessarily comparable. In field tests, the PQMs of class A 

standard are used to measure the PQ in accordance with the applicable norms. 

4.7  Power Quality Measurements during SMs’ 

Switching  

The SMs can be configured to measure a limited set of voltage quality 

indices, e.g., the supply voltage variations. However, PQMs were used in 

parallel with the SMs to measure different PQ parameters. The test results 

presented are from portable PQMs which were used for temporary and short-

term PQ monitoring at the customer site and also at the substation. The PQMs 

stayed at the test location during the test period and captured a sample of 

measurements.  

The PQ measurements carried out in accordance with Class A of IEC 

61000-4-30 [86]. Flagging was used according to the standard to prevent 

double counting. The phase to neutral voltage was measured to evaluate the 

voltage quality. Typically, PQ indices such as flicker, transients and total 

harmonic distortion are not monitored at LV customer level. Hence, to 

increase the general knowledge on PQ indices at LV customer level, it was 

decided together with the DSO to monitor all the PQ indices that the chosen 

PQMs are capable of monitoring [87]. The monitored PQ indices which are 

given below, are also covered in the analysis of Chapter 5: 

 Supply voltage variations; 

 Flicker; 

 Voltage unbalance, Ub (%); 

 Total Harmonic Distortion (THD) (%); 

 Voltage sag; 

 Voltage swell; 

 Transient 
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Among the monitored PQ indices, transient events were expected during 

the reconnection of the SMs. Moreover, small variation was expected in THD 

(%), flicker, and Ub (%), due to switching of the SMs. The PQMs measured 

and recorded the PQ data during the field tests. The data were recorded during 

the SMs’ switching period and also during normal operating condition. The 

PQ data recorded during the SMs’ switching period is compared with the PQ 

data recorded during normal operation in Chapter 5. 

4.7.1 Selection of Power Quality Monitoring Locations 

In LV grids, it is recommended to perform PQ measurements at the point 

of connection of a selection of customers [88]. In this thesis, during all the 

three tests, four LV customer locations were selected among all customers in 

the area.  

In Test 1, the distances from the substation to the nearest and the farthest 

customers with PQMs were 98 meters and 447 meters respectively. In Test 2, 

the distances from the substation to the nearest and the farthest customers with 

PQMs were 77 meters and 209 meters respectively. For the tests, four 

customers were selected for PQMs installation based on their energy 

consumption history, but the customers’ distances from the substation were 

not considered. The customers with higher energy consumptions were chosen 

to get best measurement results from the PQMs.  

However, in Test 3, an additional criterion was added in the selection of 

measurement locations. The distance between the end customers and the LV 

substation was also considered during monitoring locations selection to see 

the variations of impact at different locations. Two measurement locations 

were selected which are the closest to the substation, while the other two 

locations were selected locations which are far from the substation. In Test 3, 

the distances from the substation to the nearest and the farthest customers with 

PQMs were 60 meters and 505 meters respectively.  

The LV substations of the selected areas were also a PQ monitoring 

location during each test. The PQ was monitored to investigate the impact of 

multiple SMs’ switching both at the end customers level as well as at the 

substation level. Table 4.3 shows the number of PQMs installed during each 

test and also the locations of the PQMs. Moreover, Table 4.3 shows if the 

SMs of the customers with PQMs were switched or not during the tests. As 

seen here, the SMs associated with the four PQMs were switched during the 

first two tests while two SMs among the four SMs associated with the PQMs 

were excluded from remote switching during Test 3.   
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Table 4.3: Number of PQMs installed during each test and locations of the PQMs 

 No. of 

PQMs 

used in the 

Test 

PQM at the 

LV 

substation 

PQMs at 

LV 

customers 

level 

Customers 

having 

PQMs 

switched 

Customers  

having 

PQMs not 

switched 

Test 1 5 1 4 4 0 

Test 2 5 1 4 4 0 

Test 3 5 1 4 2 2 

4.7.2 Parameters Recorded during the Tests 

Different parameters were measured and recorded in the PQMs, e.g., 

average voltages, currents, and powers. The maximum and minimum values 

of different parameters were also monitored in addition to parameter averages 

over a certain period, e.g., one minute. A short time window was used to 

monitor the PQ during the tests. In the first two tests, all parameters were 

recorded with one-sec interval except for the short-term flicker, and the 

Ub (%) values which were recorded with ten-minute and one-minute time 

window respectively (according to the standard settings of the PQMs for these 

parameters). However, for Test 3, one-sec time window was used for all 

parameters to collect as much data as possible.  

Table 4.4 shows the time window used in PQMs for different parameters 

during the three tests.  

Table 4.4: Time window used for different parameters measurement 

Parameters Time Window 

for  Test 1 

Time 

Window for  

Test 2 

Time 

Window for  

Test 3 

Average Phase to neutral 

voltages  

1 sec 1 sec 1 sec 

Average phase currents  1 sec 1 sec 1 sec 

Average powers 1 sec 1 sec 1 sec 

Average values of power factor 1 sec 1 sec 1 sec 

Short-term flicker 10 min 10 min 1 sec 

Voltage Unbalance Ub (%) 1 min 1 min 1 sec 

Total Harmonic Distortions 

(THD) (%)     

1 sec 1 sec 1 sec 
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4.7.3 Event Triggering 

The PQMs can trigger events. Waveform data was triggered when the 

PQMs detected events such as voltage sag/swell, and transients.  

Table 4.5: Threshold limits used to record the PQ events during the tests;              

∆Ustat: Change in steady state voltage level, and ∆Umax: Maximum voltage change 

 Voltage 

Sag/swell (%) 

Slow voltage 

variation (%) 

Rapid voltage 

change 

Transients 

(%) 

Test 1 ± 10 ± 10 3% for ∆Ustat and 

5% for ∆Umax 

± 50 

Test 2 ± 10 ± 10 3% for ∆Ustat and 

5% for ∆Umax 

± 25 

Test 3 ± 10 ± 10 3% for ∆Ustat and 

5% for ∆Umax 

± 25 

 

The triggering limits used for PQ events were in accordance with Class A 

of IEC 61000-4-30. There is no standardized method for the detection of 

transients, neither transient overvoltage nor transient overcurrent [88]. A limit 

of ± 50% of the nominal value is used as a normal practice for triggering 

transient events in Sweden, and this limit was used during Test 1. However, 

during Test 2 and Test 3, a lower limit was used for triggering transient events, 

which was ± 25% of nominal value. The reason was to capture possible small 

transient effects during multiple SMs’ switching. The limit used for triggering 

voltage sag/swell event was ± 10% of the nominal voltage. The limits used 

during the tests are shown in Table 4.5. 

4.7.4 Data Sampling 

The PQMs recorded average values of different parameters such as phase 

voltages and currents with one-sec data interval for the whole test period. 

Waveform data was recorded for the triggered PQ events, e.g., transient 

events at 12.8 kHz sampling frequency. The PQMs recorded waveform data 

for a number of cycles before and after the events were triggered, e.g., 

waveform data of ten cycles for a transient event; two cycles before and eight 

cycles after the event triggered. 

4.7.5 Reference Voltage 

The reference voltage used to relate the size of voltage-quality 

disturbances to, is in accordance with EN 50160 [68]. The reference voltage 

was equal to the nominal voltage, in this case, 230 V phase-to-neutral 

voltages. 
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4.8  Conclusions 

The field tests aimed to investigate the impacts of SMs’ switching on the 

PQ at LV level, and to identify the challenges in execution of large-scale SMs’ 

switching by investigating the performance of the SMS. The plan for the field 

tests has been designed with planned outage work of the DSO to avoid extra 

power outage of the customers. The PQ monitoring locations have been 

selected based on 1) energy consumptions, since best measurement results 

can be achieved from the PQMs higher energy consumptions and 2) the 

distance between the end customers and the LV substation, to see the 

variations of impact at different locations.  

The PQ indices such as supply voltage variations, flicker, voltage 

unbalance (%), total harmonic distortion (%), voltage sag/swell, and transient 

have been measured with the PQMs and analyzed. 

The settings used to trigger PQ events are in some cases changed from the 

standard settings because of shorter observation period during the field tests, 

compared to the typical PQ observation period. Moreover, the intention was 

to record as much data as possible within the limit of available memory in the 

PQMs. However, the results and the analysis presented in Chapter 5 are 

carried out based on the standards.  

The status update reports are important as they are used to get the number 

of SMs that are disconnected or reconnected, and the number of SMs that 

failed to do so. The identified errors in the status update report during the field 

tests are presented in Chapter 5. The functional requirements for getting 

reliable status update report during CLS is addressed in Chapter 9.             
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Chapter 5                                  
Field Test Results and Analysis 
 

This chapter presents the results of the field tests which were described in 

Chapter 4. The data received from the PQMs, and the switching data from 

the CS during the tests have been compiled and presented. The switching 

technique of the investigated smart metering system is also studied in this 

chapter. The data from the PQMs are used to study the voltage variations and 

PQ events for the period during the SMs switching. The results from PQ 

events are presented and discussed.  

 

5.1 Field Test Results 

Five PQMs recorded the average phase voltages and phase currents with 

one-sec time window during each of the three tests. The phase voltages and 

currents were measured at the customer level and also at the substation level.  

In this section, average voltage variations are shown by comparing the 

average voltage values of each phase before the SMs’ switching over one 

minute with the average voltage values of each phase after the SMs’ switching 

over one minute. The variation in voltage is shown both at the customer level 

and the substation level for the three tests. It is noted here that the voltage 

variations that can be caused by other events in the upstream grid were not 

monitored during the field tests, and thereby upstream effects are unknown. 

Moreover, information was not available on customers’ home appliances.    

5.1.1 Field Test Results on Voltage Variations 

5.1.1.1 Voltage Variations during Test 1 

The number of customers was 13 during Test 1, and the transformer rating 

of the test area was 500 kVA. The voltage variations at the substation level 

and also at the customer level were not significant since the number of 

customers in the area was very low, and hence their total load demand, 

compared to the capacity of their respective transformer. Therefore, small 

load variation was expected to create small voltage variation as the voltage 

drop over the transformers is lower due to low impedance of the transformer.  

Figure 5.1 shows the one line diagram of Test 1 area indicating PQMs’ 

location.  



70 

 

 
Figure 5.1 One line diagram showing the location of the PQMs during Test 1 

The average changes in phase voltages during SMsD of Test 1 are shown 

in Table 5.1, which shows the phase voltages at the beginning of the SMsD 

period and also at the end of the SMsD period. Moreover, Table 5.1 shows 

the differences in voltage changes for SMsD. The locations of the PQMs at 

the four customer levels are denoted as C11, C12, C13 and C14, where the 

first digit after ‘C’ represents the test number and the second digit represents 

the customer number. Moreover, the location of the PQM at the substation of 

Test 1 is denoted as S1. The voltages at the three different phases are denoted 

as Ph1, Ph2, and Ph3. 

Table 5.1: Change in phase voltages during SMsD of Test 1 

PQM 

location 

Before SMsD After SMsD Change in voltage 

for SMsD 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Sub- 

Station, S1 
235.7 235.6 236.8 235.9 235.6 236.9 0.2 0 0.1 

C11 235.6 235.3 236.8 236.1 235.8 237.0 0.5 0.5 0.2 

C12 235.8 235.5 236.7 236.1 235.8 237.0 0.3 0.3 0.3 

C13 234.9 234.5 236.2 236.0 235.7 236.9 1.1 1.2 0.7 

C14 234.6 235.9 236.9 235.9 236.2 236.4 1.3 0.3 0.5 

   The voltage at the substation was reduced by operating the tap changer of 

the transformer according to the plan of PM work. For this reason, the voltage 

values are seen decreased before the SMsR.  Table 5.2 shows the average 

change in phase voltages for SMsR, the phase voltages before and after the 

SMsR period, and also the changes in voltage for SMsR concerning Test 1. It 
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can be seen here that phase 1 voltage of the customer C14 decreased by 8.6 

V. From the measurements of phase currents, it is found that the customer 

was taking almost 30 A current on that phase after reconnection of the 

associated SM. The voltage increase that was observed on different phases 

are probably due to unbalance in the connected three-phase loads.    

Table 5.2: Change in phase voltages during SMsR of Test 1 

PQM 

location 

Before SMsR After SMsR Change in voltage 

for SMsR 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Sub- 

Station, S1 
230.5 230.3 231.4 230.1 230.1 231.1 -0.4 -0.2 -0.3 

C11 230.8 230.6 231.6 229.5 228.9 230.9 -1.3 -1.7 -0.7 

C12 230.8 230.5 231.6 228.1 230.6 229.5 -2.7 0.1 -2.1 

C13 230.7 230.5 231.5 228.2 227.9 229.7 -2.5 -2.6 -1.8 

C14 230.8 230.5 231.6 222.2 231.6 231.5 -8.6 1.1 -0.1 

5.1.1.2  Voltage Variations during Test 2 

The number of customers during Test 2 was higher than the number of 

customers during Test 1. However, the power rating of the transformer was 

also higher in Test 2 compared to the transformer of Test 1. For this reason, 

the expectation of significant voltage change was low during Test 2.  The one 

line diagram of Test 2 is shown in Figure 5.2 indicating the PQMs’ location.  

 
Figure 5.2 One line diagram showing the location of the PQMs during Test 2 
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The average changes in voltages for SMsD of Test 2 are shown in Table 

5.3. The table shows the voltages at the beginning of SMsD and also the 

voltages at the end of SMsD. Moreover, the changes in voltages due to SMsD 

are shown in the table. The locations of the PQMs at the four customer levels 

are denoted at C21, C22, C23, and C24, where the first digit after ‘C’ 

represents the test number and the second digit represents the customer 

number. The location of the PQM at the substation of Test 2 is denoted as S2.  

Table 5.3: Change in phase voltages during SMsD of Test 2 

PQM 

location 

Before SMsD After SMsD Change in voltage 

for SMsD 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Sub- 

Station, S2 238.8 238.4 240.3 239.5 239.3 240.8 0.7 0.9 0.5 

C21 238.5 238.4 240.3 239.5 239.2 240.7 1.0 0.8 0.4 

C22 238.3 240.1 238.7 239.4 240.9 239.6 1.1 0.8 0.9 

C23 238.2 238.3 240.0 239.9 239.4 240.9 1.7 1.1 0.9 

C24 239.3 237.9 240.0 239.6 239.4 240.8 0.3 1.5 0.8 

 

The voltage at the substation was stepped down by using the tap changer 

of the transformer according to the plan of PM work. For this reason, the 

voltage values before the SMsR are seen generally decreased compared to the 

voltage values after the SMsD. The voltage increase at the substation level is 

due to upstream action in the network such as tap change operation in the MV 

transformer or the load variations.  

Table 5.4 shows the average changes in phase voltages during SMsR, the 

phase voltages before and after the SMsR period, and also the changes in 

voltage for SMsR concerning Test 2. It can be seen here that the voltage at 

the substation increased after completing the SMsR. However, by analyzing 

the voltage data at the substation, it is found that the voltage had been 

fluctuating during the period of SMsR. The reason for the fluctuation could 

be that the voltage change at the upstream grid influenced the voltage at the 

substation of the test area. The fluctuation of the voltage at the substation was 

observed similarly in all three-phases throughout the SMsR period.  

Moreover, the voltages at C24 are seen to be increased on phase 1 and 

phase 3. By analyzing the voltage data at C24 for the whole SMsR period, it 

was found that C24 was connected almost at the last moment of the SMsR 

period, and the voltages on each phase were decreased after the load 

reconnection. However, since the voltages at C24 fluctuated similarly as the 

voltage fluctuation of the substation, the voltages were found higher just 

before reconnection of the SM. For this reason, the change in the voltages at 
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the C24 was found positive, i.e., increased although the voltage decreased due 

to the connection of loads. The voltage increase at the substation level is 

probably due to upstream action in the network such as tap change operation 

in the MV transformer.   

Table 5.4: Change in phase voltages during SMsR of Test 2 

PQM 

location 

Before SMsR After SMsR Change in voltage 

for SMsR 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Sub- 

Station, S2 231.0 230.8 232.2 231.7 230.9 233.0 0.7 0.1 0.8 

C21 231.3 230.7 232.3 230.1 229.3 231.3 -1.2 -1.4 -1.0 

C22 231.0 232.5 231.4 229.5 231.4 230.1 -1.5 -1.1 -1.3 

C23 231.5 230.9 232.4 230.5 230.0 231.2 -1.0 -0.9 -1.2 

C24 231.0 230.7 232.1 232.0 230.4 232.6 1.0 -0.3 0.5 

5.1.1.3  Voltage Variations during Test 3 

The voltage variations for the SMs’ switching during Test 3 are shown in 

Table 5.5. The number of customers in the area of Test 3 was much higher 

compared to the first two tests. Almost 50% of the SMs were switched during 

the test, and the number of switched customers is still much higher than the 

customers switched in the first two tests. The power rating of the transformer 

of this area was however 800 kVA, which is similar to the transformer rating 

of Test 2. Table 5.5 shows the phase voltages at the beginning of the SMsD 

period and also at the end of the SMsD period, and also the changes in 

voltages for the SMsD. It is seen that the phase voltages of the substation 

increased by around 1 V after the SMsD. By analyzing the voltage 

measurements during the SMsD period, it is seen that the voltages at the four 

customer level were varied following the variation of the substation voltage 

and also with the changes in the load current of the respective customer.  

Moreover, at some customer level, the phase 3 voltages are seen to be 

higher than the phase 3 voltage of the substation. The reason is that as the load 

currents on phase 3 of the customers were very low, the capacitive effect of 

the underground cable was dominant which caused the increase in voltage on 

the other end of the underground cable. However, the voltage variations were 

found within the acceptable limit.    
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Table 5.5: Change in phase voltages during SMsD of Test 3 

PQM 

location 

Before SMsD After SMsD Change in voltage 

for SMsD 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Sub- 

Station, S3 235.0 233.3 233.7 235.8 234.5 234.4 0.8 1.2 0.7 

C31 231.7 231.9 235.2 234.3 234.2 235.6 2.6 2.3 0.4 

C32 228.3 229.3 232.2 232.2 232.8 234.6 3.9 3.5 2.4 

C33 231.9 232.7 234.7 233.9 234.1 235.5 2 1.4 0.8 

C34 228.5 226.5 234.1 231.4 233.1 234.3 2.9 6.6 0.2 

Unlike the first two test, the voltage at the substation was not reduced by 

operating the tap changer during Test 3. Table 5.6 shows the changes in phase 

voltages during SMsR, the phase voltages before and after the SMsR period, 

and also the changes in voltage for SMsR concerning Test 3. The voltage 

values shown here are one-sec average value. It is seen here that the voltage 

variations at the four customer level and also at the substation level were also 

within the acceptable limit for the SMsR. The increase in phase voltages at 

some customer levels is probably due to unbalance in the connected three-

phase loads. 

Table 5.6: Change in phase voltages during SMsR of Test 3 

PQM 

location 

Before SMsR After SMsR Change in voltage 

for SMsR 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Ph1 

(V) 

Ph2 

(V) 

Ph3 

(V) 

Sub- 

Station, S3 236.7 235.7 235.1 236.0 235.1 234.7 -0.7 -0.6 -0.4 

C31 235.6 234.9 236.5 235.2 234.9 236.1 -0.4 0 -0.4 

C32 232.3 234.0 234.8 232.4 233.4 235.0 0.1 -0.6 0.2 

C33 234.9 234.6 236.4 234.3 234.1 236.6 -0.6 -0.5 0.2 

C34 226.8 235.4 235.6 229.6 231.6 233.4 2.8 -3.8 -2.2 

5.1.2 Power Quality Events Recorded during SMs’ 

Switching 

The PQMs recorded waveform data for the triggered PQ events. All PQ 

events recorded in the PQM were not related to the SMs’ switching, e.g., long 

interrupt events were recorded when the substation was disconnected for PM 

work, and the events are marked with green color. The events that were 

recorded during the SMs’ switching are marked with red color. Moreover, 
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some events were recorded during the substation power disconnection in 

addition to long interrupt events and those events are marked with blue color. 

Table 5.7 shows numbers of different PQ events recorded during the test 

period of Test 1.   

Table 5.7: PQ events recorded during Test 1 

PQM location Long Interrupt Voltage Sag Voltage Swell Transient 

Substation, S1 1 0 0 0 

C11 1 0 0 0 

C12 1 0 0 0 

C13 1 0 0 0 

C14 1 0 0 0 

 

Table 5.8 shows numbers of PQ events recorded during the test period of 

Test 2.  The PQMs recorded one long interrupt event which was recorded for 

the disconnection of the substation. It is seen here that one transient event 

were recorded at C22 and one transient event was recorded at C24 during the 

SMs’ switching. However, four more transient events were recorded in these 

two PQMs which is not shown in the table where each PQM recorded two 

transient events which were later identified as measurement noise. Finally, 

two transient events were found as related to the SMs’ switching, and the 

events were recorded during the reconnection of the two SMs which were 

located at customer site C22 and C24.   

Table 5.8: PQ events recorded during Test 2 

PQM location 

 

 

 

Long Interrupt Voltage Sag Voltage Swell Transient 

 

 

Substation, S2 1 0 0 0 

C21 1 0 0 0 

C22 1 0 0 1 

C23 1  0 0 0 

C24 1 0 0 1 
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Table 5.9 shows numbers of PQ events recorded during the test period of 

Test 3.  It is seen here that five transient events were recorded during the 

period of SMs’ switching at three customers’ location, the C32, C33, and C34. 

However, each of the five transient events at C32 and C34 was related to each 

other and caused by the reconnection of five SMs on the same feeder.   

Table 5.9: PQ events recorded during Test 3 

PQM location Long 

Interrupt 

Voltage Sag Voltage Swell Transient 

Substation, S3 1 0 0 0 

C31 1 0 0 0 

C32 1 0 0 5 

C33 1 0 0 1+5 

C34 1 0 0 1+5 

 

5.1.3 Error in the SMs’ Status Update Reports  

This section analyzed the status update reports of the SMs’ disconnection 

and reconnection which were collected from the CS and identified the actual 

instants of each SM switching. Since the MCUs send the real-time status of 

SMs’ switching to the CS, it is important that the report should be reliable. 

