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Abstract. Let G be the Lie group R2 oR+ endowed with the Riemannian symmetric space
structure. Let X0, X1, X2 be a distinguished basis of left-invariant vector fields of the Lie algebra
of G and define the Laplacian ∆ = −(X2

0 + X2
1 + X2

2 ). In this paper, we show that the maximal
function associated with the heat kernel of the Laplacian ∆ is bounded from the Hardy space H1

to L1. We also prove that the heat maximal function does not provide a maximal characterization
of the Hardy space H1.

1. Introduction

Let G be the Lie group R2 oR+ where the product rule is the following:

(x1, x2, a) · (x′1, x′2, a′) = (x1 + ax′1, x2 + ax′2, aa′)

for (x1, x2, a), (x′1, x
′
2, a

′) ∈ G. We shall denote by x the point (x1, x2, a). The group
G is not unimodular; the right and left Haar measures are given by

dρ(x) = a−1 dx1 dx2 da and dλ(x) = a−3 dx1 dx2 da,

respectively. The modular function is thus δ(x) = a−2. Throughout this paper,
unless explicitly stated, we use the right measure ρ on G and denote by Lp, ‖ · ‖p

and 〈·, ·〉 the Lp-space, the Lp-norm and the L2-scalar product with respect to the
measure ρ.

The group G has a Riemannian symmetric space structure, and the corresponding
metric, which we denote by d, is that of the three-dimensional hyperbolic half-space.
The metric d is invariant under left translation and thus determined by the distance
r(x) = d(x, e) from any point x to the identity e = (0, 0, 1). Here and in the sequel
it will be convenient to denote

|x| =
√

x2
1 + x2

2

for x = (x1, x2, a). Then

(1.1) cosh r(x) =
a + a−1 + a−1|x|2

2
.
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The measure of a hyperbolic ball Br, centered at the identity and of radius r, behaves
like

λ(Br) = ρ(Br) ∼
{

r3 if r < 1,

e2r if r ≥ 1.

Thus G is a group of exponential growth. In this context, the classical Calderón–
Zygmund theory and the classical definition of the atomic Hardy space H1 (see
[CW1, CW2, St]) do not apply. But Hebisch and Steger [HS] have constructed a
Calderón–Zygmund theory which applies to some spaces of exponential growth, in
particular to the space (G, d, ρ) defined above. The main idea is to replace the family
of balls which is used in the classical Calderón–Zygmund theory by a suitable family
of parallelepipeds which we call Calderón–Zygmund sets. The definition appears in
[HS] and implicitly in [GS], and reads as follows.

Definition 1.1. A Calderón–Zygmund set is a parallelepiped R = [x1−L/2, x1+
L/2]× [x2 − L/2, x2 + L/2]× [ae−r, aer], where L > 0, r > 0 and (x1, x2, a) ∈ G are
related by

e2a r ≤ L < e8a r if r < 1,

a e2r ≤ L < a e8r if r ≥ 1.

The point (x1, x2, a) is called the center of R.

We let R denote the family of all Calderón–Zygmund sets, and observe that
R is invariant under left translation. Given R ∈ R, we define its dilated set as
R∗ = {x ∈ G : d(x,R) < r}. There exists an absolute constant C0 > 0 such that
ρ(R∗) ≤ C0 ρ(R) and

(1.2) R ⊂ B
(
(x1, x2, a), C0r

)
.

In [HS] it is proved that every integrable function on G admits a Calderón–
Zygmund decomposition involving the family R, and that a new Calderón–Zygmund
theory can be developed in this context. By using the Calderón–Zygmund sets, it is
natural to introduce an atomic Hardy space H1 on the group G, as follows (see [V]
for details).

We define an atom as a function A in L1 such that
(i) A is supported in a Calderón–Zygmund set R;
(ii) ‖A‖∞ ≤ ρ(R)−1;
(iii)

´
A dρ = 0.

The atomic Hardy space is now defined in a standard way.

Definition 1.2. The Hardy space H1 is the space of all functions f in L1 which
can be written as f =

∑
j λj Aj, where Aj are atoms and λj are complex numbers

such that
∑

j |λj| < ∞. We denote by ‖f‖H1 the infimum of
∑

j |λj| over such
decompositions.

The Calderón–Zygmund theory from [HS] has turned out useful for the study of
the boundedness of singular integral operators related to a distinguished Laplacian
on G, which is defined as follows.

Let X0, X1, X2 denote the left-invariant vector fields

X0 = a ∂a, X1 = a ∂x1 , X2 = a ∂x2 ,
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which span the Lie algebra of G. The Laplacian ∆ = −(X2
0 + X2

1 + X2
2 ) is a left-

invariant operator which is essentially selfadjoint on L2(ρ). It is well known that the
heat semigroup

(
e−t∆

)
t>0

is given by a kernel pt, in the sense that e−t∆f = f ∗ pt for
suitable functions f . Let M denote the corresponding maximal operator, defined by

(1.3) Mf(x) = sup
t>0

|f ∗ pt(x)| ∀x ∈ G.

Cowling, Gaudry, Giulini and Mauceri [CGGM] proved thatM is of weak type (1, 1)
and bounded on Lp for all p > 1. In this paper, we prove the following result.

Theorem 1.3. (i) If f ∈ H1, then Mf ∈ L1 and

‖Mf‖1 ≤ C ‖f‖H1 ,

where C is independent of f .
(ii) However, the converse inequality is false, and f ∈ L1 and Mf ∈ L1 does not

imply f ∈ H1.

