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a b s t r a c t 

Using an Axial-Torsion testing machine, pearlitic R260 steel specimens are twisted until fracture under 

different axial loads. A well established framework for finite elastoplasticity with kinematic hardening is 

used to model the deformation of the specimens. In particular, we evaluate the ability of different kine- 

matic hardening laws to predict the observed biaxial load versus displacement response. It is found that 

the combination of Armstrong–Frederick dynamic recovery and Burlet–Cailletaud radial evanescence sat- 

uration is efficient even for the large strains achieved in this study. The results are less conclusive on the 

appropriateness of replacing the Armstrong–Frederick with an Ohno–Wang type of kinematic hardening 

law. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Large shear strains accumulate close to the running band of

railway rails and wheels during service (see e.g. Alwahdi et al.,

2013; Cvetkovski and Ahlström, 2013 ). The connection to crack ini-

tiation is well established, see Johnson (1989) for an overview. Ad-

ditionally, plastic flow and wear cause changes in the geometry, al-

tering the contact loading conditions. Hence, accurate constitutive

models for cyclic large strain plasticity are important components

for the prediction of the fatigue life of wheels and rails. This work

considers experiments and modeling of cyclic large strain plasticity

of one of the most common rail steels, the pearlitic grade R260. 

The load on the rail consists of a large hydrostatic compressive

stress due to the normal contact, and shear stresses mainly due to

traction and cornering. Severe plastic deformation techniques, such

as Plane Stress Local Torsion (PSLT), High Pressure Torsion (HPT)

and Equal Channel Angular Pressing (ECAP), have been applied by

several authors (e.g. Hohenwarter et al., 2011; Ivanisenko et al.,

2002; Khoddam et al., 2014; Wetscher et al., 2007 ) to mimic these

loading conditions. Significant strain localization occurs in PSLT

testing which makes further characterization difficult. HPT testing

has been particularly successful in obtaining a severely deformed

microstructure under controlled laboratory conditions. While able

to replicate the strains, the two latter processes are difficult to use

for direct model evaluations due to the complex contact condi-
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ions. Several authors (e.g. Estrin et al., 2008; Wei et al., 2014; Lari-

ani et al., 2015; Yoon et al., 20 08; Kim, 20 01; Draï and Aour, 2013 )

ave simulated the HPT process, and Larijani et al. (2015) even

imulated the extraction of specimens from the deformed disks

nd their uniaxial response. However, multiaxial loading of the ex-

racted specimens is challenging, due to the limited size that can

e extracted with a reasonable homogeneous deformation. 

The first objective of this paper is to investigate the possibil-

ty of using an Axial-Torsion testing machine to obtain large shear

trains in cylindrical test specimens. Such predeformed specimens

an in future works be used in Low Cycle Fatigue (LCF) experi-

ents, determining the influence of large strains on the multiax-

al LCF behavior. This avoids the complicated contact conditions

resent in ECAP and HPT testing, and enables evaluation of the

aterial response during large deformations. To investigate the po-

ential to reach high shear strains, the amount of twisting that the

pecimens can endure before failure is evaluated for different axial

oads. 

The second objective of this paper is to identify appropriate

yclic plasticity models for modeling the large biaxial strains from

he experiments. Many constitutive models for cyclic metal plas-

icity, such as the Chaboche model ( Chaboche, 1986 ) and Ohno–

ang ( Ohno and Wang, 1993a ), are known to over-predict mul-

iaxial ratcheting (e.g. Abdel-Karim, 2009; Bari and Hassan, 2002;

ortier et al., 20 0 0; Chen et al., 20 05 ). Delobelle et al. (1995) sug-

ested to use a linear combination of the Armstrong–Frederick

ynamic recovery term and the radial evanescence term in-

roduced by Burlet and Cailletaud (1986) . This suggestion was

https://doi.org/10.1016/j.ijsolstr.2017.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.10.007&domain=pdf
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Table 1 

% mass composition of the R260 steel, analyzed according to ASTM E 572, 1086 and 1029. 

C Si Mn P S Cr Al V N Cu 

0.72 0.31 1.04 0.006 0.01 0.02 < 0.002 < 0.005 0.006 0.018 

Fig. 1. Specimen dimensions in mm. Dashed lines indicate grip positions. 
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Table 2 

Elastic material parameters and initial yielding. 

Parameter Value Std. dev. Unit N tests 

E 212.0 0.5 GPa 9 

G 80.5 0.5 GPa 3 

R p0.01 388.5 5.4 MPa 9 

R p0.05 466.6 6.2 MPa 9 

R p0.2 534.2 6.8 MPa 2 
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hown to solve some issues in modeling multiaxial ratcheting.

ohansson et al. (2005a ) formulated the combined Armstrong–

rederick and Burlet–Cailletaud rule using the hyperelasto-plastic

ramework from Wallin et al. (2003) . Promising results were ob-

ained in Johansson et al. (2005a ) when this model was compared

o the small strain test data from Hassan et al. (1992) . These find-

ngs have not, however, been confirmed for large inelastic deforma-

ions. This is evaluated in the present study, where we investigate

ow well different kinematic evolution laws are able to predict the

esponse for large shear strains. 