Otherwise, wrong information might lead to taking unnecessary actions by 

the DSO, e.g., replacing the SM, which is reported as failed to reconnect. 

Some errors are found in the status update report of each test, e.g., the wrong 

update about successful disconnect/connect of the SMs, showing different 

update for the same SM at different attempts of the same switching signal, 

multiple status updates for same SM.  

During the tests, the reports were showing that some of the SMs were 

failed to disconnect or reconnect. However, after investigating each failed SM 

individually, some of the SMs were found to be actually disconnected or 

reconnected. Each failed SM was investigated by asking real-time data from 

the SMs. It was seen that some of the SMs were showing real-time voltages 

and currents, which indicates an error in the report. Moreover, it was observed 

in the status update report of Test 3 that some of the SMs which were 

successfully connected in the first attempt, are shown as failed in the second 

attempt of reconnection. The percentage of this type of error in the status 

update report of Test 3 was 27.6%.   
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Furthermore, in the status update report of Test 2 only it was observed that 

two SMs were tried to reconnect two times and reported as connected both 

times. It is seen that same SM received reconnect command from two MCUs. 

This kind of error could lead to confusion in the data analysis. Percentage of 

this kind of error in Test 2 was 5.4%. Moreover, it was observed that same 

SM received reconnect signals from two MCUs, and both MCUs reported 

failure to reconnect almost at the same time.  

Table 5.10 shows a summary of the percentage of error in the status update 

reports considering only one type of error where a SM which was actually 

disconnected/connected but the report shows that SM was failed to 

disconnect/reconnect. 

Table 5.10: Percentage of error found in the Status update report 

 Test 1  Test 2  Test 3  

Error (%) in SMs’ status update 

during SMsD 

8.3 18.9 2.3 

Error (%) in SMs’ status update 

during SMsR 

8.3 21.6 4.7 

       

By comparing the SMs’ actual switching instants from the installed PQMs 

with the reported switching time in the status update report, it is found that 

the communication between the SM to the CS takes average 4 sec to report 

the switching of a SM. However, 11 sec delay was also observed in two 

reported cases which could also be a type of error in the status update report. 

5.1.4  Comparison of SMs’ Switching Time 

The time required to disconnect and reconnect the SMs, are obtained from 

the status update reports. Most of the SMs were disconnected at first 

disconnection attempt, but few of them were disconnected after multiple 

attempts. Similarly, most of the SMs were reconnected at first reconnection 

attempt, but few of them were reconnected after multiple attempts. However, 

in Test 3 reconnection of the SMs were mostly unsuccessful in the first 

attempt. Because the SMs took time to get connected to the ZigBee network, 

and during that time period, the SMs were not available for communication.  

Moreover, there is one kind of SM which requires two steps to connect the 

SM. First, it needs to activate the switch, and after that, it connects the switch 

in the next step. This specific type of SM takes more time to reconnect 

compared to the reconnection time required for other types of SMs. However, 

the disconnection process needs only one step for all types of SMs.  
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Table 5.11 shows the number of SMs which are reported as successfully 

disconnected and reconnected in the status update report. Since there were 

errors in the reported numbers, therefore, the actual number of SMs that were 

successfully disconnected and reconnected are also shown in the Table. 

Moreover, the average time required to disconnect and reconnect the SMs are 

shown. From the status update report, only the reported successful SMs’ 

switching times are considered for SMs’ average switching time calculation. 

It is noted here that all the selected SMs in the first two tests were switched 

successfully, i.e., the reported failures in switching were just errors in the 

status update report. However, in Test 3, two SMs and nine SMs were actually 

failed to disconnect and reconnect respectively. It is seen here during Test 3, 

on an average, the SMs took longer reconnection time. The reason is that out 

of 77 successfully reconnected SMs there were 57 SMs which requires two 

steps for reconnection. During the first two tests, there was only one SM of 

this kind.  
Table 5.11: Time (sec) required for disconnecting and reconnecting SMs 

 Number of 

disconnected SM 

 

Average time 

required for 

SM 

disconnection  

(sec) 

Number of 

reconnected SM 

 

Average Time 

required for  

SM 

reconnection  

(sec) 
Reported Actual Reported Actual 

Test 1 11 12 8.0 11 12 10.5 

Test 2 30 37 7.2 29 37 07.2 

Test 3 80 84 7.6 73 77 14.2 

5.1.5 Switching Technique of the MCUs 

In Test 1, there was only one MCU, and the MCU switched all SMs one 

by one. However, in Test 2 and Test 3, there were four and three MCUs 

respectively. During Test 2, the number of SMs under each of the four MCUs 

was 27 SMs, 5 SMs, 2 SMs and 3 SMs respectively. During Test 3, the 

number of SMs under each of three MCUs were found as 41 SMs, 44 SMs, 

and 1 SM respectively.  

All MCUs start switching the selected SMs in parallel, after receiving 

switching command from the CS. Moreover, the MCUs send the confirmation 

report to the CS in parallel. It is also seen that the MCUs start executing the 

next switching almost instantly after completing the previous switching. 

Table 5.12 shows an example of parallel switching performance of multiple 

MCUs, and also individual MCU’s performance on multiple SMs switching 

from Test 2. However, for MCU 1, switching executions are shown only the 

first ten SMs out of twenty-seven SMs.  
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Table 5.12: Switching techniques of MCUs from Test 2; where SM_S, SM_C, and 

T are starting, confirmation and required time (sec) of reconnections respectively.  

Sl. MCU 1 MCU 2 
 SM_S SM_C T SM_S SM_C T 

1 08:44:54.913 08:45:05.372 10s 08:44:56.319 08:45:06.858 10s 

2 08:45:05.373 08:45:13.280 8s 08:45:06.858 08:45:17.299 11s 

3 08:45:13.280 08:45:20.990 7s 08:45:17.299 08:45:25.286 8s 

4 08:45:20.991 08:45:28.682 8s 08:45:25.286 08:45:33.097 8s 

5 08:45:28.682 08:45:36.231 8s 08:45:33.097 08:45:40.905 7s 

6 08:45:36.232 08:45:43.880 7s    

7 08:45:43.881 08:45:51.650 8s    

8 08:45:51.651 08:45:59.599 8s    

9 08:45:59.599 08:46:07.588 8s    

10 08:46:07.589 08:46:15.339 8s    

 

Sl. MCU 3 MCU 4 
 SM_S SM_C T SM_S SM_C T 

1 08:44:56.124 08:45:03.984 7s 08:44:56.147 08:45:06.704 10s 

2 08:45:03.985 08:45:11.804 8s 08:45:06.704 08:45:14.465 8s 

3    08:45:14.465 08:45:22.226 8s 

 

        Figure 5.3 shows the time required to disconnect and reconnect 85 SMs 

under two MCUs during Test 3. The MCU1 and the MCU2 attempted to 

switch 41 SMs and 44 SMs respectively. As seen in (a), the MCU1 reported 

successful disconnection of 37 SMs and failure for 4 SMs, while the MCU2 

reported successful disconnection of 42 SMs and failure for 2 SMs. Moreover, 

it is seen here that the required disconnection times of the SMs are quite equal.   

As discussed in Section 4.4.3, reconnection of the 85 SMs required much 

longer time and several attempts with many tries. Among hundreds of tries, 

only successful reports of reconnections and last reports of failure are 

considered to get an overview of time required for the SMs’ reconnection. As 

seen in (b), in general, successful reconnection of the SMs required two types 

of durations where one duration is almost double of the other. This is because 

there were SMs from two brands and the SMs from one of the brands require 

two steps, i.e., activate the switch and then reconnect. Therefore, to reconnect 

that type of SM requires almost double time. It is also seen that reconnection 

of a SM can take up to one minute. Moreover, it is seen in (b) that the MCU1 

reported successful reconnection of 38 SMs and failure for 3 SMs, while the 

MCU2 reported successful reconnection of 34 SMs and failure for 10 SMs.  
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Figure 5.3 Time required to get status updates of the SMs' switch 

5.2 Analysis of Field Test Results based on Power 

Quality Standards 

5.2.1 Analysis of Voltage Quality  

In the regulations, limits are given for the voltage-quality variations such 

as unbalance, THD and voltage fluctuations [88], [89]. 

5.2.1.1 Voltage Unbalance  

The five PQMs that were used during each of the tests recorded the Ub (%) 

data. The Ub (%) data at the customer level were recorded in the four PQMs 

with ten-minute data interval during Test 1 and Test 2. However, the Ub (%) 

data at the substation level was recorded with one-minute data interval during 

the first two tests to get more data at the substation level. According to 

EN 50160, for the voltage quality to be considered sufficient, all ten-minute 

values of the Ub (%) are required to be less than 2% for all voltage levels. 

Table 5.13 shows the maximum values of Ub (%) during the switching period 

of the SMs and also during the normal power supply condition to compare the 

values of Ub (%). As seen here, all ten-minute values of the Ub (%) during 

the SMs’ switching period both at the substation level and at the customer 

level are clearly below 2% for the first two tests.      
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Table 5.13: Maximum values of Ub (%) during the first two Tests 

 Test 1 Test 2 

Location of PQMs C11 C12 C13 C14 S1 C21 C22 C23 C24 S2 

Max Ub% during 

Switching 

0.38 0.35 0.37 0.59 0.34 0.43 0.43 0.44 0.43 0.44 

Max Ub% in normal 

operating condition 

0.38 0.37 0.38 0.54 0.38 0.43 0.44 0.46 0.43 0.41 

During Test 3, the Ub (%) values were recorded in the five PQMs with 

one-sec data interval. Table 5.14 shows the maximum Ub (%) values at the 

selected customers and substation level during Test 3. As seen here, the Ub 

(%) values were less than 1% during the SMsD and the SMsR. By comparing 

the Ub (%) values during SMs’ switching with the Ub (%) values during 

normal operating condition from all three tests, it can be said that the Ub (%) 

was not affected significantly by SMs’ switching.  

Table 5.14: Maximum values of Ub (%) during Test 3 

 Test 3 

Location of PQMs C31 C32 C33 C34 S3 

Max Ub (%) during SMs’ switching 0.70 0.61 0.56 0.83 0.47 

Max Ub (%)  in normal operating condition 0.77 0.67 0.60 0.86 0.53 

Figure 5.4 combined the comparison between maximum values of Ub (%) 

during the SMs’ switching period and the normal operating condition.  

 
Figure 5.4: Maximum value of Ub (%) during the tests 
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5.2.1.2 Flicker 

The EN 50160 gives an indication only for the Long-term Flicker severity 

(Plt) parameter which is evaluated over a period of two hours. According to 

EN 50160, 95% of the Plt values should be below 1.0 in one week 

measurement period. However, the standard IEC 61000-3-3 [90] requires the 

Pst index ≤ 1.0 and the Plt index ≤ 0.65. During the first two tests, the Short-

term Flicker severity (Pst) values were evaluated over a ten minutes period of 

time which is the standard time period for Pst evaluation. Table 5.15 shows 

the maximum values of Pst among the Pst values recorded in the PQMs during 

the SMs’ switching of the first two tests. Table 5.15 also shows the maximum 

values of Pst among the Pst values recorded in the PQMs during normal 

operation of the first two tests. As seen here, the maximum values of ten-

minute Pst values are below 1.0 both at the customer level and also at the 

substation level. By comparing the Pst values during the SMs’ switching with 

the Pst values during normal power supply period, it can be said that the 

flicker level did not get additional impact due to multiple SMs’ switching. 

Table 5.15: Maximum values of Pst during the first two tests 

 Test 1 Test 2 

Location of PQMs C11 C12 C13 C14 S1 C21 C22 C23 C24 S2 

Max Pst during 

Switching 

0.27 0.16 0.18 0.62 0.13 0.13 0.15 0.16 0.09 0.08 

Max Pst in normal 

operating condition 

0.16 0.14 0.16 0.36 0.16 0.10 0.10 0.19 0.10 0.10 

 

The Pst values were recorded with one-sec evaluation period during Test 

3 to monitor the frequency of voltage fluctuation due to the SMs’ switching 

over a short period. Table 5.16 shows the maximum values among the one-sec 

Pst values recorded during the SMs’ switching period and also during the 

normal operating condition of Test 3. The table also shows how many times 

one-sec Pst values reached values higher than 1.0 during the SMs’ switching 

period and also during normal operating condition. As seen here, few one-sec 

Pst values with values higher than 1.0 were observed at some customer level 

during SMs’ switching. However, the calculated ten-minute average values 

of Pst from the one-sec interval Pst values showed that all Pst values were 

below the limit of 1.0. However, the ten-min average Pst values are not shown 

in the table. Similarly, one-sec Pst values with values higher than 1.0 were 

also observed at some customer level and the substation level during the 

normal operating condition. The calculated ten-minute average values of Pst 

during normal operating condition also shows that all Pst values were below 

1.0. By comparing the Pst values of Test 3 during the SMs’ switching period 
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and the normal operating condition, it can be said that flicker level was not 

impacted due to multiple SMs’ switching.  

Table 5.16: Maximum values of Pst during Test 3 

 Test 3 

Location of PQMs C31 C32 C33 C34 S3 

Max Pst during Switching 1.11 1.74 0.74 3.87 0.37 

Number of times one-sec Pst values reached 

higher than 1.0 during SMs’ switching   

6 4 0 7 0 

Max Pst in operating condition 2.25 0.85 1.69 3.78 2.28 

Number of times one-sec Pst values reached 

higher than 1.0 during normal operation   

136 0 4 6 7 

 

Figure 5.5 shows the comparison between maximum values of one-sec 

short-term severity, Pst during the SMs’ switching period and the normal 

operating condition. 
 

 
Figure 5.5: Maximum value of Flicker effect during the tests 

5.2.1.3 Total Harmonics Distortion 

The PQMs measured the individual harmonic contents and expressed the 

output with reference to the fundamental component of the voltage, indicating 

the THD factor in percent. The THD (%) values were recorded with one-sec 

data interval during the three tests.  According to EN 50160, the THD values 

in percent should be less than 8% on a LV grid [91]. Figure 5.6 shows the 
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comparison between maximum values of THD (%) during the SMs’ switching 

period and the normal operating condition for the three tests.  

As seen here, the THD (%) values were much lower than the limit of 8% 

during the SMs’ switching period and also during the normal operating 

condition. By comparing the THD (%) values during the SMs’ switching 

period with the THD (%) values during the normal operating condition, it can 

be said that the SMs’ switching did not affect the THD (%) at LV level. The 

THD (%) was expected to be low since the field tests had been performed on 

working days and during office hours when most people are not at home. 

Hence, the loads that contribute to the THD (%), e.g., power electronic loads, 

were expected to be small in numbers during the tests.   
 

 
Figure 5.6: Maximum value of THD (%) during all tests 

5.2.2 Analysis of Power Quality Events 

The characteristic of an event can be determined by using triggering 

method when an event is detected [89],[92]. The voltage quality is regulated 

based on the defined limits for voltage quality events such as voltage sag, 

voltage swells, and rapid voltage changes [86]. The PQMs were configured 

to trigger the following events. 
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5.2.2.1  Voltage Sag 

The voltage sag is defined as an event during which the one cycle rms 

voltage suddenly drops below 90% of the nominal voltage, followed by a 

return to a value higher than 90% of nominal value, in a time varying from 10 

ms to 60 s [93]. The PQMs were set to trigger the voltage sag event based on 

the EN 50160 standard. The results from the three tests show that not a single 

voltage sag event was recorded in the PQMs during the multiple SMs’ 

switching.  

5.2.2.2 Voltage Swell 

The voltage swell is defined as an event during which the one cycle rms 

voltage suddenly exceeds 110% of the nominal voltage, followed by a return 

to a value lower than 110% of nominal value, in a time varying from 10 ms 

to 60 s. The PQMs were set to trigger the voltage swell event based on the 

EN 50160 standard. The results from the three tests show that not a single 

voltage swell event was recorded in the PQMs during the multiple SMs’ 

switching. 

5.2.2.3 Rapid Voltage Changes 

A rapid voltage change is defined as a change in rms voltage per sec faster 

than 5% of the reference voltage [94]. The test results show that there was no 

rapid voltage change event recorded in the PQMs during the SMs’ switching. 

5.2.2.4 Voltage Transients 

Voltage transients are also referred as voltage surges or voltage spikes or 

voltage impulses. A voltage transient shows up as brief and fast-rising voltage 

excursions on the sine wave. They typically last for a few microseconds to 

several milliseconds. The spikes in voltage may vary in duration and 

magnitude.  

a) Voltage Transients due to Downstream Current Transients  

During Test 2, two transient events were recorded in two PQMs among 

the four PQMs. These two PQMs were installed at the two selected 

customers’ site. The transient events were recorded at the moment of the 

reconnections of the SMs associated with these two PQMs. 

Figure 5.7 shows a voltage transient event recorded at a customer level 

during Test 2. Figure 5.7 also shows the waveforms of the phase currents 

during the transient event. As seen here, the voltage and the current are in 

opposite phase which indicates that this a downstream event. The voltage 
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transient event was recorded on phase 2 due to the current transient event on 

that phase while SM reconnection took place at the customer premise. The 

voltage on phase 2 suddenly dropped from 314 V to 237 V which represents 

a drop of 77 V, and the voltage dropped in 0.4 milliseconds. The voltage drop 

was 33.5% of the nominal voltage. The switching transient could be due to 

energizing of capacitor [95]. 

 
 

 
Figure 5.7: Currents and voltages of a voltage transient event recorded at customer 

C22 during Test 2 

Figure 5.8 shows a voltage transient event recorded at another customer 

level during Test 2. Similar to the transient event shown in Figure 5.7, this 

transient event was also recorded at the moment of the reconnections of the 

SMs associated with the PQMs. However, as seen in Figure 5.8, the voltage 

transient event was recorded on phase 1 and phase 2 due to corresponding 

current transients on phase 1 and phase 2. The voltage on phase 1 suddenly 

dropped from 313 V to 253 V which represents a drop of 60 V, and the voltage 

dropped in 0.08 milliseconds. Again the phase 1 voltage increased from 253 V 

to 353 V in 0.32 milliseconds which represents a rise of 100 V. The voltage 

decrease was 26.1% of the nominal voltage, and voltage increase was 43.5% 

of the nominal voltage respectively. Moreover, the voltage on phase 2 
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dropped from 230 V to 122 V which is 47% of the nominal value taking 

around the same time as phase 1.  

 
 

  
Figure 5.8: Currents and voltages of a voltage transient event recorded at customer 

C24 during Test 2 

b) Voltage Transients due to Upstream Current Transients  

The results from Test 3 show that fifteen transient events were recorded in 

the PQMs during the SMs’ switching. The events were recorded at the 

customer level. The two SMs associated with two PQMs at customer C33 and 

C34 were not switched during Test 3 and these two PQMs recorded ten 

transient events during the SMs’ switching. The test results also show that 

among the other two PQMs who’s associated SMs were switched, the PQM 

that was located at C32 recorded five transient events. It is noted here that the 

SM associated with the PQM that was located at C31, could not be 

reconnected within the planned test period due to communication problem 

and hence the SM’s reconnection moment could not be monitored.    

The transient events recorded in Test 3 have similarities in their nature, 

e.g., all events were recorded at the moment of another SM reconnection 

during Test 3. By comparing the SMs’ switching status update report and the 

moments of recorded transient events, it is seen that the transient events were 
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recorded when SMs were reconnected. The reason could be that when a SM 

was reconnected, the current transient was created which caused a voltage 

transient and this voltage transient was propagated to the PQM which was 

monitoring the PQ at a customer site. Similarly, other transient events may 

also have been recorded when another SM was reconnected, and a load of that 

customer created current transient and thereby resulting voltage transients. 

The customers C32 and C34 are located far from the substation and close to 

each other. The test results from the PQMs of C32 and C34 show that when 

the PQM at C34 recorded a voltage transient event, the PQM at C32 also 

recorded a voltage transient event at an approximately same time.  

Table 5.17 shows the time instants when the transient events were recorded 

in the PQMs of C32 and C34. One-sec time differences are seen here which 

could be because of time synchronization error in the clock of the PQMs.  

Table 5.17: Time instants of transient events recorded at C32 and C34 during Test 3 

PQ event 

(Voltage 

transient) 

C32 

(Associated SM 

was reconnected 

at 09:44:31) 

Moment of 

Transient 

recorded 

 

C34 

(Associated 

SM was 

always ON) 

Moment of 

Transient 

recorded 

Duration of the 

transient 

(duration of 

distortion due 

to transient) 

ms 

Percentage 

of voltage 

change 

from the 

nominal 

value 

(%) 

Transient 1 09:36:27 09:36:26 0.23 (0.7) 60 

Transient 2 09:38:53 09:38:52 0.08 (1.0) 55 

Transient 3 09:41:36 09:41:35 0.16 (0.7) 44 

Transient 4 09:41:43 09:41:42 0.08 (1.2) 34 

Transient 5 09:49:14 09:49:13 0.16 (0.4) 38 

The PQM located at the customer C33 also recorded five voltage transient 

events during the SMs’ switching. The customer C33 was located close to the 

substation and was not on the same feeder as of C32 and C34. The PQM at 

C33 recorded voltage transients when some of the SMs on the same feeder 

were reconnected. The resultant voltage transients due to the current 
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transients then propagated to the PQM at C33. Table 5.18 shows the time 

instants of voltage transients recorded in the PQM at C33 and also the time 

instants of the reconnection of the relevant SMs. As mentioned in Section 

5.1.3, average 4 sec communication delay was observed between the actual 

switching and the confirmation of switching in the status update report, which 

can also take 11 sec as seen for transient 4. These time instants from the PQMs 

and the status update report clearly shows a relation between the recorded 

voltage transients at C33 and the reconnection of the SMs on the same feeder.     

Table 5.18: The time instants of transient events recorded in PQM3 during Test 3. 

