
Multicast scheduling of wavelength-tunable, multiqueue optical data center
switches

Downloaded from: https://research.chalmers.se, 2024-03-13 07:24 UTC

Citation for the original published paper (version of record):
Keykhosravi, K., Rastegarfar, H., Agrell, E. (2018). Multicast scheduling of wavelength-tunable,
multiqueue optical data center switches. Journal of Optical Communications and Networking, 10(4):
353-364. http://dx.doi.org/10.1364/JOCN.10.000353

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



1

Multicast Scheduling of Wavelength-Tunable,
Multiqueue Optical Data Center Switches

Kamran Keykhosravi, Houman Rastegarfar, and Erik Agrell

Abstract—The all-optical switching of multicast flows
using star couplers and tunable transceivers is a promis-
ing solution for the emerging cloud data center appli-
cations. However, the limited tuning range of optical
components on one hand and the buffer management
challenges for multicast traffic delivery on the other
pose a significant impact on the performance of op-
tical multicast scheduling algorithms. Using only one
queue per input port results in head-of-line (HOL)
blocking and limits the throughput especially for bursty
traffic patterns. As the number of possible multicast
destinations grows exponentially with the switch size,
allocating one queue per destination is not a feasible
solution. To resolve HOL blocking, in this paper we
consider only a handful of queues per switch input port
and devise scalable scheduling algorithms that take into
account transceiver tunability constraints. According
to our Monte Carlo analysis of a switch with 64 ports
and operating under bursty traffic, it is possible to
improve the maximum achievable throughput by 44%
when the number of queues per port is increased from
one to eight. We show that the performance gains
due to an increase in the queue count depend on the
availability of the spectral resources. With the scarcity
of wavelengths, an increase in the number of queues
leads to diminishing returns.

Index Terms—data center, multicast traffic, optical
packet switching, multiqueue switch, scheduling, star
coupler, tunability.

I. Introduction

THE exponential growth of cloud traffic, the mush-
rooming of bandwidth-hungry applications, and the

ever-increasing diversity of data center traffic patterns are
posing overwhelming challenges to traditional electronic
data center switching technologies in terms of scalabil-
ity, power consumption, and resource management. In
recent years, optical switching, providing for bit rate
transparency, wavelength parallelism, and low energy foot-
prints, has been proposed as a disruptive solution to
address the requirements of next-generation data centers
[1]–[5].

This work was supported by the Swedish Research Council un-
der grant no. 2014-6230. The simulations were carried out on the
resources provided by the Swedish National Infrastructure for Com-
puting (SNIC) at C3SE.

This work was presented in part at the 2017 International Confer-
ence on Computing, Networking and Communications (ICNC).

K. Keykhosravi and E. Agrell are with the Department of Elec-
trical Engineering, Chalmers University of Technology, Gothenburg
412 96, Sweden (e-mail: kamrank@chalmers.se; agrell@chalmers.se).

H. Rastegarfar is with the College of Optical Sciences,
University of Arizona, Tucson, Arizona 85721, USA (e-mail:
houman@optics.arizona.edu).

With a proper architectural design, optical switches can
be made flexible to support a variety of traffic demands,
including high-bandwidth, point-to-point connections and
point-to-multipoint (i.e., multicast) traffic delivery. In fact,
many data center applications today depend on multicast
communication schemes [3], [6]. The MapReduce applica-
tion is a prominent example that directs search queries
to a set of indexing servers and multicasts executable
binaries to a group of servers participating in cooperative
computations [6]. Traffic multicasting in data centers helps
to increase the throughput of bandwidth-hungry applica-
tions, reduce the completion time of delay-sensitive tasks,
and save on the network communication resources and
energy requirements as significant concerns in cloud data
centers [6]–[9].

Supporting all-optical multicasting calls for an optical
broadcast medium and proper spectral resource scheduling
in the first place. A star coupler can provide such broad-
cast functionality and has been used to realize several op-
tical multicast switch architectures [10]–[16]. Fig. 1 depicts
a baseline optical multicast switch design comprising an
N×N star coupler and interconnecting N nodes (servers)
that are equipped with wavelength-tunable transceivers.
The switch can be located at different tiers of the data
center network, including on top of racks [5]. Each of
the N nodes is equipped with a fast-tunable transceiver
(capable of tuning over the range of available wavelengths
in tens of nanoseconds) for data transmission/reception
and a small form-factor pluggable (SFP) transceiver for
interfacing with the switch controller [17]. Contending
packets are stored at the transmit side of each node
(i.e., input queueing). Depending on traffic demands, the
switch controller instructs the nodes such that they tune to
proper wavelengths for unicast or multicast transmission.
As the coupler realizes a shared transmission medium,
each transmitted signal is routed to all output ports. The
designated receivers of a multicast traffic flow should all
be tuned onto the wavelength of the transmitter node.
To avoid collisions each active input port should utilize
a distinct wavelength. In general, transmitter lasers are
not required to be tunable; however, transmitter tunability
is desired when the number of available wavelengths is
smaller than the switch port count [16], [17].

The optical multicast switch is deployed in a time-
slotted data center network. All nodes are directly con-
nected to the switch controller and can be synchronized
under its supervision. Synchronization is challenging and
costly to achieve in optics and will be performed in the
electronic domain (at the nodes connected to the input



2

Coupler
N ×N

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

Server 2

Server 1

Server N

Buffer

Buffer

Buffer

Rx.

Rx.

Rx.

Tx.

Tx.

Tx.

Controller

..
.

Fig. 1: An all-optical data center multicast switch based on an N×N
star coupler.

ports of the star coupler). However, with the proper choice
of fiber lengths, it is feasible to maintain the synchronous
status of the packets in the optical domain. We consider an
optical packet as a burst of IP packets with the same des-
tination set that are aggregated and synchronized at the
edge of the switch. The switching time slot is considered
to be long enough to compensate for the synchronization,
hardware reconfiguration, and scheduling overheads.

In an optical multicast switch, the number of wave-
lengths does not necessarily equate the port count, due
to potentially a large coupler size and/or fabrication costs
and constraints. For instance, a 128×128 star coupler [18,
Ch. 4] requires transceivers with a 50.8 nm tuning range
assuming 50 GHz channel spacing. However, commercial
C-band transceivers can only cover 35 nm (i.e., over 1530–
1565 nm). This mismatch is a significant feature in design-
ing a multicast switch scheduling algorithm. While several
efforts have tackled the problem of multicast scheduling
in electronic packet switches [19]–[23], they only consider
nonblocking switch fabrics that allow for simultaneous all-
to-all communications, which is not a valid assumption
under tunability constraints. Previous work on optical
multicast scheduling, on the other hand, is either based
on certain restrictive assumptions (e.g., fixed transmission
wavelengths or fixed fan-out size) or huge computational
burdens on the switch controller (e.g., due to handling a
large set of status information as required by reservation-
based algorithms) [24]–[27]. In our earlier work [17], we
addressed these shortcomings by developing round-robin-
based scheduling algorithms that can handle a mix of
multicast and unicast traffic patterns in optical packet
switches, taking into consideration the wavelength tunabil-
ity constraints and a single queue per input port.