It is commonly known that the yield surface distorts during

lastic deformations (see e.g. Sung et al., 2011 , and references

herein). Several modeling approaches have proved successful at

odeling this distortional hardening (e.g. Barthel et al., 2008; Har-

ysson et al., 2007; Pietryga et al., 2012 ), and much work has

een conducted on the theoretical derivations of such models (e.g.

eigenbaum and Dafalias, 2007; Harrysson et al., 2007; Menzel and

teinmann, 2003; Plesek et al., 2010; Shi et al., 2014 ). However,

he experiments in the present work cannot clearly differentiate

etween different yield surface evolutions. We therefore limit this

tudy to investigate whether a kinematic hardening law with an

sotropic yield surface can describe the mechanical response. The

valuation of the yield surface distortion is left for future work. 

This paper is organized as follows: 

• In Section 2 the experimental setup and results are presented. 

• In Section 3 the modeling framework and the different kine-

matic evolution laws are described. 

• In Section 4 the methodology for obtaining the set of material

parameters that best fit the experimental data is presented. 

• In Section 5 the ability of the different models to fit and pre-

dict the experimental results is evaluated. We also compare the

residual shear stresses for different models. 

. Experiments 

Test bars were extracted about 20 mm below the surface of new

earlitic R260 rails heads, with the material composition given in

able 1 . The bars were turned between centers to the dimensions

iven in Fig. 1 . A smooth transition with radius of 100 mm was

sed to minimize the strain concentration at the end of the gauge

ection. The tests were conducted on an Axial-Torsion MTS test rig,

ith load cell capacities of 100 kN and 1100 Nm, and a torsional

troke of 90 deg. To deform the specimens, the following load se-

uence was used 

1. Ramp axial load 

2. Rotate 90 deg in 60 s, maintaining the axial load 
3. Relax the axial and the torsional load 

4. Open lower grip, rotate back and close grip. Go to 1. 

Failure was detected when the torque dropped 2 Nm below the

aximum value during the current load cycle. No false failures

ere detected using this criterion, but some specimens with ten-

ile axial load fractured completely at failure detection. 

An MTS 632.80 extensometer with a 12 mm gauge length was

sed to obtain the initial Young’s modulus E and shear mod-

lus G accurately. As the extensometer range was limited to

6 deg / 12 mm , the machine piston positioning sensors were used

o measure specimen deformations. To reduce the influence from

he machine deformations, the stiffness of the machine was quan-

ified and compensated for (See Appendix A for further details). To

nsure consistent results, the grips were positioned 75 mm apart

t the beginning of each experiment. 

.1. Elastic material parameters 

The initial elastic material parameters were calibrated using the

xtensometer data from the first load cycle. For Young’s modulus,

ine specimens were available using the initial ramp of the axial

oad. This data was also used to obtain the yield limits. Only the

hree tests with zero axial load were used to calculate the shear

odulus. The values of the elastic parameters and the yield limits

re presented in Table 2 . It should be noted that while the elastic

arameters are rather certain, the yield limits show larger spread.

his is expected as the yielding is not distinct, which is also re-

ected in the difference between the yield definitions. 

.2. Experimental results 

The results in terms of specimen length changes and torque re-

ponses for different axial loads are shown in Fig. 2 . There is a

trong influence of the axial loading on the torque response, which

s mainly due to the nonlinear geometrical effect. For a nominal

xial stress P̄ a = −500 MPa the specimen diameter increases uni-

ormly by approximately 12%, and the overall length decreases by

bout 7 . 5 mm . The initial torque is highest for zero axial load, fol-

owed by P̄ a = ±250 MPa , see Fig. 2 b. The torque increases faster

or the compressive axial loads as the diameter starts to increase.

or tensile axial loads, the diameter decreases uniformly and the

orque quickly saturates. The behavior described above is mainly a

esult of material hardening and geometric changes. 

From Fig. 2 it is clear that the amount of twist a specimen can

ithstand before failure is increasing significantly with the axial

ompressive stress. The amount of surface shear strain increases

ven more, due to the shortening of the specimen and the increase

f gauge diameter. Higher compressive stresses than 600 MPa were

ot used in order to avoid buckling during twisting. 
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Fig. 2. Test results at different nominal axial stresses, P̄ a . 
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3. Material modeling 

In this paper we adopt a thermodynamically consis-

tent hyperelasto-plastic modeling framework based on

Wallin et al. (2003) . Meyer and Ekh (2017) showed that

this framework is equivalent to the framework introduced by

Dettmer and Reese (2004) , inspired by the work of Lion (20 0 0) .