 PQ event 

(Voltage 

transient) 

C33 

(Associated 

SM was always 

ON) 

Moment of 

Transient 

recorded 

Time instants 

of relevant 

SM’s 

reconnection 

from the status 

update report 

Duration of the 

transient             

(duration of 

distortion due to 

transient)  

ms 

Percentage 

of voltage 

change from 

the nominal 

value 

(%) 

Transient 1 09:43:47 09:43:50 0.08 (1.9) 31 

Transient 2 09:45:03 09:45:07 0.16 (0.8) 43 

Transient 3 09:45:18 09:45:21 0.16 (1.1) 55 

Transient 4 09:45:34 09:45:45 0.16 (0.8) 35 

Transient 5 09:48:38 09:48:42 0.16 (1.6) 54 

 

As seen from Table 5.17 and Table 5.18, during Test 3 four voltage 

transients would have been recorded in the PQMs if the standard ± 50% 

transient limit was used as it is practiced for voltage transient measurement. 

The tables also show that the durations of the voltage transients were between 

0.08 ms to 0.23 ms.   

Figure 5.9 shows one of the two similar voltage transients recorded in the 

PQMs at C32 and C34 almost at the same time, and the current distortions 

created by the voltage distortion. The current distortions at C32 and C34 are 

not seen at exactly same instants in Figure 5.9 which could be because of the 

time delay between the PQMs’ clocks. Loads of the associated customers 

were operating in normal mode before the transient event was recorded. As 
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seen here, the change in current is in phase with the change in voltage. Hence, 

it can be said that the voltage transient is due to an upstream action, e.g., 

reconnection of another SM on the same feeder. The current transient is due 

to the voltage transient. The distortion in the currents indicates the presence 

of electronic loads [95]. According to [96], the transient events with short 

durations such as 0.08 ms to 0.23 ms and deviations of less than 60% of the 

nominal value will not damage the sensitive loads of the customers.    

Figure 5.9: Currents and voltages of a voltage transient event during Test 3.  (a) 

Voltage at C32 and C34, (b) Current at C32, (c) Current at C34 

According to [95], it is expected to have such kind of transient events 

during reconnections of the SMs because many electronic equipment have a 

capacitor over the terminals on the grid side which is often part of the 

electromagnetic compatibility filter. These type of transient events occur 

mainly due to the energizing of the capacitor during supply voltage 

connection to the devices. The PQ analysis of the field tests’ results indicates 

that during the CLS, loads of the excluded prioritized customers could 

experience either negligibly small impact on PQ or no impact due to the use 

of SMs.  
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5.3  Conclusions 

The analysis of the voltage variations shows that nothing but expected 

voltage variations are recorded during the field tests. The recorded PQ events 

show that no PQ events other than 12 transient events are relevant to SMs’ 

switching. All the transient events are related to the reconnections of the SMs 

which could be due to, e.g., switching of electronic equipment. Only four out 

of 12 transient events exceeded the standard limit of ± 50% but not above 

± 60% which is shown in the literature as not harmful to the sensitive 

equipment of the customers due to its presence for the very short duration.  

The types of errors in the status update report and the percentage of error 

in reporting failed SMs are presented in this chapter. The errors in status 

update report obtained from the small-scale load shedding test indicate the 

consequence it could have if large-scale CLS is planned to be performed using 

the existing SMS.   

The problems with reconnecting some of the SMs after the tests are 

presented in the thesis which happened due to the problem in communication 

network and finally required field visits to restart 9 SMs that could not be 

reached after trying continuously for more than 2 hours.  Moreover, 25 SMs 

were reconnected after almost 1 hour which is a very long delay than 

expectations. Hence, the importance of having extended battery support for 

SMs and the MCUs are identified which is included as a functional 

requirement for future SMS in Chapter 9.      

Moreover, the switching procedure of MCUs has been learned from the 

field tests’ results, which was not known before since the switching of the 

SMs has not been done before with respect to multiple SMs switching. This 

knowledge on MCUs has been used while developing the SMs’ switching 

model which is described in Chapter 7.    
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Chapter 6                                   
Load Forecasting Using Smart 

Meter Data  
 

This chapter presents the load forecasting models based on Artificial Neural 

Network (ANN) method using smart meter data. Moreover, the chapter 

provides the results and analysis on load forecasting using hourly SM data 

and six-minute interval data. The ANN method is used for load forecasting at 

low aggregation level, e.g., at low voltage transformer level, and also at the 

individual customer level. The impact of different factors on the accuracy of 

the LF are presented and analyzed.   

6.1 Acceptable Level of LF Accuracy to Support CLS   

According to current practice of the CLS, all customers under selected MV 

substation(s) are supposed to lose power. The use of SMs could help to 

exclude prioritized customers from the CLS, and the LF with high accuracy 

could support the DSOs to fulfill the load shedding request by the TSO more 

precisely. The amount of load in the residential areas could be estimated by 

looking at the feeders’ currents of the MV transformers supplying the areas. 

However, in case of CLS with SM, it would not be possible to know the 

amount of load from non-prioritized customers in different residential areas 

at the moment of load shedding. The ANN models can be developed for 

aggregated non-prioritized customers in different residential areas by 

aggregating their load at each LV substation level. The ANN models that are 

pre-trained with the historical SM data can then be used to get an idea about 

their load at the time of load shedding request. How many customers from 

how many LV substations need to be shed can be estimated by summing up 

the amount of loads available to shed from each LV substation until the 

demand of load shedding requested by the TSO is fulfilled. The LF can help 

the DSOs to gain a better knowledge on the condition of the distribution grid 

after load shedding. The required level of MAPE which can be accepted for 

the CLS has been discussed with an expert group in GENAB. It has been 

suggested that the maximum 5% to 10% MAPE at LAL is acceptable for the 

CLS application. The analysis on the MAPE of the aggregated LF models 

which are aimed to support the CLS will be presented in Chapter 8.    
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6.2 LF Model using Artificial Neural Network (ANN) 

6.2.1 Artificial Neural Network  

Supervised Learning is one of the classes of Machine Learning. Artificial 

Neural Network (ANN) is one of the methods of Supervised Learning. The 

ANNs act via an interconnected group of artificial neurons for processing 

information. The word network refers to the interconnections between the 

neurons in the different layers of each system. The main aim of using ANNs 

is to find a function to infer the mapping between the input and the output 

using a given set of data. One of the main advantages of ANNs is their ability 

to be used as an arbitrary function approximation mechanism that learns from 

observed data. A simple neuron of a typical ANN can be represented as shown 

in Figure 6.1.  

 

 
Figure 6.1:  A simple neuron of a typical ANN 

The number of inputs to the neuron is xn and wij indicates the weights 

associated with each input. The transfer function sums up the weighted inputs 

and the bias. The activation function calculates the output of the neuron. 

According to [97], ANN is widely used for various forecasting 

applications, since it can model nonlinearity. The LF models that are based 

on ANN are well summarized in [98]. The use of ANNs has been a widely 

studied technique for electric LF [10],[28]. The ANNs have been proven to 

be a reliable method for electricity LF in the past [99],[100],[101]. According 

to [102], the ANN models are used by many DSOs in practice. This thesis 

chose ANN method for load forecast since the method is shown to be effective 
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and efficient to forecast load at LAL, which is discussed in Section 1.2.2. 

Moreover, the ANNs are data-driven methods and are therefore well-suited 

for use with SM data [103].  

There has been no consensus on the most appropriate ANN model in LF 

applications. However, feed-forward Multi-Layer Perceptron (MLP) with one 

or more hidden layer has been widely used [104] with satisfactory results 

regarding accuracy [98],[105],[106].  

A typical ANN consists of a number of inputs, outputs, and hidden 

intermediate layer(s), where an attempt to match the computed outputs with 

the corresponding outputs is performed [103]. A set of given inputs and 

corresponding outputs is initially given for training. Under supervised 

learning, the actual numerical weights assigned to input elements are 

determined by matching historical data, e.g., time and weather, to 

corresponding outputs, e.g., historical electric loads. 

This supervised learning is also referred to as a training session. The 

training of the neurons using a set of training data involves a choice of the 

learning algorithm. The most popular learning algorithm in the ANN 

architecture for electric LF is the back-propagation algorithm [107].  

6.2.2 The ANN Model for LF 

The ANNs are used to provide nonlinear functions that can map historical 

load values and exogenous variables at a given time to a future value of the 

load. The ANN used for function fitting is a multilayer feedforward network 

with the tan-sigmoid activation function in the hidden layer and linear 

activation function in the output layer. One of the more popular activation 

functions for back-propagation ANN is the sigmoid [108]. According to 

[109], it has been found reasonable to use the tan-sigmoid function as 

activation function of hidden neurons. A linear activation function in the 

output layer is necessary so that the neuron does not generate a limited output 

interval. The activation functions calculate a layer's output from its net input. 

Initially, a two-layer feedforward network with ten neurons in the hidden 

layer is created to start the LF. The first layer is the hidden layer and the 

second layer is the output layer. One hidden layer is chosen for the ANN since 

one hidden layer is enough to approximate any continuous functions 

[98],[109]. There is one input vector to the network, which contains six or 

seven predictor elements. The number of neurons in the output layer is set to 

one. There is no standard solution for the question of how many neurons that 

should be used [109]. A workable number of hidden neurons to use in the 
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hidden layer of the ANNs was selected by a trial and error procedure. A few 

alternative numbers were chosen for the hidden neurons, and the best number 

of neurons was achieved by running simulations for each alternative numbers. 

The number of neurons that gave the best performance was selected for the 

ANNs.  

The multilayer feed-forward networks are then trained for the function 

approximation, i.e., non-linear regression. The batch training is applied to the 

ANNs, i.e., by applying all inputs in the dataset, e.g., training set, to the 

network before the weights are updated. The weights are then updated only 

once in each iteration. The Mean Square Error (MSE) between the network 

outputs and the target outputs is used as the performance function or cost 

function during the training of the ANNs. The gradient of the network 

performance is calculated with respect to the network weights using the back-

propagation algorithm. The algorithm updates the network weights and biases 

in the direction in which the performance function decreases most rapidly. 

The training process stops when the magnitude of the gradient becomes less 

than 1e-5. In the ANN models, Levenberg-Marquardt Algorithm (LMA) is 

used as a back-propagation algorithm since the LMA can train an ANN 10–

100 times faster than the usual back-propagation algorithms [107]. The LMA 

is a numerical solution for minimizing a cost function. It is a method that 

iteratively updates the weight and the bias values in the network until a local 

minimum is reached [97].     

The ANNs have parameters (IWj,i, LWj, b(1), b(2)), where the matrix input 

weights, IWj,i denotes the weights that connect the neuron j to the input i. The 

layer weight vector LWj includes the weights associated with the connections 

between the output neuron and the neurons j in the hidden layer. The final 

parameters are the bias vectors, b(1) connected to the hidden layer and b(2) 

connected to the output layer. The overall model of an ANN used can be 

formulated as in (6.1): 

yw,b(p) = ∑ LWj
10
j=1 tansig(∑ IWj,ipi

7
i=1 + b(1)) + b(2)                 (6.1) 

 

Figure 6.2 shows the mapping between the input and the output of an ANN 

with ten neurons in the hidden layer.  
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Figure 6.2:  An overall model of an ANN with seven input predictors, one hidden 

layer and ten neurons in the hidden layer 

6.2.3 Forecast Accuracy Evaluation 

The performance of an ANN depends on the selection of the input 

predictor variables or predictors, the volume of historical data used for the 

training of the neurons and the number of trained neurons. The predictors can 

be classified as weather factors, time factors, and historical data. For LF, it is 

vital that these three factors are optimized to reduce forecasting errors [21].  

The accuracy of the forecast model is often evaluated by calculating the 

so-called forecast error. This error is the difference between the actual or 

measured value and the predicted or forecasted value. There are many 

methods proposed and used for comparing the accuracy of time-series 

forecast methods. These accuracy evaluation methods give indications of how 

close forecasts or predictions are to the real outcome.  

The MAPE is one of the most widely used measures of forecast accuracy, 

because of its advantages of scale-independency and interpretability. 

Moreover, the use of MAPE is recommended in most textbooks on 

forecasting, e.g., in [110],[111]. The MAPE is based on a percentage (or 

relative) of the mean errors. It is often used in a situation where one is more 

interested in relative error [21]. The MAPE is adopted in this thesis to measure 

the accuracy of the LF models for aggregated customers and also for 

individual customers. The MAPE is calculated as given in (6.2). 
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|

𝑚

𝑛=1
                (6.2) 

 

Where, m is the maximum number of data points. 

6.2.4 Input Predictor Variables 

The selection of input variables, which are also known as predictors, is vital 

for the accuracy of the models for LF. It is a known factor that the weather 

conditions influence the load. Researchers have shown that forecasted 

weather parameters are the most essential factors in short-term load forecasts 

[112]. Time factors also influence the load significantly. There are important 

differences in load between weekdays and weekends. Moreover, the load on 

different weekdays can also behave differently. For example, Mondays and 

Fridays being adjacent to weekends may have structurally different loads than 

Tuesday through Thursday. Furthermore, loads of holidays are more difficult 

to forecast than on non-holidays because of their relatively infrequent 

occurrence. In this thesis, the ANNs are developed using seven input predictor 

variables while keeping the number of neurons in the hidden layer and the 

volume of historical data constant. These variables have been selected 

studying common practices in the literatures and also by investigating the 

performance of ANNs using different predictor variables. Same predictor 

variables are used for LF at LAL level and at also individual level. The same 

predictor variables that are used as inputs to the ANNs can be categorized into 

three types of variables: 

 

1) Historical data  

a) The previous day, same hour load (kWh) 

b) The previous week, same day, same hour load (kWh) 

c) The average load of the previous certain time period (kWh) 

2) Time factors 

d) Hour of the day (1-24) 

e) Day of the week (1-7) 

f) Working day or not (1 or 0) 

3) Weather factor 

g) Air temperature ( ͦ C)   
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6.3  LF at Low Aggregation Level using ANN: A Case 

Study 

6.3.1 Input Data: Hourly Energy Consumptions 

The dataset used in this case study contains real hourly energy 

consumption records from the SMs of 717 residential customers in 

Gothenburg. The meters have been put in operation since 2009. The SM 

readings used have been recorded from 1st January 2014 to 31st December 

2014. The residential customers have two types of heating system, electrical 

heating, and district heating. District heating refers to a system which is built 

for distributing heat generated in a centralized location for residential and 

commercial heating requirements such as space heating and water heating. 

There are three groups of customers in this dataset: 400 Apartments with 

district heating, i.e., no electric heating, 33 Villas with electric heating and 

284 Villas with district heating. These 717 customers were connected to three 

LV substations and the number of the customers under the three substations 

named as A, B and C were 51, 296 and 370, respectively.  

The dataset is divided into three subsets: a training set (70%), a validation 

set (15%) and a test set (15%) to use in the ANNs. The training set is used for 

computing the gradient and updating the network weights and biases. The 

error on the validation set is monitored during the training process. The 

network weights and biases are saved at the minimum of the validation set 

error. The mapping between the past load values and the exogenous variables 

is expected to generalize to the data of the test set that has not been used for 

designing the model. Before the input is applied to the network, the data is 

normalized so that all inputs fall in the range [−1, 1]. 

6.3.2 LF for Aggregated Customers 

The ECD in the dataset is recorded at hourly intervals. It gives 24 data 

points per day. Equation (6.3) shows the simple relation between the number 

of days (d), the number of time intervals in a day (t) and the number of data 

points (n) for each customer. 

         𝑛 = 𝑡 ∗  𝑑                                                  (6.3) 

The time series vector that represents the hourly energy consumption of 

customer i for the n data points is shown in (6.4).  

𝐸𝑖 = {𝐸𝑖
1, 𝐸𝑖

2, 𝐸𝑖
3, … . . , 𝐸𝑖

𝑛}                                                 (6.4) 
where, Ei denotes the vector of all ECD for customer i.  

The aggregated load of a certain number of customers at each time interval 
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t of a day is the sum of energy consumption of the aggregated customers at 

each particular time interval t, which is shown in (6.5). 

𝐸𝑡𝑜𝑡𝑎𝑙
𝑡 = ∑ 𝐸𝑖

𝑡𝐴

𝑖=1
                                                      (6.5) 

where, A is the number of aggregated customers.  

The time series vector of total aggregated ECD can be represented as 

shown in (6.6).  

𝐸𝑡𝑜𝑡𝑎𝑙,𝐴 = {𝐸𝑡𝑜𝑡𝑎𝑙,𝐴
1 , 𝐸𝑡𝑜𝑡𝑎𝑙,𝐴

2 , . . . , 𝐸𝑡𝑜𝑡𝑎𝑙,𝐴
𝑛 }                  (6.6) 

The purpose of the developed ANNs is to forecast aggregated ECD for a 

certain time horizon. In this thesis, the performance of the ANNs is tested by 

using the test dataset as described in Section 6.3.1. The forecast of energy 

consumption is a vector with m elements for the m time intervals and is shown 

in (6.7). 

    Ê𝑡𝑜𝑡𝑎𝑙,𝐴 = {Ê𝑡𝑜𝑡𝑎𝑙,𝐴
1 , Ê𝑡𝑜𝑡𝑎𝑙,𝐴

2 , . . . , Ê𝑡𝑜𝑡𝑎𝑙,𝐴
𝑚 }                    (6.7) 

where, m is the number of time intervals. 

6.3.3 Case Study: Results and Discussions on Aggregated 

LF 

In this section, the accuracies of the LF models for residential customers 

at LALs, are presented by showing the MAPE. The MAPE of the ANNs is 

shown here for hour-ahead LF using seven predictors, and also for hour-ahead 

LF using six predictors. Moreover, the factors influencing the MAPE are 

presented and discussed.   

6.3.3.1 Influence of Input Predictors on MAPE 

The influence of the input predictor variables on the accuracy of the ANN 

models has been investigated. Table 6.1 shows the influence of predictors on 

MAPE for different aggregations. The tick mark (√) shows when each of the 

seven input predictors, e.g., ‘Day of the week’ is considered as an input to the 

model. The input predictors have been reduced one by one using “educated” 

guesses, after checking the highest influence to lowest influence of the input 

predictors on MAPE.  

It is found that hourly values have a powerful influence on the MAPE since 

most of the people have routine behaviours such as eating breakfast in the 

morning or turning off lights before going to work. It can be said that loads 

associated with routine actions are usually strongly correlated to time, such 

as seasons and working hours and the dominant factor in energy consumption 

compared to random actions such as turning on a light or making a cup 

of coffee.  
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The substations are denoted as SA, SB, and SC, and the number of customers 

are denoted as suffix with C.  The Villa customers and the Apartment 

customers are denoted with V and A respectively where the number of 

customers is denoted as suffix with V and A. The customers with electric 

heating and without electric heating are denoted by EH and NEH respectively. 

Table 6.1  Influence of input predictors on MAPE 

Input Predictors Considered as the input of ANN (√) 
 Hour √ √ √ √ √ √ √ 
 Temperature √ √ √ √ √ √  
 Day of week √ √ √ √ √   
 Working day √ √ √ √    
 Prev. day same hour load √ √ √     
 Prev. week same day same hour load √ √      
 Prev. hour’s average load √       
MAPE (%) for (SA-C51) 6.14 7.83 9.23 10.15 10.50 11.72 50.19 

MAPE (%) for (SB-C296) 2.20 3.33 4.07 4.55 6.21 17.34 18.65 

MAPE (%) for (SC-C370) 2.77 3.48 3.67 5.26 5.57 7.21 10.57 

MAPE (%) for (V33-EH) 7.08 8.88 9.16 11.13 11.68 12.74 51.57 

MAPE (%) for (V284-NEH) 2.06 2.79 3.70 4.17 5.85 14.79 16.79 

MAPE (%) for (A400-NEH) 3.62 4.97 6.30 7.95 8.23 9.47 14.86 

MAPE (%) for (C717) 1.84 2.68 3.05 4.11 5.21 12.56 15.94 

 

From Table 6.1, it can be seen that the temperature value predictor also has 

a powerful correlation with the load since the use of some high power 

consuming appliances, e.g., electric heater, depends on the weather. 

Moreover, the day of the week predictor has a strong correlation with the load, 

e.g., daily load profiles of weekdays are different from the daily load profiles 

of the weekends. Other four predictors help to increase the accuracy of the 

models, i.e., decreasing the MAPE. 

6.3.3.2 Impact of Changing the Number of Neurons in Hidden Layer 

of the ANNs 

The performance of the ANNs has been investigated by changing the 

number of neurons using trial-and-error approach. The result from this 

analysis is used for selecting the number of neurons for the base case of the 

ANNs. Moreover, previous hour’s average load is used as one of the input 

predictor variables of the ANNs, since it is observed that it can help to learn 

the variations in load demand better compared to using an average load over 

previous 2-hours to previous 24-hours as shown in Subsection 6.3.3.3. 
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The selection of the number of neurons in the hidden layer to be trained need 

to be carefully chosen. This is because too many neurons make the network 

overspecialized, leading to loss of generalizing capability and too little 

neurons makes it difficult for the network to learn the behaviour of the series. 

Moreover, more neurons require more computation, but they allow the 

network to solve more complicated problems. The number of neurons in each 

ANN models has been varied until the MAPE of the ANN models started 

increasing with the variation in the number of neurons. The impact of the 

number of neurons on the MAPE of the ANNs is shown in Figure 6.3. As can 

be seen, the ANNs with 40 to 50 neurons give better accuracy on forecasted 

load. The load demand is volatile and noisy at LAL and typically consists of 

many different types of behaviour, e.g., frequent but irregular peaks. Hence, 

around 40 neurons in the hidden layer could be useful for such complicated 

problems. 

   
 Figure 6.3:  Impact of number of neurons in the hidden layer on the MAPE 

6.3.3.3 Influence of Using Average Load over Previous Different 

Time Periods as a Predictor of ANNs 

The influence of using average load over previous time periods as one of 

the input predictor variables on MAPE, which has been investigated by using 

the average load over the previous period of 1-hour, 2-hours, 3-hours and 4-

hours and 24-hours as one of the input predictors in the ANNs, is shown in 

Figure 6.4. It can be seen that lowest MAPEs can be obtained if previous 1-

yasira
Rectangle



103 

 

hour’s average load is used as one of the input predictor variables since this 

predictor can help to capture the irregular variations in the load. It can help to 

forecast load more accurately for the coming hour or hours.   