In this paper, we build on our previous work by ex-
ploiting multiple queues per input port to support both
multicast and unicast traffic delivery in all-optical switches
with wavelength tunability constraints. Buffers are used

to resolve resource contentions in packet switches, and
the buffering strategy employed has a significant impact
on switch performance [28]–[31]. Locating the buffering
resources at the output ports of a switch makes it difficult
to scale due to the switch fabric speedup requirement.
Dedicating only one queue to each input port of the switch,
on the other hand, results in head-of-line (HOL) blocking
and limits the network throughput. Exploiting multiple
queues per input port is not a trivial task under multicast
traffic as ideally an exponential number of queues would be
required to completely resolve HOL blocking (i.e., 2N−1−1
queues for a switch with N output ports) [20], [21], [23].
Our focus in this work is to improve the performance of
our optical multicast schedulers by resorting to a handful
of queues at each input port, without compromising their
simplicity. To our knowledge, this is the first effort to
combine multiqueue buffering and wavelength tunability
constraints for scheduling multicast traffic in optical data
centers.

This work only studies the problem of multicast schedul-
ing in a single coupler-based switch (as depicted in Fig. 1),
which can achieve performance interesting for a data cen-
ter environment. We do not study the data center network
architecture design problem in this paper. However, the
baseline multicast switch can be used as a key building
block of the data center, for instance by replacing the
electronic ToR switch for flexibility and energy efficiency
[5]. As well, it can be employed as a building block of
a wavelength-routing architecture to support distributed
multicasting in a scalable fashion [16]. While the baseline
switch is not scalable from a hardware point of view,
we propose scheduling solutions that are simple enough
to be adopted and scaled in more complicated switching
architectures.

The rest of this paper is organized as follows. Section
II details the multiqueue buffering and packet assignment
strategy within the optical multicast switch. In Section III,
we present two multicast scheduling algorithms that make
use of multiple input queues per node and at the same time
take into account the wavelength tunability constraints.
The two algorithms differ in the way they grant resources
to multicast demands. In Section IV, we discuss our perfor-
mance analysis framework, including the examined traffic
patterns in simulations. Section V discusses our simulation
results for different tunability constraints, queue counts,
fan-out values, and traffic patterns. Finally, Section VI
summarizes and concludes the paper.

II. Multiqueue Buffering for Multicast
Switching

In designing a proper buffering strategy for a switch,
one should consider both the traffic and switch fabric
properties. Under uniform traffic, the placement of one
queue at each output port of a crossbar switch could
lead to 100% throughput; however, an internal speedup
is required to avoid buffer overflows [30]. In other words,
the switch fabric should operate at a much higher speed
compared to the line rate to prevent buffers from building



3

F1.P1F1.P3F2.P2

F1.P2F2.P1F2.P3

(a)

F1.P1F1.P2F1.P3

F2.P1F2.P2F2.P3

(b)

Fig. 2: Two policies for assigning multicast traffic to multiple input
queues. Two flows comprising three packets are considered. Fi.Pj
denotes the jth packet of the ith flow.

up. To avoid hardware complexities, it is preferred to
place the buffers at the inputs of a switch. Placing a
single queue at each input port of a switch leads to the
undesirable effect of head-of-line (HOL) blocking. HOL
blocking implies that as only the head-of-line packet in
each queue is allowed to participate in the scheduling, the
packets behind the HOL packet have to wait even though
their destination ports are free and available [21].

To obviate HOL blocking, a number of techniques exist.
One possibility is to look ahead into the queues; that
is, instead of only participating the HOL packets in the
scheduling, the first few packets per queue are considered
for resource allocation. This could enable a non-HOL
packet to preempt the packets in front of it. However, such
a buffering technique is not helpful in the case of bursty
packet arrivals as packets stored back-to-back have a high
chance of being destined to the same destination, hence,
leading to inadequate scheduling options. An effective
solution to resolve HOL blocking in input-queued switches
is to use multiple logical queues per input port (one
per destination). These queues are called virtual output
queues (VOQs) as they are logical and also correspond to
output ports. Packets arriving on a switch input port and
contending for a certain destination port will be stored in
the VOQ corresponding to that destination. Under unicast
traffic, each input port of an N × N switch should be
equipped with N − 1 VOQs to completely resolve HOL
blocking. Note that if a packet is received on input port
i of a switch, it is considered to not be destined to the
output with the same index. Otherwise, the number of

VOQs per port should be equal to the port count.
Unfortunately, it is not straightforward to resolve HOL

blocking under multicast traffic. The number of possible
destinations for a multicast packet in a switch grows
exponentially with the switch size. In other words, in
an N × N switch, an incoming multicast packet can be
destined to at least one and at most N − 1 destinations.
This gives rise to 2N−1− 1 possibilities. Assigning a VOQ
per possible destination set makes the buffer management
extremely challenging under multicast traffic.

In this work, we strike a balance between two extremes.
Instead of using either only one or 2N−1 − 1 queues, we
make use of a handful of queues per input port. Although
the use of a limited number of queues per input cannot
totally resolve HOL blocking, it does improve the perfor-
mance. Unlike in VOQ switches, input queues are not pre-
assigned to certain output ports and a policy is required
for assigning packets to queues. The simplest approach is
to assign packets to queues in a round-robin fashion. This
method is demonstrated in Fig. 2(a) for two queues per
input port and two flows each with three packets.

There are two major problems with the assignment
policy in Fig. 2(a). First, packets within the same flow can
be missequenced, e.g., in the case where the second packet
of the first flow (F1.P2) is transmitted before the first
one. Second, it does not necessarily result in destination
diversity at the HOL position of the queues. As can be seen
in Fig. 2(a), both queues have packets from the first flow
at their HOL position. In such a case, only one scheduling
choice exists, and the scheduler does not have the freedom
to schedule packets from both of the flows.

To address the abovementioned issues, instead of as-
signing packets to queues in a round-robin fashion we do
so with flows. If a newly arriving packet has a different
destination set compared to the packet preceding it, it will
be stored in the subsequent queue, which is determined
by a round-robin pointer. Otherwise, it will be stored in
the same queue as its previous packet. Fig. 2(b) illustrates
this assignment approach. It can be noted that all pack-
ets belonging to the same flow are stored back-to-back,
guaranteeing in-order packet delivery and providing more
diversity at HOL positions. Unlike in Fig. 2(a), the HOL
packets in Fig. 2(b) are from different flows and provide
more scheduling options.

III. Multiqueue Scheduling Algorithms

We develop two efficient and simple-to-scale multicast
scheduling algorithms that ensure high throughput, low la-
tency, and fair operation. While the integration of hetero-
geneous services implies different quality-of-service (QoS)
requirements for data center applications, in this work we
do not consider the problem of scheduling for differentiated
services and only focus on the scheduling of equal-priority
flows. The problem of multicast scheduling subject to
different QoS requirements is an important problem in the
context of data center networks and is a potential area for
future research.