Vladimirov et al. (2008) further investigated the numerical im-

plementation of this framework and Zhu et al. (2013) adapted

it to the Ohno–Karim ( Abdel-Karim and Ohno, 20 0 0 ) kinematic

evolution law. By introducing variations on the kinematic evolu-

tion equations, various combinations of small strain models are

extended to the finite strain framework. 

3.1. Base model 

The multiplicative decomposition of the deformation gradient

F = F e F p is adopted. Kinematic hardening is introduced via the

kinematic hardening variable F k, i ( ̄̄F in Wallin et al. (2003) ) for

each back-stress i = 1 , . . . , N back and isotropic hardening with the

scalar k (cf. Larijani et al., 2013 ). We define the deformation ten-

sors C e and c k, i : 

 e := F t e F e , c k , i := F −t 
k , i 

F −1 
k , i 

(1)

The Helmholtz free energy � is assumed additively decomposed

into an elastic part ( �e ), kinematic hardening parts ( �k, i ) and an

isotropic hardening part ( � iso ) according to Larijani et al. (2013) : 

� = �e ( C e ) + 

∑ N back 

i =1 
�k ,i 

(
c k ,i 

)
+ �iso ( k ) (2)

Using the shorthand notation I 3 • := det (•) the specific formula-

tions of the free energies are written as: 

�e (C e ) := 

1 

2 

G 

(
tr 
(
I −1 / 3 
3 C e 

C e 
)

− 3 

)
+ 

1 

2 

K 

(
I 1 / 2 
3 C e 

− 1 

)2 
(3)

�k , i (c k , i ) := 

1 

2 

H k , i 

(
tr 

(
I −1 / 3 
3 c k , i 

c k , i 

)
− 3 

)
(4)

�iso ( k ) := 

1 
2 

H iso k 
2 (5)

Where G and K are the elastic shear and bulk moduli, while H k, i 

and H iso are the kinematic and isotropic hardening moduli. 

The Mandel stress M , the Mandel back-stress M k, i and the

isotropic hardeing stress κ are of Neo–Hookean type and derived
rom the Helmholtz free energy: 

 := 2 C e 
∂�e 

∂C e 
= GI −1 / 3 

3 C e 
C dev 

e + K 

(
I 3 C e −

√ 

I 3 C e 

)
I (6)

 k , i := 2 c k , i 
∂�k , i 

∂c k , i 
= H k , i I 

−1 / 3 
3 c k , i 

c dev 
k , i (7)

:= − ∂�iso 

∂k 
= −H iso k (8)

ere, we note that the Mandel back-stress M k, i is deviatoric. The

on Mises effective stress in Eq. (9) with the reduced Mandel stress

 red is used to formulate the yield function � in Eq. (11) , where

 0 is the initial yield limit. Using the reduced Mandel stress M red 

n Eq. (9) is equivalent to using the reduced Kirchhoff stress τred =
 e M red F 

−1 
e . 

f ( x ) := 

√ 

3 

2 

√ (
x t 

)dev 
: 
(
x 
)dev 

(9)

 red := M − ∑ N back 

i =1 
M k ,i (10)

:= f ( M red ) − (Y 0 + κ) ≤ 0 (11)

We adopt an associative evolution of F p and non-associative

volution of the hardening variables ( F k, i and k ), whereby the plas-

ic multiplier ˙ λ is introduced: 

˙ 
 p F 

−1 
p = L p = 

˙ λ
∂�

∂M 

= 

˙ λ
3 

2 

(
M 

t 
red 

)dev 

f ( M red ) 
(12)

˙ 
 k , i F 

−1 
k , i 

= L k , i =: ˙ λν∗
k , i (13)

˙ 
 = − ˙ λ

(
1 − κ

κ∞ 

)
(14)

he isotropic hardening is the standard exponentially saturating

odel (cf. Chaboche, 1986 ) such that κ → κ∞ 

. The Eqs. (12) –(14)

re solved in a standard fashion using the backward Euler approx-

mation along with the KKT-conditions ( ̇ λ� = 0 , ˙ λ ≥ 0 , � ≤ 0 ). As

oted by Vladimirov et al. (2008) this method is prone to numer-

cal errors for large time steps. The influence of the length of the

ime steps is therefore evaluated in Appendix B to ensure that the

umerical error is sufficiently small. 
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Fig. 3. Finite element discretization of one half specimen using 8 node axisym- 

metric reduced integration elements with twist. The loads and displacements are 

applied at the left end, and symmetric/antisymmetric boundary conditions are ap- 

plied in the center (right). A right-hand r − φ − z cylindrical coordinate system is 

used. 
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The model variations can be differentiated by the evolution of

he kinematic hardening variables according to Eq. (13) . The com-

lete model is obtained by setting ν∗
k , i 

= νXX 
k , i 

where XX denotes the

nitials used to identify each model in the following subsections. 