 
Figure 6.4:  Influence of using average load over previous different time periods as 

a predictor of ANNs on the MAPE 

6.3.3.4 Influence of Aggregation Level on MAPE 

The number of aggregated customers influences the accuracy of LF. 

However, the influence decreases with the increase of a number of aggregated 

customers. The influence of aggregated customers has been investigated by 

creating the ANNs for different levels of aggregated customers. The numbers 

of aggregated customers are 2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 

140, 160, 180, 200, 230 and 260 for customers with Villa. However, the 

number of Apartment customers is higher than Villa customers. Thus, in 

addition to the mentioned numbers of the aggregated customers, three more 

aggregation levels with 290, 320 and 350 customers are created for Apartment 

customers. It can be noted that the single customer with Apartment and also 

the single customer with Villa are chosen randomly and hence, the MAPE for 

a single customer could vary significantly depending on the type and habits 

of the selected customer.  
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Figure 6.5, shows the influence of the number of aggregated customers on 

the MAPE. It can be seen here that an aggregation level of around 50 

customers gives significantly better MAPE for residential customers with 

Villa and the MAPE does not decrease significantly after that aggregation 

level. Similarly, for Apartment customers, an aggregation level of around 70 

customers give significantly better MAPE, and the MAPE does not decrease 

significantly after that aggregation level. This is because, the fluctuations and 

the noise in the individual houses may cancel each other out while taking the 

sum.  

 
Figure 6.5:  Influence of aggregation level on MAPE 

6.3.3.5 Influence of Data Volume on MAPE 

The data volume used in the base models of the three substations contains 

one-year data. This section investigated the performance of the ANNs by 

changing the volume of data used to train and validate the ANNs of the three 

substations. The volumes of the data are categorized as three months’ data, 

six months’ data, nine months’ data and twelve months’ data which are 

denoted by 3M, 6M, 9M, and 12M, respectively. Moreover, the three months 

data are divided into four parts, i.e., first quarter to fourth quarter. Similarly, 

six months data are divided into two parts, i.e., first six months and second 
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six months. However, in case of nine months’ data volume, the data for first 

nine months was arbitrarily selected.  Figure 6.6, shows the influence of data 

volume on the MAPE of the ANNs which is discussed below:  

   
Figure 6.6:  Influence of data volume on the MAPE 

 Twelve months’ data: The ANNs trained with twelve months’ data 

provide less MAPE compared to the ANNs trained with three months’, 

six months’ and nine months’ data. However, the ANNs trained with the 

nine months’ data predict the load with the MAPE which is almost equal 

to the MAPE from the ANNs trained with twelve months’ data. This is 

due to that the nine months’ data covers most of the same general 

information covered by the yearly data, i.e., all days of a year, different 

holidays and also the temperature variations in different seasons of the 

year.  

 Six months’ data: The results have shown that the ANNs trained with 

either the first six months’ data or second six months’ data provide almost 

similar MAPE which could be because the dataset covers a nearly whole 

range of weather condition. 

 Three months’ data: The ANNs trained by the data of first and third 

quarter, provide higher MAPE. The reason is that the models are trained 

either with the data when the weather in Sweden is typically very cold or 

comparatively warm. Hence, the models predict the loads with a higher 

error for other weather conditions. However, the ANNs trained by the 

data of second and fourth quarter, provide comparatively less error in the 

prediction. Since the weather during these two quarters varies between 
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cold and warm, the models tend to learn the variations in the 

consumptions with the variation of temperature. 

6.3.3.6 MAPE of the ANN Models 

The accuracy of the forecasted load is evaluated by calculating the MAPE. 

Table 6.2 shows the values of the MAPE for different hour-ahead LF models 

with 7-input predictor variables. The previous hour’s average load has been 

used as one of the 7-input predictor variables. The models have been retrained 

several times, and the number of neurons has been changed to get as lowest 

MAPE values as possible. The obtained lowest MAPE are presented in Table 

6.2. The ANNs are developed using 40 neurons in the hidden layer.  

Table 6.2 shows that the load prediction for the Villa customers can be 

more accurate than the load prediction for the Apartment customers with the 

similar heating system. The study on the daily load profiles of the investigated 

customers from the SM data reveals that Villa customers have regularity in 

daily load pattern compared to daily load patterns of the Apartment 

customers. This could be the reason for higher forecasting accuracies for Villa 

customers.  

Table 6.2  MAPE for different hour-ahead LF models using seven predictors 

ANN Models for aggregated loads MAPE (%) 

Substation A with 51 customers (SA-C51) 6.09 

Substation B with 296 customers (SB-C296) 1.99 

Substation C with 370 customers (SC-C370) 2.79 

33 Villas with electric heating (V33-EH) 7.08 

284 Villas without electric heating (V284-NEH) 1.96 

400 Apartments without electric heating (A400-NEH) 3.75 

Monitored all 717 customers (C717) 1.74 

 
Moreover, the performance of the ANNs for hour-ahead LF has been 

investigated by using six input predictors, i.e., excluding the average load 

over a previous certain period from the input predictor variables. The MAPEs 

for different LF models with different aggregation levels are shown in Table 

6.3. The models have been re-trained several times, and the number of 

neurons has been changed to get as lowest MAPE values as possible. Table 

6.3 shows that the MAPE of a hour-ahead forecasted load using six predictors 

can be around 1% higher than the MAPE of hour-ahead forecasted load using 

seven predictors. 
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Table 6.3  MAPE for different hour-ahead LF models using six predictors 

ANN Models for aggregated loads MAPE (%) 

Substation A with 51 customers (SA-C51) 7.92 

Substation B with 296 customers (SB-C296) 2.94 

Substation C with 370 customers (SC-C370) 3.46 

33 Villas with electric heating (V33-EH) 8.79 

284 Villas without electric heating (V284-NEH) 2.66 

400 Apartments without electric heating (A400-NEH) 4.94 

Monitored all 717 customers 2.42 

6.4 LF for Individual Customer Using ANN: A Case 

Study 

6.4.1 Input Data: 6-Minute to 1-Hour Interval   

 1-hour data: The hourly dataset used for LF at the individual customer 

level contains real hourly energy consumption records from the SMs of 

residential customers as mentioned in Section 6.3.1. Data from two 

groups of residential customers are used to train the ANNs: 100 

Apartments with district heating (i.e., without electric heating) and 100 

Villas with district heating (i.e., without electric heating). Different types 

of residential customers are selected to investigate the impact of customer 

type on the accuracy of the forecast.  

 6-minute data: The 6-min interval dataset used in this thesis is collected 

from 4 individual customers for four months. The customers are equipped 

with additional meters which are named here as Extra Meter (EM). The 

SMs are typically equipped with LEDs which flash and the rate of 

flashing is proportional to the amount of power passing through the meter. 

The frequency of pulses indicates the power demand and the number of 

pulses indicates energy metered. The EMs store 6-min intervals ECD by 

using pulses from the SMs. The 6-min intervals data of the four customers 

are converted to data with different granularity, i.e., 10-min, 12-min, 15-

min, 30-min and 60-min intervals data to investigate the impact of data 

granularity on the accuracy of the load forecast. Each 6-min data is 

divided into six equal sections of one-minute data to get the contribution 

of each 6-min data over a specific time interval, e.g., 10-min or 15-min. 

The data with new intervals, e.g., 10-min intervals are created by 

considering the share of each 6-min data over a 10-min period. For 

example, first 6-min data and second 6-min data have three-fifth and two-

fifth contributions respectively in creating the first 10-min interval data. 

The dataset is divided into three subsets as mentioned in Section 6.3.1. 
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6.4.2 Description of Study Cases   

The influence of data granularity on the accuracy of LF at the individual 

customer level is presented and discussed in three categories as shown in 

Figure 6.7. There cases have been investigated and are described below: 

 

 
Figure 6.7:  Cases under study 
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Case 1: The ANNs are trained with typical SM data with 1-hour interval 

and additionally collected low interval (6-min) data from EM. The difference 

in the influence of two factors, i.e., number of neurons and average load over 

previous different time period, on the accuracy are analyzed for the ANNs 

trained with two level data granularity, i.e., hourly data and 6-min data. 

Case 2: The 6-min data is converted to higher granularity data for five new 

levels. The impact of data granularity on the accuracy of forecasts are 

analyzed considering same time horizon for load forecast, i.e., 30-min ahead 

or 1-hour-ahead. Six levels of data granularity, i.e., ECD with 6, 10, 12, 15, 

30 and 60-min interval, are used to train the ANNs. 

Case 3: The relation between forecast time horizon and data granularity is 

analyzed by forecasting load on three time horizons considering four levels 

of data granularity, i.e., 6, 10 12 and 15 min interval data. A) Load forecast 

on a time horizon equal to the time interval of the data used to train the ANNs, 

e.g., 6-min ahead load forecast by the ANNs trained with 6-min interval data. 

B) 30-min ahead load forecast and C) 60-min ahead load forecast. 

Hourly ECD from the SMs to forecast load at the individual level has been 

used. 100 individual Villa customers and 100 individual Apartment customers 

were randomly chosen for the analysis on Case 1 mentioned above. Moreover, 

6-min interval data from four individual customers are used for the analysis 

on Case 1. The data with different higher granularities, which are converted 

from 6-min data of the four individual customers, are used for the analysis of 

Case 2 and Case 3 mentioned above.  

Among the four customers with EM, two customers are living in the Villas 

which are denoted as CUST 1 and CUST 2. The other two customers are 

living in the Apartments which are denoted as CUST 3 and CUST 4. The 

customer CUST 1 has a solar panel on the rooftop and also a Plug-in Electric 

Vehicle (PEV). Hence, the load profile of the customer CUST 1 is irregular 

where the customer CUST 2 has comparatively regular load profile. 

6.4.3 Results and Discussions on Individual LF 

6.4.3.1 Influence of Number of Neurons on Forecast Accuracies for 

ANNs Trained with Hourly SM Data and 6-min EM Data 

The influence of a number of neurons in the hidden layer of the ANNs on 

the forecast accuracy is analyzed in this subsection by considering the ANNs 

trained by hourly SM data first and then the ANNs trained by 6-min interval 

EM data. The analysis was done on the selection of the number of neurons to 

be used in the hidden layer of the ANNs.  
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Hourly SM Data:  

(a) For Apartment Customers 

Too few neurons can lead to under-fitting, and too many neurons can 

contribute to over-fitting. More neurons require more computation but they 

allow the network to solve more complicated problems. The number of 

neurons in each ANN models is varied until the MAPE of the ANN models 

started increasing. The result from this analysis is used for selecting the 

number of neurons for the base case of the ANNs. The impact of the number 

of neurons on the MAPE of the ANNs is shown in Figure 6.8 for 100 

individual customers living in Apartments.  

 
Figure 6.8:  Impact of changing the number of neurons on MAPE for 100 individual 

customers in Apartments. (Note: MAPE values are presented in ascending order) 

It can be seen from Figure 6.8 that the number of neurons may not influence 

the MAPE significantly. However, it is seen here that 20 neurons in the hidden 

layer give a better result for the cases when MAPE is higher. Since more 

neurons require higher computational time hence 20 neurons in the hidden 

layer could be recommended for LF at the individual customer level. 
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(b) For Villa Customers  

The impact of the number of neurons on the MAPE of the ANNs for 100 

individual customers living in Villas is shown in Figure 6.9. As can be seen, 

the variation of MAPE for the Villa customers is much lower than the 

variation of MAPE for Apartment customers. Moreover, it is seen here that 

around 40 to 50 neurons in the hidden layer can help to decrease the MAPE 

by 1% to 4% for the ANNs where the MAPE is higher than 10%. However, 

as can be seen in Figure 6.9, the MAPE does not decrease significantly for 

most of the customers when compared the MAPE values for 20 neurons and 

50 neurons. Hence, 20 neurons in the hidden layer could be recommended for 

LF at the individual customer level for Villa customers as well.   

 
  Figure 6.9: Impact of changing the number of neurons on MAPE for 100 

individual customers in Villas (Note: MAPE values are presented in ascending order) 

 

6-Min EM Data:    

The number of neurons in the hidden layer of the ANNs may not have a 

significant impact on the MAPE of the ANNs trained with hourly data. As 

seen above, the higher number of neurons may not help to improve the 

accuracy of the ANNs that are trained by hourly SM data. This section 

investigated if the higher number of neurons can help to improve the accuracy 

of the ANNs that are trained by 6-min data. Figure 6.10, shows the values of 
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MAPE for a different number of neurons in the hidden layer.  

 
Figure 6.10:  Impact of the changing the number of neurons in the hidden layer of 

the ANNs- 6 Min Data 

It can be seen from Figure 6.10 that the number of neurons may not impact 

the MAPE of the ANNs significantly. The result shows that the MAPE of the 

Villa customers CUST 1 and CUST 2 are not impacted by the number of 

neurons. However, the MAPE of the Apartment customers CUST 3 and 

CUST 4 showed a tendency to increase with the increase of number of 

neurons. The reason could be that the ANNs of the Apartment customers 

become incapable of capturing highly variable nature of the loads since the 

ANNs have a tendency to contribute to over-fitting with the increase of the 

number of neurons.  Since the load pattern of individual customers is in 

general highly variable hence 20 neurons in the hidden layer could be a better 

choice to avoid over-fitting and at the same time having better capabilities of 

solving complex LF problems at the individual customer level than with ten 

neurons. 
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6.4.3.2 Influence of Average Load over Previous Different Time 

Periods on Forecast Accuracies for ANNs Trained with Hourly SM 

Data and 6-min EM Data 

The influence of average load over previous different time periods on the 

forecast accuracy is described in this subsection by considering the ANNs 

trained by hourly SM data first and then the ANNs trained by 6-min interval 

EM data. 
 

Hourly SM Data:  

The analysis was done on the selection of the time scale for the input 

predictor 1c - the previous load over a certain time period (as presented in 

Section 6.2.4.) considering hourly SM data of the customers living in 

Apartments and Villas.    

(a) For Apartment Customers 

The hourly ECD from the SMs were used to train the ANNs for 100 

individual Apartment customers. The accuracy of the forecasted load is 

evaluated by calculating the MAPE. The models are trained using 7-input 

predictor variables. For 1-hour-ahead LF, the predictor 1c can influence the 

accuracy of the forecasted load.  The influence of this predictor is investigated 

by changing the time scale for this predictor, e.g., previous 1-hour or previous 

2-hours or previous 24-hours average load. The number of neurons in the 

hidden layer of the ANNs was chosen as 20 for this investigation for the 

reason shown in Subsection 6.4.3.1.  

Figure 6.11 shows the MAPEs of hour-ahead LF models with 7-input 

predictor variables and 20 neurons in the hidden layer. The results are shown 

for 100 individual customers who are living in Apartments with district 

heating, considering the average loads over previous 1-hour or 2-hours or 24-

hours. The values of the MAPE are shown by sorting the values from lowest 

to highest values.  

It can be seen from Figure 6.11 that the MAPE from the ANNs of the 100 

customers varied between around 8% to around 60%. However, the MAPE 

can be higher than 60%, depending on the irregularities in energy 

consumption behaviour of a customer. To the best knowledge of the authors, 

there exists no standard limit on the maximum acceptable limit of MAPE for 

LF at the individual level. Figure 6.11 shows that only 10% of the ANNs of 

the investigated customers produce MAPE less than 20%. This poor accuracy 

level indicates the difficulty in forecasting load at the individual customer 
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level for Apartment customers, and also suggests that the forecast results are 

prone to errors.  

 

Figure 6.11:  Impacts of using average load over previous different time intervals on 

MAPE for 100 customers in Apartments (Note: MAPE values are presented in 

ascending order)  

By inspecting the daily energy consumption behaviour of investigated 

customers, it is found that the daily load profile of the customers living in 

Apartments are highly variable and irregular. The energy consumption of the 

customers fluctuates heavily even in consecutive hours or on successive days 

from any regular pattern. Due to this, the following results are observed: 

The customers with the following characteristics could have MAPE less 

than 10%: i) regular load pattern; ii) stayed in the Apartments throughout the 

year; iii) having with almost similar daily load peak; iv) daily peak occurs 

almost at around same time. The MAPE values of the ANNs for some 

customers with similar regular behaviour are higher than 10% because the 

customers were not at home (i.e., very low energy consumption) for some 

days or weeks during the year.   

The ANNs of the customers having regular load pattern but irregular peak 

values could give the MAPE from 20% to 30%. On the other hand, the ANNs 
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of the customers having irregular load pattern and irregular peak values could 

give the MAPE above 30%. For the first one, the errors in the load forecast 

could come mainly from the deviation in peak prediction. However, for the 

latter one, the errors could come both from the deviation in peak prediction 

and also from irregularities in daily load pattern. 

Some customers were not at home for a few days with some intervals 

throughout the year, and the ANNs of this type of customers could produce 

an even higher error in the forecast. 

However, as can be seen in Figure 6.11, using previous 1-hour load as one 

of the seven input predictors would help to improve the accuracy of the 

forecast results. The reason could be that ECD over the previous 1-hour helps 

to reduce the errors that come with irregular load pattern and peak 

occurrences, due to the knowledge of the latest available energy consumption 

information.    

(b) For Villa Customers  

LF models were also developed for 100 individual customers who are 

living in Villas with district heating. The impact of customer types on the 

accuracy of the ANNs is studied. The hourly ECD from the SMs were used 

to train the ANNs of 100 Villa customers. Figure 6.12 shows the MAPEs of 

hour-ahead LF models with 7-input predictor variables and 20 neurons in the 

hidden layer. The MAPE values with an average load the over previous 1-

hour, 2-hours, and 24-hours for 100 customers are presented in Figure 6.12, 

where the values of MAPE are shown by sorting the values from lowest to 

highest values.  

As can be seen, the MAPE from the ANNs of the 100 Villa customers 

varied between approximately 2% to 20% which is considerably better than 

the MAPE of the 100 Apartment customers. However, it is noted here that the 

MAPE can be higher than 20%, depending on the irregularities in energy 

consumption behaviour of a customer. Figure 6.12 shows that around 40% to 

60% of the ANNs for investigated customers provide MAPE less than 10% 

which indicates a higher level of regularity in the energy consumption 

behaviour of the customers living in the Villas as compared to that of 

customers living in Apartments.  
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Figure 6.12: Impact of using average load over previous different time intervals on 

MAPE for 100 customers in Villas (Note: MAPE values are presented in ascending 

order) 

By inspecting the daily energy consumption behaviour of investigated 

customers, it is found that the daily load profile of the customers living in 

Villas are comparatively less variable and less irregular. Due to this, the 

following results are observed: 

 The customers with the following characteristics could have MAPE less 

than 10%: i) regular load pattern; ii) stayed in the Villas throughout the year; 

iii) having with almost similar daily load peak and iv) the daily peak occurred 

almost at around same time.  

The MAPE is found to be higher than 10% due to following behaviours of 

the customers i) irregular peak values; ii) daily peaks are sometimes much 

higher than the regular peaks; iii) the loads during weekdays are sometimes 

similar to the loads during weekends; iv) customers do not stay in the Villas 

during some weekends or take vacations several times in a year; etc.  

It can be seen from Figure 6.12, that using previous 1-hour load as the time 

scale for the predictor 1c, can help to improve the accuracy of the forecast. 
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The reason could be that ECD over the previous 1-hour helps to reduce the 

errors that come with irregular load pattern and peak occurrences, due to the 

knowledge of the latest available energy consumption information. Hence, 

the previous 1-hour average load has been selected as the predictor 1c for later 

analysis.  

From Figure 6.11 and Figure 6.12, it can be observed that the load forecast 

for the Villa customers can be more accurate than the load forecast for the 

Apartment customers with the similar heating system. The studied load 

profiles of the customers reveal that the probability of getting regular load 

pattern is higher for Villa customers than for the Apartment customers. This 

regularity is the reason for higher forecasting accuracy for Villa customers. 

 

6-Min EM Data:    

The influence of using average load over previous different time periods 

and the number of neurons in the hidden layer has been investigated where 6-

min intervals data has been used to train the ANNs of the customers. The 

ANNs of the four customers that are trained with 6-min intervals data can be 

used for LF over a short time horizon, e.g., 6-min ahead. The influence of 

using average load over previous different time periods on MAPE has been 

investigated by using the average load over the previous period of 6-min, 12-

min, 18-min, 30-min and 1-hour.  The influence on the MAPE is shown in 

Figure 6.13.  

As can be seen, using previous 6-min average load as the time scale for the 

predictor variable 1c, can improve the accuracy of the LF models compared 

to using average load over previous 1- hour. However, Figure 6.13 shows that 

the previous 6-min average load may not help to decrease the MAPE for the 

customer CUST 2 who has comparatively regular load pattern most of the 

time. The reason could be that the previous 6-min data helps to identify the 

random behaviour of the customers and hence the model could predict the 

load for the next 6-min more accurately for the customers who have 

comparatively irregular load patterns. Since the load pattern of individual 

customers is in general highly variable hence 6-min average load could be a 

better choice to use as the time scale for the predictor 1c. 
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 Figure 6.13: Impact of using average load over previous different time intervals on 

MAPE for four customers- 6-min data 

6.4.3.3 Impact of Data Granularity on Forecast Accuracy for Same 

Forecast Time Horizon   

In this section, the impact of data granularity on the MAPE is investigated.  