4

This section is built upon our previous work in [17],
where the problem of scheduling multicast packets under
transceiver tunability constraints was studied. In general,
the transceivers of an N ×N multicast switch may not be
able to tune to N different wavelengths. In other words,
the number of available wavelengths, W , can be smaller
than N . In [17] we proposed a suite of scheduling algo-
rithms that work under this constraint and compared their
performance. These algorithms, however, rely on a single
queue per port and suffer from HOL blocking especially
in the case of bursty traffic. The essence of this work is
to enable multiqueue operation without overlooking the
tunability constraints. We introduce two new scheduling
algorithms: (1) greedy multiqueue algorithm (GMQA),
and (2) multiqueue algorithm minimizing fan-out splitting
(MAMFS). With the GMQA, the objective is to introduce
a multiqueue scheduling algorithm that is simple, fair,
and work conserving. To satisfy the fairness criterion, we
design our scheduler based on a round-robin pointer, where
the first packet is always transmitted completely, and the
rest are transmitted to all of their free destinations until
the resources are exhausted or all the packets are checked.
With the MAMFS, we try to improve the performance of
the GMQA by first trying to schedule the packets without
fan-out splitting. Our motivation to do so is based on
the results in the key paper of Prabhakar et al. [19],
which suggests that avoiding fan-out splitting can result
in improved throughput.

It is assumed that the destination set of each multicast
packet is encoded into an N -bit string, which is included
in the optical packet header. This bit string gets updated
upon transmitting the packet to a subset of its destina-
tions. According to Fig. 1, at the beginning of each time
slot, each node transmits the destination sets of all HOL
packets stored in its multiqueue buffer (that is Q strings
of length N bits) to the controller via a dedicated control
channel. Upon the completion of the scheduling decisions,
the controller transmits to each of the nodes that are
allowed to transmit, i) an integer number 1 ≤ tc ≤ W ,
where W is the number of available wavelengths, ii) an N -
bit string, and iii) an integer number 1 ≤ qc ≤ Q, where
Q is the number of virtual queues. Each transmitting
node will tune its transmitter to the tcth wavelength and
transmit the HOL packet of its qcth virtual queue. The
destination set of this packet will be updated based on the
received N -bit string from the controller (if the packet is
completely transmitted, it will be deleted from the queue).
The controller also sends to the receiving nodes an integer
number 1 ≤ rc ≤ W . Each receiving node will tune its
receiver to the rcth wavelength. It is the responsibility of
the controller to assign the wavelengths such that packets
are delivered to their destinations without collision.

To better describe the different steps of our schedul-
ing algorithms, we use an illustrative example. Fig. 3(a)
provides an example of bursty, multicast traffic demands
within a 4 × 4 switch where packets are buffered in two
input queues per node. The destination sets are specified
on each packet. As can be seen, there is a combination of

unicast and multicast traffic in our study. Our algorithms
operate such that there is no need to decouple the resource
allocation procedures for these two traffic classes.

Both algorithms search among all of the queues and
all of the nodes to find the first nonempty queue that
belongs to a free transmitter, i.e., a transmitter that has
not been scheduled at the time of search. The algorithms
first search the HOL positions of a fixed queue index in
all of the servers and carry out the search procedure for
the subsequent queue indices if necessary. The following
pseudocode of algorithm Search() illustrates the order of
the search. Si.Qj denotes the jth queue of the ith server.
The algorithm Search() is called multiple times during
each time slot (with different initial search points) to find
the first nonempty queue with a free transmitter. If all
queues are empty, the output of Search() will be false.

Algorithm Search(IQ, IN )
Inputs: IQ and IN indicate the starting point of search;
FT : set of all free transmitters; queue status; Q: number
of queues per port; and N : number of nodes.
Output: The server index, i, and queue index, j, associ-
ated with the first nonempty queue of a free transmitter.
Returns false if no queue is found.

1: j ← IQ

2: i← IN

3: loop:
4: if i ∈ FT and Si.Qj is nonempty then return (i, j)
5: i← (i mod N) + 1
6: if i = IN then
7: j ← (j mod Q) + 1
8: if j = IQ then return false
9: goto loop

For the scheduling algorithms to be fair, the start-
ing point of the search operation should vary in each
time slot. Two round-robin pointers are used to deter-
mine this starting point, namely, Node pointer, where
1 ≤ Node pointer ≤ N and Queue pointer, where
1 ≤ Queue pointer ≤ Q. In the first round of search in
each time slot, these pointers determine the initial values
for the arguments of Search(), i.e, IN = Node pointer and
IQ = Queue pointer. However, this is not the case for the
subsequent search rounds.

A. Algorithm 1: Greedy Multiqueue Algorithm (GMQA)
The GMQA first looks for a nonempty queue by in-

voking the Search() algorithm. For each nonempty queue
found, the HOL packet gets scheduled to be sent to all
free outputs in its destination set. At the beginning of the
scheduling process, the set of free outputs (FR) includes all
output ports of the baseline multicast switch, and will be
gradually updated during the scheduling by the controller
itself. Here, we first detail the scheduling tasks and then
examine its performance according to the example in
Fig. 3(a).



5

GMQA Steps:
1) Initialize: Let FT = {1, . . . N} be the set of all free

transmitters and FR = {1, . . . N} be the set of all
free receivers. Moreover, let IQ = Queue pointer
and IN = Node pointer. Also, collect the HOLs’
destination information.

2) Select packets and schedule them: Invoke
Search(IQ, IN ) to find the first nonempty queue. If
the output is false, go to Step 4. Otherwise, let the
output of search be (i, j). Let B be the intersection of
the Si.Qj HOL destination set and all free receivers,
FR. If B is empty go to Step 3. Otherwise,

a) Assign an unused wavelength to the transmitter
(first-fit wavelength assigment policy);

b) Tune all receivers in set B to the assigned transmit
wavelength, so that they can receive the HOL
packet in the next time slot;

c) Remove i from the set of free transmitters FT and
also update the set of free receivers FR.

3) If all wavelengths are used, or all receivers are oc-
cupied, or all servers are examined, go to Step 4.
Otherwise, let IQ = j and IN = i and go to Step 2.

4) Update: Update the Node pointer by incrementing
it in a circular order. Moreover, if the updated
value of Node pointer = 1, also update circularly
Queue pointer. This concludes the scheduling pro-
cess.

GMQA Scheduling Example : Here, we consider the
example provided in Fig. 3(a) and go through the steps
performed by the GMQA to schedule the packets. Assume
Node pointer = 1, Queue pointer = 1, and W = 4. The
following chart shows the order of the queues that are
checked by the GMQA and the actions taken.

Order of Steps Executed by the GMQA
1: S1.Q1: The HOL packet is scheduled to be transmit-

ted to outputs 3 and 4.
2: S2.Q1: Ignored since it is empty.
3: S3.Q1: The HOL packet is scheduled to be transmit-

ted to output 2.
4: S4.Q1: Ignored since B is empty.
5: S1.Q2: Ignored since transmitter 1 is occupied.
6: S2.Q2: The HOL packet is scheduled to be transmit-

ted to output 1.
7: The algorithm stops since all the outputs are busy.

Fig. 3(b) depicts the buffer occupancy status after the
scheduling tasks have been performed and the correspond-
ing packets have been dispatched.

B. Algorithm 2: Multiqueue Algorithm Minimizing Fan-
out Splitting (MAMFS)

The fan-out is defined as the cardinality of the desti-
nation set of a multicast packet. With multicast traffic,
fan-out splitting implies transmitting the same multicast

packet over several time slots. Ideally a multicast packet
should only be transmitted once through the switch fabric.
However, depending on the available resources, fan-out
splitting could be employed to deliver a multicast packet
over several time slots. From an optical switching perspec-
tive, when the number of wavelengths is much smaller than
the switch port count, it is desirable that each wavelength
be utilized as much as possible by favoring multicast trans-
missions. In such a scenario, minimizing fan-out splitting
results in a more efficient use of wavelength resources [17].
Moreover, by avoiding fan-out splitting, more complete
packets can be transmitted, opening up the queue HOL
spaces for new packets and reducing the penalties of HOL
blocking.