Remark 1.4. A similar maximal operator M̃ can be defined by means of the
Poisson semigroup

(
e−t

√
∆
)

t>0
. Theorem 1.3 is valid also for this maximal operator,

since the proof given below remains valid with only small modifications.

In our setting, there is thus no characterization of the atomic H1 space by means
of the heat or the Poisson maximal operator. This is in contrast with the classical
theory and other settings, as we now recall.

In the Euclidean case, the atomic Hardy space H1(Rn) has a maximal charac-
terization (see [St, Chapter 3]). More precisely, H1(Rn) coincides with the set of
functions f ∈ L1(Rn) such that Mφf ∈ L1(Rn), where

Mφf(x) = sup
t>0

∣∣f ∗ φt(x)
∣∣ ∀x ∈ Rn,

φ is any Schwartz function with
´

φ(x)dx 6= 0 and φt(x) = t−n φ(t−1 x). Moreover,
the norms ‖f‖H1(Rn) and ‖Mφf‖L1(Rn) are equivalent.

On a space X of homogeneous type Coifman and Weiss [CW1, CW2] intro-
duced an atomic Hardy space H1

at(X). Under some additional assumption, different
maximal characterizations of the Hardy space H1

at(X) were obtained by Macías and
Segovia [MS], Li [L], Grafakos, Liu and Yang [GLY1, GLY2].

On the Euclidean space Rn endowed with a nondoubling Radon measure µ of
polynomial growth, Tolsa [T] defined an atomic Hardy space H1(µ) and proved that
it can be characterized by a grand maximal operator as in the classical setting.

In the setting of a gaussian measure and the Ornstein–Uhlenbeck operator in Rn,
Mauceri and Meda [MM] introduced an atomic H1 space. For n = 1 Mauceri, Meda
and Sjögren [MMS] gave a maximal characterization of this space.

In this paper, C denotes a positive, finite constant which may vary from line to
line and may depend on parameters according to the context. Given two positive
quantities f and g, by f . g we mean that there exists a constant C such that
f ≤ C g, and f ∼ g means that g . f . g.
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2. The heat maximal function

We shall use the following integration formula (see for instance [CGHM, Lemma 1.3]):
for any radial function f such that δ1/2f is integrable

(2.1)
ˆ

G

δ1/2f dρ =

ˆ ∞

0

f(r) r sinh r dr.

The convolution in G is defined by

(2.2) f ∗ g(x) =

ˆ
f(xy−1)g(y) dρ(y).

Let pt denote the heat kernel associated with ∆. It is well known [CGGM,
Theorem 5.3, Proposition 5.4], [ADY, formula (5.7)] that

(2.3) pt(x) =
1

8π3/2
δ1/2(x)

r(x)

sinh r(x)
t−3/2 e−

r2(x)
4t ∀x ∈ G.

Note that pt = δ1/2 ht, where ht is the heat kernel associated with the operator L− I
and L is the Laplace–Beltrami operator on the three-dimensional hyperbolic space.
The kernel ht and its gradient were studied in [ADY, CGHM].

We remark that given (2.3) it is easy to write the formula for the Poisson kernel.
It is enough to replace the factors t−3/2 e−

r2(x)
4t by t/(t2 + r2(x))2 and the constant

factor by 1/π2.
Since r(x−1) = r(x) we have that

(2.4) pt(x) = δ(x)pt(x
−1) ∀x ∈ G.

Via a change of variables in (2.2), this implies

(2.5)
f ∗ pt(x) =

ˆ
f(z−1)pt(zx) dρ(z) =

ˆ
f(y)pt(y

−1x)δ(y) dρ(y)

= δ(x)

ˆ
f(y)pt(x

−1y) dρ(y).

We shall need the observation that for any r > 0

(2.6) sup
t>0

t−3/2 e−
r2

4t ∼ r−3.

We now give some properties of the heat kernel which will be useful in the rest
of the paper.

Lemma 2.1. For any point x ∈ G the derivatives of the heat kernel pt along the
vector fields Xi, i = 0, 1, 2, are the following:

(i) Xipt(x) = pt(x) xi

sinh r

(
1
r
− cosh r

sinh r
− r

2t

)
for i = 1, 2;

(ii) X0pt(x) = pt(x)
(

a
r sinh r

− cosh r
r sinh r

− a cosh r
sinh2 r

+ 1
sinh2 r

+ r
2t

cosh r−a
sinh r

)
,

where r denotes r(x). Moreover,
(iii) supt>0 |Xipt(x)| . r−4 for i = 0, 1, 2 and for all x ∈ B1;
(iv) supt>0 |Xipt(x)| . |x|

a r2 cosh2 r
for i = 1, 2 and for all x ∈ Bc

1;
(v) supt>0 |X0pt(x)| . 1

a r3 cosh r
+ 1

r2 cosh2 r
for all x ∈ Bc

1.
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Proof. Parts (i) and (ii) follow by direct computation from [SV, Lemma 2.1].
The proof of (iii) relies on the fact that pt = δ1/2 ht which implies that for

i = 0, 1, 2, |Xipt| . δ1/2 (|ht| + |Xiht|)). From the estimates of |ht| and its gradient
proved in [ADY, Theorem 5.9, Corollary 5.49], (iii) follows.

To prove (iv) and (v), it suffices to combine (i), (ii), (2.3) and (2.6) with r =
r(x) > 1. ¤

For suitable functions F , we denote by ‖∇F‖ the Euclidean norm of the vector
∇F = (X0F, X1F, X2F ).

By applying the previous lemma, we shall estimate the integral over the comple-
ment of a small ball Br1 of the function

Gr1(x) = sup
B(x,r1/2)

sup
t>0

‖∇pt‖.