.2. Armstrong–Frederick dynamic recovery term (AF) 

In Wallin et al. (2003) an Armstrong–Frederick ( Frederick and

rmstrong, 2007 ) type model was adopted. It was noted that

nly the symmetric part of L k, i contributes to the dissipation, and

he model flexibility was increased by adding a non-dissipative

art to ν∗
k , i 

. Following the work of Johansson et al. (2005b );

arijani et al. (2013) we do not consider this addition, whereby the

volution law becomes 

AF 
k , i := −ν + 

3 

2 

M 

t 
k , i 

Y k , i 
(15) 

here Y k, i is the effective back-stress saturation value and ν := 

∂�
∂M 

.

.3. Burlet–Cailletaud radial evanescence term (BC) 

As mentioned previously, several authors have found that

he Chaboche model is unable to describe multiaxial behav-

or accurately. This was confirmed for the above formulation by

ohansson et al. (2005b ). Delobelle et al. (1995) suggested to in-

roduce a linear combination of the radial evanescence term from

urlet and Cailletaud (1986) and the Armstrong–Frederick dynamic

ecovery term. Formulated in the current framework, following

ohansson et al. (2005b ), the evolution law for kinematic hardening

ecomes: 

BC 
k , i := −ν + δ

3 

2 

M 

t 
k , i 

Y k , i 
+ (1 − δ) 

(
M k , i : ν

Y k , i 

)
ν (16) 

here the parameter δ controls the amount of Armstrong–

rederick versus Burlet–Cailletaud type of kinematic hardening.

he radial evanescence term in Eq. (16) is basically the dynamic re-

overy term projected onto the direction of plastic flow ν. As noted

y e.g. Bari and Hassan (2002) the BC radial evanescence term is

qual to the AF dynamic recovery for proportional stress, the von

ises yield function and small strains. In general, this is not ex-

ctly fulfilled for the large strain formulation considered here. 

.4. Ohno–Wang model (OW) 

Ohno and Wang (1993a ) proposed two models, of which the

econd, which is used here, was a generalization of the first. This

odel has been shown to work well for uniaxial ratcheting (see

.g. Ohno and Wang, 1993b; Brommesson et al., 2015 ). Formulating

he second Ohno–Wang model in terms of the Mandel stress, we

xtend the model to finite strains: 

OW 

k , i := −ν + 

3 

2 

M 

t 
k , i 

Y k , i 

(
f (M k , i ) 

Y k , i 

)m i 
〈
ν : M k , i 

f (M k , i ) 

〉
(17) 

he additional material parameter m i controls how abruptly the

aturation starts. Letting m i → ∞ gives a linear hardening until sat-

ration is reached, followed by a constant back-stress. Additionally,

he evolution of the back-stress differs between plastic loading or

lastic unloading through the use of the Macaulay brackets 〈 • 〉 . 

.5. Ohno–Wang with radial evanescence (OB) 

Although the Ohno–Wang model incorporates a multiaxial de-

endence through the contraction ν: M k, i , it has still been reported

o overpredict the ratcheting for multiaxial loading ( Chen et al.,

005 ). Chen et al. (2003) combined the second Ohno–Wang model
ith the Burlet–Cailletaud radial evanescence term, and this model

s formulated within the considered finite strain framework as: 

OB 
k , i := −ν + 

〈 ν : M k , i 〉 
Y k , i 

(
f (M k , i ) 

Y k , i 

)m i 
(

δ
3 M 

t 
k , i 

2 f (M k , i ) 
+ (1 − δ) ν

)

(18) 

he first two factors in the last term give the saturation, while the

ast factor gives the direction of saturation, controlled by the pa-

ameter δ in a similar way as in Eq. (16) . Note that both terms in

he last factor has are normalized, i.e. they do not influence the

agnitude of νOB 
k , i 

. 

. Material parameter identification 

Due to the heterogeneous strain field within the specimens, a

nite element model with implicit time integration is used to sim-

late the experiments, see Fig. 3 . The model is used in an iter-

tive optimization algorithm to calibrate the material model, and

educing the computational cost is therefore important. A mesh

onvergence study that was conducted, showed that the depicted

esh gave sufficiently accurate results for the optimization (see

ppendix B for details). Furthermore, the sensitivity to the size of

he time steps is investigated in Appendix B . It is found that 40

teps for the axial ramp, 200 steps for the twisting and 20 steps

or the unloading are sufficient for an accurate description of the

eformation. This many steps is also used to ensure the global con-

ergence in each time step. 