In the MAMFS, fan-out splitting is avoided as much
as possible to favor entire multicast transmissions. The
MAMFS consist of two rounds of search among queues.
In the first round, a HOL packet is scheduled if all of its
destinations are free. The second round is based on the
logic in the GMQA in order to fill up all output gaps by
fan-out splitting.

MAMFS Steps :

1) Initialize: Same as in Step 1 of the GMQA.
2) Scheduling without fan-out splitting: Run

Search(IQ, IN ). If the output is false, go to Step 5;
otherwise, let it be (i, j). If all of the outputs in the
destination set of the HOL packet of Si.Qj are free,
perform the following steps; otherwise, go to Step 3.

a) Assign a wavelength to the transmitter;
b) Tune all outputs to that wavelength;
c) Update the sets of free transmitters, FT , and free

receivers, FR.
3) If all outputs are occupied, or all wavelengths are

used, go to Step 5; else if all the servers are examined,
go to Step 4; else, let IQ = j and IN = i and go to
Step 2.

4) Fill up the void spaces by fan-out splitting: To schedule
the free receivers, perform Step 2 and Step 3 of the
GMQA.

5) Update: Same as in Step 4 of the GMQA.

MAMFS Scheduling Example: Here, we list the steps
performed by the MAMFS in order to schedule the HOL
packets in Fig. 3(a). Again, we let Node pointer = 1,
Queue pointer=1, and W = 4.

Fig. 3(c) illustrates the buffer occupancy status after
the execution of the MAMFS. Compared with Fig. 3(b),
one can notice that both algorithms transmit to all four
outputs. However, due to opposing fan-out splitting, two
complete packets are transmitted with the MAMFS while
this number is one for the GMQA. As a result, the effect
of HOL blocking is reduced under the MAMFS as more
new packets make their way to HOL positions.



6

Order of Steps Executed by the MAMFS
1: S1.Q1: The HOL packet is scheduled to be transmit-

ted to outputs 3 and 4.
2: S2.Q1: Ignored since it is empty.
3: S3.Q1: Ignored since output 4 is busy.
4: S4.Q1: Ignored since output 3 is busy.
5: S1.Q2: Ignored since transmitter 1 is not free.
6: S2.Q2: Ignored since output 4 is busy.
7: S3.Q2: The HOL packet is scheduled to be transmit-

ted to output 1.
8: S4.Q2: Ignored since output 1 is busy.
9: Since output 2 is free, the scheduler executes Step 2 of

the GMQA. The steps performed by the GMQA are
as follows.

10: S1.Q1: Ignored since transmitter 1 is not free.
11: S2.Q1: Ignored since it is empty.
12: S3.Q1: The HOL packet is scheduled to be transmit-

ted to output 2.
13: Since all outputs are scheduled, the algorithm stops.

C. Scheduling Algorithm Properties
We examine our algorithms in terms of being scalable,

fair, and work conserving, which are the essential require-
ments of a scheduling algorithm [19, Sec. II-C].

Complexity : It is well known that the scheduling of
multicast traffic is an NP-hard problem even with fan-
out splitting [32]. However, we have been able to develop
simple heuristics that offer acceptable performance. The
time complexity of both of our scheduling algorithms is
O(Q ×N) as they both should check all HOL packets to
perform scheduling. Note that for each HOL packet the
intersection of the destination set and all free receivers
should be computed, which can be implemented in par-
allel via N XOR operations. Our algorithms are solely
based on comparing binary sequences (via XOR) and no
complicated algebraic operations are involved throughout
scheduling. Therefore, the proposed algorithms are scal-
able due to their simplicity and can be applied to high-
speed switches with large port counts. We note that in the
worst case, the GMQA finalizes the scheduling after one
round of search through the HOL packets (checking QN
HOL packets), whereas the maximum number of rounds
is equal to two for the MAMFS.

Fairness: A packet scheduling algorithm is consid-
ered to be fair if there exists a number K > 0, such
that after K time slots, any arbitrary HOL packet is
dismissed, regardless of the queue status [19, Sec. II-A]. A
fair scheduling algorithm guarantees that no HOL packet
starves for switching resources indefinitely. Note that with
GMQA and MAMFS, a HOL multicast packet that is
selected by the round-robin pointers (i.e., the first packet
that is scheduled) will definitely be transmitted completely
as all the receivers are free at the beginning of scheduling.
Since the pointers are updated in a round-robin fashion,
it takes QN time slots for the pointers to go over all HOL
packets and return to their starting position. Therefore,

{3, 4}

HOL

{2, 4}

{1, 4}

{2, 4}

{1}

{2, 3}

{1, 2}

S1.Q1{2}{2}

S1.Q2{2, 4}{3}

S2.Q1

S2.Q2{1}{1}

S3.Q1{2, 4}{2, 4}

S3.Q2{1, 4}{1, 4}

S4.Q1{2, 3}{3}

S4.Q2{1, 2}{1, 2}

(a)

{2}

{2, 4}

{4}

{4}

{1}

{2, 3}

{1, 2}

S1.Q1{2}

S1.Q2{2, 4}{3}

S2.Q1

S2.Q2{1}{1}

S3.Q1{2, 4}{2, 4}

S3.Q2{1, 4}{1, 4}

S4.Q1{2, 3}{3}

S4.Q2{1, 2}{1, 2}

(b)

{2}

{2, 4}

{1, 4}

{2, 4}

{1, 4}

{2, 3}

{1}

S1.Q1{2}

S1.Q2{2, 4}{3}

S2.Q1

S2.Q2{1}{1}

S3.Q1{2, 4}{2, 4}

S3.Q2{1, 4}

S4.Q1{2, 3}{3}

S4.Q2{1, 2}{1, 2}

(c)

Fig. 3: Example buffer status in a 4 × 4 switch with two queues per
server. Packets’ destination sets are shown. Si.Qj is used to denote
the jth queue in the ith server. S2.Q1 is assumed to be empty. (a)
Initial buffer occupancy status, (b) Buffer occupancy status after
the GMQA scheduling, and (c) Buffer occupancy status after the
MAMFS.

after QN − 1 time slots, any HOL packet is guaranteed to
be transmitted to all of its destinations.



7

Work Conservation: A scheduling algorithm is work
conserving if it does not leave an output port idle as long as
that output can serve some input traffic destined to it [19,
Sec. II-A]. GMQA ensures that each packet is transmitted
to all of its destinations that are free. In fact, it searches
all HOL packets unless it runs out of wavelengths or free
receivers, hence, work conserving. MAMFS is also work
conserving as it simply runs GMQA at its last step.