Figure 6.14 presents the MAPE of the ANNs for different data granularity, 

i.e., 6-min, 10-min, 12-min, 15-min, 30-min and 60-min intervals data. It can 

be seen in Figure 6.14 and Figure 6.15 that 1-hour-ahead and 30-min ahead 

LF for Villas may not be impacted significantly due to differences in the 

training data granularity. However, 1-hour-ahead and 30-min ahead LF for 

Apartments may be impacted significantly, where the data with lower 

granularity can help to improve the accuracy of the ANNs.  

yasira
Rectangle
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Figure 6.14:  1-hour-ahead load forecast with ANNs of the four customers that are 

trained with different data granularity 

 

 
Figure 6.15:  30-min ahead load forecast with ANNs of the four customers that are 

trained with different data granularity 

 

It is expected that data with low granularity may help the ANNs to better 

learn the highly variable nature of the energy consumption of the Apartment 

customers. It is also likely that the ANNs trained with hourly data may not be 

able to learn the correlation between the load with time within each hour 

intervals. 
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6.4.3.4 Relation between Forecast Time Horizon and Data 

Granularity   

This section also investigated how MAPE is impacted with the time 

horizon of load forecast using the ANNs trained with different data 

granularity, e.g., how ANN of customer CUST 1 which is trained with 6-min 

data, performs for 6-min ahead, 30-min ahead and hour-ahead load forecast. 

The investigation is conducted using the data with a granularity of 6-min, 

10-min, 12-min and 15-min. The forecast time horizons, i.e., ahead of time 

are denoted as 1-hour, 30-min and sampling time ahead, ST. The term, 

sampling time ahead is used to refer the forecast time horizon which is equal 

to the intervals of the training data, e.g., 6-min ahead LF and 10-min ahead 

LF using the ANNs trained with 6-min data and 10-min data respectively.  
 

 
Figure 6.16:  Impact of data granularity on load forecast (a) for CUST 1, (b) for 

CUST 2, (c) for CUST 3 and (d) for CUST 4. (Note: Difference in scale on Y-axis) 

Figure 6.16 shows the impact of forecast time horizons with respect to 

training data granularity for the customers CUST 1, CUST 2, CUST 3 and 

CUST 4. As can be seen, for the Villa customers, the MAPE values may not 

be impacted significantly by the training data granularity when the forecast 

time horizon is 30-min ahead or 1-hour-ahead, except for the 10 min data of 
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the customer CUST 2 where the MAPE is higher. However, the results show 

that 15-min ahead load forecast using the ANNs trained with 15 min data 

provides less MAPE. On the other hand, it can be seen that for the Apartment 

customers, the MAPE values may be impacted significantly by the training 

data granularity if forecast horizon is 30-min ahead or 1-hour-ahead, where 

6-min data can help to decrease the MAPE of the ANN. However, for the 

sampling time ahead LF, the results show that 6-min ahead load forecast using 

the ANNs trained with 6-min data provides less MAPE. In general, it is 

observed from the results that to forecast load with different time horizons, 

15-min data could be a good choice for Villa customers, and 6-min data could 

be a good choice for Apartment customers. 

6.5  Conclusions 

The following can be concluded regarding the influence of number of 

aggregated customers on the accuracy of load forecast at LAL:  

 The accuracy at LAL increases with the increase in the number of 

aggregated customers.  

 An MAPE of around 5% can be obtained by aggregating loads of 

around 50 Villa customers or around 100 Apartment customers.  

The following can be concluded regarding the influence of different input 

predictors, number of neurons on the accuracy of the LF at LAL:  

 40 neurons in the hidden layer could be helpful for improving the 

accuracy of the forecast. Therefore, the aggregated LF models that have 

been discussed in Chapter 8, have been developed using 40 neurons. 

 Average load over the previous hour could be used as one of the input 

predictors to improve the accuracy of the forecast. Therefore, the 

aggregated LF models that have been discussed in Chapter 8, have been 

developed and tested using the average load over the previous hour. 

The following can be concluded regarding the influence of data granularity 

on the accuracy of load forecast at the individual customer level:  

 The accuracy can be improved with the decrease of the interval of ECD.  

 The impact of the number of neurons in the hidden layer on the 

accuracy could be negligible.  

 By using previous hour’s load value, the accuracy of the forecast can 

be increased. These results have been considered for recommending 

functional requirements in Chapter 9.   
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Chapter 7                                   
Large-scale Smart Meters 

Switching: Modelling and 

Application 
 

This chapter presents the developed model for load shedding with SMs’ 

switching (the switching model). The disconnection method of the SMs used 

in the model is based on results from the field tests. The switching model is 

integrated in a multi-time-steps load flow simulation model (the integrated 

model). The integrated model can be used to simulate the SMs switching and 

evaluate their effects on the load flow results. The description of a real 10 kV 

residential distribution system which is used in a case study with the 

integrated model is provided in this chapter. Moreover, the simulation results 

on large-scale SMs switching are provided in this chapter. The effect of the 

number of SMs per MCU on the load shedding time is presented by 

considering four different scenarios based on the number of SMs per MCU. 

Moreover, simulation results are obtained for these scenarios where faster 

SMs’ switching time than the normal switching time is considered to find out 

the estimated load shedding time for the same number of SMs.  

7.1 The SMs Switching Model 

7.1.1    Modelling of Load Shedding Using SMs 

The SMs switching model is developed to simulate the large-scale load 

shedding with the SMs based on the field tests’ results on the small-scale load 

shedding using the SMs. One of the aims of the model is to simulate the 

change in load values due to SMs’ disconnection during the load shedding 

period. In the model, the MCUs’ disconnection method of the SMs, variations 

in the disconnection time of the SMs, and also the forecasted load values of 

individual customer at the load shedding hour are considered. Moreover, the 

model gives the estimated value of the remaining connected load at each load 

bus, i.e., for the excluded customers at each load bus from the load shedding.    
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7.1.1.1 SMs’ Disconnection Time from a Field Test    
 

The field tests on small-scale SMs’ switching showed that the switching 

time required to disconnect individual SMs is not the same. The SMs’ actual 

switching time obtained during Test 3 is shown in Table 7.1. The table shows 

that the typical time for switching a SM is around 7 seconds to 8 seconds.  All 

measured SMs’ disconnection times are around this time with ± 1 sec 

deviations except for one SM which took around 12 sec. Since the ZigBee 

communication network of the investigated SMS is developed as a tree 

network, therefore each switching signal requires multiple hops to reach the 

target SM.  

The number of hops required to reach each of the SM is different, and it 

depends on the configuration of the mesh network. Moreover, the ZigBee 

communication network works as a self-healing meshed network which 

indicates the number of hops required to reach a specific SM can vary at any 

time.  

Table 7.1 Time required to disconnect 80 SMs in parallel during Test 3 

 Disconnection time of SMs 

under MCU1 

 Disconnection time of SMs 

under MCU2 

Sl.  Sl.  Sl.  Sl.  

1 7.85 20 7.55 1 7.44 22 7.86 

2 8.64 21 7.95 2 7.26 23 7.58 

3 7.62 22 7.88 3 7.98 24 7.94 

4 7.55 23 7.82 4 8.83 25 9.64 

5 7.81 24 8.6 5 8.39 26 7.68 

6 7.5 25 7.88 6 7.59 27 7.84 

7 8.02 26 7.6 7 7.51 28 7.44 

8 8.78 27 7.84 8 7.5 29 7.42 

9 7.59 28 7.6 9 7.46 30 7.76 

10 7.61 29 7.6 10 7.66 31 7.86 

11 7.65 30 7.92 11 7.64 32 7.72 

12 7.98 31 7.6 12 7.68 33 7.82 

13 7.2 32 8.37 13 7.6 34 7.88 

14 7.82 33 7.38 14 8.14 35 7.92 

15 7.82 34 7.92 15 7.54 36 7.8 

16 7.87 35 7.56 16 8.68 37 7.58 

17 7.95 36 8.94 17 7.56 38 12.22 

18 7.42 37 7.66 18 8.24 39 7.62 

19 7.79 38 7.62 19 7.58 40 7.84 

    20 8.09 41 8.42 

    21 7.47 42 7.64 
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Table 7.1 shows the time required to disconnect each of the 80 SMs, which 

were successfully disconnected by the three MCUs during Test 3. There were 

41 and 44 SMs under two MCUs and one SM under 1 MCU. According to 

the SMs’ status update report, these three MCUs successfully disconnected 

37 SMs, 42 SMs, and 1 SM respectively. Table 7.1 shows required 

disconnection time for all 80 SMs, where the single SM’s disconnection time, 

i.e., 7.62 s, is merged with the 37 SMs’ disconnection time under the MCU1. 

In can be seen from Table 7.1 that disconnection of the SMs varies from 

one SM to another. Moreover, it can be seen that when two MCUs 

disconnected the SMs in parallel, both MCUs did not switch their first SMs 

at the same instant i.e., the time delay in disconnecting their first SMs were 

not equal. However, the time delays in disconnecting the SMs can coincide 

for some of the MCUs during large-scale load shedding. The time after which 

each of the SM under MCU1 and the MCU2 has been disconnected, can be 

calculated by taking cumulative sums of the SMs’ disconnections’ time 

starting from the moment disconnections’ signal has been sent from the CS. 

By calculating the cumulative sum, it can be found that the MCU1 

disconnected its second SM at 14.7th sec, and the MCU2 disconnected its 

second SM at 16.49th sec. The duration of switching the second SMs of both 

MCUs is calculated from the moments the disconnection command was sent 

from the CS until the moments when the second SMs are disconnected by the 

respective MCUs. This indicates that when many MCUs disconnect SMs in 

parallel, the number of SMs switched at a moment may not be equal to the 

number of MCUs disconnecting the SMs in parallel. 

7.1.1.2 Block Diagram of the Large-Scale Smart Meters’ Switching 

Model    
 

SMs’ switching model has been developed by using the actual 

disconnection time of 121 SMs, obtained from the three field tests. The actual 

disconnection time of the SMs is repeatedly used to create SMs’ 

disconnection time for all the 2000 customers considered in the simulation. 

All the SMs in the SMs’ switching model are then allocated with a 

disconnection time serially from repeated actual disconnection time of the 

SMs. Moreover, power consumption value of each customer has been 

allocated with each SM where the power consumption value could be 

historical values or forecasted values from each of individual LF models.  

Figure 7.1 shows the block diagram of the SMs’ switching model. The 

SMs’ switching model has been developed considering the SMs of the 

customers in a 10kV residential grid.  
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Figure 7.1: Block diagram of the Smart Meters' switching model 
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In the model, the number of buses in the 10kV residential grid is known. 

The number of MCUs at each bus is estimated according to the number of 

customers at each bus where 50 SMs per MCU is considered as a limit while 

allocating the number of SMs per MCU.  Each SM under each MCU is then 

allocated with a unique SMs’ disconnection time based on the actual 

disconnection time. As a result, all SMs under each bus have been allocated 

with a unique disconnection time. Therefore, the model uses actual 

disconnection time of the SMs when simulating the SMs’ disconnection by 

the MCUs. As a result, the model can estimate total load shedding time for 

different numbers of SMs’ disconnection. 

It can also be seen from Figure 7.1 that the final outcome of the SMs’ 

switching model is the remaining load at each of the load bus after 

disconnection of the SMs. The model gives the values of the remaining load 

for the total load shedding period with an interval of one sec. For each bus, 

the remaining load at each of the load bus is calculated by subtracting the 

disconnected load at a sec from the remaining load on that bus at previous sec.     

7.2 Integrating the SM Switching Model in 

Multi-Time-Steps Load Flow Model  

 

Power system simulation package MATPOWER [113] has been used to 

solve the power flow after modifications based on the need for this thesis. The 

Newton-Raphson algorithm is used for solving power flow equations. The net 

injected active or reactive power at any bus at a particular time is the 

summation of active or reactive power demand of all customers under that 

bus whose SMs’ switch status is ON, which is given by (7.1), (7.2). The 

standard power flow equations are given by (7.3) and (7.4) [114].  

 

𝑃𝑖,𝑡 = 𝑃𝐺 𝑖,𝑡 − 𝑃𝐷 𝑖,𝑡 =  ∑ 𝑃𝐷 k,𝑡
𝑁𝐶𝑖
𝑘=1  ∗ 𝑆𝑤𝑘,𝑡 (7.1) 

𝑄𝑖,𝑡 = 𝑄𝐺 𝑖,𝑡 − 𝑄𝐷 𝑖,𝑡 =  ∑ 𝑄𝐷 𝑘,𝑡
𝑁𝐶𝑖
𝑗=1  ∗ 𝑆𝑤𝑘,𝑡  (7.2) 

 

𝑃𝑖,𝑡 =  ∑ |𝑉𝑖,𝑡|𝑛
𝑗=1 |𝑉𝑗,𝑡||𝑌𝑖j|cos(𝜃𝑖𝑗 + 𝛿𝑗,𝑡 − 𝛿𝑖,𝑡)  (7.3) 

𝑄𝑖,𝑡 =  − ∑ |𝑉𝑖,𝑡|𝑛
𝑗=1 |𝑉𝑗,𝑡||𝑌𝑖j|sin(𝜃𝑖𝑗 + 𝛿𝑗,𝑡 − 𝛿𝑖,𝑡) (7.4)                            

where, i is the bus index, n is the number of buses, t is the time (second) 

index, k is the customer index, NCi is the total number of customers at bus i, 

Pi,t is the net injected active power at bus i at time t,  PG i,t is the active power 

generation at bus i at time t,  PD i,t is the active power demand at bus i at time 

t,  Qi,t is the net injected reactive power at bus i at time t, QG i,t is the reactive 
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power generation at bus i at time t,  QD i,t is the reactive power demand at bus 

i at time t, PD k,t  is the active power demand of customer k at time t, QD k,t  is 

the reactive power demand of customer k at time t, Vi,t is the voltage magnitude 

at bus i at time t, θij is the angle associated with the element of the admittance 

matrix Yij, δi,t is the angle associated with Vi,t, and Swk,t is the SM’s switch 

status of customer k in bus i at time t where zero would represent that the 

customer is disconnected, and one would represent that the customer is still 

connected. The SMs’ switching model simulates the parallel operation of the 

MCUs where each MCU disconnects its associated customers’ SMs one by 

one. In this way, the switching model determines the switch position Swk,t of 

each of the selected customer at a given time of the load shedding period. 

7.3  Description of the Case Study Using a Real 

Distribution System 

A case study has been carried out using a real 10 kV distribution system 

by using the models presented earlier. The aim of the case study is to analyze 

the impact of load shedding on the voltage values at the LV substation levels. 

In this part, the description of the simulated distribution system and 

considered grid condition are given, while the results are presented in 

Chapter 8. Moreover, SMs’ switching scenarios are simulated for the SMs 

considered for all the customers in the simulated distribution system. The 

factors influencing the total load shedding time are presented in Section 7.4. 

7.3.1  Description of the Simulated Systems 

The investigated distribution grid is a 31-bus system with the data 

provided by GENAB where 26 buses are load bus, i.e., PQ bus, one slack bus 

and four buses are without any load as shown in Figure 7.2. The 10kV 

residential distribution system is of the radial configuration with three main 

feeders named as Feeder A, Feeder B, and Feeder C. It can be seen from Figure 

7.2 that the Bus 8 of Feeder A and the Bus 21 of Feeder B can be connected 

when it is necessary, e.g., during maintenance work. Similarly, the Bus 17 of 

Feeder B and the Bus 30 of Feeder C can be connected when it is necessary. 

These two lines between the feeders are shown in Figure 7.2 with orange color 

dotted lines.  

The real power and reactive power values at each of the load buses are the 

aggregated loads from the customers under each load bus. Power factor is 

considered as 0.95 lagging which is the value obtained from the field tests as 

average power factor.  



129 

 

 
Figure 7.2: One line diagram of investigated 10kV residential distribution grid 
 

Table 7.2 shows the number of SMs considered at each bus which is equal 

to the number of customers at each bus. The SMs’ number are represented by 

zero for the buses that are without any load.   

 
Table 7.2 The number of SMs i.e., number of customers at each bus 

Bus 

No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

SMs 0 65 109 118 63 20 144 95 13 65 62 92 50 52 92 105 

 

Bus 

No. 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 

SMs 52 111 0 0 0 131 72 79 20 65 126 72 94 33 0 
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7.3.2  Description of Simulation Scenario 

A critical situation is created by assuming certain grid condition and also 

the parameters. The pre-critical distribution grid is assumed to be operating 

in the N-1 contingency condition where the branch between the bus 1 and the 

bus 2 is assumed to be disconnected for maintenance work. The loads on 

feeder A is then supplied through the feeder B by connecting the branch 

between the bus 8 and the bus 21. 

One-sec interval values of the real and reactive power that are obtained 

from the SMs’ switching model for the load shedding period considering 

maximum 50 SMs per MCU, are used in the simulation scenario to analyze 

the voltage levels during and after the load shedding. The simulation results 

are presented in Chapter 8. 

7.3.3 Applications of Switching Model and Integrated 

Models 

The SMs’ switching model is used to simulate load shedding scenarios 

considering the forecasted load values of individual customers and the SMs’ 

disconnection time. The integrated model is used to calculate voltage at LV 

substation level.  

SMs’ Switching Model for Load Shedding Scenarios 

The SMs’ switching model is used to simulate load shedding scenarios 

using SMs, and the results from the simulation are presented in Section 7.4 

where the effect of changing the number of SMs per MCU and the SMs’ 

disconnection on the total load shedding time is studied.  

Moreover, the SMs’ switching model will be used to estimate the change 

in load due to load shedding during the load shedding period, and also the 

remaining load at each bus after the load shedding considering the forecasted 

load values from the individual LF model. The simulation results on load 

change, and the remaining load is used in the integrated model.  

A simulated large-scale SMs’ disconnection scenario using the actual 

disconnection time of the SMs is shown in Figure 7.3. Each load bus is 

considered to have one MCU which is considered to be communicating with 

all the SMs under that load bus. As seen here, total SMs’ disconnection can 

take around 20 minutes, i.e., around 1200 seconds to disconnect all the SMs 

in the considered distribution system.  However, more than 90% of the SMs 

would be disconnected by around 14 minutes, i.e., after around 840 seconds 

(time to disconnect around 100 SMs) since all the MCUs at all the load buses 
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would operate in parallel where only 7 out of 26 MCUs would have more than 

100 SMs. 

 
Figure 7.3: A scenario of large-scale SMs' disconnection i.e., 2000 SMs   

Integrated Model for Voltage Calculation 

The integrated model will be used in Chapter 8 where the CLS are 

simulated by excluding prioritized customers. The integrated model will show 

the impact of load shedding on the voltage values at the LV substation levels. 

7.4 Factors Influencing the Load Shedding Time  

The number of SMs per MCU varies in an actual SMS. This section 

analyzed the effect of the number of SMs per MCU and the disconnection 

time on the overall load shedding period. Four scenarios are created for load 

shedding simulation with the SMs by varying the number of SMs per MCU 

as follows: 

 Scenario 1: All the SMs under a load bus in a 10 kV residential 

distribution system are communicating with one MCU. This means that 

the number of MCU in the investigated distribution grid is equal to the 

number of load buses i.e., 26 MCUs.  

 Scenario 2: Maximum 50 SMs per MCU is considered i.e., bus 7 which 

has 144 SMs would require three MCUs, and the number of SMs under 

the three MCUs is considered to be 50, 50 and 44 SMs respectively. The 
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total number of MCUs in the in Scenario 2 is 53 as compared to 26 MCUs 

in Scenario 1. 

 Scenario 3:  Max 40 SMs per MCU is considered in this scenario. It is 

noted here that the average number of SMs per MCU in the investigated 

GENAB’s distribution system is 40. In this scenario, bus 7 would require 

four MCUs, and the number of SMs under the four MCUs is considered 

to be 40, 40, 40 and 24 SMs respectively. The total number of MCUs in 

Scenario 3 is 62 as compared to 26 MCUs in Scenario 1.  

 Scenario 4:  Maximum 30 SMs per MCU is considered. In this scenario, 

bus 7 would require five MCUs, and the number of SMs under the five 

MCUs is considered to be 30, 30, 30, 30 and 24 SMs respectively.  The 

number of MCUs in Scenario 4 is 81 as compared to 26 MCUs in 

Scenario 1. 

7.4.1 Simulation Results on Load Shedding Time for 

Each Bus Considering Actual Disconnection Time of SMs 

Table 7.3 shows the total load shedding time i.e., maximum length of time 

taken by MCU(s) of the respective load bus to disconnect all the SMs under 

that bus. The load shedding times are presented for each bus considering the 

actual disconnection of the SMs in the considered four scenarios. The scenario 

numbers are denoted by Sc_x, where x is the scenario number.   

Table 7.3 Maximum length of time that MCU(s) can take to disconnect all the 

respective SMs under at each load bus in the four scenarios 

Bus No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

No. of SMs 0 65 109 118 63 20 144 95 13 65 62 92 50 52 92 105 

 

 

Time (sec) 

Sc_1 0 525 880 950 510 159 1164 764 106 522 494 741 401 417 751 850 

Sc_2 0 397 402 397 391 161 401 405 104 397 398 398 402 414 397 402 

Sc_3 0 317 320 322 318 159 320 327 104 320 325 323 325 322 323 323 

Sc_4 0 242 244 243 242 160 241 241 107 243 241 242 244 241 243 244 

 

Bus No. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

No. of SMs 52 111 0 0 0 131 72 79 20 65 126 72 94 33 0 

 

 

Time (sec) 

Sc_1 411 891 0 0 0 1050 571 637 160 519 1020 572 764 264 0 

Sc_2 410 397 0 0 0 401 396 400 157 400 402 405 397 266 0 

Sc_3 325 323 0 0 0 323 314 323 161 324 323 319 324 262 0 

Sc_4 243 242 0 0 0 242 244 245 157 242 243 243 245 266 0 
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7.4.2  Simulation Results on Load Shedding Time for 

Each Bus Considering Faster Disconnection Time of SMs 

Shorter SMs’ disconnection times than the actual SMs’ disconnection 

times are also considered in the simulation of the four load shedding 

scenarios, which is named as faster SMs’ switching. As seen in Figure 7.3, 

the SMs’ actual disconnection times are above seven sec. Hence, in this 

section the faster SMs’ switching simulation results are shown by decreasing 

the SMs’ actual disconnection time from one sec to seven sec with a step of 

one sec. In the simulation, up to seven faster SMs’ switching is considered 

assuming that in the future, it might be possible to disconnect a SM almost 

instantly. Figure 7.4 shows the reduction in load shedding time that can be 

achieved by making the faster disconnection of the SMs.  