Lemma 2.2. For any r1 ∈ (0, 2C0)ˆ

Bc
r1

Gr1 dρ ≤ C

r1

,

where C0 is the constant which appears in (1.2).

Proof. We first derive some pointwise estimates for Gr1 , closely similar to those
of Lemma 2.1 (iii), (iv) and (v). Let x = (x1, x2, a) ∈ Bc

r1
. Any point in B(x, r1/2)

can be written xy = (x1 + ay1, x2 + ay2, ab), where y = (y1, y2, b) ∈ Br1/2 so that
|y| . 1 and b ∼ 1. The triangle inequality then implies |r(xy)−r(x)| ≤ r1/2 ≤ r(x)/2
and thus r(xy) ∼ r(x) and cosh r(xy) ∼ cosh r(x). This allows us to conclude from
Lemma 2.1 (iii) that

(III) Gr1(x) . r−4, x ∈ B1 \Br1 ,

with r = r(x). Next, we observe that |xy| . |x| + a and see that Lemma 2.1 (iv)
implies

(IV) sup
B(x,r1/2)

sup
t>0

‖Xipt‖ . 1 + a−1|x|
r2 cosh2 r

, i = 1, 2.

Moreover, Lemma 2.1 (v) implies

(V) sup
B(x,r1/2)

sup
t>0

‖X0pt‖ . 1

ar3 cosh r
+

1

r2 cosh2 r
.

Using these three estimates, we shall integrate Gr1 in Bc
r1
. From (III) we get

(2.7)
ˆ

B1\Br1

Gr1 dρ .
ˆ

B1\Br1

r(x)−4 dρ(x) . 1

r1

,

since dρ is equivalent to the three-dimensional Lebesgue measure in B1.
It remains to show that the integral over Bc

1 is finite. To do so, we split Bc
1 into

two regions, D1 = {x ∈ Bc
1 : |x|2 > a2 + 1} and D2 = Bc

1 \ D1. If x ∈ D1, then
(1.1) implies that cosh r(x) ∼ a−1|x|2 and r(x) ∼ log

(
a−1|x|2). For x ∈ D2, one has

cosh r(x) ∼ a + a−1 and r(x) ∼ log
(
a + a−1

)
.

For i = 1, 2, we apply (IV) to deal with Xipt. In D1 one has 1 ≤ a−1|x|, so that
ˆ

D1

sup
B(x,r1/2)

sup
t>0

|Xipt| dρ(x) .
ˆ +∞

0

da

a

ˆ

|x|>√a2+1

a−1|x|(
log(a−1|x|2))2

a−2|x|4
dx1 dx2.
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Making the change of variables (x1, x2) =
√

a (v1, v2), we get

(2.8)

ˆ +∞

0

da

ˆ

|v|>√a+a−1

1(
log |v|2)2√

a |v|3
dv1 dv2

.
ˆ +∞

0

1√
a2 + 1

(
log(a + a−1)

)2 da < ∞.

For the region D2, we get

(2.9)

ˆ

D2

sup
B(x,r1/2)

sup
t>0

|Xipt| dρ(x)

.
ˆ +∞

0

da

a

ˆ

|x|<√a2+1

1 + a−1|x|(
log(a + a−1)

)2
(a + a−1)2

dx1 dx2

.
ˆ +∞

0

1(
log(a + a−1)

)2
(a + a−1)2

(a2 + 1)3/2 da

a2
< ∞.

To estimate the integrals involving X0pt, we apply (V). The integral over Bc
1 of the

first term to the right in (V) can be computed by means of (2.1) as follows:

(2.10)
ˆ

Bc
1

1

a r(x1, x2, a)3 cosh r(x1, x2, a)
dρ(x1, x2, a) =

ˆ ∞

1

1

r3 cosh r
r sinh r dr . 1.

The last term in (V) is no larger than the right-hand side of (IV), so its integral is
finite by the above.

The estimates (2.7), (2.8), (2.9) and (2.10) give the desired conclusion. ¤

3. Proof of part (i) of Theorem 1.3

We first show that M is uniformly bounded on atoms.

Proposition 3.1. There exists a positive constant κ such that for any atom A

(3.1) ‖MA‖1 ≤ κ.

Proof. We first notice that it is sufficient to prove the inequality (3.1) for atoms
supported in Calderón–Zygmund sets centred at the identity. Indeed, if B is an atom
supported in a Calderón–Zygmund set R centred at a point cR, then the function A
defined by A(x) = δ(cR)−1B(cRx) is an atom supported in the set c−1

R · R which is
centred at the identity. Moreover, it is easy to check that ‖MB‖1 = ‖MA‖1.

Let us thus suppose that A is an atom supported in the Calderón–Zygmund set
R = Q × [e−r0 , er0 ] = [−L/2, L/2] × [−L/2, L/2] × [e−r0 , er0 ]. We study the cases
when r0 < 1 and r0 ≥ 1.

Case r0 < 1. By (1.2) R ⊂ BC0r0 . Since r0 < 1, the set R̃ = B2C0r0 has measure
comparable with ρ(R), and we get

(3.2) ‖MA‖L1(R̃) ≤ ρ(R̃)1/2 ‖M‖L2→L2 ‖A‖2 . ρ(R)1/2 ‖M‖L2→L2 ρ(R)−1/2 . 1.

It remains to consider MA on the complement of R̃. For any point x in R̃c, we
obtain from (2.5) and the cancellation condition of the atom

(3.3) A ∗ pt(x) = δ(x)

ˆ

R

A(y) [pt(x
−1y)− pt(x

−1)] dρ(y).
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Let y be any point in the ball BC0r0 . From the Mean Value Theorem in R3, we obtain

|pt(y)− pt(e)| . r0 sup
BC0r0

‖∇pt‖.