D. Application in Data Center Networks
The topology in Fig. 1 and the scheduling algorithms

presented in this section are developed for a single coupler-
based switch. This switch can be deployed at the edge tier
of a data center network. In other words, electronic ToR
switches can be replaced with the optical multicast switch
for improved flexibility and power efficiency. In a general
setting, some coupler ports can be reserved to interface a
second switching stage in a hierarchical optical network
architecture. This way, the servers within a rack can
directly connect to the multicast switch and the reserved
ports enable the interconnection of optical ToR switches.
By reserving a number of output (input) coupler ports,
data center racks can be connected together to transmit
(receive) the traffic to (from) other racks.

This concept has been illustrated in [16, Fig. 3], where
multiple broadcast domains are interconnected via an
arrayed waveguide grating (AWG) core to build an all-
optical fabric with the capacity of K(N − 1) nodes, with
K being the AWG port count. The resulting network is
modular and requires distributed scheduling to support
scalability. Hence, scheduling can be performed in two
steps. First, the interdomain (inter-rack) traffic is sched-
uled and next the intradomain (intra-rack) traffic. While
the work in [16, Fig. 3] disregards the problem of multicast
traffic scheduling, our proposed algorithms in this paper
can be applied to the second phase of scheduling (i.e.
intradomain traffic scheduling).

IV. Simulation Setup
We conduct Monte Carlo simulations to evaluate the

performance of our two multiqueue, multicast scheduling
algorithms as proposed in Section III. We simulate the
switch architecture of Fig. 1. The simulation parameters
are summarized in Table I. A total of one million time
slots are considered, with the first half only contributing
to warm up. To make our simulation run with a reasonable
speed, the maximum queue length is set to 1000 packets.
This value is large enough as long as the system is stable
(i.e., the packet delays are bounded). The number of
nodes, N , is set to 64, and three numbers of wavelengths,
W , are considered, namely, 16, 32, and 64. For each
setting, four different values for the number of queues per
input port, Q, i.e., 1, 2, 4, and 8, are studied.

Traffic Model: We examine the multiqueue scheduling
algorithms under both uniform (Bernoulli) and bursty
traffic patterns. In uniform traffic, independent Bernoulli
processes are used to generate packet arrivals on switch

TABLE I: Simulation parameters

Parameter Value
Number of simulated time slots 1, 000, 000
Number of warm-up time slots 500, 000

Coupler port count (N) 64
Wavelength count (W ) 16, 32, 64
Number of queues (Q) 1, 2, 4, 8
Maximum queue depth 1000 packets

input ports. A packet is generated every time slot with
probability 0 ≤ ρ ≤ 1, which also denotes the average
number of generated packets per node per time slot. In
a bursty traffic model, flows of correlated packets are
generated assuming a geometric distribution for active and
inactive periods. In this model, during each time slot, a
node is either in the ON or the OFF state. During the
OFF period, no packet is generated. In the ON period,
packets arrive at every time slot and are all destined to the
same set of receivers. The duration of the ON period, gon,
follows a geometric distribution with mean Eon = 1/pon,
that is

Pr {gon = n} = pon(1− pon)n−1, (1)

where n = 1, 2, 3, . . . , and 0 < pon ≤ 1. In our simulations,
we set Eon = 16. Given the average effective load (ρ) and
the average ON time (Eon), the expectation of the OFF
period, Eoff , is calculated by ρ = Eon/ (Eon + Eoff). The
OFF period duration follows the geometric distribution
described in (1) with parameter poff = 1/Eoff .

In both traffic models, the fan-out is determined by the
realization of a random variable with truncated geometric
distribution with parameter q (0 ≤ q < 1). That is,

Pr {Fan-out = n} = (1− q)qn−1

1− qN−1 1 ≤ n ≤ N − 1 (2)

The mean fan-out value can be calculated as [21]

E[Fan-out] = 1
1− q −

(N − 1)qN−1

1− qN
. (3)

The parameter q is set to 1/2 (E[Fan-out] ≈ 2) in the
rest of this paper except in Section V-C, where q = 0
(E[Fan-out] = 1) and q = 3/4 (E[Fan-out] ≈ 4) are
studied. The destination set of each packet (or flow) is
generated by a uniformly random selection of nodes from
the set of all destination servers excluding the destination
corresponding to the transmitter node itself.

V. Simulation Results
The queueing performance of the presented switching

structure can analytically be evaluated in a few special
cases, under Bernoulli and unicast traffic. For instance, if
Q = 1 and W = N the problem reduces to the well-known
input-queued switch problem [28], and if Q = W = N ,
it maps to the the M/D/1 queueing problem [33, Ch. 5].
In general, the problem is analytically intractable, espe-
cially considering the complexities of the multicast traffic
patterns and the blocking properties of the switch fabric.



8

0.2 0.4 0.6 0.8 10

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

GMQA, W = 64
Av

er
ag

e
D

el
ay 0.

91

0.
79

0.
69

(a)

0.2 0.4 0.6 0.80

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

GMQA, W = 32

Av
er

ag
e

D
el

ay 0.
7

0.
65

(b)

0.1 0.2 0.3 0.40

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

GMQA, W = 16

Av
er

ag
e

D
el

ay 0.
4

(c)

0.2 0.4 0.6 0.8 10

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

MAMFS, W = 64

Av
er

ag
e

D
el

ay 0.
94

0.
84

0.
73

(d)

0.2 0.4 0.6 0.80

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

MAMFS, W = 32
Av

er
ag

e
D

el
ay 0.

7

0.
75

0.
84

(e)

0.1 0.2 0.3 0.4 0.50

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

MAMFS, W = 16

Av
er

ag
e

D
el

ay 0.
49

(f)

Fig. 4: Simulation results under uniform traffic: Average packet delays are depicted versus the effective load in a 64 × 64 switch operated
by GMQA and MAMFS. Three different numbers of wavelengths (W ) are considered, 64, 32, and 16. The number on the side of each curve
with the same color denotes the load at which the average delay exceeds the maximum delay shown in the graphs (30 time slots).

Therefore, we perform several Monte Carlo simulations
to assess the behavior of our scheduling algorithms. Our
simulation results are presented in Figs. 4–7, which depict
the performance of the proposed scheduling algorithms
when the number of queues per input port is varied. In
the special case of Q = 1, in [17], the proposed algorithms
are compared with an adaptation of the weight-based
algorithm (WBA) in [19]. It is shown in [17] that with
W = N the proposed algorithms have almost the same
delay performance as WBA and that with W < N our
algorithms outperform the modified WBA. We will see
that with an increase in the queue count, the switch
performance keeps improving.

A. Delay Performance under Uniform Traffic
In Fig. 4, the average packet delay is depicted versus

effective load under uniform traffic, considering the two
scheduling algorithms, three values for W , and four values
for Q. The delay of a packet is equal to the number of time
slots that the packet has spent in the queue before being
transmitted to output ports. The reported average values
have been calculated by averaging the delay associated
with all packets that make it to the output ports of
the switch. The effective load is defined as the average
utilization of the output ports. It is calculated by dividing

the total number of packets that are received during a
simulation run by the number of nodes times the number
of simulation time slots. Both average delay and effective
load quantities are collected from the steady-state phase
of simulation runs.