The optimization procedure seeks to find the material parame-

er values that minimize the differences between the simulations

nd experiments in terms of the axial displacement and torque.

he difference is evaluated for the load steps of type 2, in the load

equence described in Section 2 . For a given load step i with eval-

ated data point j , the measured quantities are the torque T E 
i j 

, the

xial displacement 	L E 
i j 

and the rotation φE 
i j 

. The simulated val-

es are described as functions, T S 
i j 

= T S 
i 
(φE 

i j 
) and 	L S 

i j 
= 	L S 

i 
(φE 

i j 
) ,

btained through linear interpolation from the closest simulated

ime increments. Before being used to evaluate the difference, each

uantity x •
ij 

= { T E 
ij 

, T S 
ij 
, 	L E 

ij 
, or 	L S 

ij 
} is scaled according to: 

ˆ 
 

•
i j := 

x •
i j 

− min 

j 
(x E 

i j 
) 

max 
j 

(x E 
i j 
) − min 

j 
(x E 

i j 
) 
αx (19) 

he factors αT = 7 . 0 and α	L = 1 . 0 denote scale factors for torque

nd axial displacement. In each step, the scaled axial displacement

s almost a straight line from 1 to 0, while the majority of the

orque curve is located at the top 10% of the scaled output. It is

herefore necessary to put more emphasis on the torque response

o obtain a good balance between the contributions to the error

rom each curve. Further discussion on the influence of αT and

is given in Section 5.1 . The objective function for step i and
	L 
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Table 3 

Realistic interval for material parame- 

ters. 

Parameter p p min p max Unit 

Y 0 0.3 0.8 GPa 

H 0.5 12.0 GPa 

Y ∞ 0.8 2.0 GPa 

δ 0.0 1.0 –

r m, i 0.0 1.0 –

r s, i 0.0 1.0 –

m i 0.0 4.0 –
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stresses N b . 
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quantity x is calculated according to 

E x i := 

1 √ 

N p 

√ ∑ N p 
j=1 

(
ˆ x E 

ij 
− ˆ x S 

ij 

)2 
(20)

where N p ≈ 600 is the number of evaluated points. The complete

objective function is created by summing the square of errors from

all N p load sequences: 

E TOT := 

1 √ 

N s 

√ ∑ N s 
i =1 

((
E T 

i 

)2 + 

(
E 	L 

i 

)2 
)

(21)

The material parameters that are used in the optimization algo-

rithm, are reformulated from Section 3 . One linear back-stress with

H k = 10 MPa is first fixed to ensure numerical stability. We then

introduce ratios that allows, for example, to change the amount of

isotropic hardening without modifying the total hardening modu-

lus. The new material parameter set ( E, K, Y 0 , δ, H, Y ∞ 

, r m, i , r s, i and

m i ) is introduced according to: 

H := H iso + 

∑ N b 
i =1 

H k ,i (22)

 ∞ 

:= Y 0 + κ∞ 

+ 

∑ N b 
i =1 

Y k ,i (23)

r m ,i := 

H k , i 

H 

(24)

r s ,i := 

Y k , i 
(Y ∞ 

− Y 0 ) 
(25)

where N b is the number of back-stresses excluding the linear back-

stress. 

The parameter space described in Table 3 is sampled with

200 points, using a Latin hypercube. Following Ekh (2001) we

choose the 3 N points with lowest E TOT for each model, where

N is the number of optimized material parameters. Using these

points as starting guesses, the optimization procedure is performed

using a Nelder–Mead Simplex algorithm ( Lagarias et al., 1998 ).

Attempts outside the permissible interval of material parameters

from Table 3 are penalized by returning a value ten times the cur-

rent minimum. Using this permissible interval p min ≤ p ≤ p max for

the material parameters, they are scaled ( ̂  p ∈ [0 , 1] ) according to: 

ˆ p := 

p − p min 

p max − p min 
(26)

The material parameters are identified for an experiment with

the nominal axial stress P̄ a = −500 MPa . 
. Results 

.1. Optimization results 

In Fig. 4 the initial and converged objective function values for

ach optimization run are presented. For the AF model with one

ack-stress (AF1) the lowest objective function value is obtained

or several initial starting guesses. Hence, a global optimum seems

o have been identified for this model. A slight improvement in

he objective function value is found when increasing the num-

er of back-stresses (AF2). In this case, the best runs do not arrive

t the same objective function value, but they are still sufficiently

imilar to the AF1 to conclude that adding multiple back-stresses

s not so efficient. The results when using the BC models (com-

ined Armstrong–Frederick and Burlet–Cailletaud saturation) and

he OB models (combined Ohno–Wang and Burlet–Cailletaud satu-

ation), show that the objective function value can be significantly

educed. This shows that the inclusion of the Burlet–Cailletaud ra-

ial evanescence is effective for fitting the behavior at large biaxial

trains. For both the BC and OB models, there is a significant scat-

er in the converged objective function values. We can therefore

ot be certain that global minima have been identified. 