Replacing here pt by its translate pt(x
−1·) and using the left invariance of ∇, we

conclude
|pt(x

−1y)− pt(x
−1)| . r0 sup

B(x−1,C0r0)

‖∇pt‖.

Since ‖A‖1 ≤ 1, we conclude from this and (3.3) that

|A ∗ pt(x)| . r0δ(x) sup
B(x−1,C0r0)

‖∇pt‖,

and so
|MA(x)| . r0δ(x) sup

B(x−1,C0r0)

sup
t>0

‖∇pt‖.

We now integrate over x ∈ R̃c, inverting the variable x. Then Lemma 2.2 with
r1 = 2C0r0 leads to ˆ

R̃c

|MA(x)| dρ(x) . 1,

which ends the case r0 < 1.

Case r0 ≥ 1. In this case we define R∗∗ = {x : |x| < γ L, 1
L

< a < γ L}, where
γ > 1 is a suitable constant. Then ρ(R∗∗) is comparable to ρ(R), and there exists a
constant C such that

‖MA‖L1(R∗∗) ≤ ρ(R∗∗)1/2 ‖M‖L2→L2 ‖A‖2

≤ C ρ(R)1/2 ‖M‖L2→L2 ρ(R)−1/2 ≤ C.
(3.4)

It remains to consider MA on the complementary set of R∗∗. We write (R∗∗)c =
Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 = {x ∈ G : a <
1

L
, |x| < γ L},

Ω2 = {x ∈ G : a > γL, |x| < a},
Ω3 = {x ∈ G : |x| > max(a, γL)}.

In (3.3) we write y = (y1, y2, b) ∈ R and x = (x1, x2, a) so that x−1y =
(
a−1(y1 −

x1), a
−1(y2 − x2), a

−1b
)
. We now study MA on Ω1, Ω2, Ω3 separately.

For x ∈ Ω1 and y ∈ R, (1.1) implies

cosh r(x−1y) ≥ a−1b + a−1b−1|x− y|2
2

≥ a−1b

2
≥ a−1/2

2
≥ e

2
,

the last two inequalities since b ≥ e−r0 > L−1/2 > a1/2 and a−1/2 > er0 , by the
definitions of Ω1 and Calderón–Zygmund sets. Therefore, by (2.6)

sup
t>0

pt(x
−1y) . δ1/2(x−1y) r(x−1y)−3 r(x−1y)

sinh r(x−1y)

. (a−1b)−1 (log a−1)−2

a−1b−1(b2 + |x− y|2)
=

a2

(log a−1)2(b2 + |x− y|2) .
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This implies that for all x in Ω1,

sup
t>0

|A ∗ pt(x)| = δ(x) sup
t>0

∣∣∣
ˆ

R

A(y)pt(x
−1y) dρ(y)

∣∣∣ . δ(x)‖A‖∞
ˆ

R

sup
t>0

pt(x
−1y) dρ(y)

. δ(x)ρ(R)−1 a2

(log a−1)2

ˆ er0

e−r0

ˆ

|y1|<L/2

ˆ

|y2|<L/2

1

b2 + |x− y|2 dy1 dy2
db

b

. a−2 (L2r0)
−1 a2

(log a−1)2

ˆ er0

e−r0

log
(L

b

) db

b
. r0

L2(log a−1)2
.

By taking the integral over the region Ω1, we obtain that

(3.5)
ˆ

Ω1

MA(x) dρ(x) . r0

L2

ˆ 1/L

0

da

a (log a−1)2

ˆ

|x|<γL

dx1 dx2 . r0

log L
∼ 1.

In order to study the integral of MA on the remaining regions, we use the
cancellation condition of the atom and write

A ∗ pt(x) = δ(x)

ˆ

R

A(y) [pt(x
−1y)− pt(x

−1ỹ) + pt(x
−1ỹ)− pt(x

−1)] dρ(y),

where for y = (y1, y2, b) ∈ R we denote ỹ = (y1, y2, 1), so that y = ỹ exp(log b X0).
Setting q1(x) = supt>0, y∈R |pt(x

−1y) − pt(x
−1ỹ)| and q2(x) = supt>0, y∈R |pt(x

−1ỹ) −
pt(x

−1)|, we conclude that

MA(x) ≤ δ(x)
(
q1(x) + q2(x)

) ˆ

R

|A(y)| dρ(y) ≤ δ(x)
(
q1(x) + q2(x)

)
.

We first estimate q2. Observe that ỹ = exp(y1X1 + y2X2), so that

pt(x
−1ỹ)− pt(x

−1) =

ˆ 1

0

(y1X1 + y2X2)pt

(
x−1exp(sy1X1 + sy2X2)

)
ds.

Here x−1exp(sy1X1 + sy2X2) =
(
a−1(sy1 − x1), a

−1(sy2 − x2), a
−1

)
and

2 cosh r
(
x−1exp(sy1X1 + sy2X2)

)
= a−1 + a + aa−2|sy − x|2,

because of (1.1). We consider 0 < s < 1 and y ∈ R, which implies that |y1|, |y2| ≤
L/2.

For x ∈ Ω2 we get |sy − x| . a, cosh r
(
x−1exp(sy1X1 + sy2X2)

) ∼ a and also
r
(
x−1exp(sy1X1 + sy2X2)

) ∼ log a, so that Lemma 2.1 (iv) implies that
∣∣(y1X1 + y2X2)pt

(
x−1exp(sy1X1 + sy2X2)

)∣∣ . L
a a−1 a

a2(log a)2
=

L

a(log a)2
.