With W = 64 (Figs. 4(a) and 4(d)), i.e., with full
wavelength tunability, the performance of both the GMQA
and the MAMFS improves as Q increases. This is clearly
due to the scheduling diversity that can be provided
through multiple queues. When the effective load is equal
to 0.6, the delay of the GMQA reduces from 3.8 time
slots for Q = 1 to 1.3 time slots for Q = 2, translating
to about 65% reduction in the delay. For the MAMFS
these numbers are 2.8 time slots for Q = 1 and 1.1 time
slots for Q = 2. Moreover, the maximum throughput
achieved by the algorithms increases significantly with an
increase in Q. For the GMQA (MAMFS), the maximum
throughput increases from 0.69 (0.73) with Q = 1 to 0.91
(0.94) with Q = 8, which is equivalent to 32% (29%)
improvement. Although an increase in the queue count
can improve the switch performance, the improvement
achieved by increasing Q from 4 to 8 is minimal; i.e., the
performance saturates beyond a small Q threshold. Given
that the time complexity of our proposed algorithms is
linear in Q and that we only need a small number of queues



9

0.2 0.4 0.6 0.80

5

10

15 Q=1
Q=2
Q=4
Q=8

Effective Load

GMQA, W = 64
Av

er
ag

e
Bu

ffe
r

Si
ze

0.
87

0.
810.
7

(a)

0.2 0.4 0.60

2

4
Q=1
Q=2
Q=4
Q=8

Effective Load

GMQA, W = 32

Av
er

ag
e

Bu
ffe

r
Si

ze

0.
7

0.
65

(b)

0.2 0.25 0.3 0.35 0.40

2

4
Q=1
Q=2
Q=4
Q=8

Effective Load

GMQA, W = 16

Av
er

ag
e

Bu
ffe

r
Si

ze

0.
4

(c)

0.2 0.4 0.6 0.8 10

5

10

15 Q=1
Q=2
Q=4
Q=8

Effective Load

MAMFS, W = 64

Av
er

ag
e

Bu
ffe

r
Si

ze

0.
9

0.
84

0.
73

(d)

0.2 0.4 0.6 0.80

2

4

6

8

10 Q=1
Q=2
Q=4
Q=8

Effective Load

MAMFS, W = 32
Av

er
ag

e
Bu

ffe
r

Si
ze

0.
72

0.
84

0.
86

(e)

0.2 0.3 0.4 0.50

2

4
Q=1
Q=2
Q=4
Q=8

Effective Load

MAMFS, W = 16

Av
er

ag
e

Bu
ffe

r
Si

ze

0.
5

(f)

Fig. 5: Simulation results under uniform traffic in a 64 × 64 switch. The average buffer size is depicted against the effective load for the
two scheduling algorithms and three numbers of wavelengths (W ). For each setting, the average buffer size calculated by Little’s formula is
marked by crosses (“×”) marks with the same color.

per input port to schedule the multicast traffic, multiqueue
buffering does not pose a significant scheduling overhead.
In our analysis, Q = 4 is the sweet spot in the trade-off
between performance gains and scheduling complexity.

With W = 32 (Figs. 4(b) and 4(e)), one can observe that
the maximum throughput is less than that of W = 64,
which is expected since there are less resources to be uti-
lized. As with W = 64, both algorithms benefit from using
multiple queues. However, the gains are less compared
to the case of W = 64. For the GMQA (MAMFS), the
maximum throughput is increased from 0.65 (0.7) under
Q = 1 to 0.7 (0.84) under Q = 8. As the spectral resources
are more scarce, the MAMFS offers a better performance
compared with the GMQA since it aims at avoiding fan-
out splitting as much as possible.

For W = 16 (Figs. 4(c) and 4(f)), which signifies the
case of significant mismatch between the switch port count
and wavelength count, approximately no improvement is
achieved by deploying multiple queues. In general, when
W � N , the effect of HOL blocking is minor even for
Q = 1, and there is no added benefit in improving the
HOL diversity through resorting to multiple queues. If
Q = 1 and all queues are nonempty, the scheduler should
choose at most W packets among the total number of N
packets. This gives the scheduler enough diversity by itself.

Therefore, deploying multiple queues is not beneficial in
this setting. From the scheduler operation point of view,
if W � N , then our proposed schedulers will most likely
run out of wavelengths by only going through the first
round of search on the pointed queue (pointed to by
Queue pointer) of each node and need to stop before
looking at other queue indices. Hence, the impact of
provisioning multiple input queues becomes insignificant.

Note that for an N ×N switch the throughput can be
upper-bounded by

Throughput ≤ E[Fan-out]×W
N

(4)

where W is the number of available wavelengths. However,
(4) is only useful when its right-hand side is less than one.
Since in our setup the average fan-out is approximately
equal to 2, for W = 16 the throughput cannot exceed 0.5.
This upper bound is almost achieved by the MAMFS in
Fig. 4(f).

It can be observed from Fig. 4 that under uniform traffic,
the MAMFS always outperforms the GMQA. This hap-
pens due to two reasons. First, reducing fan-out splitting
counteracts the effects of HOL blocking. Second, reducing
fan-out splitting results in exploiting the resources more
efficiently. When the number of wavelengths is small, each
wavelength should be utilized to transmit as many packets



10

0.2 0.4 0.6 0.80

10

20

30 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

E[Fan-out] = 1, W = 64
Av

er
ag

e
D

el
ay 0.

58 0.
7

0.
8

(a)

0.2 0.3 0.4 0.50

2

4

6

8

10 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

E[Fan-out] = 1, W = 32

Av
er

ag
e

D
el

ay 0.
49

(b)

0.1 0.15 0.2 0.250

2

4
Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

E[Fan-out] = 1, W = 16

Av
er

ag
e

D
el

ay 0.
24

(c)

0.2 0.4 0.6 0.8 10

50

100

150

200 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

E[Fan-out] = 4, W = 64

Av
er

ag
e

D
el

ay 0.
83

0.
91

(d)

0.2 0.4 0.6 0.8 10

50

100

150

200 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

E[Fan-out] = 4, W = 32
Av

er
ag

e
D

el
ay 0.

83
0.

91

(e)

0.2 0.4 0.6 0.80

50

100

150

200 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

E[Fan-out] = 4, W = 16

Av
er

ag
e

D
el

ay 0.
68

(f)

Fig. 6: Simulation results under uniform traffic with two different average fanouts, i.e., 1 and 4. Average packet delays are depicted versus
the effective load in a 64×64 switch operated by MAMFS. Three different numbers of wavelengths (W ) and four different numbers of queues
are considered. The number on the side of each curve with the same color denotes the load at which the average delay exceeds the maximum
delay shown in the graphs.

as possible at once. Therefore, the benefits of reducing fan-
out splitting become more substantial for smaller W . With
Q = 8 and W = 32, the maximum throughput of the
MAMFS exceeds that of the GMQA by 20%.

B. Buffer Occupancy under Uniform Traffic
The buffer management in our design involves dividing

the available space of an input-stage electronic memory
unit into multiple parallel virtual queues. In our simula-
tions we consider a maximum queue size of 1000 packets,
because this choice helps us to minimize the runtime of our
codes while ensuring that no packet drops occur as long as
the switch is stable. In fact, during each simulation time
slot, the occupancy of each of the Q queues of each input
port can be different depending on the number of packets
that each multicast or unicast flow contains. All queues
belonging to an input port share the same physical buffer
space. Hence, statistical multiplexing can be achieved to
save on the amount of required buffering resources.