Another interesting observation, which can be made from Fig. 4 ,

s the lack of correlation between the objective function value for

he initial guess and for the final parameter values. Firstly, this in-

icates that it is not necessarily best to choose the starting guesses

ith the lowest objective function value. A good spread of the

nitial guesses in the parameter space might be more important.

econdly, it underlines the importance of having multiple initial

uesses to improve the probability of locating parameter values at

he global optimum. 

The graphs used for evaluation of the objective function are

hown in Fig. 5 for some of the studied models. It is clear that

he most basic model type, AF, is unable to predict the biaxial de-

ormation accurately (see Fig. 5 a–d). By increasing the scale factor

or the torque ( αT ) relative to scale factor for the axial displace-

ent ( α	L ) in the objective function, a better fit for the torque

an be obtained. It is, however, not possible for the AF models to

t both the torque and axial displacement accurately at the same

ime. As previously noted, based on the histogram in Fig. 4 , adding

ore back-stresses does not solve this problem. The use of the

ombination of Armstrong–Frederick and Burlet–Cailletaud satura-

ion in the BC2 model, gives a much better prediction at the cost

f one additional material parameter. This is clearly seen when



K.A. Meyer et al. / International Journal of Solids and Structures 130–131 (2018) 122–132 127 

Fig. 5. Fitted material models for torque and axial displacement. Solid lines are values from experiment and dashed lines are simulated. 

Table 4 

Best optimization results for each model. 

Model E TOT Y 0 δ H iso κ∞ H k,1 Y k,1 m k,1 H k,2 Y k,2 m k,2 

AF1 0.438 640 – 6270 0 1929 610 – – – –

AF2 0.408 591 – 1037 1 1062 507 – 9878 177 –

BC1 0.162 483 0.329 219 157 5319 577 – – – –

BC2 0.133 451 0.290 212 169 1450 293 – 10,148 322 –

OB1 0.184 529 0.599 85 508 2905 546 2.080 – – –

OB2 0.128 454 0.371 370 136 8921 302 2.580 1046 271 1.515 

Unit – MPa – MPa MPa MPa MPa – MPa MPa –
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omparing the fits for the torque (e.g. compare Fig. 5 c and e),

s well when comparing the lowest objective function values in

able 4 . The relative improvement by adding an additional back-

tress in the BC model is larger than for the AF model. Further-

ore, the Ohno–Wang model in combination with the Burlet–

ailletaud radial evanescence model with 2 back-stresses, OB2, also

ives a very good agreement for both the torque and the axial dis-

lacement in Fig. 5 g and h. Although the OB2 model obtains a

lightly better fit of the data than the BC2 model, Table 4 shows

hat the BC1 model outperforms the OB1 model. 

When using finite element simulations to fit the material pa-

ameters, the identifiability of the parameters can be an issue. Due

o the complex loading paths (in contrast to uniaxial loading), it is

ather certain that isotropic and kinematic hardening affect the re-

ults in different ways. Additionally, Fig. 7 shows that there is sig-

ificant plasticity during the unloading, which further strengthens

hat the experiments can distinguish between isotropic and kine-

atic hardening. 

.2. Predictive abilities 

From the fitted results, it is evident that the AF models are un-

ble to predict the described biaxial loading. Hence, we choose

o further investigate the ability of the BC2 and OB2 models to

redict two additional loading cases, using the material parame-

ers from Table 4 . The loading case with the nominal axial load

 ̄a = −600 MPa , which is similar to the load case used for cali-

ration, is evaluated first. The axial responses of the two models
hown in Fig. 6 b are almost identical, and predict the experimen-

al data well. Furthermore, Fig. 6 a shows that both models produce

imilar average torque levels during each cycle. After the elastic

oading, the BC2 model seems to give a too high plastic modu-

us, which is compensated by an earlier yielding. The exponent m i 

n the OB model allows for a response closer to the experimen-

al (almost) bilinear behavior, i.e. a better prediction for the given

oading is obtained. It should be noted that the material shows a

eak rate dependence, and the careful observer may note a slight

vershoot in the torque upon reloading stemming from this. The

esponse for an experiment with a lower strain rate would likely

atch OB2 even better. Such an experiment has only been car-

ied out for a nominal axial stress P̄ a = −500 MPa , and only a

ualitative evaluation is therefore possible for the other loading

ases. 

As P̄ a = −600 MPa is quite similar to the nominal axial stress

sed for calibration, it is interesting to consider a completely dif-

erent axial load. In Fig. 6 c and d we therefore compare the model

esponses for the axial tensile load P̄ a = +250 MPa . Both models

redict the axial response reasonably well, but the BC2 model

ives a slightly better fit. The torque response is generally over-

redicted by the models. Towards the end of the second cycle the

B2 model exhibit some softening behavior, which is a combina-

ion of material softening and the reduced diameter due to the

longation. A much smaller torque reduction, 0 . 8 Nm , is observed

n the experiment data before the specimen breaks. We can there-

ore conclude that the BC2 model performs slightly better for this

oad case. Although not shown here, similar conclusions can be
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Fig. 6. Predictions for BC2 and OB2 models. 