Thusˆ

Ω2

δ(x)q2(x) dρ(x) . L

ˆ

Ω2

1

a3(log a)2
dρ(x) . L

ˆ ∞

γL

1

a3(log a)2

ˆ

|x|<a

dx1 dx2
da

a

. L

ˆ ∞

γL

da

a2(log a)2
. 1

(log L)2
.(3.6)

For x ∈ Ω3 we have |x| > γ L, so that |sy − x| ∼ |x| ≥ a, and it follows that
cosh r

(
x−1exp(sy1X1 + sy2X2)

) ∼ a−1|x|2. Then Lemma 2.1 (iv) implies
∣∣(y1X1 + y2X2)pt

(
x−1exp(sy1X1 + sy2X2)

)∣∣ . L
aa−1 |x|

a−2|x|4( log(a−1|x|2))2 .
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Thus

(3.7)

ˆ

Ω3

δ(x)q2(x) dρ(x) . L

ˆ

Ω3

1

|x|3( log(a−1|x|2)2 dx1 dx2
da

a

. L

ˆ

|x|>γL

dx1 dx2

|x|3
ˆ

a<|x|

da

a
(
log(a−1|x|2)2

. L

ˆ

|x|>γL

dx1 dx2

|x|3 log |x| . 1

log L
.

To estimate q1, we write

pt(x
−1y)− pt(x

−1ỹ) = log b

ˆ 1

0

X0pt

(
x−1ỹ exp(s log bX0)

)
ds.

Here x−1ỹ exp(s log bX0) =
(
a−1(y1 − x1), a

−1(y2 − x2), a
−1bs

)
, and so

2 cosh r
(
x−1ỹ exp(s log bX0)

)
= a−1bs + ab−s + ab−sa−2|y − x|2.

For x ∈ Ω2, we get |y − x| . a and cosh r
(
x−1ỹ exp(s log bX0)

) ∼ a b−s which
implies r

(
x−1ỹ exp(s log bX0)

) ∼ log a because a > γL > γe2r0 and e−r0 ≤ b−s ≤ er0 .
Then Lemma 2.1 (v) implies that

∣∣X0pt

(
x−1ỹ exp(s log bX0)

)∣∣ . 1

a−1bsab−s(log a)3
+

1

a2b−2s(log a)2
. 1

(log a)3
.

Thus
ˆ

Ω2

δ(x) q1(x) dρ(x) . r0

ˆ

Ω2

1

a2(log a)3
dρ(x)

. r0

ˆ

a>γL

1

a3(log a)3

ˆ

|x|<a

dx1 dx2 da

. r0
1

(log L)2
. 1

r0

.

(3.8)

For x ∈ Ω3 we have |y − x|2 ∼ |x|2 and cosh r
(
x−1ỹ exp(s log bX0)

) ∼ ab−sa−2|x|2.
It follows that log(a−1|x|2) . r

(
x−1ỹ exp(s log bX0)

)
. Lemma 2.1 (v) now implies

∣∣X0pt

(
x−1ỹ exp(s log bX0)

)∣∣ . 1

a−1bsa−1b−s|x|2(log(a−1|x|2)3

+
1

a−2b−2s|x|4(log a−1|x|2)2

. a2

|x|2(log(a−1|x|2)3
+

a2

|x|3(log(a−1|x|2)2
;
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in the last term we have used the inequalities b2s ≤ e2r0 < L < |x|. Thus

(3.9)

ˆ

Ω3

δ(x) q1(x) dρ(x) ≤ r0

ˆ

|x|>γL

1

|x|2
ˆ

a<|x|

da

a(log(a−1|x|2)3
dx1 dx2

+ r0

ˆ

|x|>γL

1

|x|3
ˆ

a<|x|

da

a(log(a−1|x|2)2
dx1 dx2

≤ r0

ˆ

|x|>γL

dx1 dx2

|x|2(log |x|)2
dx1 dx2 + r0

ˆ

|x|>γL

dx1 dx2

|x|3 log |x|
≤ r0

log L
+

r0

L log L
. 1.

Combining the above, we obtain the estimate
´ MA dρ . 1 in the case r0 ≥ 1, which

completes the proof of Proposition 3.1. ¤
We can now prove part (i) of Theorem 1.3.

Proof. Take a function f ∈ H1, and let us prove that Mf ∈ L1. There exists a
sequence of atoms {Aj}j and complex numbers {λj}j such that f =

∑∞
j=1 λjAj and∑∞

j=1 |λj| ≤ 2‖f‖H1 . By (2.5)

f ∗ pt(x) =

ˆ
f(y)δ(x)pt(x

−1y) dρ(y).

In view of [CGGM, Theorem 2.1], the heat kernel pt is for each t > 0 a bounded
function on G. Thus for each t > 0 and x ∈ G the function y 7→ δ(x) pt(x

−1y) is in
L∞. But then

ˆ
f(y)δ(x)pt(x

−1y) dρ(y) = lim
N→∞

N∑
j=1

ˆ
λjAj(y)δ(x)pt(x

−1y) dρ(y),

and so

|f ∗ pt(x)| ≤
∞∑

j=1

|λj| |Aj ∗ pt(x)|.

Taking the supremum in t, we get

Mf(x) ≤
∞∑

j=1

|λj|MAj(x),

and the result now follows from Proposition 3.1. ¤

4. Proof of Part (ii) of Theorem 1.3

Even though the two statements in Part (ii) are equivalent, we choose to prove
both, by means of simple, explicit examples. First we recall the definition and some
properties of the space BMO (see [V] for details).