The average buffer length can be used as a measure to
determine the required memory size for each of our sched-
ulers. It denotes the average number of stored packets per
input port and is calculated by averaging the sum of all
queue lengths at each node over all time slots and all

nodes. In Fig. 5, the average buffer length achieved via
Monte Carlo simulations is reported for uniform traffic
with E[Fan-out] = 2. Comparing Fig. 5 to Fig. 4, we can
observe the relationship between the average buffer length
and the average delay, as governed by Little’s formula

Average Buffer Length = Average Delay×Arrival Rate,
(5)

where Arrival Rate is the average number of generated
packets per input in a time slot and is denoted by ρ in
Section IV. We calculated the average buffer length based
on (5) using the average delays presented in Fig. 4. The
calculated values are depicted by crosses in Fig. 5 and
are in good agreement with the results based on Monte
Carlo simulations. The results in Fig. 5 illustrate that, to
achieve a certain throughput under multicast traffic, the
total required memory can be reduced by partitioning the
physical buffer space into multiple logical queues, which
may have different occupancies.

C. Delay Performance under Unicast and Highly-Multicast
Traffic

In this section, we study the impact of multicast fan-
out on the delay performance of the multiqueue switch.
For the sake of brevity, we only focus on MAMFS in this



11

0.2 0.4 0.6 0.80

100

200

300 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

GMQA, W = 64
Av

er
ag

e
D

el
ay 0.

78
0.

72

0.
63

0.
54

(a)

0.2 0.4 0.6 0.80

100

200

300 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

GMQA, W = 32

Av
er

ag
e

D
el

ay 0.
75

0.
72

0.
63

0.
54

(b)

0.2 0.3 0.4 0.50

100

200

300 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

GMQA, W = 16

Av
er

ag
e

D
el

ay 0.
43

(c)

0.2 0.4 0.6 0.80

100

200

300 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

MAMFS, W = 64

Av
er

ag
e

D
el

ay 0.
8

0.
73

0.
65

0.
54

(d)

0.2 0.4 0.6 0.80

100

200

300 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

MAMFS, W = 32
Av

er
ag

e
D

el
ay 0.

8
0.

73
0.

65

0.
54

(e)

0.2 0.3 0.4 0.50

100

200

300 Q = 1
Q = 2
Q = 4
Q = 8

Effective Load

MAMFS, W = 16

Av
er

ag
e

D
el

ay 0.
47

(f)

Fig. 7: Simulation results under bursty traffic in a 64 × 64 switch. The average packet delay is depicted against the effective load for the
two scheduling algorithms and three numbers of wavelengths (W ). The numbers on the side of the curves identify the loads at which the
average delay exceeds 300 time slots, which is the maximum delay shown in the graphs.

section. Fig. 6 depicts the average delay versus the effective
load for two different values of average fan-out, namely
E[Fan-out] = 1 and E[Fan-out] = 4.

With the unicast traffic (E[Fan-out] = 1), full wave-
length tunability (W = 64), and a single-queue architec-
ture (Q = 1), as can be seen in Fig. 6(a), the maximum
achievable throughput equals 0.58. This is in perfect agree-
ment with the theoretical maximum throughput that can
be achieved in input-queued switches [28]. A performance
gain of 43% is introduced by increasing the number of
queues from Q = 1 to Q = 8, which is due to decreasing
the penalties of HOL blocking. With W = 32 (W = 16),
it can be seen in Fig. 6(b) (Fig. 6(c)) that the maximum
throughput is almost equal to the upper bound that can
be calculated by (4), i.e., 0.5 (0.25).

With E[Fan-out] = 4, considerable performance gains
can be achieved compared to the case of unicast traffic.
While the delay values grow at high loads, the range of
loads over which the switch has an acceptable performance
can become much larger. The reason behind this behavior
is two-fold: i) with a higher multicast degree, a larger
number of output ports can simultaneously receive packets
using a single wavelength, and ii) the diversity of the
destinations increases at the HOL positions of the queues,
counteracting the effects of HOL blocking. The former

plays an important role when the number of wavelength
resources is scarce (compare Figs. 6(c) and 6(f)) and the
latter with large enough W . Comparing Figs. 6(b) and 6(e)
(i.e., for W = 32 and Q = 8), the maximum throughput
improves by 94% when the average fan-out is increased
from 1 to 4.

D. Delay Performance under Bursty Traffic
Fig. 7 presents the simulation results under bursty traf-

fic. These are more relevant to a data center network where
temporal traffic and spatial correlations are common.
Under bursty traffic, with W = 64 (Figs. 7(a) and 7(d)),
both algorithms exhibit a similar performance. In fact with
bursty traffic, the neighboring packets in queues have a
high chance of bearing the same destination sets. Hence,
avoiding fan-out splitting is not efficacious in reducing
HOL blocking. Moreover, withW = N , there is no need for
saving the resources by avoiding packet retransmissions.

As can be seen in Figs. 7(a) and 7(d), under bursty
traffic and with W = 64, the performance of the GMQA
and the MAMFS enhances by increasing Q. The maximum
throughput for the GMQA (MAMFS) is 0.54 (0.54) with
Q = 1 and 0.78 (0.8) with Q = 8, which translates to
44% (48%) improvement. At an effective load of 0.5, the
average delay for the GMQA reduces from 143 time slots



12

with Q = 1 to 67 time slots with Q = 2, which corresponds
to a 53% reduction. Increasing Q beyond 2 has a negligible
impact on the average delay at this load.

Comparing Figs. 7(b) and 7(e) with Figs. 4(b) and 4(e),
one can observe that increasing Q is more effective under
bursty traffic. By assigning traffic flows to multiple queues
as in Sec. II, the scheduling diversity is improved at the
HOL position of input queues. This diversity of destina-
tions is more significant for bursty traffic than for uniform
traffic.

Finally, limiting the number of existing wavelengths to
W = 32 under bursty traffic poses a negligible impact
on the performance of the proposed algorithms (compare
Figs. 7(b) and 7(e) to Figs. 7(a) and 7(d)). With W = 16
(Figs. 7(c) and 7(f)), the effects of using multiple queues
is minimal. In this setting, the MAMFS approximately
reaches the 0.5 upper bound on the maximum utilization.
Moreover, by minimizing fan-out splitting, the MAMFS
exploits the limited resources more effectively and outper-
forms the GMQA by 11%.

VI. Conclusion
We proposed round-robin-based scheduling algorithms

for all-optical multicasting in coupler-based switches that
are subject to transceiver tunability constraints and al-
low for exploiting multiple input queues per port. Our
simulation results indicated that for scenarios in which
the number of wavelengths is greater than or equal to
one half of the switch port count, deploying multiple
queues can significantly improve the delay performance.
Moreover, we observed that the performance gains are
more significant under bursty traffic in comparison to a
uniform traffic pattern. Our analysis further suggested
that avoiding fan-out splitting in combination with multi-
queue buffering is an effective strategy for improving the
performance of optical multicast switches, provided that
spectral resources are not too scarce. In the future, we
plan to develop scheduling algorithms that can handle the
impact of spatial data center traffic correlations in addition
to temporal correlations. Future work should also aim
at developing multiqueue, multicast scheduling algorithms
for multistage optical switch architectures.

References
[1] C. Kachris, K. Kanonakis, and I. Tomkos, “Optical intercon-

nection networks in data centers: recent trends and future
challenges,” IEEE Communications Magazine, vol. 51, no. 9,
pp. 39–45, Sep. 2013.