Fig. 7. Cyclic behavior at unloading/loading P̄ a = −600 MPa . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Length changes for free end torsion ( ̄P a = 0 MPa ). 
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drawn regarding the load case with an axial load P̄ a = −250 MPa .

Considering the minor differences between the results for the

BC2 and OB2 models in Figs. 5 and 6 , it cannot be concluded

which model that is the better. The key finding is that both mod-

els, using two back-stresses, are able to both fit and predict the

overall loads versus displacements in the considered experiments

very well. 

Fig. 7 shows that the models are not able to model the ex-

act loop shape, but the locations of the endpoints are quite ac-

curately predicted. The figure also clearly shows the Bauschinger

effect, and this explains why the majority of the hardening is

kinematic for the different models. This finding is supported

by Johansson et al. (2006) ; Larijani et al. (2013) , where the
sotropic hardening was completely excluded due to its limited

mpact. 

Regarding the free end torsion load case ( ̄P a = 0 MPa ), none

f the applied models are able to predict the axial response cor-

ectly, see Fig. 8 . Due to the small length changes in free end tor-

ion (known as the Swift effect: Swift, 1947 ), the relative uncer-

ainty of the measured axial deformations is too large to make a

onclusive comparison between the models. This is, however, an

nteresting load case for understanding the underlying mechan-

cs, and the interested reader is referred to Wallin and Ristin-

aa (2005) . They extend the hyperelasto-plastic framework used

n this paper, together with Armstrong–Frederick hardening, for

odeling of the Swift effect. 
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Fig. 9. Residual shear stress for calculating with a mesh size 0 . 3 mm and with 

material parameter values from Table 4 , for the load case P̄ a = −500 MPa . (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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.3. Influence of model choice on residual stresses 

To further enhance the understanding of how the choice of

odel may affect the predicted mechanical response in the spec-

mens, the residual stresses after the P̄ a = −500 MPa load case

re compared. The results for the AF2, BC2 and OB2 models are

hown in Fig. 9 , using the material parameters from Table 4 . For

hese results we use a finer mesh, with one tenth of the ele-

ent length used for the parameter identification in Section 5.1 .

his has a negligible effect on the torque and axial displacement

urves (see Appendix B ), but the stress field becomes better re-

olved. The AF2 model gives higher residual shear stresses, specif-

cally close to the center of the specimen (blue) and at the sur-

ace in the radius transition (dark orange). Differences of similar

agnitudes are observed for other stress measures. The BC2 model

redicts higher stress than the OB2 model, even though their over-

ll load versus displacement responses are similar. The choice of

inematic evolution laws has an influence on the residual stresses,

nd thereby influences the result of future evaluations of fatigue

ife. 

. Concluding remarks 

Large shear strains in cylindrical test specimens have been

chieved using an Axial-Torsion testing machine. The specimens

ere twisted more than 2 revolutions, while subjected to nomi-

al axial compressive stress with magnitudes up to 600 MPa . The

train to failure is strongly increased with the amount of applied

xial compressive stress, but this stress must be limited to avoid

uckling of the specimens. During the twisting the specimen di-

meter increases and the length decreases significantly due to the

arge compressive loads. 

The framework for hyperelasto-plasticity and kinematic hard-

ning in Wallin et al. (2003) is used and extended to account

or different kinematic evolution laws. Starting from several initial

uesses, the Nelder–Mead Simplex optimization algorithm is used

o fit the models to one experiment with a nominal axial compres-

ive stress P̄ a = −500 MPa . The models are finite element models

f the specimens, which are differentiated by modifying the kine-

atic hardening in the material model. It is shown that the model

ith the standard Armstrong–Frederick type of dynamic recovery

s unable to fit the biaxial material response accurately. The combi-

ation of either the Armstrong–Frederick or the Ohno–Wang kine-

atic hardening models with the Burlet–Cailletaud radial evanes-

ence term, is shown to produce an excellent overall fit of the ex-

erimental data. Furthermore, these models are also able to very

ccurately predict the material responses for other load cases with
ifferent axial loads. The exception is the length change during free

nd torsion, i.e. the Swift effect, which is not predicted well by

ny of the considered models. Finally, investigating the predicted

esidual shear stresses revealed that the two latter models produce

omewhat different residual stress states, even though their overall

echanical responses are similar. 