Definition 4.1. The space BMO is the space of all functions in L1
loc such that

sup
R∈R

1

ρ(R)

ˆ

R

|g − gR| dρ < ∞,
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where gR denotes the mean value of g in the set R, and R is the family of Calderón–
Zygmund sets. The space BMO is BMO modulo the subspace of constant functions.
It is a Banach space endowed with the norm

‖g‖BMO = sup
{ 1

ρ(R)

ˆ

R

|g − gR| dρ : R ∈ R
}

.

The space BMO can be identified with the dual of the Hardy space H1. More
precisely, for any g in BMO the functional ` defined on any atom A by

`(A) =

ˆ
gA dρ,

extends to a bounded functional on H1. Furthermore, any functional in the dual of
H1 is of this type, and ‖`‖(H1)∗ ∼ ‖g‖BMO. Given functions g in BMO and f in H1

we shall denote by 〈g, f〉 the action of g on f in this duality.
Aiming at Theorem 1.3 (ii), we shall construct a family of functions {fL}L>2 in

H1 such that

lim
L→+∞

‖fL‖H1

‖MfL‖1

= +∞.

Fix L > 2 and consider the rectangles R0 = [−1, 1] × [−1, 1] × [1
e
, e] and RL =

(L, 0, 1) · R0 = [L − 1, L + 1] × [−1, 1] × [1
e
, e]. We then define fL = χRL

− χR0 .
Obviously fL is a multiple of an atom, so it lies in the Hardy space H1. We shall
estimate the H1-norm of the function fL from below, by applying the duality between
H1 and BMO.

Lemma 4.2. There exists a positive constant C such that

‖fL‖H1 ≥ C log L ∀L > 2.

Proof. We consider the function h in BMO(R) given by h(s) = log |s| for all s
in R and define g(x1, x2, a) = h(x1) = log |x1|. First we observe that g is in BMO.
Indeed, let R = Q1 × Q2 × I be a Calderón–Zygmund set, where Q1, Q2 and I are
intervals of the form given by Definition 1.1. One finds that gR coincides with the
mean hQ1 of h in Q1, and so

1

ρ(R)

ˆ

R

|g − gR| dρ =
1

|Q1|
ˆ

Q1

|h(x1)− hQ1| dx1 ≤ ‖h‖BMO(R).

This implies that g is in BMO and ‖g‖BMO = ‖h‖BMO(R).
Since fL is a multiple of an atom, 〈g, fL〉 =

´
gfL dρ, and it is easy to verify that∣∣∣

´
gfL dρ

∣∣∣ ≥ C log L. On the other hand,
∣∣〈g, fL〉

∣∣ . ‖g‖BMO‖fL‖H1 . The lemma
follows. ¤

Remark 4.3. The estimate of Lemma 4.2 is sharp, which can be seen as follows.
With J =

[
(log L)/2)

]
, we shall write the function fL as a linear combination of

2J +1 ∼ log L atoms. The intuitive idea is to construct a chain of atoms which reach
the same “height” L/2 in the a-variable as the geodesics connecting the sets R0 and
RL. More precisely, for j = 0, 1, . . . , J − 1 set

Pj = (0, 0, e2j) ·R0 = (−e2j, e2j)× (−e2j, e2j)× (e2j−1, e2j+1),
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and define the functions

Aj =
ρ(R0)

ρ(Pj)
χPj

− ρ(R0)

ρ(Pj+1)
χPj+1

.

Similarly, set

Qj = (L, 0, 1) · Pj = (L− e2j, L + e2j)× (−e2j, e2j)× (e2j−1, e2j+1),

and define the functions

Bj =
ρ(RL)

ρ(Qj)
χQj

− ρ(RL)

ρ(Qj+1)
χQj+1

.

Notice that ρ(Pj) = ρ(Qj) ∼ e4j for each j, and it is easy to see that there exist
Calderón–Zygmund sets P̃j and Q̃j such that ρ(P̃j) = ρ(Q̃j) ∼ e4j and

supp(Aj) = Pj ∪ Pj+1 ⊂ P̃j and supp(Bj) = Qj ∪Qj+1 ⊂ Q̃j.

Thus, Aj and Bj are multiples of atoms. Moreover, PJ ∪QJ is contained in a Calde-
rón–Zygmund set whose measure is comparable with ρ(PJ), and thus ρ(R0)

ρ(PJ )

[
χPJ

−χQJ

]
is also a multiple of an atom.

We conclude that

fL =
J−1∑
j=0

Bj −
J−1∑
j=0

Aj − ρ(R0)

ρ(PJ)

[
χPJ

− χQJ

]
,

so that ‖fL‖H1 ∼ log L.

Proposition 4.4. There exists a positive constant C such that for L > C

‖MfL‖1 . log log L.

Proof. Denote by 2R0 the rectangle [−2, 2] × [−2, 2] × [ 1
e2

, e2] and by 2RL the
rectangle (L, 0, 1) · (2R0). We shall estimate the L1-norm of the maximal function
MfL by integrating it over different regions of the space.

Step 1. The operator M is a contraction on L∞, so that MfL ≤ 1, and since
ρ(2R0) = ρ(2RL) ∼ 1, clearly

(4.1)
ˆ

2R0∪ 2RL

MfL dρ . 1.

Step 2. Choose a ball B = BrB with rB = (log L)α, where α > 2 is a constant.
Then (1.1) implies that B ⊃ 2R0 ∪ 2RL if L is large enough. We shall estimate the
maximal function on B \ (2RL ∪ 2R0). From (2.5) we see that for any x

(4.2) MχR0(x) = sup
t

ˆ
χR0(y)pt(y

−1x) dλ(y) . sup
y∈R0

sup
t

pt(y
−1x).