Figure 7.4 Reduction in load shedding time that can be achieved by making the 

faster disconnection of the SMs in the four scenarios 

It is noted here that the reduced load shedding times that are shown in 

Figure 7.4 are obtained by subtracting the load shedding time using the faster 

disconnection from the load shedding time obtained using the actual 

disconnection time of the SMs. The reduction that can be achieved by 
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performing faster disconnection of SMs are shown for each of the bus in the 

10 kV distribution system using seven kinds of faster SMs switching. 

Moreover, the simulation results are shown for the four considered scenarios 

to compare the reduction in load shedding time for different switching 

strategies. The comparisons of the load shedding time are given below:    

Scenario 1 (1 MCU per Load Bus): 

Considering SM’s disconnection  can be one sec faster, it can be seen from 

Figure 7.4 that the load shedding time of the MCU at bus 7 which has the 

maximum number of SMs can be reduced by 2.5 minutes which is around 

19.5 minutes when actual disconnection times are considered. And, if 7-sec 

faster disconnection is considered, it can be seen that the load shedding time 

for the bus 7 can be reduced by around 17 minutes, i.e., the SMs at the bus 7 

can be disconnected within around 2.5 minutes.  

Scenario 2 (Max 50 SMs per MCU): 

The SMs’ switching model considering max 50 SMs per MCU has shown 

that all loads in the investigated 10kV grid can be disconnected in around 7 

minutes if normal load shedding time is considered. It can be seen from Figure 

7.4 that 1-sec faster disconnection can save around 50 seconds from the 

overall load shedding time. Moreover, Figure 7.4 shows that the 7-sec faster 

disconnection can save around 5.5 minutes from the overall load shedding 

time, i.e., all loads in the 10kV grid can be disconnected in around 1.5 

minutes. 

Scenario 3 (Max 40 SMs per MCU): 

The SMs’ switching model considering max 40 SMs per MCU has shown 

that all loads in the investigated 10kV grid can be disconnected in around 5.5 

minutes if the normal SM’s disconnection time is considered. It can also be 

seen from Figure 7.4 that 1-sec faster disconnection can save around 40 

seconds from the overall load shedding time. Moreover, Figure 7.4 shows that 

the 7-sec faster disconnection can save around 4.5 minutes from the overall 

load shedding time, i.e., all loads in the 10kV grid can be disconnected in 

around 1 minute.   

Scenario 4 (Max 30 SMs per MCU): 

The SMs’ switching model considering max 30 SMs per MCU has shown 

that all loads in the investigated 10kV grid can be disconnected in around 4 

minutes if actual disconnection times are considered. As seen in Figure 7.4, 

the load shedding time for the bus 30 seems to be considerably higher than 

load shedding time for the other buses and the reason is that all 33 customers 

on this bus are considered to be communicating with one MCU. Moreover, it 
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is seen that 1-sec faster disconnection can save around 30 seconds from the 

overall load shedding time. Also, Figure 7.4 shows that the 7-sec faster 

disconnection can save around 3.5 minutes from the overall load shedding 

time, i.e., all loads in the 10kV grid can be disconnected in around 0.5 minute. 

7.5 Comparison of Total Load Shedding Time 

The simulation results on the total load shedding time are compared for 

the four scenarios mentioned in Section 7.4. Figure 7.5 shows the simulation 

results on the time required to shed all loads in the 10kV system for different 

scenarios considering from 1-sec to 7-sec faster SMs’ disconnection times. 

The total load shedding times which are presented for all four scenarios, are 

expressed in Figure 7.5a as a percentage of base load shedding time, and in 

Figure 7.5b as time in seconds. The total load shedding time which is obtained 

by using the actual disconnection times of the SMs is considered as the base 

load shedding time which is 1164 sec, and used as y axis limit in (b) and is 

shown as 100% in (a).  

 
Figure 7.5: Comparison of total load shedding time obtained using actual, and 1-sec 

to 7sec faster switching which is shown in (a) % of actual switching time; (b) in sec 
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From Figure 7.5 it can be seen that the total load shedding time can be 

reduced by more than 60% of the base load shedding time, i.e., around 12 

minutes reduction by keeping the number of SMs per MCU to 50 or lower 

while considering the typical disconnection time of the SMs. Another way to 

reduce the load shedding time is to reduce the disconnection time of the SMs. 

Figure 7.5 shows that while considering up to 144 SMs under a MCU, 5-sec 

faster disconnection time than the typical disconnection time of around 8 sec 

would give a load shedding time of around 7 minutes which is close to the 

load shedding time for having 50 SMs per MCU.  

Figure 7.5 also shows that by reducing the maximum number of SMs per 

MCU, e.g., 30 SMs, the total load shedding can be achieved in around 4 

minutes. However, extra investment cost would be required to keep the 

maximum number of SMs per MCU to a lower value. The number of SMs 

per MCU in the investigated SMS shows that 78% of the MCUs has 50 SMs 

per MCU. Hence, it can be said that if 50 SMs per MCU is considered as a 

maximum limit, CLS can be done in 6 minutes with the typical SMs’ 

disconnection time which is lower than the allowed load shedding time of 15 

minutes by the TSO. However, 15 minutes is the maximum allowed time, and 

the load shedding process may require additional time for planning, e.g., 

forecasting loads for different areas, selecting groups of customers for load 

shedding, and additional load shedding, if needed to take care of the amount 

of loads failed to disconnect. However, pre-planned load shedding strategies 

for different amounts of load shedding with the SMs, and automated process 

of load shedding area selection based on the forecasted aggregated load values 

would help to minimize the planning time and thereby allow to maximize the 

use of allowed load shedding time.  

7.6  Conclusions 

According to present practice, allowable 15-minute time would be enough 

for CLS since the load would be disconnected by disconnecting the feeders 

remotely and a large amount of load would be disconnected almost instantly, 

which is not the case when using the SMs for CLS. Large-scale load shedding 

using the SMs could take time longer than allowed 15 minutes. Hence, the 

total load shedding time needs to be reduced. The simulation results show that 

the load shedding time can be reduced by keeping the maximum number of 

SMs per MCU up to a limit, which in this study case is 50 SMs/MCU if SM’s 

disconnection time cannot be reduced. Another way of reducing total 

shedding time is by making each MCU capable of switching multiple SMs at 

a time, or reducing the SM’s disconnection time.      
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Chapter 8                 
Compulsory Load Shedding 

Supported by Load Forecasting 
 

This chapter presents and discusses the results of compulsory load shedding 

scenarios supported by load forecasting. The benefits of using pre-developed 

aggregated load forecasting models to minimize the unnecessary load 

shedding are demonstrated. This chapter also illustrates the use of pre-

developed individual load forecasting models to calculate, using the load flow 

model, the voltage values of the prioritized customers which remain 

connected after the compulsory load shedding. 

8.1  CLS Supported by Aggregated LF 

8.1.1  Description of Simulation Cases  

This thesis developed aggregated LF at the LV substation levels for the 

10kV residential grid described in Section 7.3.1. The investigated residential 

distribution grid is a 31-bus system where 26 buses are load bus, i.e., PQ bus, 

one slack bus and four buses are without any load. Hence, 26 aggregated LF 

models are developed for the 26 load buses. The number of customers under 

each load bus is given in Section 7.3.1. The real ECD, i.e., SM data of 

individual customers for one-year is used for the analysis. The models are 

developed using ANN method, and the ECD which are aggregated at each 

load bus level are used to develop the LF models. The historical ECD of all 

the individual customers under the respective load buses are used to create the 

aggregated ECD.  

8.1.2  Input Predictors for Aggregated LF 

Seven input predictors are used in total as described in Section 6.2.4. The 

input predictors together with the aggregated ECD are used to train and 

validate the ANNs.  The number of neurons used in the hidden layer of the 

ANNs is 40, as it is found to provide best accuracies for the investigated data 

with respect to aggregated LF, as shown in Section 6.3.3.2.  

The developed aggregated LF models are then used to forecast the 

aggregated load at each LV substation level, i.e., load bus level in the 
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investigated residential grid. Among the seven input predictors, only the 

average load over a certain previous period can be varied and hence created 

different sets of input predictors by varying the period of this predictor. Four 

different types of input predictors’ sets are used to forecast the aggregated 

load to analyze the impact of these different sets on the forecast accuracy. The 

input predictors’ sets are: 1) Six predictors, i.e., not requiring recent energy 

consumption values of last few hours; 2) Seven predictors, where one of the 

predictors is previous 24 hour’s average aggregated value (7 Pred 24H); 3) 

Seven predictors, where one of the predictors is previous 2 hour’s average 

aggregated value (7 Pred 2H); 4) Seven predictors, where one of the 

predictors is previous hour’s aggregated value (7 Pred 1H).  

8.1.3  Load Shedding Instants for Aggregated LF 

This chapter simulated a total of 24 load shedding events where each of 

the events is associated with a specific time instant. The time instants are 

chosen to cover one week-day from each of the four seasons and every fourth 

hour (i.e., 02:00, 06:00, 10:00, 14:00, 18:00 and 22:00) is chosen to represent 

the load variation in different times of the day. The dates that are chosen for 

each season are:  

1. 30th January [Winter]: When maximum load occurred in the 

investigated system. 

2. 15th April [Spring]: Mid of the season. 

3. 18th August [Summer]: When minimum load occurred in the 

investigated system. 

4. 15th October [Autumn]: Mid of the season. 

8.1.4  Actual Total Load at the Considered Load Shedding 

Instants 

Figure 8.1 shows the total actual load in the investigated residential grid, 

i.e., the sum of the actual loads on each of the 26 load buses. The total load is 

shown for all the 24 load shedding instants. It can be seen from Figure 8.1 

that the peak load occurs during the period from 10:00 to 14:00 for all four 

dates considered for four seasons.    
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Figure 8.1: Actual total load at the considered load shedding instants 

8.2 Simulation Results on Aggregated LF  

8.2.1  Error in Forecasted Aggregated Load with Six Input 

Predictors 

Figure 8.2 shows the error in total load forecast for all load shedding 

instants. The errors are obtained by deducting total forecasted load from the 

total actual load. The total forecasted load at a particular time is obtained by 

taking the sum of all load forecasted by each of the 26 aggregated LF models 

for that particular time. The error is positive when the actual load is higher 

than the forecasted load, i.e., under forecasted and vice versa. It can be seen 

from Figure 8.2 that chance of getting over forecast or under forecast is almost 

50%. In general, the absolute errors in load forecast during high load hours, 

e.g., between 06:00 to 18:00, are higher than the errors in load forecast during 

low load hours. During high load hours, the absolute error in forecasted total 

load is found to be around 130 kW while in two instants of autumn the errors 

are found to be around 200 kW. The reason for the under forecasted load in 

autumn could be the rapid temperature variation during this period, e.g., the 

temperature on the considered day of 15th October was around 8 degree 

Celsius while the temperature on the same weekday of the previous week was 
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around 13 degree Celsius in the investigated area. There is a correlation 

between the temperature and the load and load of the previous week same 

hour has a correlation with the forecast since previous week’s same day and 

same hour values are used as one of the input predictors. Sometimes, lower 

temperature of about 8 degree Celsius could trigger some customers to turn 

their electric heaters if the district heating is not turned on which is not 

exceptional in the investigated region. This could be the reason of a higher 

error in forecasted total load for the particular hours of considered date in 

autumn. 

Figure 8.2: Error in forecasted aggregated load (kW) with six input predictors 

The error in the total load forecast which is shown in Figure 8.3 is not high 

in terms of the percentage of the total actual load. It can be seen that the errors 

in the forecasted total load vary between 0.2% to around 7%. However, during 

the considered winter day when the max load occurred, the error in the 

forecasted total load is found to be between 0.1% to around 2.5%.        
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Figure 8.3: Error in forecasted aggregated load (%) with six input predictors 

8.2.2  MAPE of the Aggregated LF Models with Six Input 

Predictors 

Since the percentage error of each of the 26 forecasted values could be 

either positive or negative, hence MAPE is calculated by taking an average of 

the absolute percentage error obtained from all 26 forecasted load values. 

Figure 8.4 shows the MAPE for all twenty 24 load shedding instants. It can 

be seen that the MAPE varies between 4% to 10% for the aggregated LF 

models, where the loads are predicted by using 6 input predictors. As 

maximum MAPE of 5% to 10% has been suggested as acceptable for the CLS 

application by the expert group in GENAB, the forecasted aggregated load 

values with six predictors can therefore be considered as acceptable.   
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Figure 8.4: MAPE of the aggregated load forecasting models 

8.2.3  Error in Forecasted Aggregated Load with Seven 

Input Predictors 

The aggregated LF models are also used to forecast aggregated loads using 

the seven input predictors where previous hour’s aggregated load values are 

considered for respective load shedding events. The previous hour’s 

aggregated load values are used as one of the input predictors to know the 

significance of the impact of this predictor on the accuracies of the forecasts 

since the previous hour’s load value is found to have more influence on 

accuracy.  

Figure 8.5 shows (a) MAPE; (b) error in forecasted total aggregated load 

in the residential grid (kW); (c) error in forecasted total aggregated load (%); 

(d) the total actual load in the residential grid; for all 24 load shedding instants. 

It can be noted that the MAPE values obtained considering all the twenty-six 

forecasted loads at each load bus, are found to be approximately 1% to 3% 

lower (i.e., better forecast) than the MAPE values obtained for six predictors. 

Moreover, the percentage of error in total forecasted load of the grid is also 

around 1% to 2% lower in general as compared to that of the case of six 

predictors. It can be said that investment cost that would be required to get 

the latest SM data which is required for the 7th predictor, the accuracy 

improvement is not quite significant when aggregated LF is considered for 

CLS application. 
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Figure 8.5: Error in forecasted aggregated load with seven input predictors 

8.2.4  Comparison of MAPE for Different Sets of Input 

Predictors 

The MAPEs of the forecasts are compared for the four different sets of 

input predictors mentioned in Section 8.1.2, and for each of the 24 load 

shedding instants. Figure 8.6 shows the comparison between MAPEs. It can 

be seen that the MAPE for different sets of input predictors varied between 

around 0.5% to around 4% considering all 24 load shedding instants. 

However, in most of the observed load shedding instants, the MAPE for 

different sets of input predictors varied between around 0.5% to around 1.5%. 

Hence, it can be said that aggregated LF can be done using six input predictors 

to estimate the amount of load at each load buses at the hour of critical power 

shortage. This load estimation can help the DSOs to select the load buses to 

shed the requested amount of load more accurately as well as to minimize the 

amount of unnecessary load shedding. Moreover, the results show that higher 

forecast accuracies can be obtained by using either the previous hour’s 

aggregated value or previous two hour’s aggregated average value as one of 

the seven input predictors.   
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Figure 8.6: Comparison of MAPE for different sets of input predictors 

8.2.5  Comparison of Forecasted Load Values for 

Different Sets of Input Predictors with Actual Load Values 

The total forecasted loads using different sets of input predictors are 

compared with the total actual load for each of the 24 load shedding instants 

as shown in Figure 8.7. It can be seen that the difference between the actual 

load and the forecasted loads with different sets of input predictors are not 

very significant. Hence, it can be said that aggregated load forecast can be 

performed using six input predictors to estimate the amount of loads on each 

bus. Therefore, it reduces the necessity of getting latest previous few hours’ 

ECD from the SMs.  
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Figure 8.7: Comparison of Forecasted Load Values for Different Sets of Input 

Predictors with Actual load values 

8.3 Comparison between Forecasted Load and 

Probable Estimation 

8.3.1  Seasonal Load Profile  

The CLS can be requested during a critical power shortage situation and 

hence the maximum load value for each hour calculated from hourly load 

values over a year can be considered to assume load at a certain hour. 

Moreover, the DSOs typically have peak current values at LV substation 

levels over a year or a season which the DSOs can use to assume load. 

However, the CLS might also become necessary during off-peak hours due to 

any natural disasters. Hence, the average load value for each hour calculated 

from hourly load values over a year can also be considered to assume load at 

a certain hour. In this chapter, it is assumed that the DSOs have seasonal and 

yearly load profiles both for the maximum and the average load values over 

every hour in a day. 

A daily load profile was created for an aggregated load of the investigated 

10kV residential grid to compare the forecasted load values with the estimated 

load values. It is noted here that the daily load profile for the whole 
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investigated grid is obtained from the daily load profile values calculated for 

each of the 26 load buses in the investigated grid. The load profiles are created 

using the historical aggregated total load values of one year for each of the 24 

hours in a day. Four seasonal daily load profiles are also created considering 

only the aggregated total load values of the respective four seasons. Two 

considerations are made to create the daily load profiles: 1) The maximum 

value of total load, e.g., max total load at 02:00 among all values at this hour 

in a year or season; 2) The average value of total load, e.g., average total load 

at 02:00 among all values at this hour in a year or season. Figure 8.8 shows 

the daily load profiles considering load values of a year and also for four 

seasons, where (a) is for hourly maximum load and (b) is for the hourly 

average load. The seasonal load profiles are used in Section 8.3.2 and Section 

8.3.3 to estimate load values more accurately by considering seasonal impacts 

on load profiles. However, yearly load profile is considered in Section 8.3.4, 

since maximum or average load values are typically measured at LV 

substation level over a period of one year.     
  

 
Figure 8.8: Seasonal load profile (a) considering maximum load and (b) considering 

average load 
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Table 8.1 shows the maximum and average load values over a year and 

four seasons for the considered six hours of a day. 

Table 8.1 Maximum and average load values over a year and four seasons  

Load 

values 

Period Hour 

02:00 06:00 10:00 14:00 18:00 22:00 

 
Maximum 

Load 

(MW) 

1 Year 2.01 2.36 4.59 5.10 4.81 2.93 

Winter 2.01 2.23 4.59 5.10 4.81 3.06 

Spring 1.89 1.90 4.07 4.55 4.34 3.00 

Summer 1.54 1.76 3.92 4.33 3.93 2.29 

Autumn 1.83 1.78 3.92 4.42 4.33 2.93 

 

 
Average 

Load 

(MW) 

1 Year 1.54 1.84 3.50 3.76 3.20 2.15 

Winter 1.78 1.86 3.48 4.11 3.95 2.66 

Spring 1.59 1.68 3.27 3.77 3.38 2.37 

Summer 1.41 1.54 3.04 3.53 3.10 2.01 

Autumn 1.44 1.56 3.20 3.76 3.40 2.27 

 

8.3.2  Load shedding under Load Assumptions and Load 

Forecasts 

The forecasted total load value at a particular hour is then compared with 

the load values of that hour according to the two types of daily load profile. 

Figure 8.9 shows the comparison between differences in load assumptions (a) 

from maximum daily load profile, (b) from average daily load profile and (c) 

difference in load forecasts with six predictors.  The differences are calculated 

by subtracting the assumed load values or forecasted load values from the 

actual load values. Hence, the difference is positive when assumption or 

forecasted value is less than actual and vice versa. It can be seen from Figure 

8.9 that the errors in the total forecasted loads with 6 input predictors are much 

lower than the errors in the assumed load based on the created daily load 

profiles for the four seasons. 
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Figure 8.9: Comparison between differences in load assumptions (a) from 

maximum daily load profile, (b) from average daily load profile and (c) difference 

in load forecasts with six predictors 

The difference between the errors in assumed load in (a) and forecasted 

load in (c), is found to be as high as 1.35 MW. This maximum difference is 

obtained on 18th August at 18:00, when the seasonal daily load profile is 

considered for load assumption. Moreover, the difference between the errors 

in assumed load in (b) and forecasted load in (c), is found to be as high as 

1.25 MW. This maximum difference is obtained on 30th January at 10:00, 

when seasonal daily load profile is considered for load assumption. Hence, 

the results indicate that aggregated load forecast with 6 predictors can help 

the DSOs to estimate the load values more accurately than load estimation.        

Moreover, the load assumptions from maximum load profile and average 

load profile are compared with the forecasted load both with the six input 

predictors and the seven input predictors including the previous hour’s load. 
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Figure 8.10 shows the combined comparisons between the differences in load 

assumptions and load forecasts compared with the actual load, where (a) 

considered the load assumptions based on the created daily load profile for 

maximum load and (b) considered the load assumptions based on the created 

daily load profile for average load. The results show that using load forecast 

models gives much better ideas about load values compared to assuming load 

either from maximum load profile or average load profile. Moreover, it can 

be seen from Figure 8.10 that using six predictors for load forecast could be 

acceptable with respect to LF for a particular hour. 

Figure 8.10: Comparison between (a) differences in load assumptions from 

maximum daily load profile and load forecasts with six and seven predictors and, 

(b) differences in load assumptions from average daily load profile and load 

forecasts with six and seven predictors 
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8.3.3  Area Selections for Load Shedding under Load 

Assumptions and Load Forecasts  

A load shedding scenario is simulated to show the differences in the 

selection of load shedding areas using i) estimated load from the average load 

profile; ii) estimated load from the maximum load profile; and iii) the 

forecasted load using ANN with six input predictors. The area selection for 

load shedding has been evaluated for the load shedding scenario: The TSO 

requested a DSO to shed 2.5MW of load on 30th of January at 18:00 within 

15 minutes. It is assumed that the DSO would disconnect the requested 

amount of load from the investigated 10kV residential grid consisting of 26 

load buses. At each of the load bus, it is assumed that 80% of the customers 

are non-prioritized customers, i.e., the load of these customers can be 

disconnected in a critical situation, while 20% of the customers are considered 

as prioritized customers, i.e., the loads of these customers will be excluded 

from load shedding.  