[2] H. Rastegarfar, L. A. Rusch, and A. Leon-Garcia, “Optical load-
balancing tradeoffs in wavelength-routing cloud data centers,”
Journal of Optical Communications and Networking, vol. 7,
no. 4, pp. 286–300, Apr. 2015.

[3] P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman, and
K. Bergman, “Optical multicast system for data center net-
works,” Optics Express, vol. 23, no. 17, pp. 22 162–22 180, Aug.
2015.

[4] H. Wang, Y. Xia, K. Bergman, T. S. Ng, S. Sahu, and K. Sri-
panidkulchai, “Rethinking the physical layer of data center
networks of the next decade: Using optics to enable efficient-
cast connectivity,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 3, pp. 52–58, Jul. 2013.

[5] J. Chen, Y. Gong, M. Fiorani, and S. Aleksic, “Optical inter-
connects at the top of the rack for energy-efficient data centers,”
IEEE Communications Magazine, vol. 53, no. 8, pp. 140–148,
Aug. 2015.

[6] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen,
“Reliable multicast in data center networks,” IEEE Transac-
tions on Computers, vol. 63, no. 8, pp. 2011–2024, Aug. 2014.

[7] Z. Guo, J. Duan, and Y. Yang, “On-line multicast scheduling
with bounded congestion in fat-tree data center networks,”
IEEE Journal on Selected Areas in Communications, vol. 32,
no. 1, pp. 102–115, Jan. 2014.

[8] W.-K. Jia, “A scalable multicast source routing architecture
for data center networks,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 1, pp. 116–123, Jan. 2014.

[9] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “ESM: Efficient and scal-
able data center multicast routing,” IEEE/ACM Transactions
on Networking, vol. 20, no. 3, pp. 944–955, Jun. 2012.

[10] F. Yan, W. Hu, W. Sun, W. Guo, Y. Jin, H. He, Y. Dong,
and S. Xiao, “Nonblocking four-stage multicast network for
multicast-capable optical cross connects,” Journal of Lightwave
Technology, vol. 27, no. 17, pp. 3923–3932, Sep. 2009.

[11] Y. Yang, J. Wang, and C. Qiao, “Nonblocking WDM multicast
switching networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 11, no. 12, pp. 1274–1287, Dec. 2000.

[12] W. Ni, C. Huang, Y. L. Liu, W. Li, K.-W. Leong, and J. Wu,
“POXN: a new passive optical cross-connection network for low-
cost power-efficient datacenters,” Journal of Lightwave Technol-
ogy, vol. 32, no. 8, pp. 1482–1500, Apr. 2014.

[13] M. Maier, M. Scheutzow, and M. Reisslein, “The arrayed-
waveguide grating-based single-hop WDM network: an architec-
ture for efficient multicasting,” IEEE Journal on Selected Areas
in Communications, vol. 21, no. 9, pp. 1414–1432, Nov. 2003.

[14] Q. Huang and W.-D. Zhong, “Wavelength-routed optical mul-
ticast packet switch with improved performance,” Journal of
Lightwave Technology, vol. 27, no. 24, pp. 5657–5664, Dec. 2009.

[15] Z. Guo and Y. Yang, “High-speed multicast scheduling in hybrid
optical packet switches with guaranteed latency,” IEEE Trans-
actions on Computers, vol. 62, no. 10, pp. 1972–1987, Oct. 2013.

[16] H. Rastegarfar, L. Yan, K. Szczerba, and E. Agrell, “PAM
performance analysis in multicast-enabled wavelength-routing
data centers,” Journal of Lightwave Technology, vol. 35, no. 13,
pp. 2569–2579, Jul. 2017.

[17] K. Keykhosravi, H. Rastegarfar, and E. Agrell, “Multicast
scheduling for optical data center switches with tunability con-
straints,” in Proc. IEEE International Conference on Comput-
ing, Networking and Communications (ICNC), Jan. 2017, pp.
308–312.

[18] S. Shimada, Coherent Lightwave Communications Technology.
Springer Science & Business Media, 2012.

[19] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast schedul-
ing for input-queued switches,” IEEE Journal on Selected Areas
in Communications, vol. 15, no. 5, pp. 855–866, Jun. 1997.

[20] S. Gupta and A. Aziz, “Multicast scheduling for switches with
multiple input-queues,” in Proc. 10th IEEE Symposium on High
Performance Interconnects, Aug. 2002, pp. 28–33.

[21] D. Pan and Y. Yang, “FIFO-based multicast scheduling algo-
rithm for virtual output queued packet switches,” IEEE Trans-
actions on Computers, vol. 54, no. 10, pp. 1283–1297, Oct. 2005.

[22] H. Yu, S. Ruepp, and M. S. Berger, “Multi-level round-robin
multicast scheduling with look-ahead mechanism,” in Proc.
IEEE International Conference on Communications (ICC),
Jun. 2011.

[23] E. Schiattarella and C. Minkenberg, “Fair integrated scheduling
of unicast and multicast traffic in an input-queued switch,”
in IEEE International Conference on Communications (ICC),
Jun. 2006, pp. 287–292.

[24] G. N. Rouskas and M. H. Ammar, “Multidestination communi-
cation over tunable-receiver single-hop WDM networks,” IEEE
Journal on Selected Areas in Communications, vol. 15, no. 3,
pp. 501–511, Apr. 1997.

[25] K. Naik, D. S. Wei, D. Krizanc, and S.-Y. Kuo, “A reservation-
based multicast protocol for WDM optical star networks,” IEEE
Journal on Selected Areas in Communications, vol. 22, no. 9, pp.
1670–1680, Nov. 2004.

[26] E. Modiano, “Random algorithms for scheduling multicast
traffic in WDM broadcast-and-select networks,” IEEE/ACM



13

Transactions on Networking, vol. 7, no. 3, pp. 425–434, Jun.
1999.

[27] H.-C. Lin and C.-H. Wang, “A hybrid multicast scheduling
algorithm for single-hop WDM networks,” in 20th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM), Apr. 2001, pp. 169–178.

[28] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input ver-
sus output queueing on a space-division packet switch,” IEEE
Transactions on Communications, vol. COM-35, no. 12, pp.
1347–1356, Dec. 1987.

[29] M. G. Hluchyj and M. J. Karol, “Queueing in high-performance
packet switching,” IEEE Journal on Selected Areas in Commu-
nications, vol. 6, no. 9, pp. 1587–1597, Dec. 1988.

[30] S. Iyer, R. Zhang, and N. McKeown, “Routers with a single stage
of buffering,” in Proc. ACM Conference of the Special Interest
Group on Data Communication (SIGCOMM), Aug. 2002, pp.
251–264.

[31] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, and N. McKeown, “Scaling Internet routers using
optics,” in Proc. Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM), Aug. 2003, pp. 189–200.

[32] M. Andrews, S. Khanna, and K. Kumaran, “Integrated schedul-
ing of unicast and multicast traffic in an input-queued switch,”
in Proc. 18th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), vol. 3, Mar. 1999,
pp. 1144–1151.

[33] L. Kleinrock, Queuing systems, vol. 1: Theory. New York, NY:
J. Wiley and Sons, 1975.