A future step to improve the understanding of the material be-

avior during the large biaxial deformations, is to consider the lo-

al strain fields. This can be accomplished by using Digital Image

orrelation (DIC) and thin-walled tubular specimens. Furthermore,

uch specimens will enable quantification of the previously dis-

ussed distortional hardening. Finally, predeformed hollow speci-

ens can be used to investigate the low cycle fatigue behavior of

he highly deformed material. 
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ppendix A. Machine calibration 

In this appendix we briefly describe the methodology and re-

ults for the calibration of the biaxial test rig. Both the stiffness

f the machine (axial and torsional) as well as the cross talk in

he load sensing are analyzed. All test data presented and used

reviously in this paper have been compensated according to this

ethodology. 

1. Machine stiffness 

The stiffness of the machine was measured using a 20 mm di-

meter bar manufactured from the same material and with the

ame grip distance of 75 mm as the specimen in Fig. 1 . The de-

ections of the 75 mm portion of the bar were calculated and sub-

racted from the measured values, so that only the deflections of

he machine were remaining. 

1.1. Axial stiffness 

The deflections measured using the method described above for

hree different angular grip positions, are shown in Fig. 10 . A linear

egression gives an average stiffness of 200 kN / mm , which is lower

han the 300 kN / mm axial stiffness of the specimen in Fig. 1 . An

ccurate machine stiffness is therefore required to determine the

pecimen displacements. The linear regression model can capture

he majority of the deflections, but there are some nonlinear hys-

eresis loops observed. The deviation from the calibrated stiffness

s large for the first loading, and the subsequent ratcheting-like de-

ections are much smaller. It is therefore assumed that the major-

ty of the nonlinear behavior is a function of the maximum applied

oad. The deviation of the deflection from the linear stiffness dur-

ng the initial loading is therefore shown in Fig. 11 . 

From Fig. 11 it is clear that the inaccuracies increase substan-

ially for loads above 40 kN , to more than 0 . 1 mm at 90 kN .
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Fig. 10. Axial deflections. 

Fig. 11. Axial compensation error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Torsional deflections. 

Fig. 13. Torsional compensation error. 

Fig. 14. Influence on torque measurements from axial load. 
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For loads below 40 kN the errors are in the order of 0 . 02 mm ,

which corresponds to the elastic deformation of the specimen at

6 kN . Although this force is quite high, during plastic deforma-

tion the specimen’s secant stiffness is significantly reduced and

hence the relative error decreases accordingly. We can therefore

conclude that the accuracy of the axial position sensor is quite low

for elastic loading, but rather good for plastic loading where dis-

placements up to 10 mm occur. 

A1.2. Torsional stiffness 

Using the same method as for the axial displacements on

the data depicted in Fig. 12 , the obtained torsional stiffness is

466 Nm / deg . The torsional stiffness of the specimen in Fig. 1 is

29 . 2 Nm / deg , and hence the torsional deflections of the machine

will be much smaller than the specimen deflections. 

In the same fashion as for the axial response, the error of

the compensated deflections are evaluated for different values of

torque in Fig. 13 . All curves are within ± 0.16 deg, which is ap-

proximately the elastic twist of the specimen at 5 Nm . From the

same arguments as for the axial compensation error, the relative

torque compensation error is reduced during plastic deformation.

The torque in the experiments never exceeded 300 Nm , which

gives a maximum compensation error of 0.11 deg, and hence the

overall accuracy of the torsional rotation is quite good. 
2. Load sensor cross talk 

Using the same measurements as above, considering how an

xial load affects the measured torque during zero rotation, the re-

ponse is shown in Fig. 14 . Although the complete variation can-

ot be described using a linear regression model, the error can

e significantly reduced by removing the fitted linear trend of

0 . 0904 Nm / kN . 
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Fig. 15. Influence on force measurements from torsional load. 
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Considering the reverse effect, the influence of torque on the

easured axial force, the results are shown in Fig. 15 . No clear

rends are present for this case, and no compensations are there-

ore made for the influence of torque on the measured axial force. 

ppendix B. Mesh and time step sensitivity 

The torque response for a simulation with the mesh size used

n the present study (see Fig. 3 ) is compared with the response

or a much finer mesh. A small part of the torque response is

valuated in Fig. 16 a to highlight any differences. The differences

n maximum torque and length change for the full simulation are

.025% and 0.028% respectively. We therefore conclude that the 3.0

m mesh provides sufficient accuracy for the present study. 

When the backward Euler integration scheme is used for the

nite strain frameworks, Vladimirov et al. (2008) found that the

olution can be quite dependent on the time step size. We there-

ore compare the simulated mechanical response for a simulation

ith ten times the number of time steps that was chosen in the

resent paper. At the zoom level in Fig. 16 b the graphs almost co-

ncide, but the differences are larger than for the mesh comparison

n Fig. 16 b. This becomes apparent when comparing the maximum

orque and length change, giving differences of 0.038% and 0.11%

espectively. The length change is affected more by the larger time

tep than by a larger mesh. However, comparing to the uncertainty

f the experimental measurements (see Appendix A ), the modeling

rrors are acceptable. 
Fig. 16. Investigation of sim
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