  
Figure 8.11: Block diagram for the comparison between load shedding by load 

assumption and by support from LF 
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Figure 8.11 shows the steps to be done for comparison between the load 

shedding by load assumption, i.e., estimated load from the maximum or 

average load profile, and the load shedding supported by LF. In the block 

diagram, the requested amount of load to disconnect is denoted by P_dis, and 

the amount of load from the selected areas for load shedding is denoted by 

P_sel. In Step 1, the requested amount of load is taken as input. In Step 2, the 

forecasted (at the hour of load shedding) or estimated aggregated load values 

for the non-prioritized customers at each of the load bus are taken as input. In 

Step 3, cumulative sum of the load values, i.e., from the first load bus is 

calculated to determine the number of buses that fulfils the requested amount 

of load. In Step 4, the selected number of buses are compared to get the 

number of buses with over or under estimation for load shedding. Finally, the 

number of customers that can be saved from unnecessary load shedding or the 

number of customers that need to be disconnected to fulfill the load shed 

request more precisely are determined.     

Figure 8.12 shows the comparisons between the total estimated load from 

average load profile, estimated load from maximum load profile, total actual 

load and total forecasted load under each of the load bus, where all customers’ 

load under the respective buses are considered. As can be seen in Figure 8.12, 

the values of the forecasted loads at most of the load buses are much closer to 

the values of the actual loads compared to the estimated loads on each bus.    

 
Figure 8.12: Comparison between selection of areas with and without load 

forecasting.  Load shedding request: 2.5MW, on 30th of January at 18:00. 
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The customers under each LV substation is referred here as customers of 

an area. The DSO can select areas for load shedding in order to minimize 

unnecessary load shedding while fulfilling the load shedding request by the 

TSO. To select the areas for load shedding for example with estimate load 

values, the estimated load values from non-prioritized customers are summed 

up cumulatively. The cumulative sum is calculated from the first load bus to 

the last load bus in the system. Similarly, the cumulative sum is calculated for 

the examples with the actual load and the forecasted load.  

It can be seen from Figure 8.12 that if estimated load values from average 

load profile are used to select areas for load shedding, non-prioritized 

customers’ loads from the first load bus to the Bus 30 need to be disconnected 

which in total amounts for 2.56 MW according to the estimations. The actual 

load of non-prioritized customers on these buses is 3.28 MW which shows 

that in this example 0.78 MW load would be disconnected unnecessarily. 

However, since this is an estimation, to be on the safe side more load might 

also be disconnected depending on the safety margin considered by the DSO.    

If estimated load values from maximum load profile are used to select 

areas for load shedding, then non-prioritized customers’ loads from the first 

load bus to the Bus 18 need to be disconnected which in total amounts for 

2.51 MW according to the estimations. The actual load of non-prioritized 

customers on these buses is 2.06 MW which shows that in this example 0.44 

MW load would be short from the requested load shedding. 

Figure 8.12 also shows that if forecasted load values with six predictors 

are used to select areas for load shedding, then non-prioritized customers’ 

loads from the first load bus to the Bus 23 need to be disconnected which in 

total amounts for 2.51 MW according to the forecasts. It can be seen from 

Figure 8.12 that the non-prioritized customers’ actual loads from the first load 

bus to the Bus 22 amounts for 2.50 MW and the load 2.53 MW up to bus 23. 

Hence, the total load up to the Bus 23 is under forecasted by 0.03 MW. The 

results show that by using forecasted load values, loads of the non-prioritized 

customers at the Bus 24, 25, 26, 27, 28, 29 and 30 can be excluded from load 

shedding which would otherwise be disconnected when using the estimated 

load values from average load profile.  The number of customers associated 

with these buses is 489. This clearly demonstrates the advantage, i.e., avoid 

unnecessary load shedding, of using LF in CLS.   

8.3.4  Safety Margins Against Errors in Load Assumptions 

and Load Forecasts   

The errors in the forecasted load values using six predictors, and the 

estimated load values using maximum, and also using average load values, 
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are calculated in percentage concerning the actual load values for all the 24 

load shedding instants. Average load and maximum load over a year are used 

to estimate the load values assuming that only yearly average and maximum 

load values are available at the LV substation level. The errors are calculated 

to determine approximate safety margins that need to be used while using 

forecasted or any of the two types of estimated values in selecting areas for 

CLS. Figure 8.13 shows the error values in percentage for all the 24 load 

shedding instants considered over a year. It can be seen from Figure 8.13 that 

adding 5% load value with the forecasted load values could be enough to 

compensate for the errors in the forecasted load. The forecasted values can be 

over forecasted or under forecasted, therefore adding load values with the 

forecasted load values would help to perform CLS safely. Similarly, estimated 

values using yearly average load profile could give an over-estimation or an 

under-estimation, but the errors in the estimation could be as high as 30%, 

e.g., during high load periods. The estimated values using yearly maximum 

load profile which mainly gives an over-estimation could give errors as high 

as 80%, e.g., during the low load period. Therefore, it can be said that the 

error margin can be kept quite low by using aggregated LF models which 

helps to minimize unnecessary load shedding during the CLS.      

 
Figure 8.13: Comparison between errors (%) from forecasted and estimated loads 
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8.4  Individual LF Model to Calculate Voltage Level for 

the Excluded Customers from Load Shedding 

8.4.1  Individual LF Applied to CLS  

The main motivation for using the SMs for the CLS is to exclude the 

prioritized customers which is not the case in the present practice of CLS 

where all customers lose power. Hence, it is desirable to maintain at least 

minimum acceptable level of the voltage supply at excluded customers from 

the CLS.  

The information about power consumption at the individual customer level 

can be used to simulate load shedding with the SMs. However, in the existing 

SMS, it is not possible to get real-time power consumption data from a large 

number of SMs within few minutes when TSO requested for CLS manually. 

Therefore, to apply individual LF in CLS, the following steps are needed:  

Step-1: The individual LF model is developed for each customer in the 

considered 10 kV residential grid to estimate the load of the individual 

customers at an hour of interest. The models are developed using ANN 

method where hourly ECD of one year is used to train each model of the 

individual customer. The forecasted load for each customer is then used in the 

developed SMs’ switching model.  

Step-2: The SMs’ switching model is developed considering a smart 

metering network for all the customers in the residential grid. The maximum 

number of SMs per MCU is assumed to be 50. The real SMs’ switching times 

obtained from the field tests are distributed to each of the two thousand SMs 

considered in the switching model. Hence, each SM is associated with a fixed 

disconnection time where the disconnection time typically varies from one 

SM to another SM.  

Step-3: The SMs’ switching model associates each customer with the 

forecasted load for that customer. The switching model traces the amount of 

load disconnected when a customer is disconnected. The switching model 

also calculates the total amount of load disconnected at a particular sec by 

tracing the number of customers disconnected at that sec and the disconnected 

customers’ associated loads. The load of each customer is assumed to be 

constant for the load shedding period. 

Step-4: Load flow model: The SMs’ switching models output, e.g., 

changes in load values at each load bus for every sec of the load shedding 

period and remaining load values at each load bus is used in the load flow 

simulation model as described in Section 7.3.1. In [115], the voltage threshold 

limit for under voltage load shedding scheme is considered to be around 0.93 
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to 0.95 pu at the transmission level. The corresponding voltage at the MV/LV 

grid can be considered lower than 0.95 pu. Hence, 0.92 pu is considered as 

the threshold voltage at the main substation bus during a critical grid situation 

when the CLS needs to be initiated. It should be noted that this voltage 

threshold value at the main substation can be different in different grid 

conditions. 

The impact of using load values from individual forecasting models on the 

bus voltage calculation after the load shedding is analyzed. The calculated 

voltages at each load bus during and after the load shedding using forecasted 

individual customer’s load value are compared with the calculated voltages at 

each load bus during and after the load shedding using individual customer’s 

actual load value.    

8.4.2 MAPE in the Forecasted Load by Individual LF 

Models 
The MAPE for a particular load shedding instant is obtained by 

calculating the mean of the errors in individual forecasted load values of the 

considered individual customers in the residential grid. The MAPE values are 

calculated for each of the 24 load shedding instants and compared the MAPE 

values obtained for using six input predictors and seven input predictors with 

previous hour’s value. Previous hour’s value is considered for the predictor 

which is average load over the previous certain period because in general, 

previous hour’s value is found to have the most influence on the accuracy as 

shown in Section 6.4.3.2. 

Figure 8.14: Comparison of MAPE in the forecasted load by individual load 

forecasting models 
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Figure 8.14 shows the comparison of MAPE values. It can be seen that the 

MAPEs for individual forecasted load values are quite high as expected due 

to the random nature of electrical energy usage of individual customers. The 

results show that the MAPE values could be improved by around 15% to 30% 

by using seven input predictors instead of six predictors to forecast load. 

8.4.3 Comparison of Voltages on Each Bus with and 

without Load Forecast 

The simulation results on voltage values on each of the 31 buses are 

compared considering individual customers for the cases 1) forecasted load 

values with six predictors; 2) forecasted load values with seven predictors (7 

Pred 1H); 3) real load values. Two load shedding instants among the 

investigated 24 load shedding events are selected for the comparison. The 

selected load shedding instants are: 1) when the voltage deviation was high, 

i.e., the 4th load shedding instant (30th January, 14:00) with highest load 

condition; 2) when the voltage deviation was low, i.e., the 13th load shedding 

instant (18th August, 02:00) with lowest load condition. Figure 8.15 shows 

simulation results of the initial voltage, i.e., before load shedding and final 

voltage, i.e., after shedding 80% customers’ loads at each load bus.   

  
Figure 8.15: Comparison of voltages on each bus before and after load shedding, 

using forecasted load values (6P & 7P) and historical real energy consumption value 
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The voltage values for the 4th load shedding instant using forecasted load 

values with six and seven predictors are shown as 4th 6P and 4th 7P 

respectively while the 4th RC is used to denote the use of historical real 

energy consumption values in a simulation. Similarly, the voltage values for 

13th load shedding instants are denoted. Figure 8.15 shows that the errors in 

the forecasted individual load values have a negligible impact on the voltage 

value calculation at each load bus. Hence, it can be said that the forecasted 

individual customers’ load values using six input predictors can be used to 

estimate the voltage level at the excluded customers after the CLS.       

Figure 8.16 shows the voltage deviation on each bus due to 80% 

customers’ load shedding at each load bus. It can be seen that comparatively 

high voltage deviation occurred during the 4th load shedding instant since the 

load was high and comparatively low voltage deviation occurred during the 

13th load shedding instant since the load was low.  

  
Figure 8.16: Comparison of voltage deviations on each bus, using forecasted load 

values (6P & 7P) and the historical real energy consumption value 
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8.4.4 Comparison of Voltage at the Furthest Bus with and 

without Load Forecast during Load Shedding 

As described in Section 7.3.2, the furthest bus which would have the 

lowest voltage is Bus 5 for the considered grid topology in the investigated 

residential grid. The voltage variation in the furthest bus due to load shedding 

is shown in Figure 8.17 considering the two load shedding instants, i.e., 4th 

and the 13th. The voltage variation is shown with one sec interval for the 

whole load shedding period which is 344 sec for the considered SMS with 50 

SMs per MCU. The voltage values are compared for individual load values 

with and without load forecast.   
 

 
Figure 8.17: Comparison of Voltage at the Furthest Bus with and without Load 

Forecast during Load Shedding 

It can be seen from Figure 8.17 that the impact of errors in the forecasted 

individual load on the customers’ voltage is comparatively larger before load 

shedding, i.e., when the load at each load bus is high, and vice versa. 

However, the visible higher impact before the load shedding is around 0.001 

per unit, which is negligible. Hence, it can be said that forecasted individual 

load values using six predictors can be used for voltage calculation at the 

furthest bus.  
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8.5  Conclusions 

The results from the developed aggregated LF models show that the use 

of aggregated LF models at LV substation level would be helpful to select 

areas for load shedding more accurately than simple load estimation based on 

average load values or maximum load values. Although the forecasted load 

values could be higher or lower than the actual values,  the simulation results 

show that significant improvement can be achieved by using LF models with 

6 predictors compared to a simple load estimation. The use of aggregated LF 

models thus can help the DSOs to avoid unnecessary load shedding or to 

avoid under load shedding. Moreover, by using the aggregated LF models, 

the DSOs could keep the error margin quite low to avoid under load shedding 

compared the margin that the DSOs would need to consider in case of simple 

load estimation.  

The MAPE values of aggregated LF models show that adding 5% to 10% 

load with the forecasted load would help to perform the load shedding 

fulfilling the request from the TSO. However, the results on estimated load 

show that significantly higher percentage of the load may need to be added or 

subtracted from the estimated load in case of estimating load using average 

and maximum load profile respectively. This is due to the chance of getting a 

higher error in load estimation depending on the day and hour of the CLS.  

The use of forecasted loads of individual customer in load flow study 

shows that individual LF model can be used to estimate the voltage level after 

the load shedding. The results show that the voltage at the LV substation level 

can be calculated with an error on around 0.001 pu when up to previous day’s 

energy consumption value is used to forecast load at the individual customer 

level.      
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Chapter 9                         
Conclusions and Future Works 
 

This chapter presents the main conclusions of this thesis and ideas for future 

works. 

9.1 Conclusions 

Unlike the current practice for the manual CLS from MV substation level, 

the SMS gives the unique opportunity to select customers individually and 

thereby provides the way of excluding prioritized customers from the CLS. 

The exclusion of socially important prioritized customers from the CLS will 

give benefit to the society. Moreover, the SMS can allow to perform the CLS 

within allocated time of 15 minutes, and thereby can help relieve the system 

in critical power shortage situations, which would benefit the DSOs, the 

TSOs, and the society. The main conclusions from the field tests performed 

in this work, and the simulation results on load shedding supported by LF, are 

provided below:     

The field tests’ results on small-scale load shedding using the SMs have 

shown that during reconnection of the SMs, current transients could be 

created due to the energizing of the capacitors that exist in many electronic 

equipment over the terminals on the grid side. Only four out of a total of 

twelve recorded transient events exceeded the standard limit of ± 50% but not 

above ± 60%. However, the duration of the current transients which created 

voltage transients are very short, e.g., ranging from 0.08 ms to 0.23 ms, and 

according to the literature, this type of very short duration transients are less 

harmful to the sensitive equipment of the customers. Moreover, the voltage 

transients that were recorded at few customers’ sites due to upstream action, 

i.e., reconnection of the neighbor’s SM, created negligible current transients 

with similar duration and much smaller amplitude. Also, the series operation 

of each MCU and parallel operation of all MCUs can help to get “distributed” 

transients over the load reconnection period compared to today’s 

instantaneous load reconnection technique from MV substation. Hence, it can 

be concluded that the SMS could be used for the CLS without creating any 

significant impact on the voltage quality of the customers.  

The performance of the existing SMS has shown that on average the SMs 

take around 8 seconds to disconnect and around 10 seconds to reconnect 

individual SM. However, the reconnection process of the SMs could take few 

minutes to hours if the power system fails after remotely disconnecting the 
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SMs since the self-healing ZigBee communication network need to build up 

the network again from scratch. More extended battery support of the SMs 

and the MCUs could help to keep the communication system alive even if the 

power system fails after remote disconnection of the SMs, and thereby can 

enable faster reconnection of the SMs. Since remotely disconnected SMs need 

to be reconnected either remotely or using optical eye solution through field 

visits, more extended battery support could also help to avoid those types of 

SMs’ replacement which do not support optical eye solution.       

The errors in the SMs’ status update report which were found to be around 

10% on average, could create the confusion on how much of load is actually 

shed and how many of SMs actually failed to do so. Since the individual 

verification process of the failed reported SMs requires around six seconds, a 

reliable status update report would, therefore, be necessary to perform a 

large-scale load shedding without getting confused by the errors in the status 

update report.       

Unlike the CLS by disconnecting the MV feeders where the aggregated 

load values are known (measured) in near real-time, in case of the CLS with 

excluding prioritized customers, the load from the selected customers on each 

feeder would be difficult to know. The simulation results on using aggregated 

LF models at LV substation level have shown that by using forecasted 

aggregated load values, the DSOs could select areas for load shedding more 

precisely while fulfilling the load shedding request from the TSO more 

accurately than the load shedding without LF. The simulation results have 

shown that the total load in, e.g., a 10kV residential grid can be forecasted 

with an error of around ± 3% by using up to previous day’s hourly SM data 

in the pre-developed aggregated LF models. Moreover, during maximum load 

hour, the use of aggregated LF models could save around 25% of number of 

customers from unnecessary load shedding, as compared with the load 

shedding scenario considering average load values from the daily load profile.  

Since the CLS using the SMS would allow prioritized customers to remain 

connected to the grid, the quality of the voltage to the excluded customers 

need to be checked to determine if further steps are necessary. This work used 

up to previous day’s hourly SM data in the individual LF models to forecast 

load at load shedding hour. The forecasted load values are used to calculate 

the voltage change during and after the load shedding. The simulation results 

have shown that the voltage calculation at each of the LV substation gives a 

negligible error (around 0.001 per unit), when calculated voltages using 

forecasted individual customers’ load values are compared to the voltages 

calculated using individual customer’s actual load values.  
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Considering the application of SMs for the CLS, and accuracy 

improvement of LF at LAL, the following recommendations can be made on 

the functionality requirements of future SMS:  

1. Considering the maximum disconnection time of the present SMs, the 

number of SMs per MCU should be limited to 75 to ensure the CLS within 

allowed 15 minutes. However, the total load shedding time can also be 

reduced by allowing multiple SMs switching capability for each MCU, 

or by decreasing the switching delay.  

2. Assurance of accurate update report from the SMs on the status of the 

remote ON/OFF control switch during the CLS. 

3. The SM data with one-hour interval could be used to develop LF models 

to support the CLS. However, the SM data with lower granularity can be 

used to increase the accuracy of the forecast for other applications, such 

as network congestion identification where higher level of accuracy can 

be required. 

4. Frequent readings from the SMs to the CS, e.g., every hour can help to 

improve the load forecast accuracy at LAL and the individual customer 

level. However, the typical SM readings that come to the CS two times a 

day can be used to forecast load to support the CLS.  

5. Extended battery backup time of the SMs would be recommended to keep 

the communication system alive for faster reconnection, in case the power 

system fails after the CLS using the SMs. An alternative could be to 

enable the communication network to start from a saved network 

information rather than from scratch as it is done today.  

 

9.2 Future Works 

The following suggestions could be considered for future work: 

 

 This thesis did not consider the types of customers to prioritize them 

for load shedding. If the types of the customers were known, e.g., 

residential customers, small and/or medium business, etc., this 

information could be used for prioritizing the customers with 

different priority levels. In future, customers’ types could be used to 

propose different load shedding strategies considering customers’ 

priority levels.  

 The uncertainty or the error in the status update report from the SMs 

could be considered in the SMs’ switching model to reflect the impact 

of the error in performing the load shedding using the SMs. 

Moreover, a simulation model can be developed for the 
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communication network of the SMS to evaluate the inter-dependency 

between the electrical network and the communication network. 

 The optimal load shedding model could be developed to study the 

load shedding with SMs considering various objectives and 

constraints, e.g., minimizing the sum of disconnected loads and also 

keeping the voltage levels at each load bus within the acceptable 

limit, and/or minimizing the sum of the disconnected residential 

customers. Moreover, instead of full load disconnection of each 

customer, optimal load shedding can be studied considering potential 

option of partial load disconnection from each customer to allow the 

basic power supply need of the customers.  

 The LF models have been used to support the CLS. The models have 

been developed using available historical hourly ECD. It would be 

interesting to further investigate the impacts of using more frequent 

data, e.g., 10-min interval data, on the performance of the LF models. 

Moreover, the accuracy of LF can be studied for the houses with solar 

panels, PEV and battery storage, by using the SM data.  

 This thesis used ANN method to forecast loads at LAL and individual 

level. It could be interesting to compare the results with the forecasted 

load values using other methods, e.g., fuzzy logic, Auto-Regressive 

Integrated Moving Average, support vector regression technique, 

deep learning method, etc.  

 This thesis showed that the accuracy of the forecasted load at any load 

shedding hour could be improved by using previous hour’s ECD as 

one of the input predictors. In the future, the necessity of the frequent 

SM readings, e.g., every hour, and lower SM data granularity, e.g., 

15 minutes interval, can be studied for LF accuracy improvement, 

and also other applications, e.g., network congestion identification, 

demand response, load scheduling, etc.  

 The literature study performed in this thesis has indicated the 

necessity of having PQ measurement capability in the future SMS. 

However, more investigation is needed to identify the necessary 

parameters to be recorded in the SMs. Future studies could be made 

on the data granularity requirement for each parameter, duration and 

sampling frequency to record data of triggered PQ events, efficient 

method of extracting the useful message from the data, and also on 

the method of saving the PQ data which would require less memory 

capability, etc.         
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Appendix A                       

Smart Meters’ Functional 

Requirements Proposed by 

Different Authorities 
 

 

For SMs, functional requirements have been proposed by different national 

and international authorities to cope with upcoming grid condition, e.g., 

enabling local micro generation and also future SG applications, e.g., demand 

response, HEMS, etc. The proposed functional requirements are presented 

and discussed in this section. 

A.1 Functional Requirements Proposed by Ei 

The seven minimum functionalities proposed by Ei are presented in Table 

A.0.1 [2].  The proposal included two new functionalities which is not 

common in the existing SMS, e.g., in Sweden. One functionality is the ability 

for extended measurement data, i.e., supplying customers with near real-time 

data, e.g., every 10 seconds. Another functionality is to supply the customers 

near real-time data from the SM and other information such as electricity price 

or DR signal from DSOs or any third party.     

Table A.0.1 Functional requirements proposed by Ei 

Sl. Functional requirements by Ei 

1 The electricity meter should be capable of measuring phase voltages, phase 

currents, active and reactive power both import/export on each phase, and 

should also be capable to measuring and recording the total active energy 

for both import/export.      

2 Electricity meters should be equipped with a customer interface supported 

by an open standard that enables the customer to access the measured data 

in close real-time. 

3 Electricity meters should support remote readings of measurement data and 

data on power interruption.                 
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4 Electricity meters should record the amount of energy transferred every 1 

hour and also should be able to record values every 15 minutes if needed.      