If x ∈ (2R0)
c and y ∈ R0, then δ1/2(y−1x) ∼ δ1/2(x) and

|r(y−1x)− r(x)| = |d(y, x)− d(x, e)| ≤ d(y, e) ≤ C.

Applying (2.3) and (2.6), we see that then

sup
y∈R0

sup
t

pt(y
−1x) . δ1/2(x)

1

r(x)2 sinh r(x)
.
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It follows that for any x ∈ (2R0)
c

(4.3) MχR0(x) . δ1/2(x)
1

r(x)2 sinh r(x)
.

Since 2R0 can be seen to contain the unit ball B1, we apply (2.1) and (4.3),
getting

(4.4)
ˆ

B\2R0

MχR0 dρ .
ˆ rB

1

r−2 1

sinh r
r sinh r dr = log rB . log log L.

Observe now that MχRL
(x) = MχR0(τLx), where τLx = (−L, 0, 1) · x, for any

x in G. Using the facts that τLRL = R0 and τLB ⊂ B2rB = 2B for large L, and
changing variable τLx = v, we obtain

(4.5)

ˆ

B\2RL

MχRL
(x) dρ(x) =

ˆ

B\2RL

MχR0(τLx) dρ(x)

=

ˆ

τLB\τL(2RL)

MχR0(v)δ(−L, 0, 1) dρ(v)

≤
ˆ

2B\2R0

MχR0(v) dρ(v) . log(2rB) . log log L,

as before.
Thus, from (4.4) and (4.5) we deduce that

(4.6)
ˆ

B\(2R0∪ 2RL)

MfL dρ . log log L.

We now split the complement of B into the following three regions:

Γ1 =
{

x = (x1, x2, a) ∈ Bc : a < a∗, |x| < f(a)
}

,

Γ2 =
{

x = (x1, x2, a) ∈ Bc : a ≥ a∗
}

,

Γ3 =
{

x = (x1, x2, a) ∈ Bc : a < a∗, |x| ≥ f(a)
}

,

where a∗ = e−rB/8 and f(a) = e
√

log a−1 .

Step 3. We first estimate the integral of MfL over the region Γ1, and here we
use the simple fact that MfL ≤MχRL

+MχR0 . For any point x in Γ1 we have

a−1(1 + |x|2)
2

<
a + a−1 + a−1|x|2

2
= cosh r(x) < er(x),

which implies that
log a−1 . r(x).

From (4.3) we obtain

(4.7)

ˆ

Γ1

MχR0 dρ .
ˆ a∗

0

da

a

ˆ

|x|<f(a)

a−1[log a−1]−2 dx

a−1(1 + |x|2)

.
ˆ a∗

0

da

a
[log a−1]−2 log f(a) .

ˆ a∗

0

da

a
[log a−1]−3/2 . 1.
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With a translation argument as in (4.5), we see that

(4.8)
ˆ

Γ1

MχRL
dρ ≤

ˆ

τL(Γ1)

MχR0 dρ.

Now, any point (x1, x2, a) in τL(Γ1) satisfies a < a∗ and |x| < f(a)+L, which implies
f(a) > f(a∗) = e

√
rB/8 = e(log L)α/2/

√
8 > L, if L is large enough. Then |x| < 2f(a),

and the right-hand side of (4.8) can be estimated as in (4.7), with f(a) replaced by
2f(a). We conclude that

(4.9)
ˆ

Γ1

MχRL
dρ . 1.

Step 4. In order to estimate the integrals over Γ2 and Γ3, we first write the
convolution fL ∗ pt(x) at a point x ∈ Bc as follows:

fL ∗ pt(x) =

ˆ

RL

pt

(
y−1x

)
dλ(y)−

ˆ

R0

pt(y
−1x) dλ(y)

=

ˆ

R0

[
pt

(
y−1(−L, 0, 1)x

)− pt(y
−1x)

]
dλ(y).

Let now y−1 = (y1, y2, b) be any point in (R0)
−1 and x = (x1, x2, a) any point in Bc.

Then y−1(−L, 0, 1)x = y−1(−L, 0, 1)y · y−1x = (−bL, 0, 1)y−1x, and the Mean Value
Theorem implies

pt

(
y−1(−L, 0, 1)x

)− pt(y
−1x) = −bL ∂1pt

(
(s, 0, 1)y−1x

)

= −bL ∂1pt

(
s + y1 + bx1, y2 + bx2, ba

)
,

for some s ∈ (−bL, 0). We now use the fact that X1 = a∂1 and the explicit expression
for the derivative X1pt given by Lemma 2.1 (i), to obtain

pt

(
y−1(−L, 0, 1)x

)− pt(y
−1x)

= − 1

8π3/2
bL(ab)−1 t−3/2 e−

r2

4t

(
− r2

2t sinh r
+

sinh r − r cosh r

sinh2 r

)s + y1 + bx1

sinh r

1

ab

= − 1

8π3/2

L

a2b
t−3/2 e−

r2

4t

(
− r2

2t sinh2 r
+

sinh r − r cosh r

sinh3 r

)
(s + y1 + bx1),

where r = r
(
(s, 0, 1) y−1 x

)
& 1. Taking the supremum in t and applying (2.6), we

deduce that

(4.10)
sup

t

∣∣pt

(
y−1(−L, 0, 1)x

)− pt(y
−1x)

∣∣ . L

a2b
r−3 r

sinh2 r
|s + y1 + bx1|

. L

a2
r−2 1

sinh2 r
(L + |x|),

since y−1 ∈ (R0)
−1, x ∈ Bc and s ∈ (−bL, 0). By the triangle inequality,

|r((s, 0, 1) · y−1x
)− r(x)| = |d(

x, y · (−s, 0, 1)
)− d(x, e)| ≤ d

(
y · (−s, 0, 1), e

)

≤ d
(
y · (−s, 0, 1), y

)
+ d

(
y, e

)

= d
(
(−s, 0, 1), e

)
+ d

(
y, e

)
. log L,
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where we also used (1.1). Since r(x) > (log L)α, we get r
(
(s, 0, 1) y−1 x

) ∼ r(x) and

sinh−2 r
(
(s, 0, 1) · y−1x

)
. sinh−2

[
r(x)− log L

]
. L2

sinh2 r(x)
.

This and (4.10) imply that

sup
t

∣∣pt

(
y−1(−L, 0, 1)x

)− pt(y
−1x)

∣∣ . L3

a2
r(x)−2 1

sinh2 r(x)
(L + |x|),

which allows us to conclude that

(4.11) sup
t
|fL ∗ pt(x)| . L3

a2
r(x)−2 1

sinh2 r(x)
(L + |x|).

Let us now estimate MfL in the region Γ2. Using (4.11) and the fact that
|x| . a1/2 cosh1/2 r(x), we get

MfL(x) . L4

a2

r(x)−2

sinh2 r(x)
+

L3

a3/2

r(x)−2

sinh3/2 r(x)
∀x ∈ Γ2.

By applying (2.1), we then obtain
ˆ

Γ2

MfL dρ . (a∗)−1L4

ˆ ∞

rB

r−2

sinh2 r
r sinh r dr + (a∗)−1/2L3

ˆ ∞

rB

r−2

sinh3/2 r
r sinh r dr

. (a∗)−1L4 e−rB + (a∗)−1/2L3 e−rB/2 . 1.(4.12)

We finally estimate MfL in the region Γ3. For any point x in Γ3 we have
cosh r(x) ∼ a−1|x|2, and r(x) ∼ log(a−1|x|2), and also |x| > e

√
log(1/a∗) = e

√
(log L)α/8 >

L for large L. Thus (4.11) implies

MfL(x) . L3

a2
[log(a−1|x|2)]−2 |x|

[a−1|x|2]2 ∀x ∈ Γ3.

We now integrate over the region Γ3, making the change of variables a−1/2x = y:

(4.13)

ˆ

Γ3

MfL dρ . L3

ˆ a∗

0

da

a3

ˆ

|x|>f(a)

[log(a−1|x|2)]−2 |x| dx

[a−1|x|2]2

= L3

ˆ a∗

0

da

a3/2

ˆ

|y|>a−1/2f(a)

[log(|y|2)]−2 |y| dy

|y|4

. L3

ˆ a∗

0

da

a3/2

1

[a−1/2f(a)] [log a−1 + log f(a)2]2

. L3

ˆ a∗

0

da

a

1

f(a) [log a−1]2
= L3

ˆ a∗

0

da

a

1

e
√

log a−1
[log a−1]2

.

An easy calculation shows that
ˆ a∗

0

da

a

1

e
√

log a−1
[log a−1]2

. e−
√

log(a∗)−1 [
log(a∗)−1

]−3/2
,

and log(a∗)−1 = (log L)α/8. Thus by (4.13) we get

(4.14)
ˆ

Γ3

MfL dρ . 1,
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since α > 2.
Summing up the estimates (4.1), (4.6), (4.7), (4.9), (4.12), (4.14), one concludes

that ˆ
MfL dρ . log log L,

and Proposition (4.4) is proved. ¤
By Proposition 4.4 and Lemma 4.2 it follows that

lim
L→+∞

‖fL‖H1

‖MfL‖1

= +∞.

Thus there is no converse estimate to that of Theorem 1.3 (i).

We can now finish the proof of Theorem 1.3 (ii). Define the function f by

f(x1, x2, a) =
1

x1(log x1)3/2

in the set {(x1, x2, a) : x1 > 3, |x2| < 1, e−1 < a < e}, f = c0 in R0 and f = 0
elsewhere, with the constant c0 chosen so that

´
f dρ = 0.

First we show that f does not lie in H1. We truncate the BMO function g from
the proof of Lemma 4.2, and let for N = 1, 2, . . .

gN = min
(
max(g,−N), N

)
.

These L∞ functions satisfy ‖gN‖BMO ≤ ‖g‖BMO. It is easy to see that

(4.15) lim
N→∞

ˆ
gNf dρ = +∞.

If f were in H1 and thus had an atomic decomposition converging in L1, we would
get 〈gN , f〉 =

´
gNf dρ. This would be a contradiction, since the gN define uniformly

bounded functionals on H1.

To estimate the L1 norm of Mf , we approximate f with a linear combination of
the functions fL with even, integer values of L. Let

f̃ =
∞∑

k=2

ckf2k,

where ck is the mean value of f in R2k. For every (x1, x2, a) in R2k

∣∣f(x1, x2, a)− ck

∣∣ . x−2
1 (log x1)

−3/2 . k−2.

This means that the restriction of the difference f − f̃ to R2k is k−2 times an atom.
Observe also that f and f̃ coincide in R0.

From Proposition 4.4 and Theorem 1.3 (i), we conclude

‖Mf‖1 ≤ ‖Mf̃‖1 + ‖M(f − f̃)‖1 .
∞∑

k=2

ck log log k +
∞∑

k=2

k−2.

Since ck . k−1(log k)−3/2, these quantities are finite. Theorem 1.3 is completely
proved. ¤
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