5 Electricity meters should be able to record data on power interruption by 

recording the start and the end time of each power outages in one or more 

phases that are longer than three minutes.                    

6 It should be possible for the electricity companies to upgrade firmware and 

change settings in the electricity meter remotely. 

7 It should be possible for the electricity grid companies to be able to power-

on and power-off electrical installations via the electricity meter remotely.       

A.2 Functional Requirements Proposed by EC 

The minimum functional requirements proposed by EC are presented in [30]. 

The functionalities that were present in EC’s definition of a SMS in [30] but 

were not included in the proposal of minimum functional requirements for 

SMS in [31], are marked by underlining the words in Table A.0.2. The 

functionalities that are included in the proposed ten minimum functionalities 

are 1) ability to send SM readings to the customer interface 2) support for pre-

payment system and 3) ability of the SM to monitor PQ.  

 
Table A.0.2 Functional requirements proposed by EC 

Sl. Functional requirements by EC 

1 Provides readings from the meter to the customer and to equipment that he 

may have installed and any third party designated by the customer.  

2 Updates these readings frequently enough to allow the information to be used 

to achieve energy-savings  

3 Provides Import / Export & Reactive Metering. 

4 Supports advanced tariff systems 

5 Allows remote reading of meter registers by Meter Operators and by third 

parties 

6 Allows readings to be taken frequently enough to allow the information to 

be used for network planning 

7 Provides two-way communication between the smart metering system and 

external networks for maintenance and control of the metering system. 
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8 Allows remote ON/OFF control of the supply and/or flow or power 

limitation. 

9 Provides Secure Data Communications 

10 Fraud prevention and detection. 

11 Provides the readings in a form easily understood by the untrained consumer, 

and with calculations enabling final customers to better control their energy 

consumption. 

12 Supports energy supply by pre-payment and on credit 

13 Provides for the monitoring of Power Quality 

 

A.3 ERGEG’s Guidelines of Good Practice on 

Regulatory Aspects of Smart Metering 

The guidelines proposed by European Regulators’ Group for Electricity and 

Gas (ERGEG) on regulatory aspects of SMS are presented in Table A.0.3. 

The ten functionalities proposed by EC, however, did not mention explicitly 

about three of the guidelines from ERGEG which are marked by a star (*) 

sign in Table A.0.3. The ERGEG suggested that when a service provider is in 

charge of any information, e.g., on the customer’s voltage quality, the 

customer should be able to know that this data exists, and should be able to 

receive information on the explicit data with a reasonable fee. Moreover, 

ERGEG suggested that if a customer wishes to reduce or increase power 

capacity, he/she can contact the relevant market actor and the market actor 

will remotely perform this service. This service can also be used in case of 

non-payment by customers, to reduce power capacity of customers to a 

minimum level instead of deactivating electricity supply, leaving to the 

customer the possibility of using essential devices. In addition, ERGEG 

suggested that if a customer chooses to receive immediate information on 

exceptional energy consumption at his/her connection point and thus act upon 

it, service provider need to be able to communicate this to the customer by 

having an alarm service in the SMS, could be subject to a fee. 

 
Table A.0.3 Guidelines from smart metering system proposed by ERGEG 

Sl. Guidelines proposed by ERGEG 

1* Customer control of metering data 

2 Information on actual consumption and cost, on a monthly basis, free of 

charge 
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3 Access to information on consumption and cost data on customer demand 

4 Easier to switch supplier, move or change contract 

5 Bills based on actual consumption 

6 Offers reflecting actual consumption patterns  

7* Remote power capacity reduction/increase  

8 Remote activation and de-activation of supply 

9 All customers should be equipped with a metering device capable of 

measuring consumption and injection 

10 Alert in case of non-notified interruption  

11* Alert in case of exceptional energy consumption  

12 Interface with the home 

13 Software to be upgraded remotely  

 

A.4  Functionalities Proposed by SM Coordination 

Group, M/441 

The European Standardization Organizations (ESOs), CEN, CENELEC and 

ETSI decided to combine their expertise and resources by establishing the 

Smart Meters Coordination Group (SM-CG) in response to Mandate M/441. 

The functionalities proposed by SM-CG under the mandate M/441 is 

presented in Table A.0.4 [29]. The functionalities are relevant to 

communications of the SMS. 

 
Table A.0.4 Functionalities proposed by SMCG in M/441 

Sl. Functionalities proposed by SMCG in M/441 

1 Remote reading of metrological register(s) and provision to designated 

market organizations. 

2 Two-way communication between the metering system and designated 

market organization(s) 

3 To support advanced tariffing and payment systems 

4 To allow remote disablement and enablement of supply and flow / power 

limitation 

5 To provide secure communication enabling the smart meter to export 

metrological data for display and potential analysis to the end consumer or 

a third party designated by the end consumer 

6 To provide information via web portal/gateway to an in-home/building 

display or auxiliary equipment 
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A.5 Functionalities Proposed EC for a New Electricity 

Market Directive 

The EC’s proposal for a new electricity market directive, published in 2016, 

requires some features of the SMs [33].  According to the EC's proposal, the 

introduction of the SMs should be carried out in accordance with principles 

which are presented in Table A.0.5.  

 
Table A.0.5 Proposal by EC for a new electricity market directive requiring features 

of the SMs 

Sl. Proposal by EC for a new electricity market directive requiring 

features of the SMs 

1 Measure the actual electricity consumption and make the information 

readily available and visualized to the customers in near real-time and with 

no additional cost. 

2 Ensure safety of the smart metering system and also ensure privacy and data 

protection of customers in accordance with EU’s respective legislations. 

3 On customers’ request, make their consumption and injection information 

available to them, in an easy to understand format via a local standard 

customer interface and/or remote access.  

4 Provide appropriate advice and information in connection with the 

installation of the electricity meter, electricity meter's full potential and on 

the collection and processing of personal data. 

5 The smart meter should enable measurement and settlement with the time 

resolution same as the imbalance period on the national market. 
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Appendix B                    

Possibilities of Power Quality 

Monitoring using SMs 
 

The impact of SMs’ switching on the PQ are monitored during the field tests 

both at the LV substation level and also at the selected individual customers’ 

level. The PQMs are used to monitor the PQ by recording the PQ related 

parameters and also the events when an event was triggered based on the 

preset trigger values for the events. However, the use of additional PQMs 

appeared to be an expensive solution with respect to monitoring the PQ. 

Inclusion of PQ measurement capability therefore could be a cheaper solution 

to monitor the PQ at the customers’ level. Hence, this thesis performed 

literature study on the importance of functional requirements for PQ 

measurement with the SMs. The study included the aspects of PQ problems 

from DSOs point of view, expected intensity of PQ problems in future, 

sources and the impacts of the PQ problems in the distribution system, PQ 

measurements capabilities of SMs in the market and also the challenges and 

importance of PQ measurement with the SMs. The literature study on the PQ 

measurement with the SMs indicated the importance and possibilities of PQ 

measurement with the SMs which however needs further study for proper 

specification on the parameters need to be recorded with respect to data 

sampling, storage, communication, etc.    

B.1  What is Power Quality? 

PQ is often defined as the electrical grid's ability to supply a clean and 

stable power flow and determines the fitness of electric power to customers’ 

devices. The aim of the electric power system is to generate electrical energy 

and deliver this energy to the customer equipment at an acceptable voltage. 

With an ideal power system, each customer should perceive the electricity 

supply as an ideal voltage source with zero impedance. In this case, the 

voltage should be constant whatever the current is. However, the reality is not 

ideal. The electric power system connects many customers. Different 

customers have different patterns of current variation, fluctuation, and 

distortion, thus polluting the voltage for other customers in different ways. 

Moreover, different customers have different demands on voltage magnitude, 

frequency, waveform, etc.  
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PQ is the combination of voltage quality and current quality [116]. Voltage 

quality concerns the deviation between reality and ideal. The ideal voltage is 

a single frequency sine wave of constant amplitude and frequency. Similarly, 

current quality concerns the deviation of the current from the ideal where an 

ideal current is a single-frequency sine wave of constant amplitude and 

frequency, with the additional requirement that the current sine wave is in 

phase with the voltage sine wave.  

PQ disturbances, e.g., deviations of voltage and/or current from the ideal 

can be classified as two types variations and events. The classification is 

based on the measurement procedure of the characteristic of voltage or 

current.  

The term ‘Variations’ refers to the small deviations of voltage or current 

characteristics from its nominal or ideal value. For example, the variation of 

root mean square (rms) value of voltage from their nominal values, or the 

harmonic distortion of voltage and current. Variations are disturbances in the 

electric power system that can be measured at any moment in time.  

The term ‘Events’ refers to the larger deviations of voltage or current 

characteristics from its nominal value that only occur occasionally, e.g., 

voltage interruptions or transients. The events are disturbances in the electric 

power system that start and end with a threshold crossing. The events require 

waiting for a voltage or current characteristic to exceed a predefined threshold 

level.  

A greater part of all electrical equipment used today is built up of power 

electronics that create disturbances on the electrical grid. The introduction of 

increasing amount of electronics appliances means that the electrical grid is 

affected by new types of disturbances from connected loads, e.g., harmonic 

related problems, transients, and flicker. Moreover, single phase loads and 

loads with higher starting currents are becoming more common in 

contributing disturbances such as unbalance and voltage dips.  

Poor PQ increases loss in the electrical grid, which in turn leads to higher 

costs for the transmission and distribution system operators. Furthermore, the 

collaborative effects of these different types of loads can manifest themselves 

in different ways, e.g., cables and transformers overheating and light bulbs 

having shorter lives. 

Flicker is an example of PQ problem, which is the effect produced on the 

visual human perception by a changing emission of light by lamps subjected 

to fluctuations of their supply voltage. The severity of the disturbance is 

described by two parameters, the short-term flicker severity (Pst) evaluated 

over a short period of time i.e., 10 minutes, and the long-term flicker severity 

(Plt) evaluated over a long period of time i.e., 2 hours respectively.  



183 

 

Voltage transient is another example of PQ problem. The electronic 

appliances used at homes and offices are designed to operate at a specified 

nominal voltage. Most equipment is designed to handle minor variations in 

their standard nominal operating voltage. However, if the transient is 

repetitive, the continual stressing may weaken sensitive electronics over 

time.  A future transient with a low peak voltage event that would otherwise 

be safe could cause complete failure of a weakened component if circuit 

components become progressively weaker. Repeated small voltage transients 

may shorten the life of today’s computerized appliances and electronics. 

B.2 Power Quality Monitoring at Customer Level  
In [30], the EC discussed about the provision of having functionality for PQ 

monitoring, e.g., to send warning to the customers if voltage quality fall to 

such a low level that equipment could be damaged. Factors affecting voltage 

quality include voltage sags & surges, high harmonic content, etc. Moreover, 

there can be a provision of warning to the authorities, e.g., to DSOs about 

excessive harmonic currents. Logging of power outages in excess of a defined 

time are also addressed as PQ issues. In the survey report by EC, seven out of 

eleven countries who responded in 2011, answered that they were monitoring 

some aspects of PQ or have the ability to do so. The report has indicated that 

with the growth of distributed generation, there will be greater need for PQ 

monitoring at the SMs’ level. In [1], the Ei has also indicated that the 

importance of PQ monitoring is expected to increase not only as a result of 

increase in local generation of electricity, increase in the number of the 

sensitive equipment used by customers but also that the proportion of devices 

that affect the voltage, are increasing at the customer premises, e.g., LED 

lights and dimmers.  

B.3 Power Quality Problems from DSOs Point of View 

The DSOs are responsible to provide a voltage supply at the customer’s Point 

of Connection (POC) that must fulfill the voltage quality requirements of the 

standards, e.g., EN 50160, IEEE 1159, etc. to guarantee the customers’ 

equipment protection and safety. Non-conformance of the supply voltage has 

a high societal cost as it impacts the lifetime, efficiency, and performance of 

customers’ loads. However, it is becoming difficult for the DSOs to maintain 

high voltage quality at customers’ POC due to a large amount of PQ emissions 

from the customers’ sides [117]. In the electricity grid, among various PQ 

problems, mainly harmonics often interact adversely with the grid 

components and cause inconveniences to the DSOs. However, currently it is 

not feasible to impose penalties to the harmonic producing LV customers 
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because of the lack of proper PQ measurements. The PQ in the LV grid and 

customer premises, especially homes, is largely unmonitored and is not well 

understood. Specific monitoring typically takes place only after customer 

complaints have been laid or abnormalities noticed. The DSOs often suffer 

inconveniences due to inaccurate operation of protective devices and also 

failure or decreased life time of grid components such as transformers, cables, 

etc. The harmonic currents generated from the customer’s installations are 

often the main reasons for these type of problems. Typically, a transformer is 

expected to have a lifetime of at least 30-40 years but early aging caused by 

increased harmonic pollutions in the grid could require early transformer 

replacement, e.g., 10 years earlier [117]. The effects of harmonics are not 

immediately visible and therefor stays hidden most of the time. In the 

electricity business, the light flicker problem can cause bad reputation of the 

DSOs, and also can cause extra cost for the DSOs due to the costly field 

inspection which is required for taking necessary action after customer 

complaints.  

B.4 Importance of PQ Measurements at Individual 

Customer Level 

Customer complaints on PQ related disturbances, e.g., harmonics, voltage 

dips and flicker are increasing with time. Modern customers use large number 

power electronic based devices that are quite sensitive to PQ disturbances. 

The power electronics based devices produce current harmonics which in 

combination with the grid’s impedance at a customer’s POC influence the 

grid’s voltage quality. High grid impedance along with the grid current can 

contribute to harmonic voltages, high frequency noise, and high flicker 

severity. It is the polluting loads of the customers that often interact adversely 

with the grid components and contributes to the distortion of the supply 

voltage. The connected devices generate different harmonic currents with 

distorted supply voltage than that generated at sinusoidal voltage condition. 

Continuous monitoring of the PQ aspects in the distribution system will give 

an insight to the existing performance level in comparison to the limits of the 

applicable PQ standards. Moreover, improved monitoring gives the DSOs the 

proof of PQ that can be delivered to residential customers, e.g., through 

customer interface. The SMs can serve as indicators of possible PQ 

disturbances in the distribution system and also can help in localizing the 

sources of disturbances. 
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B.5 Impacts of PQ Problems in Distribution System 

The voltage flicker problem can cause severe headache, epilepsy, reduced 

concentration level and also other vision related illness to the customers. Poor 

PQ can lead to abnormal operation of a device, and can also damage the 

device partially or completely. The PQ problems can cause additional heating, 

abnormal operation and early aging of the customers’ devices. The non-

sinusoidal current also causes additional losses and overloading to various 

grid components, e.g., cables and transformers. The presence of harmonic 

currents causes an additional power flow in the grid thus contributes to a lower 

power factor of the grid and increase the demand of total active power and 

apparent power in the grid. The presence of harmonic currents increases the 

core losses and copper losses in a transformer [117]. The load losses of a 

transformer increase sharply at high harmonic frequencies. The eddy current 

losses are of large concern when harmonic current is present in the grid since 

the losses increase approximately with the square of frequency. Moreover, the 

harmonic currents creates additional ohmic losses in the line and neutral 

conductors of a cable which contributes to overheating of neutral wires of the 

LV feeders at which many single-phase polluting loads are connected. The 

harmonic voltage caused by harmonic currents increases the dielectric 

stresses on the cables and can shorten their useful lifetime. The skin effect 

increases the effective resistance of the conductor and eddy current losses, 

mainly at high frequencies, which further increases the cable’s operating 

temperature. 

B.6 Sources of PQ Problems in Distribution System 

The PQ problems can be caused by natural phenomena or human errors, e.g., 

storm, lightning, digging of cable, etc. It can also be caused by the customer’s 

own disturbing equipment/s or neighboring customers’ variable load 

demands, e.g., motor loads. According to the national PQM survey results in 

the MV and LV grids of Netherlands for years 2005-2008, PQ problems are 

local issues rather than a grid-wide global problem in most of the situations 

[118]. The local problems occur mainly due to the operation of customers’ 

devices. The light flicker problem is mainly generated from various disturbing 

loads in the LV grid, e.g., elevators, air conditioners, welding device, etc. The 

harmonics problems can be caused by the power electronic domestic 

appliances, e.g., compact fluorescent lamps, televisions, microwave ovens, 

personal computers, HVAC, dishwashers, dryers, etc., the business and office 

equipment, e.g., workstations, personal computers, copiers, printers, lighting, 

etc., and the industrial equipment, e.g., programmable logic controllers, 

automation and data processors, variable speed drives VSD, soft starters, 
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inverters, etc. Many of these devices are sensitive to PQ disturbances. 

Moreover, magnetic core reactors, transformers and induction motors 

produce non-linear currents due to the saturation behaviour of their magnetic 

cores. The power electronics based power flow controllers also cause current 

waveform distortions in the grid. The non-linear loads containing power 

electronics converters, e.g., with six pulse and twelve pulse rectifiers can 

cause harmonic pollutions in the grid during their switching processes. In a 

grid with a MV/LV transformer of Δ/Y configuration, triple-n harmonic 

currents circulate in the closed delta winding and therefore only the ‘non 

triple-n’ harmonics pass to the upstream grid. With the increased use of high 

demanding load such as heat pumps, air conditioners, PEV at the household 

installation, the long term flicker value, Plt at a POC can increase in the future 

[118]. The time varying distributed generations can increase PQ problems, 

e.g., over-voltage, harmonics, etc. and cause instability in the grid. It was 

observed that the installations with many solar panels can cause high 15th 

harmonic voltages in the grid [118], the neighborhood with many wind 

turbines can increase lower order harmonic voltages in the grid and the 

industries with variable speed drives and converter loads also contribute to 

lower orders harmonic voltages in the grid. 

The Governments in many countries also promoting the use of more energy 

efficient devices to reduce overall electricity consumption in the society 

which cause an increased use of power electronic based nonlinear devices and 

increase the PQ related problems. 

 

B.7 What PQ Aspects to Monitor? 

There are yet no clear recommendations or proposals from international 

authorities on what PQ aspects could be or need to be monitored by the SMs, 

except a proposal from Ei to record the interruptions that are longer 3 minutes. 

The DSOs participated in the survey suggested some PQ aspects to monitor, 

e.g., power interruptions, real/reactive import and export, peak voltages, rms 

voltage, over/under voltage, voltage sags & swells, voltage distortion, etc. 

[30]. According to [119], power interruptions, and voltage sags & swells are 

the higher requirement of DSOs with respect to PQ measurements with the 

SM, while flicker, individual harmonics, and transient measurements are 

some of the least. 

B.8 PQ Measurement Capabilities of SMs in the Market 

Most of the currently available SMs in the market, have the capability of 

measuring some PQ parameters, e.g., power interruptions, 
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over voltages/voltage swells, under voltages/voltage dips, and also can 

measure: voltage, current, frequency, voltage harmonics and current 

harmonics, e.g., THD and individual harmonics [120],[121]. In [122], test 

results on the PQ measurement capabilities of SMs are presented which shows 

that the SMs can measure parameters relevant of PQ analysis, e.g., 

registration of power interruptions, voltage variations, voltage dips and lowest 

functional voltages. It is underlined in [123] that most of existing SMs can 

make valuable data available for voltage quality assessment, and also provide 

waveform measurements with reporting rate of 1 frame/s which represents the 

so called real-time values of voltage (rms), current (rms), frequency, active 

and reactive power. The SM used in [121], can compute harmonics using A/D 

converter with 16 samples per channel per period (50Hz).  

B.9 Use of SMs to Monitor PQ 

By using the capabilities of modern SMs, grid PQ monitoring can be 

improved while keeping costs low. Moreover, PQ monitoring would allow 

residential customers to monitor their own PQ which offers greater potential 

for early problem identification and PM. In addition, it could enable the DSOs 

to better optimize the voltage delivered, which may lead to a reduction of the 

power consumed by the constant impedance load. Based on local voltage 

deviation detections, the SMs can trigger events to alert the local DSO. The 

events could either trigger a request to automatically increase the sampling 

rate in the affected area, or be forwarded to a DSO for manual decision 

making. According to [123], voltage characteristics with high reporting rates 

can be efficiently used in deriving information on quality of the electricity 

supplied by the DSOs. However, if the PQ variables are measured, the meters 

must also have sufficient storage capability. It is not only the capabilities of 

the SMs themselves which must be considered, but also the capabilities of the 

communications networks and the CS. There is a lack of clarity over what 

data and in what format, timeframe, and level of aggregation would be useful. 

There is also a lack of clarity over exactly how the data could be utilized to 

improve the electricity grid operation and business.  

The challenges of implementing PQ measurements in distribution 

applications include the following:  

o Increased cost of SMs with PQ measurement capabilities.  

o Capability of present communication infrastructure to support for 

transmission of large data packets, particularly for real-time applications.  

o Data integration, long-term storage, and sharing. 
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Possible benefits (beneficiary):  

o Customers can monitor their own PQ which offers greater potential for 

early problem identification and PM.(customer) 

o With more PQ monitoring capability, the DSO is more informed about 

the actual PQ in their grid and can easily identify any source of problems 

(e.g., harmonics, flickers, etc.) which can save a lot of work (and cost) to 

identify otherwise. (DSO) 

o Better PQ in the system can reduce the losses in the system as well as 

potential faults and mal-functions of equipment in the system (power 

electronic converters, relays) which can be caused by, e.g., 

harmonics.(DSO) 

Recommendations: 

- This thesis proposes to include PQ monitoring functionalities covering 

as much PQ indices as possible in addition to the already available PQ 

monitoring capability in some of the existing SMs. However, research is 

needed to find e.g., optimal data sampling rate, and to identify important 

PQ indices for storing and also the most efficient way of communication.  

- To increase the PQ compatibility in the most cost efficient way there is 

a need either to reduce the number of PQ monitoring locations or the data 

need to be processed in more efficient way to reduce the size of the stored 

data. One way could be to store and send  text based data on PQ events. 

- There is a need for common standard from respective authorities 

specifying the duration for which the data need to be stored in SMs, e.g., 

for three months [30], and how the data will be accessed and by whom.   

 




